
Fast Fourier Transform Reductions for Bayesian Network Inference

Vincent Hsiao Dana Nau Rina Dechter

University of Maryland,
College Park

University of Maryland,
College Park

University of California,
Irivine

Abstract

Bayesian Networks are useful for analyzing
the properties of systems with large popu-
lations of interacting agents (e.g., in social
modeling applications and distributed service
applications). These networks typically have
large functions (CPTs), making exact infer-
ence intractable. However, often these mod-
els have additive symmetry. In this paper
we show how summation-based CPTs, espe-
cially in the presence of symmetry, can be
computed efficiently through the usage of the
Fast Fourier Transform (FFT).

In particular, we propose an efficient method
using the FFT for reducing the size of Condi-
tional Probability Tables (CPTs) in Bayesian
Networks with summation-based causal in-
dependence (CI). We show how to apply it
directly towards the acceleration of Bucket
Elimination, and we subsequently provide ex-
perimental results demonstrating the compu-
tational speedup provided by our method.

1 INTRODUCTION

There is increasing interest in analyzing the properties
of systems with large populations of interacting agents.
Examples include social modeling using Evolutionary
Game Theory (EGT) models, and distributed service
applications such as Function-as-a-Service (FaaS), the
Smart Grid, and autonomous drone delivery.

Bayesian Networks are useful for analyzing the prop-
erties of such distributed systems for tasks such as
load balancing (Bassamzadeh and Ghanem, 2017), re-
liability analysis (Jiang et al., 2012), or fault diagnosis
(Cai et al., 2014). These networks typically have large

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

functions (CPTs), making even the specification of
BN intractable and clearly exact inference intractable.
It is well known that Bayesian-Network inference is
exponential in the network’s induced width (or tree-
width), making exact inference intractable especially
over large CPT’s, as they lead to very high induced
widths (Dechter, 2013). However, a subset of these
distributed service models such as k-out-of-n reliabil-
ity models include large summations of a distributed
resource (e.g. number of computational hosts, unit
of power available per generator in a Smart Grid)
which have stochastic availability. The unique ad-
ditive symmetry present in these models make them
amenable to efficient inference and CPT reduction al-
gorithms through the usage of the Fast Fourier Trans-
form (FFT) (Cooley and Tukey, 1965).

In this paper we make the following contributions:

1. We propose an efficient method using the FFT
for reducing the size of Conditional Probabil-
ity Tables (CPTs) in Bayesian Networks with
summation-type causal independence (CI) [to be
defined later].

2. We show how to apply this reduction directly to-
wards the acceleration of Bucket Elimination.

3. We empirically demonstrate the computational
speedup our method provides over the naive in-
ference approach and existing temporal based de-
composition approaches.

We will conclude this introductory section with a few
motivating domains. Next, in (Section 2), we provide
background on causal independence (CI) in Bayesian
networks, and on computing sum of random variables
using Fast Fourier Transform (FFT). We then show
how FFT can be used for efficient reduction of a BN
with large CI functions (section 3.1) and subsequently
(section 3.2) show how FFT can speed up general prob-
abilistic inference (e.g., Bucket elimination) when the
network has summation-based CI fragments. Section 4
provides empirical evaluation and section 5 concludes.

Fast Fourier Transform Reductions for Bayesian Network Inference

Figure 1: Bayesian Network for summation of random
variables, K =

∑

i Si

1.1 Distributed Resources

Distributed resource problems can be modeled us-
ing k-out-of-n Bayesian Networks (Bibartiu et al.,
2019). The general idea is to model n different re-
source providers {S1, . . . , Sn} which each provide some
varying amount of distributed resource (server nodes,
power generation, etc.) with stochastic availability
and/or quantity. For example, in a distributed compu-
tation application, each server location can be modeled
as a separate node Si which provides some ki amount
of computing resource (e.g. S1 is some server clus-
ter with 300 total available computing nodes). As
mentioned in Bibartiu et al. (2019), the naive k-out-
of-n model is one converging node K with n parents
{S1, . . . , Sn} with the structure in Fig. 1. The value
of the K node is the sum of the variables {Si, . . . , Sn}.
The CPT for node K is very sparse as a table and can
be represented symbolically as the function:

P (K = k|S1 = k1, . . . , SN = kn) = 1k=
∑

i ki
(1)

Similar and more complex models can be constructed
for the evaluation of other distributed resource prob-
lems where there are multiple providers and the goal
is to check whether the sum of resources sourced from
individual providers satisfies a given constraint.

This type of convergent structure can also be found
in Bayesian Networks used to represent Fault Trees
(Bibartiu et al., 2019). Fault Trees are frequently used
to analyze system reliability and a key component in
many of them are k-out-of-n voting gates (Portinale
and Bobbio, 2013), which only activate if more than k
out of n parents encounter a fault event. In the dis-
tributed resource model, each Si’s domain is simply
{0, 1} and we query the probability that the summa-
tion node K has a value greater or equal to k.

1.2 Evolutionary Game Theory

Bayesian networks have also been used in modeling
evolutionary games (Hsiao et al., 2021). In an evolu-
tionary game, the fitness of an agent is evaluated as
the sum of payoff values obtained by playing normal
form games with neighboring agents N(i):

Pay(si) =
∑

j∈N(i) U [si, sj] (2)

These Bayesian networks can have large sets of nodes
that are topologically identical with respect to their
position in the network. The number of nodes in these
sets is dependent on a model parameter d denoting the
number of neighboring agents. Inference on the net-
work can become cumbersome for large d since the size
of the conditional probability table of a payoff valued
node is exponential in d. Like in the aforementioned
distributed resource models, these payoff valued nodes
can be thought of as a summation nodes.

2 BACKGROUND

2.1 Bayesian Networks

A Bayesian Network is a graphical model
(X,D,F), consisting of a discrete variable set
X = {X1, X2, . . . , XN}, a set of corresponding do-
mains: D = {DX1

, DX2
, . . . , DXN

} with xi ∈ DXi
, ∀i,

and a set of parent functions F = {F1, F2, . . . , FN}.
Each xi is associated with a parent function
Fi = Pr(xi | pai) where pai is the set of parent vari-
ables of Xi. The conditional probability functions Fi’s
are typically specified in a tabular format (CPTs).

Bayesian Networks are useful for modeling proba-
bilistic distributions through an efficient representa-
tion of conditional independence. Exact inference on
Bayesian Network is typically done using bucket elim-
ination (aka variable elimination) (Darwiche, 2009;
Dechter, 2013). These exact inference algorithms are
known to be exponential in the size of the induced
width (or tree-width) of the network and can easily
become intractable depending on their induced widths.

2.2 Causal Independence

Casual independence is a probabilistic relationship be-
tween a set of causes {c1, . . . , cn} and an effect e where
the effect can be seen as a deterministic function of hid-
den variables {h1, ..., hn} such that e = h1 ∗ h2... ∗ hn

where each hi is a probabilistic function of its corre-
sponding ci and ∗ is a commutative and associative
binary operator (Rish and Dechter, 1998; Zhang and
Poole, 1996). This paper is directed towards networks
possessing causal independence where the ∗ operator
is the addition operator + and the effect e can then be
expressed as: e =

∑

i hi.

Causal independence in Bayesian Networks such as
Fig. 1 enables efficient network transformations (e.g.,
temporal transformation (Bibartiu et al., 2019; Heck-
erman and Breese, 1994)) to significantly reduce the
size of parent sets in the network.

Vincent Hsiao, Dana Nau, Rina Dechter

Network Transformations. Given a CI Bayesian
Network fragment {X,D,F} with a set of causes
{c1, . . . , cn}, an effect e: X = {c1, ..., cn, e} and a set
of hidden variables {h1, . . . , hn}, consider a computa-
tion ordering over the equation e = h1 ∗ h2... ∗ hn. An
example ordering for a temporal transformation is:

e = (. . . (((h1 ∗ h2) ∗ h3) ∗ h4) ∗ . . .) ∗ hn (3)

Given an ordering, denote the quantities enclosed
in each parenthesis set as intermediate variables yi:
{y1 = h1 ∗ h2, y2 = y1 ∗ h3, y3 = y2 ∗ h4 . . .}.

A network transformation {X ′, D′, F ′} is a network
such that X ′ = {c1, . . . , cn, h1, . . . , hn, y1, . . . , ym, e}
is expanded to include hidden variables hi and inter-
mediate variables yi defined over a valid computation
ordering. The resulting network is also called a de-
composition network. The goal is to transform large
parent sets to small ones (e.g. 2 variables per set).

Further work on the topic (Rish and Dechter, 1998;
Zhang and Poole, 1996) exploit the decomposition
graphs resulting from network transformations to ac-
celerate bucket elimination (ci-elim-bel in Algorithm
1). It was found that using ci-elim-bel to exploit ca-
sual independence can significantly improve the perfor-
mance of exact inference on polytrees (from O(Ndm)
to O(Nmd3) where N is the number of nodes, d is the
domain size and m is the size of the largest parent set)
as well as in two layer k-n-networks (see Fig. 6) (from
O((k + n)dk) to O((k + n)dmin{k,2n})).

We next provide background into the theory of proba-
bility generating functions and the use of Fourier trans-
forms for computing random variable sums that is the
main tool we will use to speedup some computations
applied to Bayesian Network inference and reductions.

2.3 Random Variable Sums

Suppose we have a set of independent identi-
cally distributed (i.i.d) random variables X =
{X1, X2, . . . , XN} with domain D and a random vari-
able Z s.t:

Z =
∑

i Xi (4)

Naively, we can find P (Z = k) by enumerating all Xi

values that sum to k, taking O(|D|N) time. However,
we can calculate P (Z = k) more efficiently through
probability generating functions as described next.

Definition 2.1 (Probability Generating Functions).
A probability generation function (or polynomial) PX

for a discrete random variable X, with DX ⊂ N, hav-
ing a distribution PX is defined as:

PX(x) =
∑∞

k=0 x
kPX(k) (5)

Algorithm 1: ci-elim-bel (Rish and Dechter, 1998)
Input: A Bayesian network B = (X,D,F) where
F are CI, evidence e
Output: P (x1|e)

Generate a decomposition network B′ from B
with pair-wise hidden variables {u1, . . . , um}
Generate ordering o = {Z1, . . . , Zn} using B′ s.t.
Z1 = {x1} and Zi = {xj} | {uj ;uk}
[for details, see (Rish and Dechter, 1998)]
for i = n → 1 do // create buckets

∀x ∈ Zi, put all network functions with x as
highest ordered variable in bucketi

end

for i = n → 1 do // process buckets

// h1, . . . , hm are functions in bucketi
if (x = ej) ∈ bucketi for ej ∈ e then

replace x by ej in each hi and put the
result in appropriate lower bucket.

else

if Zi = {x} then // input variable

hZi =
∑

x

∏

j hj

else // Zi = {ul;uk}, u = ul ∗ uk

hZi =
∑

ul,uk|u=ul∗uk

∏

j hj

Put hZi in the highest bucket that
mentions hZi ’s variable.

end

Return αhx1 , (α is a normalizing constant).

The k-th coefficient of PX , PX(k), can be found by
taking derivatives of the generating polynomial:

PX(k) = P
(k)
X (0)/i! (6)

where P
(k)
X is the k-th derivative of PX .

Theorem 2.1 (Generating Function Multiplication,
(8.37 in Graham et al. (1989))). For a set of ran-
dom variables X = {X1, . . . , XN} with distributions
{PX1

, . . . , PXN
} and their corresponding generating

functions {PX1
, . . . ,PXN

}, the distribution of Z =
∑

i Xi obeys:

P (Z = k) = P
(k)
Z (0)/k!, where PZ =

∏N
j PXj

(7)

Proposition 1. Computing (PZ)k, ∀k using generat-
ing polynomial multiplication takes time O(|D|2 ·N2).

Proof. (See supplemental materials for a more in-
depth tutorial). For two generating polynomials
PX1

,PX2
, the product is computed as:

(PX1
× PX2

)k =
∑k

j=0(PX1
)k(PX2

)k−j (8)

where subscripts denote the coefficient of the corre-
sponding polynomial. This computation is quadratic

Fast Fourier Transform Reductions for Bayesian Network Inference

in the size of the polynomials (number of coefficients).
In the process of computing PZ , the size of interme-
diate polynomials is bounded by N |D|. Therefore the
total time for computing PZ is:

∑N
i=1 i|D| · |D| = O(|D|2 ·N2) (9)

Definition 2.2 (Convolution). Let FX(k) = P (X =
k) and FY (k) = P (Y = k) be two probability density
functions for random variables X,Y . The convolution
of functions FX and FY is defined as:

(FX ∗ FY)(k) =
∑

j FX(k)FY (k − j) (10)

Clearly (PX1
×PX2

)k = (PX1
∗PX2

)(k). Consequently,
we can use tools for performing convolutions to com-
pute the distribution of a sum.

The Convolution Theorem. The convolution the-
orem provides an alternative method for the calcula-
tion of Eq. 10 using the Fourier Transform.

Definition 2.3 (Discrete Fourier Transform). The
discrete Fourier transform F of a discrete probability
distribution FX defined over integers [0,M − 1] is:

F̂X(x) = F{FX}(x) =
∑M−1

k=0 FX(k) · e−i2πxk/M

(11)

F̂X(x) is also defined over M values and is called the
Fourier transform of FX and its domain is called the
frequency domain. The inverse Fourier transform is
defined as:

FX(k) = F−1{F̂X}(k) = 1
M

∑M−1
x=0 F̂X(x) · ei2πxk/M

(12)

The original domain is referred to as the time domain.

Theorem 2.2 (The convolution theorem, (4.3.49 in
Proakis (2001))). For two discrete probability distri-
butions FX(t) and FY (t), it can be shown that:

(FX ∗ FY)(k) = F−1(F{FX} · F{FY })(k) (13)

where F{FX} · F{FY } denotes the pointwise multipli-
cation of the two frequency distributions.

Corollary 2.2.1 (Symmetry). For i.i.d random vari-
ables X = {X1, X2, . . . , XN} and their sum Z =
∑

Xi, it is easy to show that:

P (Z = k) = F−1(F{FX}N)(k)

where FX(k) = P (Xi = k) (14)

Theorem 2.3 (Time Complexity). For i.i.d random
variables X = {X1, X2, . . . , XN} where each variable
has a domain size |D| and Z =

∑

Xi, computing
P (Z = k) using Eq. 14 will take time O(N2|D|2). For
non-i.i.d variables, the time complexity is O(N3|D|2).

Proof. See supplemental materials

This computation can be accelerated using the Fast

Fourier Transform (FFT). The FFT is a collection
of divide and conquer algorithms (e.g., the Cooley-
Tukey algorithm (Cooley and Tukey, 1965)) that re-
duces the time required for computing the Fourier
transform from O(|D|2) to O(|D| log |D|) where |D|
is the domain size of the discrete distribution being
transformed.

Theorem 2.4 (FFT Time Complexity). For i.i.d ran-
dom variables X = {X1, X2, . . . , XN} where each vari-
able has a domain size |D| and their sum Z =

∑

Xi,
computing P (Z = k) using the FFT will take time
O(N |D| log(N |D|)). For non-i.i.d variables, the time
complexity is O(N2|D| log(N |D|)).

Proof. See supplemental materials

In practice, even if Xi is not defined over consecutive
integers, it is still possible to calculate the sum distri-
bution of Z using the FFT, however the time complex-
ity is better expressed using the range of Z:

R = max(Z)−min(Z)

Time = O(R logR) (15)

3 APPLICATION TO BAYESIAN

NETWORKS

3.1 FFT Reduction

Up to this point, we have been working with sums of
random variables. Now, we will apply the FFT the-
ory towards the reduction of variables in a Bayesian
Network.

Figure 2: Symmetric Bayesian Network with i.i.d
paths between source node S and sink node E

Consider the Bayesian Network in fig. 2 which has 3
types of nodes.

• Source node S take a value in some domain DS

• A set of N i.i.d nodes Yi that take values in some
domain DY

Vincent Hsiao, Dana Nau, Rina Dechter

• Sink node E takes a value in a subset of the nat-
ural numbers DE ⊂ N

Let U : DY → N be some cost function. We assume:

P (E= e | {Yi = yi, ∀i})) =

{

1 if e =
∑N

i U [yi]

0 otherwise

(16)

The size of this function expressed as conditional prob-
ability table is exponential in N . However, using
FFT theory, we can reduce the size of this CPT
from O(|DE ||DY |

N) to O(|DS ||DE |) by eliminating
Yi, . . . , YN .

Theorem 3.1 (FFT Reduction). Let B = {X,D,F}
with X = {S, Y1, . . . , YN , E} be a source-sink network
with N i.i.d paths as in Fig. 2. The network can be
transformed into {X ′, D′, F ′} such that X ′ = {S,E}
reducing the CPT for E from size O(|DE ||DY |

N) to
size O(|DS ||DE |) in O(|DS |R logR) time where R is
the numerical range of random variable E.

Proof. Our goal is to define a new CPT for E of size
O(|DS ||DE |) where each entry is:

P (E= e | S= s), ∀s ∈ DS , e ∈ DE (17)

We use the FFT reduction to eliminate all i.i.d nodes
Yi in between the S and E nodes. For each value of
(s, e), we proceed as follows:

1. To calculate P (U[Yi] = j|S = s), we transform
the distribution on Y ′s from the domain DY to
a distribution on the natural numbers domain
N. This takes O(|DY |) time as we simply iter-
ate through U[y], ∀y ∈ DY .

2. Let:

Z =
∑

i U[Yi] (18)

Let Fu be the discrete probability distribution of
U [Yi]:

Fu(j) = P (U [Yi] = j | S= s) (19)

Using the convolution theorem:

P (E= e | S= s) = P (Z = e | S= s) (20)

= F−1{F{Fu}
N}(e)

which takes O(R logR) where R is Z’s range:

R = N(maxU−minU) (21)

We perform the above steps for each value of s ∈ DS

giving a final time complexity of:

O(|DS |R logR)

R = N(maxU−minU) (22)

to reduce the CPT to O(|DE | |DS |).

FFT reduction
−−−−−−−−−−→
O(|DS |R logR)

O(|DE ||DY |
N) O(|DE ||DS |)

Figure 3: FFT Reduction

Corollary 3.1.1 (Reduction on general CI Networks).
For any set of random variables X = {X1, . . . , XN}
(not necessarily identically distributed) and corre-
sponding sum Z =

∑

i Xi, we can calculate all proba-
bilities P (Z = k) in O(N2|D| log(N |D|)) time.

Proof. See supplemental materials.

3.2 Algorithm CI-Elim-Bel with FFT

(a) (b)

Figure 4: Five node source-sink Bayesian Network (a)
and its decomposition graph (b)

In this section we will show how the use of FFT for
processing summation can be incorporated into the
bucket-elimination algorithm ci-elim-bel. We will il-
lustrate this with an example. Consider the five node
Bayesian Network in Fig. 4 where all Yi’s are i.i.d
and are defined by P (Yi|X) = P (Yk|X), ∀k. and as-
sume Z =

∑

i Yi. Like in (Rish and Dechter, 1998),
we can perform ci-elim-bel on this network using the
decomposition graph in Fig. 4 (See supplemental
Fig. 1 for the equation describing the full computa-
tion). The elimination steps are as follows for ordering
o = {{u1, z1}, Y1, {u2, u3}, Y2, Y3}:

1. bucket Y3 : hY3(X,u3) =
∑

Y3
P (Y3|X)P (u3|Y3)

2. bucket Y2 : hY2(X,u2) =
∑

Y2
P (Y2|X)P (u2|Y2)

3. bucket {u2, u3} : h{u2,u3}(X, z1) =
∑

{u2,u3|z1=u2+u3}
hY2(X,u2)h

Y3(X,u3)

Fast Fourier Transform Reductions for Bayesian Network Inference

4. bucket Y1 : hY1(X,u1) =
∑

Y1
P (Y1|X)P (u1|Y3)

5. bucket {u1, z1} : P (Z|X) =
∑

{u1,z1|z=u1+z1}
hy1(X,u1)h

{u1,u2}(X, z1)

where hYi denotes intermediate functions. The largest
operation occurs in bucket {u1, z1} which has a com-
plexity of |DX ||DZ ||DY |.

Observe that the calculations performed in the buck-
ets {u2, u3} and {u1, z1} are equivalent to multiplying
the coefficients of the corresponding generating poly-
nomials. For example, consider the following three
polynomials:

PhY2 =
∑

i h
Y2(X,u2 = i)xi

PhY3 =
∑

i h
Y3(X,u3 = i)xi

Ph{u2,u3} =
∑

i h
{u2,u3}(X, z1 = i)xi (23)

We have that:

h{u2,u3}(X, z1) =
∑

{u2,u3|z1=u2+u3}

hY2(X,u2)h
Y3(X,u3)

is exactly the equation for the calculation of the coef-
ficients in the polynomial product:

Ph{u2,u3} = PhY2 × PhY3 (24)

It follows then that for a given number N of Yi nodes,
variable elimination using a decomposition graph takes
the same amount of time as the generating function
polynomial multiplication. However, as we have shown
earlier using the FFT reduction is computationally
faster compared to the generating function approach
yielding potentially a speedup compared to CI-based
bucket elimination.

In general, suppose in the variable elimination calcu-
lation we have the following sequence of buckets in the
ci-elim-bel algorithm for a temporal decomposition of
N , Yi nodes:

• bucket {u1, u2} : h{u1,u2}(X, z1) =
∑

{u1,u2|z1=u1+u2}
hY1(X,u1)h

Y2(X,u2)

• bucket {u3, z1} : h{u3,z1}(X, z2) =
∑

{u3,z1|z2=u3+z1}
hY3(X,u3)h

{u1,u2}(X, z1)

• bucket {u4, z2} : h{u4,z2}(X, z3) =
∑

{u4,z2|z3=u4+z2}
hY4(X,u4)h

{u3,z1}(X, z2)

•

...

• bucket {uN , zN−2} : P (Z|X) =
∑

{uN ,zN−2|z=uN+zN−2}
hYN (X,uN)

h{uN−1,ZN−3}(X, zN−2)

i.i.d Y ′
i s non-i.i.d Y ′

i s

BE O(N |DX |R2
Z) O(N |DX |R2

Z)
FFT O(|DX |RZ logRZ) O(N |DX |RZ logRZ)

Table 1: Time complexity for computation of tempo-
ral decomposition buckets. Top row (Bucket Elimina-
tion), Bottom row (FFT)

Computationally, the bucket computations will take
O(N2|DU |

2|DX |) time. Observe that if the Yi’s are
identically distributed conditioned on X, we have that

hYi(X,ui) = hYj (X,uj), ∀i, j ∈ [1, N] (25)

Theorem 3.2 (FFT bucket elimination). Given a
sequence of N temporal decomposition buckets in ci-
elim-bel for N i.i.d Yi’s that conditionally depend on
variable X with domain size |DX | and sum to variable
Z, it is possible to compute the sequence of buckets
in O(|DX |RZ logRZ) time where RZ is the numerical
range of the domain of the final bucket.

Proof. We perform the following FFT reduction:

1. Define functions FYi

FYi
(X, k) = hYi(X,ui = k)

2. Perform the FFT: (O(|DX |RZ logRZ))

F̂Yi
(X, t) = F{FYi

(X)}(t)

3. Exponentiate the function F̂Yi
: (O(RZ))

F̂Yi
(X, t)N

4. Perform the inverse FFT: (O(|DX |RZ logRZ))

P (Z|X) = F−1{F{FYi
(X)}N}(Z)

Which in total takes O(|DX |RZ logRZ) time.

If the Yi’s are not identically distributed, we will
need to perform an FFT for each FYi

and replace
step 3 with pointwise multiplications which in total
will take O(NRZ) time bringing the total time to
O(N |DX |RZ logRZ). A comparison of the different
methods can be seen in Table 1. For comparison pur-
poses, we can approximately substitute N |DX | ≈ RZ .

Extending ci-elim-bel. Using ci-elim-bel as the
baseline, we can replace the computation of + in ad-
dition based networks with the FFT to create the
ci-elim-FFT algorithm (see Algorithm 2). The FFT
operation to compute hZi is performed with respect

Vincent Hsiao, Dana Nau, Rina Dechter

Algorithm 2: ci-elim-FFT
Input: A Bayesian network B, evidence e
Output: P (x1|e)

Generate a decomposition network from B
Generate ordering o = {Z1, . . . , Zn} with
Z1 = {x1} using B′

for i = n → 1 do // create buckets
∀x ∈ Zi, put all network functions with x as
highest ordered variable in bucketi

end

for i = n → 1 do // process buckets

// h1, . . . , hm are functions in bucketi
if Zi = {ul;uk}, u = ul + uk then

hul =
∏

j,ul∈hj
hj ;

huk =
∏

j,uk∈hj
hj ;

hZi = F−1{F{hul} · F{huk}}
else

use regular ci-elim-bel to compute hZi

Put hZi in the highest bucket that mentions
hZi ’s variable.

end

Return αhx1 , (α is a normalizing constant).

to the additive variables yl and yk. This means that
we evaluate:

hZi = F−1{F{hyl} · F{hyk}} (26)

for every value of the variables of hZi except y, yl, yk.

4 EXPERIMENTAL EVALUATION

We evaluate the effectiveness of both approaches pro-
posed for accelerating inference in Bayesian Networks.
Specifically we evaluate the FFT reduction technique
[as in section 3.1] for network transformation on a se-
lection of common substructures that may be present
in larger networks. We also evaluate the performance
of ci-elim-FFT compared to ci-elim-bel on general two
layer additive networks also known as k− n networks.
Rish (1999) showed that ci-elim-bel can speed up in-
ference exponentially on k−n networks when k > 2n.
We test the scaling efficiency of ci-elim-FFT in cases
where k > 2n where one might want to use ci-elim-bel.

4.1 Experimental Setup

We evaluate all inference tasks on a 64-bit machine
with an Intel i7-10870H 2.2 GHz CPU and 32 GB
of RAM. The models are written in python with the
library pomegranate and bucket elimination is per-
formed using the library’s pgmpy’s built-in variable
elimination. The FFT is computed using the library
numpy. We also compare python implementations

Figure 5: Two branch supply-demand network

Figure 6: Two layer additive network

(not using pgmpy) of ci-elim-FFT with ci-elim-bel
where the only difference is the method for comput-
ing buckets with two hidden variables.

4.2 FFT reduction evaluation

We evaluate the FFT reduction for accelerating infer-
ence on a selection of networks with casually indepen-
dent summation nodes. For each network scenario, we
test three different approaches:

1. vanilla bucket elimination (Naive)

2. bucket elimination on a temporal network decom-
position as in Bibartiu et al. (2019) (Temporal)

3. FFT reduction [as in Section 3.1] followed by
bucket elimination (FFT)

We test each approach for finding the marginal distri-
bution of a specific variable in three scenarios:

1. P (K = k) in an n-parent convergent network (Fig.
1) found in the distributed resource applications
described in Bibartiu et al. (2019)

2. P (E= e) in an n-path source-sink graph (Fig.
2) which can be found as substructures of the
Bayesian Networks for evolutionary games in
Hsiao et al. (2021)

3. P (A= a) in a supply and demand model for dis-
tributed resource production and consumption
shown in Fig. 5. This consists of two n-parent
convergent networks that feed into a boolean-
valued node that is True if supply is larger or equal
to than demand and False otherwise.

For each network class, we evaluate end-to-end infer-
ence time (construction time and inference time) for
increasing numbers of casually independent nodes (Si

Vincent Hsiao, Dana Nau, Rina Dechter

number of source nodes increases and as well as when
the domain size of variables increases.

5 RELATED WORK AND

LIMITATIONS

Our work is not the first work which has attempted
to apply the Discrete Fourier Transform (DFT) to ex-
act probabilistic inference on Bayesian Networks. The
DFT can be thought of as a special case of the tensor
decomposition approach first described in Savicky and
Vomlel (2007). In Plajner and Vomlel (2021), the DFT
was applied as a special case of the tensor decompo-
sition towards test score prediction on a subset of the
source-sink type networks that we discussed in section
3. However, in their approach, a naive application of
the DFT was used that relies on matrix multiplica-
tion which is equivalent to computing Eq. 11 directly.
Due to this, we believe that our FFT based approach
can provide a method for lowering the computational
cost of test score prediction even further beyond the
existing DFT approach using matrix multiplication.
Furthermore, our work also improves upon prior work
by directly integrating the FFT into a general bucket
elimination algorithm.

The FFT itself has also been applied towards the cal-
culation of random variable sums in Beyene (2001),
but not directly towards the similar problems as found
in summation type nodes in Bayesian Networks or
combined with algorithms such bucket elimination.

Conceptually, the problem of accelerating the compu-
tation of summation-based CPTs is also similar to
the problem addressed through the use of counting
factors in the literature on lifted variable elimination
(Taghipour et al., 2013). However, there are a few key
differences. Most notably, while lifting is said to work
on general models, in practice several restrictions must
be satisfied for lifting to provide a computational ad-
vantage. In particular, it is necessary for the factors
present in the equation to be identical. This allows
work to be exponentiated out through symmetry and
is equivalent to the case of i.i.d variables in our work.
If the factors are not identical, then it is necessary to
perform grounding, defaulting to basic variable elimi-
nation.

While our FFT method provides the greatest compu-
tational advantage when all variables are i.i.d, we note
in corollary 3.3.1 and in the paragraph right after the-
orem 3.2, that the method can still be applied even
when the variables are not i.i.d, providing theoreti-
cal speedup (as shown in Table 1) and an empirical
speedup as observed (in Figure 7, 8). Importantly,
CI-elim-FFT can be applied to any Bayesian Network

that include summation nodes, and not just to the
four types of networks demonstrated in the empirical
results. For general networks, the only requirement
for ci-elim-FFT to provide a speedup over a temporal
decomposition/ci-elim-bel is the presence of summa-
tion type nodes.

It may be interesting to incorporate our FFT method
as a type of lifted operator for counting factors over
asymmetric variables, extending ci-elim-FFT into an
analagous lifted version. We leave this problem for
future research in this area.

6 CONCLUSION

We have presented an efficient method for reducing
the size of summation-based Conditional Probability
Tables (CPTs) in Bayesian Networks having causal
independence (CI). We also have shown how to ap-
ply this reduction directly towards the acceleration of
Bucket Elimination. We have provided experimen-
tal results showing the FFT reduction’s advantage
for inference on a selection of common sub-networks
found in Bayesian Networks for modeling distributed
resource. We have developed an extension to ci-elim-
bel called ci-elim-FFT and provided empirical results
that demonstrate its scaling advantages.

Acknowledgements

This work supported in part by NSF grant IIS-2008516
and AFOSR grant 1010GWA357. The information
in this paper does not necessarily reflect the position
or policy of the funders, and no official endorsement
should be inferred.

References

Bassamzadeh, N. and Ghanem, R. (2017). Multi-
scale stochastic prediction of electricity demand in
smart grids using bayesian networks. Applied en-
ergy, 193:369–380.

Beyene, J. (2001). Uses of the fast Fourier transform
(FFT) in exact statistical inference. PhD thesis, Na-
tional Library of Canada= Bibliothèque nationale
du Canada.

Bibartiu, O., Dürr, F., Rothermel, K., Ottenwälder,
B., and Grau, A. (2019). Towards scalable k-out-
of-n models for assessing the reliability of large-
scale function-as-a-service systems with bayesian
networks. In 2019 IEEE 12th International Con-
ference on Cloud Computing (CLOUD), pages 514–
516. IEEE.

Cai, B., Liu, Y., Fan, Q., Zhang, Y., Liu, Z., Yu, S.,
and Ji, R. (2014). Multi-source information fusion

Fast Fourier Transform Reductions for Bayesian Network Inference

based fault diagnosis of ground-source heat pump
using bayesian network. Applied energy, 114:1–9.

Cooley, J. W. and Tukey, J. W. (1965). An algorithm
for the machine calculation of complex fourier series.
Mathematics of computation, 19(90):297–301.

Darwiche, A. (2009). Modeling and reasoning with
Bayesian networks. Cambridge university press.

Dechter, R. (2013). Reasoning with probabilistic and
deterministic graphical models: Exact algorithms.
Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning, 7(3):1–191.

Graham, R. L., Knuth, D. E., Patashnik, O., and Liu,
S. (1989). Concrete mathematics: a foundation for
computer science. Computers in Physics, 3(5):106–
107.

Heckerman, D. and Breese, J. S. (1994). A new look
at causal independence. In Uncertainty Proceedings
1994, pages 286–292. Elsevier.

Hsiao, V., Pan, X., Nau, D., and Dechter, R. (2021).
Approximating spatial evolutionary games using
bayesian networks. In Proceedings of the 20th In-
ternational Conference on Autonomous Agents and
MultiAgent Systems, pages 1533–1535.

Jiang, Y., Zhang, H., Song, X., Jiao, X., Hung, W. N.,
Gu, M., and Sun, J. (2012). Bayesian-network-based
reliability analysis of plc systems. IEEE transactions
on industrial electronics, 60(11):5325–5336.

Plajner, M. and Vomlel, J. (2021). Bayesian networks
for the test score prediction: A case study on a math
graduation exam. In European Conference on Sym-
bolic and Quantitative Approaches with Uncertainty,
pages 255–267. Springer.

Portinale, L. and Bobbio, A. (2013). Bayesian
networks for dependability analysis: an applica-
tion to digital control reliability. arXiv preprint
arXiv:1301.6734.

Proakis, J. G. (2001). Digital signal processing: princi-
ples algorithms and applications. Pearson Education
India.

Rish, I. (1999). Efficient reasoning in graphical models.
PhD thesis. University of California, Irvine.

Rish, I. and Dechter, R. (1998). On the impact of
causal independence. Technical report, AAAI SS-98-
03. Dept. Information and Computer Science, UCI.

Savicky, P. and Vomlel, J. (2007). Exploiting tensor
rank-one decomposition in probabilistic inference.
Kybernetika, 43(5):747–764.

Taghipour, N., Fierens, D., Davis, J., and Blockeel, H.
(2013). Lifted variable elimination: Decoupling the
operators from the constraint language. Journal of
Artificial Intelligence Research, 47:393–439.

Zhang, N. L. and Poole, D. (1996). Exploiting causal
independence in bayesian network inference. Journal
of Artificial Intelligence Research, 5:301–328.

Fast Fourier Transform Reductions for Bayesian Network Inference:
Supplementary Materials

A Supplemental Proofs

A.1 Tutorial for Generating Function Multiplication in Proposition 1

Algorithm 3: Multiply Method 1
Input: Two generating polynomials PX1

,PX2

Output: The product: PX1+X2

let M1 = size of PX1
, let M2 = size of PX2

;
let M = M1 +M2 // For just 2 polynomials this is 2|D| ;
for i = 0 → M do // outer loop

initialize (Px1+x2
)i = 0 ;

for j = 0 → i do // inner loop

if j ∈ {0,M1 − 1} and i− j ∈ {0,M2 − 1} then
(Px1+x2

)i + = (Px1
)j · (Px2

)i−j

end

end

return Px1+x2

Algorithm 4: Multiply Method 2
Input: Two generating polynomials PX1

,PX2

Output: The product: PX1+X2

let M1 = size of PX1
, let M2 = size of PX2

;
for i = 0 → M1 +M2 do // outer loop

initialize (Px1+x2
)i = 0 ;

end

for i = 0 → M1 do // outer loop

for j = 0 → M2 do // inner loop
(Px1+x2

)i+j + = (Px1
)i · (Px2

)j
end

end

return Px1+x2

Algorithm 5: Multiply N Polynomials
Input: N generating polynomials PX1

,PX2
, . . . ,PXN

Output: The product: PZ = PX1+X2+...+XN

initialize PZ = PX1
;

for 2 → N do
PZ = Multiply(PZ , PXk

) // call either Method 1 or Method 2
end

return PZ

Fast Fourier Transform Reductions for Bayesian Network Inference

Consider two generating polynomials PX1
,PX2

, the first with M1 coefficients and the second with M2 coefficients,
the product is computed as:

(PX1
× PX2

)k =

k
∑

j=0

(PX1
)k(PX2

)k−j (28)

where subscripts denote the coefficient of the corresponding polynomial. Explicitly, this computation can be
computed using either Method 1 in Algorithm 3 (directly using Eq. (8)) or using Method 2 (using a pair-wise
product) in Algorithm 4. In either case, this computation is quadratic in the size of the polynomials (number
of coefficients). For this analysis, we define time complexity as the number of floating point multiplication
operations performed. These occur only when we multiply two coefficients together.

For two polynomials, if M1 = M2 = |D|, the time complexity is:

• In the case of Method 1, the outer loops iterates for M steps and the inner loops iterates up to the
intermediate counter i. The inner multiplication is only evaluated if j ∈ {0,M1−1} and i− j ∈ {0,M2−1}.
As a result, only M1 ·M2 products are ever evaluated: O(M1 ·M2) = O(|D|2)

• In the case of Method 2, the outer loops iterates for M1 steps and the inner loops iterates up to M2:
O(M1 ·M2) = O(|D|2)

Note that neither method calculates any multiplication term (of which there are M1 ·M2 terms) more than once
so the true number of pair-wise multiplications using either method is the same.

Consider the multiplication of N polynomials using Algorithm 5:

PZ =

N
∏

j=1

PXj
= (. . . (PX1

× PX2
)× . . .× PXN

) (29)

Algorithm 5 computes this quantity sequentially and produces intermediate polynomials:

• (PX1
× PX2

)

• (. . . (PX1
× PX2

)× PX3
)

• (. . . (PX1
× PX2

)× . . .× PXi
)

Given two polynomials PX1
,PX2

with sizes M1,M2, the size of their product is at most M1+M2. Consequently,
the size of intermediate polynomials (. . . (PX1

× PX2
)× . . .× PXi

) is at most i|D| (bounded by N |D|). Each call
on multiply is called on two polynomials:

1. Intermediate polynomial: (. . . (PX1
× PX2

)× . . .× PXi
). Size: i|D|

2. Next polynomial PXi+1. Size: |D|

The complexity of Multiply on these two polynomials is i|D| · |D| (there are i|D| · |D| pairwise products to
evaluate). There are N − 2 calls to Multiply. Therefore the total time for computing PZ is:

N−1
∑

i=2

i|D| · |D| = O(|D|2 ·N2) (30)

which is Eq. (9) in the paper.

Vincent Hsiao, Dana Nau, Rina Dechter

A.2 Proof of Theorem 2.3

Proof. When computing the discrete Fourier transform, the size of the distributions before and after the trans-
forms are applied must be the same. It is necessary to pad the starting distributions FX with zeros up to the
size of the target sum Z which is O(N |D|). The direct computation of the Fourier Transforms is quadratic in
N |D|. Sequentially, the computation consists of:

• Fourier transform F : O(
(

N |D|
)2
)

• Exponentiation F{FX}N : O(N |D|)

• Inverse transform F−1: O(
(

N |D|
)2
)

which in total is O(N2|D|2).

In the case of non-i.i.d variables, we perform a Fourier Transform for each distribution PXi
, O(N

(

N |D|
)2
) and

perform point-wise multiplications O(N2|D|) in the frequency domain bringing the total time to O(N3|D|2).

A.3 Proof of Theorem 2.4

Proof. The proof is the same as the previous theorem with the Fourier transform computed instead using the
FFT in O(N |D| logN |D|) time. Consequently the time required to calculate the distribution over the sum of N
i.i.d variables defined over consecutive integers is reduced to:

Time(i.i.d) = O(N |D| log(N |D|)). (31)

and for non-i.i.d variables:

Time(non-i.i.d) = O(N2|D| log(N |D|)). (32)

A.4 Proof of Corollary 3.1.1

Proof. Simply apply the process for FFT reduction without conditioning on values of a source node S:

1. FFT for each Xi: O(N ·N |D| log(N |D|))

2. N point-wise multiplications in Fourier Domain O(N2|D|)

3. Inverse FFT for Z: O(N |D| log(N |D|))

Adding these up results in O(N2|D| log(N |D|)) complexity.

Fast Fourier Transform Reductions for Bayesian Network Inference

P (Z|X) =
∑

Y1

∑

Y2

∑

Y3

P (Y1|X)P (Y2|X)P (Y3|X)P (Z|Y1, Y2, Y3)

=
∑

Y1,Y2,Y3

P (Y1|X)P (Y2|X)P (Y3|X)
∑

{u1,u2,u3,z=u1+u2+u3}

P (u1|Y1)P (u1|Y2)P (u1|Y3)

=
∑

{u1,z1|z=u1+z1}

∑

Y1

P (Y1|X)P (u1|Y1)
∑

{u2,u3|z1=u2+u3}

∑

Y2

P (Y2|X)P (u2|Y2)
∑

Y3

P (Y3|X)P (u3|Y3) (33)

Figure 9: Equation for computing bucket elimination on Five node source-sink Bayesian Network

	INTRODUCTION
	Distributed Resources
	Evolutionary Game Theory

	BACKGROUND
	Bayesian Networks
	Causal Independence
	Random Variable Sums

	APPLICATION TO BAYESIAN NETWORKS
	FFT Reduction
	Algorithm CI-Elim-Bel with FFT

	EXPERIMENTAL EVALUATION
	Experimental Setup
	FFT reduction evaluation
	Results of FFT reduction
	Evaluating ci-elim-FFT

	RELATED WORK AND LIMITATIONS
	CONCLUSION
	Supplemental Proofs
	Tutorial for Generating Function Multiplication in Proposition 1
	Proof of Theorem 2.3
	Proof of Theorem 2.4
	Proof of Corollary 3.1.1

