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Abstract
Consider a scenario where a player chooses an action in each round t out of T rounds and observes
the incurred cost after a delay of dt rounds. The cost functions and the delay sequence are chosen by
an adversary. We show that in a non-cooperative game, the expected weighted ergodic distribution
of play converges to the set of coarse correlated equilibria if players use algorithms that have “no
weighted-regret” in the above scenario, even if they have linear regret due to too large delays. For
a two-player zero-sum game, we show that no weighted-regret is sufficient for the weighted ergodic
average of play to converge to the set of Nash equilibria. We prove that the FKM algorithm with

n dimensions achieves an expected regret of O
(
nT

3
4 +

√
nT

1
3 D

1
3

)
and the EXP3 algorithm with

K arms achieves an expected regret of O
(√

logK (KT + D)
)

even when D =
∑T

t=1 dt and T are

unknown. These bounds use a novel doubling trick that, under mild assumptions, provably retains
the regret bound for when D and T are known. Using these bounds, we show that FKM and EXP3
have no weighted-regret even for dt = O (t log t). Therefore, algorithms with no weighted-regret
can be used to approximate a CCE of a finite or convex unknown game that can only be simulated
with bandit feedback, even if the simulation involves significant delays.
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1. Introduction

Consider an agent that makes sequential decisions, and each decision incurs some cost. The agent’s
goal is to minimize this cost over time. The question of what the agent learns about the cost
functions naturally influences the best performance the agent can guarantee. With full information,
after acting at round t, the agent receives the cost function of round t as feedback. With bandit
feedback, as we consider here, the agent only receives the cost of her decision. Another fundamental
question is when the agent receives the feedback. In most practical learning environments, an
agent does not get to learn the cost of her action immediately. For example, it takes a while to
observe the effect of a decision on a treatment plan or before observing the market’s response to
an advertisement. With delayed feedback, decisions must be made before all the feedback from the
past choices is received.

Practical environments are non-stationary since they typically consist of other learning agents,
and the learning of one agent affects that of the others. Moreover, the costs are naturally correlated
over time. Hence, guarantees for stochastic environments are not strong enough for multi-agent
environments. Instead, we consider cost sequences that are chosen by an adversary that knows the
agent’s algorithm. Proving regret bounds against an adversary certifies the robustness of a learning
algorithm, regardless of whether an actual malicious adversary exists or not. Following the same
reasoning, proving regret bounds with adversarial delays certifies the robustness of an algorithm to
non-stationary delays.

An algorithm is said to have ”no-regret” (Bowling, 2005) if it has a sublinear regret in T . It
is well known that when N agents in a non-cooperative game each use an algorithm that has no-
regret against an adaptive adversary, the ergodic distribution of play converges to the set of coarse
correlated equilibria (CCE) (Hannan, 1957; Hart, 2013). For a two-player zero-sum game, the
ergodic average of play converges to the set of Nash equilibria (NE) (Cai and Daskalakis, 2011). The
emergence of a CCE or a NE in a game between no-regret learners establishes their role as predictors
for the outcome of the game. From a practical point of view, the convergence of the expected ergodic
distribution to the set of CCE or of the ergodic average to the set of NE makes no-regret algorithms
an appealing way to approximate a CCE or a NE when the reward functions are unknown so
only simulating the game is possible (see Hellerstein et al. (2019)). When simulating an unknown
game, bandit feedback is a more realistic assumption than full information (or gradient feedback).
Approximating the equilibrium can help to predict the outcome of the interaction between deployed
agents even if they use other algorithms than those used for the approximation. If the equilibrium
is globally efficient, cooperative agents may agree to play it after using no-regret algorithms to
distributedly approximate it first.

The convergence to the set of CCE is maintained if the algorithm still enjoys the no-regret
property even with delayed feedback. However, for large enough delays (e.g. dt = O (t log t)), the
regret of any algorithm becomes linear in the horizon T so the no-regret property no longer holds.
Our first main contribution in this paper is to show that even with delays that cause a linear regret,
the expected weighted ergodic distribution may still converge to the set of CCE, and the weighted
ergodic average may still converge (in L1) to the set of NE for a two-player zero-sum game.

Many practical multi-agent interactions (i.e., games) are complicated to model. Instead, we
can simulate the game based on data or in an experiment. Since the agents’ performance is only
measured in hindsight, such a simulation typically involves delays. If our simulated agents each
run an online learning algorithm independently (e.g., FKM or EXP3), we can approximate a CCE
of the game (NE for a two-player zero-sum game) by computing the weighted ergodic distribution
(average). Our results imply that by properly tuning the weights, this method can approximate an
equilibrium even when the standard regret is linear.

Our game-theoretic results motivate analyzing the weighted-regret as opposed to the classical
regret when delays are involved. Hence, we study the weighted-regret of some widely-applied algo-
rithms, for both a discrete action set 1, ...,K (i.e., arms in multi-armed bandits) and a convex and
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compact action set K ⊂ Rn. For bandit convex optimization with a convex compact action set, the
most widely used adversarial bandits learning algorithm is FKM (Flaxman et al., 2005). With no

delays, the expected regret of FKM is O
(
nT

3
4

)
where n is the dimension of K. For the discrete case,

the most popular adversarial bandits learning algorithm is EXP3 (Auer et al., 1995, 2002; Bubeck
et al., 2012; Neu et al., 2010). With no delays, the expected regret of EXP3 is O

(√
TK logK

)
.

Our second main contribution is to bound the expected weighted-regret of FKM against an adap-
tive or oblivious adversary. As a special case, we show that with an arbitrary and possibly unbounded

sequence of delays dt, FKM achieves an expected regret of O
(
nT

3
4 +
√
nT

1
3

(∑
t/∈M dt

) 1
3 + |M|

)
against an oblivious adversary, where M = {t | t+ dt > T, t ∈ [1, T ]} is the set of rounds that their
feedback is not received before round T . Our third main contribution is to bound the expected
weighted-regret of EXP3 against an adaptive or oblivious adversary. As a special case, we show
that with an arbitrary and possibly unbounded sequence of delays dt, EXP3 achieves an expected

regret of O
(√(

KT +
∑
t/∈M dt

)
logK + |M|

)
against an oblivious adversary. Our weighted-regret

bounds reveal for which delay sequences FKM and EXP3 enjoy the no weighted-regret property.
Like the horizon T , the sum of delays D =

∑T
t=1 min {dt, T − t+ 1} might be unknown to the

decision-maker, which may need them to tune the algorithm. While the standard doubling trick
(Cesa-Bianchi et al., 1997) can deal with an unknown T , it does not help with an unknown D. Our
fourth main contribution is a general novel two-dimensional doubling trick where epochs are indexed
by a “delay index” as well as a “time index”. The delay index doubles every time the number of
missing samples so far doubles, and the time index doubles with the rounds as usual. We show that
under mild conditions, this novel doubling trick can be applied to any online learning algorithm
with delayed feedback, beyond the case of adversarial bandits. We apply this result to achieve an

expected regret of O
(
nT

3
4 +
√
nT

1
3D

1
3

)
for FKM and of O

(√
(KT +D) logK

)
for EXP3.

1.1 Previous Work

In recent years, learning with delayed feedback has attracted considerable attention, ranging from
multi-armed bandits (Mandel et al. (2015)) to Markov decision processes (Neu et al. (2010)) and
even distributed optimization (Agarwal and Duchi (2011)).

Most literature on learning with delayed feedback deals with multi-armed bandits, i.e., with a
discrete set of actions. Fixed delays were considered in Weinberger and Ordentlich (2002) and Zinke-
vich et al. (2009). Stochastic rewards and stochastic i.i.d. delays have been considered in Pike-Burke
et al. (2018). Stochastic i.i.d. delays with random missing samples have been considered in Vernade
et al. (2017). Bandits with adversarial rewards but still stochastic i.i.d. delays were considered in
Joulani et al. (2013). Cesa-Bianchi et al. (2019) considered an interesting case of communicating
agents that cooperate to solve a common adversarial bandit problem, where the messages between
agents may arrive after a bounded delay with a known bound d. Recently, advancements were made
for the case of stochastic delays, studying arm-dependent delays (Manegueu et al. (2020)), linear
bandits (Vernade et al. (2020)) contextual bandits (Zhou et al. (2019)), and reward-dependent delays
(Lancewicki et al. (2021)). In contrast, in our scenario, the adversary chooses the delay sequence.

In Quanrud and Khashabi (2015), the case of adversarial delays with full information feedback
has been considered, where the feedback is the costs of all arms (or the gradient of the cost function).
Our goal is to study bandit feedback instead, motivated by the multi-agent scenario.

In Cesa-Bianchi et al. (2018), a different adversarial bandits with delayed feedback scenario
has been studied, where all the feedback that is received at the same round is summed up and
cannot be distinguished, and delays are bounded by d. For both the multi-armed and convex cases,
Cesa-Bianchi et al. (2018) designed a wrapper algorithm and proved a regret bound for their delayed
feedback scenario as a function of the regret of the algorithm being wrapped for the no-delay scenario.
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For EXP3, the resulting regret bound is O
(√
dTK logK

)
. Compared to their scenario, we consider

time-stamped feedback with delays that can be unbounded.
Multi-agent learning and convergence to NE under delays have been considered in Zhou et al.

(2017); Héliou et al. (2020) for variationally stable games and monotone games (Rosen (1965)). We
study general non-cooperative games and convergence to the set of CCE under delays by generalizing
the framework of no-regret learning to no weighted-regret learning. Our analysis applies to both the
multi-armed bandit and bandit convex optimization cases.

While their focus is on monotone games, Héliou et al. (2020) also prove a regret bound for an
FKM-type algorithm for a single agent against an adversary. It is assumed in Héliou et al. (2020)
that the delay sequence is of the form dt = O(tα) for α < 1, so not even a small subset of the samples
can be delayed by O(t) rounds. Their algorithm puts the received samples in a queue and only uses
one sample per round regardless of how many samples were received this round. This is different
than our FKM version which uses all samples upon reception. The expected regret bound of this
queuing version of FKM proved in Héliou et al. (2020) is O(T

3
4 + T

2
3T

α
3 ), regardless of the sum of

delays, so it is much looser than our bound. In particular, if the sequence of delays is mostly zeros,
but once in L rounds equals to tα, the sum of delays is arbitrarily smaller, depending on L.

This paper extends a preliminary conference version (Bistritz et al., 2019) that only analyzed
EXP3 under delays. In this journal version, we also analyze FKM for bandit convex optimization
under delays. Additionally, we improve the doubling trick of Bistritz et al. (2019) and show that
it can be applied to any online learning algorithm with delayed feedback. Last but not least, we
generalize the game-theoretic results of Bistritz et al. (2019) to non-cooperative games and the CCE.

While preparing this journal version, we became aware that the concurrent work of Thune et al.
(2019) published in the same conference as (Bistritz et al., 2019) provides a similar analysis for the
single-agent EXP3 case with a constant step-size ηt = η. Taking a different approach to deal with
unknown D =

∑
t dt and T , Thune et al. (2019) assume that the delays are available at action time.

In this work, we instead provide a novel doubling trick that does not require this assumption and

achieves the same O
(√

(TK +D) logK
)

that was achieved in Thune et al. (2019). This improves

the doubling trick that was proposed in Bistritz et al. (2019) that achieved an expected regret

of O
(√

(TK2 +D) logK
)

. Replacing EXP3 with a novel follow-the-regulated-leader algorithm,

Zimmert and Seldin (2020) improved the expected regret to the optimal O
(√
TK +D logK

)
even

when D is unknown without using a doubling trick.

While this paper was under review, György and Joulani (2020) have achieved O
(√

(TK +D) logK
)

regret for EXP3 by adaptively tuning the step-size. As opposed to our EXP3 bound, their regret
bound has been shown to also hold with high probability. Furthermore, assuming a bound on the
maximal delay (or that the delay is available at action time) György and Joulani (2020) propose a
data-adaptive version of EXP3 which yields a regret that depends on the cumulative cost.

The works Thune et al. (2019); Zimmert and Seldin (2020); György and Joulani (2020); Bistritz
et al. (2019) all study multi-armed bandits, while this paper also studies convex bandit optimiza-
tion, using the FKM algorithm under delayed feedback. Moreover, Thune et al. (2019); Zimmert and
Seldin (2020); György and Joulani (2020) only studied the single-agent problem while we are mainly
motivated by the multi-agent problem, proving convergence of the expected weighted ergodic dis-
tribution to the set of CCE under delayed feedback. Our emphasis on the multi-agent case leads to
two technical differences even in our single-agent results. First, we prove regret bounds also against
an adaptive adversary that can choose the cost function in response to the players’ past actions.
This distinction between an oblivious and adaptive adversary is necessary to show convergence to
the set of CCE. Additionally, our single-agent results are formulated using the “weighted-regret”,
which weights the costs of different turns according to a given weight sequence. Even for the EXP3
analysis, this formulation leads to several subtleties that did not arise in Thune et al. (2019); Zim-
mert and Seldin (2020); György and Joulani (2020) (e.g., in Lemma 8 and Lemma 9). Last but not
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least, this paper provides a novel doubling trick that can deal with an unknown sum of delays in
addition to the unknown horizon. Our novel doubling trick can be applied to any online learning
algorithm under delayed feedback, beyond the case of adversarial bandits. For example, the prelim-
inary version of this doubling trick was employed in Lancewicki et al. (2020) that proposed novel
learning algorithms for delayed feedback in adversarial Markov decision processes.

1.2 Outline

Section 2 formalizes the general problem of learning with delayed bandit feedback and highlights our
main results. Section 3 discusses the outcome of the interaction between multiple learners that are
each subjected to a possibly different delay sequence. We extend the well-known connection between
no-regret learning and CCE to learning with delayed feedback. Surprisingly, even algorithms that
have linear regret under delays can still lead to the set of CCE. Section 4 presents our general doubling
trick that can be applied to online learning algorithms with delayed feedback, not necessarily in
adversarial or bandit feedback environments. Section 5 and Section 6 consider the FKM algorithm
for adversarial bandit convex optimization and the EXP3 algorithm for adversarial multi-armed
bandits, respectively. Section 5 and Section 6 each starts by proving expected weighted-regret
bounds under delayed bandit feedback for the algorithm in consideration, both against an oblivious
and an adaptive adversary. Next, we apply the result on our doubling trick for both FKM and
EXP3 to obtain expected regret bounds for the case where T and D are unknown. Then, we show
that FKM and EXP3 have no weighted-regret even with respect to delay sequences for which they
both have linear regret in T . This allows us to apply our game-theoretic results for both FKM and
EXP3, showing that they can approximate a CCE or a NE (in a two-player zero-sum game) of a
simulated game where only delayed bandit feedback is available. Finally, Section 7 concludes the
paper. Long proofs are postponed to the appendix.

2. Problem Formulation

Consider a player that in each round t from 1 to T picks an action at ∈ K from a set K. The cost
at round t from playing at is lt (at) ∈ [0, 1]. We consider two types of adversaries:

1. Oblivious Adversary: chooses the cost functions l1, ..., lT before the game starts.

2. Adaptive Adversary: chooses the cost function lt after observing {a1, . . . at−1}, for each t.

With full information and no delays, the player gets to know the function lt immediately after
playing at. In the bandit delayed feedback scenario, the player only gets to know the value of lt (at)
at the beginning of round t+ dt. (i.e., after a delay of dt ≥ 1 rounds). The adversary (oblivious or
adaptive) chooses the delay sequence {dt} before the game starts.

We assume that the cost feedback includes the timestamp of the action that incurred this cost.
This is indeed the case in many applications, such as when robots take physical actions, a recommen-
dation is made to a customer or a treatment is given to a patient. If the delays are bounded by d,
Cesa-Bianchi et al. (2018) have shown that EXP3 can still be implemented even with no timestamps,

with expected regret O(
√
dTK logK) instead of O

(√
(d+K)T logK

)
. For our unbounded delays

case, it is not clear if FKM or EXP3 can be implemented without timestamps.
The set of costs (feedback samples) received and used at round t is denoted St, so s ∈ St means

that the cost of as from round s is received and used at round t. Since the game lasts for T rounds,
all costs for which t + dt > T are never received. Of course, the value of dt does not matter as
long as t + dt > T , and these are just samples that the adversary chose to prevent the player from
receiving. We name these costs the missing samples and denote their set by M.

While the rounds of the game are indexed by t, it will be useful to our analysis to index a finer
time scale that counts the steps of the algorithm for every such t. We define s−, s+ as the steps a
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moment before and after the algorithm uses the feedback from round s, respectively. These steps
are taking place in round t if s ∈ St.

The player wants to have a learning algorithm that uses past observations to make good decisions
over time. The performance of the player’s algorithm is measured using the regret. The expected
regret is the total expected cost over a horizon of T rounds, compared to the total expected cost
that results from playing the best fixed action in hindsight in all rounds:

Definition 1. Let a∗ = arg min
a∈K

∑T
t=1 lt (a). The expected regret is defined as

E {R (T )} ,
T∑
t=1

E {lt (at)− lt (a∗)} (1)

where E is the expectation over the (possibly) random actions a1, ...,aT of the player.

We analyze two widely applied algorithms for the two central special cases of the scenario above:

1. Bandit Convex Optimization - K ⊂ Rn is a compact and convex set and lt : K → [0, 1] is
convex and Lipschitz continuous with parameter L. With no delays, the FKM algorithm, also
known as “gradient descent without the gradient” (Flaxman et al., 2005), achieves an expected

regret of O
(
nT

3
4

)
for this problem.

2. Multi-Armed Bandit - K = {1, ...,K}, lt : {1, ...,K} → [0, 1]. With no delays, the EXP3
algorithm (Auer et al., 2002) achieves an expected regret of O

(√
TK logK

)
for this problem.

2.1 Results and Contribution

Our main results for the single-agent case are summarized and compared to the literature in Table
1. They are based on the regret bounds proven in Theorem 5 for FKM and Theorem 7 for EXP3
for an unknown T and unknown D =

∑T
t=1 min {dt, T − t+ 1}.

The regret bound O
(
nT

3
4 +
√
nT

1
3D

1
3

)
reveals a remarkable robustness of FKM to delayed

feedback. For the sequence dt = t
1
4 , the expected regret maintains the same O

(
nT

3
4

)
as in the

no-delay case. Even for dt = t
4
5 , the expected regret is O

(
nT

14
15

)
, so FKM still has no-regret.

Similarly, the regret bound O
(√

(TK +D) logK
)

reveals a significant robustness of EXP3 to

delayed feedback. This follows since the T term is factored by K while the delay term D is not.
Consider bounded delays of the form dt = K. Then, the order of magnitude of the regret as a
function of T and K is O

(√
TK logK

)
, exactly as that of EXP3 without delays. For comparison,

consider the full information case where at each round the costs of all arms are received. Assume
that the player uses the exponential weights algorithm, which is the equivalent of EXP3 for the full
information case. For the same delay sequence dt = K, exponential weights achieves a regret bound
of O

(√
TK logK

)
,
√
K times worse than the O

(√
T logK

)
it achieves with no delays.

Both bandit feedback and delays are obstacles that hurt the performance of the learning of the
agent, as reflected in the expected regret. Surprisingly, even when the adversary has control over
both of these obstacles, the degradation in the regret is mild. Intuitively, with bandit feedback, the
effect of delay is much weaker than with full information since less information is delayed. This is
an encouraging finding since practical systems typically have both bandit feedback and delays.

As a benchmark, we provide a simple lower bound of Ω
(√

D
)

on the expected regret of any

algorithm, even for a given D =
∑T
t=1 dt, for multi-armed bandits or convex bandit optimization.

With no delays, i.e., D = T , the bound coincides with the existing lower bounds that it invokes.
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Convex Optimization K Arms
OGD

(Gradient
Feedback)

FKM
(Bandit Feedback)

Exponential
Weights

(Full
Information)

EXP3
(Bandit Feedback)

FTRL
(Bandit Feedback)

No-delay O
(√

T
)

Zinkevich (2003)

O
(
nT 3/4

)
Flaxman et al. (2005)

O
(√
T logK

)
O
(√
TK logK

)
Auer et al. (1995)

O
(√

TK
)

Adversarial
Delays

O
(√

D
)

Quanrud and
Khashabi (2015)

O
(
nT

3
4 +
√
nT

1
3D

1
3

)
Theorem 5

O
(√
D logK

)
Quanrud and

Khashabi
(2015)

O
(√

(TK +D) logK
)

Theorem 7
and Thune et al.

(2019); György and
Joulani (2020)

O
(√
TK +D logK

)
Zimmert and
Seldin (2020)

Table 1: Expected regret for adversarial bandits (assuming all feedback is received before T , for the

ease of comparison of results). For shorthand, we use D =
∑T
t=1 dt.

For multi-armed bandits a tight lower bound of Ω
(√

TK +
√
D logK

)
was shown in Zimmert

and Seldin (2020) based on the bound in Cesa-Bianchi et al. (2019).
For the bandit convex optimization problem, FKM with no delays does not meet the lower bound

of Ω(
√
T ). However, with delays, the logarithmic gap between our FKM upper bound O(T

3
4 +T

1
3D

1
3 )

and the lower bound Ω(
√
D) shrinks. For D = T

5
4 FKM guarantees O(T

6
8 ) instead of Ω(T

5
8 ) and

for D = T
3
2 FKM guarantees O(T

10
12 ) instead of Ω(T

9
12 ).

Proposition 1. Consider multi-armed bandits or convex bandit optimization, as defined above.
Then for any algorithm and for any integer D ≥ T , there exists a sequence of delays {dt} such that

D −
√

2D ≤
∑T
t=1 dt ≤ D and the expected regret with an oblivious adversary is Ω

(√
D
)

.

Proof Divide the time horizon into T0 and T1 = T − T0. Set dt = 1 for 1 ≤ t ≤ T0 so there are
no delays in this period. Set dt = T − t + 1 for T0 < t ≤ T so that the feedback in this period is

never received. Then
∑T
t=1 dt = T0 +

∑T
t=T0+1 (T − t+ 1) = T0 + (T−T0)(T−T0+1)

2 so we can choose

T0 = Θ(T −
√
D) such that D −

√
2D ≤ T0 + (T−T0)(T−T0+1)

2 ≤ D. The lower bound for either
multi-armed bandits (Lattimore and Szepesvári, 2020, Theorem 15.2) or convex bandit optimization
(Hazan, 2019, Theorem 3.2) is Ω

(√
T0

)
for some cost functions l1, . . . , lT0

. The state of the algo-
rithm at round T0 is the initial condition for another adversarial bandit problem where no feedback
is received for an horizon of T1 rounds. Hence, for any initial condition, there exists a cost function
g such that if lT0+1 = ... = lT = g, then the T1 last rounds incur a regret of Θ (T1) = Θ

(√
D − T

)
.

Our results for non-cooperative games with convex cost functions under delays are summarized
in Table 2. They are based on the sufficient conditions for no weighted-regret for FKM (Lemma 4)
and EXP3 (Lemma 6). Surprisingly, the delays do not have to be bounded for the convergence to the
set of CCE to hold (or to the set of NE for a two-player zero-sum game), and they can even increase
as fast as dt = O (t log t). Moreover, the feedback of the players does not need to be synchronized,
and they may be subjected to different delay sequences. If dt

t → 0 as t → ∞ the convergence to
the set of CCE follows from the sublinear regret of FKM and EXP3. This is no longer the case for
dt = Θ (t) or dt = Θ (t log t), where the regret of FKM, EXP3, or any other algorithm is Θ (T ), so the
learning against the adversary fails. Our results show that against other agents the situation is more
optimistic, as the weighted ergodic average can still converge to the set of CCE (see Proposition 2
and Proposition 3). To achieve that, agents need to use a time-varying step-size ηt, as can be seen in
Table 2. In fact, one can go up to dt = Θ (t log t log (log t)) and continue iteratively in this manner,
as long as

∑∞
t=1

1
dt

= ∞. For larger delays, it is not possible to converge to the set of CCE or NE
using our approach.
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dt ≤ t
1
4 dt ≤ t

3
4 dt ≤ t dt ≤ t log t

Parameters for no
weighted-regret: FKM

ηt = 1

t
5
8 log(t+1)

δ = T−
1
8

ηt = 1

t
7
8 log(t+1)

δ = T−
1
24

ηt = 1
t log(t+1)

δ = (log log T )−
1
3

ηt = 1
t log(t+1) log log(t+1)

δ = (log log log T )−
1
3

Distance from CCE:
FKM

O
(

log T

T
1
8

)
O
(

log T

T
1
24

)
O

(
1

(log log T )
1
3

)
O

(
1

(log log log T )
1
3

)
FKM Regret O

(
nT

3
4

)
O
(
nT

11
12

)
O (T ) O (T )

Parameters for no
weighted-regret: EXP3

ηt = 1

t
5
8 log(t+1)

ηt = 1

t
7
8 log(t+1)

ηt = 1
t log(t+1) ηt = 1

t log(t+1) log log(t+1)

Distance from CCE:
EXP3

O
(

log T

T
3
8

)
O
(

log T

T
1
8

)
O
(

1
log log T

)
O
(

1
log log log T

)
EXP3 Regret O

(
T

5
8

√
logK

)
O
(
T

7
8

√
logK

)
O (T ) O (T )

Table 2: Conditions for no weighted-regret for different delay sequences, along with the correspond-
ing single agent expected regret bounds. For shorthand, we use D =

∑T
t=1 dt.

The implication of our results is for approximating a CCE (NE) of a (two-player zero-sum) game
that we can only simulate ”in the lab” based on data or an experiment. In such a scenario, we
can only evaluate the agents’ performance (i.e., cost) based on the effect of their actions, which
means delayed bandit feedback for the agents. We show that algorithms with no weighted-regret
can approximate a CCE or a NE even with large delays that yield linear (trivial) regret.

3. Non-cooperative Games with Delayed Bandit Feedback

One of the main reasons why adversarial regret bounds are needed is that practical environments
consist of multiple interacting agents, leading to non-stationary reward processes. In this section,
we study a non-cooperative game where each player only receives delayed bandit feedback, given
some arbitrary sequence of delays that can be different for different players.

It is well known that without delays, players that use an online learning algorithm with sublinear
regret (i.e., no-regret) against an adaptive adversary will converge to the set of CCE in the empirical
distribution sense (Hannan, 1957; Hart, 2013), and to the set of NE for a two-player zero-sum game
(Blackwell, 1956). With large enough delays, the regret becomes linear in T so there is no guarantee
that the dynamics converge to the set of CCE or NE in any sense. Surprisingly, we show that a
CCE (or a NE for a two-player zero-sum game) can still emerge even with linear regret that results
from too large delays. Our weighted-regret bounds for FKM and EPX3 provide sufficient conditions
under which CCE or a NE can be approximated this way for a convex or finite game, respectively. In
this sense, the weighting in the weighted ergodic distribution ”filters out” part of the delay noise in
the approximation of the CCE/NE. In this section, we formulate our results for general continuous
games and then explain how finite games can be viewed as a special case, using mixed actions.

Our key observation is that with delayed feedback, it is not the regret that matters for the game
dynamics but rather what we call the weighted-regret. The weighted-regret weighs the costs in
different rounds according to a given non-increasing sequence ηt so it coincides with the regret when
ηt = η, ∀t. We define “no weighted-regret” to replace the traditional no-regret property:

Definition 2. Let {lt : K → [0, 1]}t be a sequence of cost functions, chosen by an adaptive adversary.

Let a∗ = arg min
a∈K

∑T
t=1 ηtlt (a). Let {dt} be a delay sequence such that the cost from round t is

received at round t + dt. We say that an algorithm that produces the random sequence of (single-
agent) actions {at} has no weighted-regret with respect to {dt} and the non-increasing weight

8



No Weighted-Regret Learning in Adversarial Bandits with Delays

sequence {ηt} if

lim
T→∞

E

{∑T
t=1 ηt (lt (at)− lt (a∗))∑T

t=1 ηt

}
= 0 (2)

where the expectation is with respect to the random {at} generated by the algorithm.

Having no weighted-regret is only non-trivial when
∑∞
t=1 ηt = ∞. When

∑∞
t=1 ηt < ∞, the

feedback from the last T
2 rounds can be discarded without affecting (2). When

∑∞
t=1 ηt =∞, there

is no round t after which we can discard all feedback and still maintain (2).
We define no weighted-regret with respect to an adaptive adversary since, in a non-cooperative

game with cost functions {un}, the ”adversarial” cost function of player n is lt(an) = un(an,a−n,t),
so it is determined by the actions of the other players. In turn, the actions of the other players
depend on the past actions of player n. Hence, the cost function of player n depends on her past
actions, as with an adaptive adversary. In general, the equilibrium does not consist of absolute
strategies such as ”min-max” in zero-sum games. Hence, regret guarantees against an adaptive
adversary allow proving convergence to the set of CCE for general non-cooperative games.

When taking the limit T →∞, it is important to emphasize that we do not change the infinite
sequence of delays {dt}, but only reveal more elements in this sequence. In other words, we are
looking at the same game but over a longer time horizon. Therefore, while dt = T

2 makes sense for
a constant T , it is misleading when taking T →∞ since it represents a delay that occurred at time
t but changes with the limit, so the limit is no longer of the “same game”.

3.1 Coarse Correlated Equilibrium for N-player Games

The CCE is a well-established equilibrium concept for learning in games (Hannan, 1957; Ashlagi
et al., 2008; Hart, 2013). Our convergence argument utilizes the notion of an ε-CCE:

Definition 3. Consider a non-cooperative game where the action set of all players is some compact
set A and the reward function of each player un : AN → [0, 1] is continuous. Recall that a−n is the
action profile of all players except player n. Let P

(
AN
)

be the set of all Borel probability measures
over AN , equipped with the weak-* topology (see Simmons (1963)). The set of all ε-CCE points is
the set of distributions over AN such that:

Cε =

{
ρ ∈ P

(
AN
) ∣∣∣∣Ea∗∼ρ {un (a∗n,a∗−n)} ≥ max

an∈A
Ea∗∼ρ {un (an,a∗−n)}− ε , ∀n} (3)

and the set of CCE points is C0 with ε = 0.

The ε−CCE is a distribution over the action profiles such that no player can improve her expected
reward by more than ε by playing any pure action if other players keep playing according to this
distribution. The CCE can be interpreted as a coordinator that uses a random signal to instruct
the players what to play such that they all want to follow this instruction given that the others do.
This equilibrium is called ”correlated” since the actions of the players are statistically dependent,
potentially through the coordinator’s signal they all observe. The history of the game, and even as
little as the bandit feedback each player received in the past, can implement such a coordinator.

The CCE should not be confused with the more refined correlated equilibrium (CE). The CCE
coincides with the CE if only constant departure functions are considered in the definition of the CE
(Hart, 2013, Page 11), instead of all measurable mappings. Hence, by definition, every CE is a CCE.
We focus on the CCE since it relates to the regret (Definition 1) directly, while the CE is related to
the internal regret which is less common for online learning algorithms (Blum and Mansour (2007)).

In the game of Definition 3 a CCE always exists since Theorem (Hart, 2013, Theorem 3) shows
that a correlated equilibrium exists. Hence, C0 is non-empty.

The entity that converges to the set of CCE C0 in our non-cooperative game scenario is the
expected weighted ergodic distribution of the actions at. For the special case of ηt = η for all t for
some η > 0, the weighted ergodic distribution of at is simply its ergodic (i.e., empirical) distribution.

9
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Definition 4. For a weight sequence {ηt} and horizon T , the weighted ergodic distribution of a
sequence of actions {at} is defined as:

ρT ,

∑T
t=1 ηtδat∑T
t=1 ηt

(4)

where δat is Dirac’s measure, so δat (A) = 1 if at ∈ A and δat (A) = 0 otherwise. Note that
E {δat} = E {pat} where pat is the distribution of at given the information the algorithm has at

round t. Hence, we can use
∑T
t=1 ηtpat∑T
t=1 ηt

instead to estimate a CCE, which exploits more information.

The following theorem establishes the convergence of E {ρT } to the set of CCE C0.

Theorem 1. Let N players play a non-cooperative game where the action set of all players A is
compact and the reward function of each player un : AN → [0, 1] is continuous. Let {ηt} be the
non-increasing weight sequence. If each player n runs an algorithm that has no weighted-regret with
respect to its delay sequence {dnt }t then E {ρT } converges to the set of CCE C0 as T →∞.

Proof See Appendix.

The expectation E {ρT } is with respect to the random actions. By definition, the set of ε-CCE is
convex, so the average of multiple ε-CCE is also an ε-CCE. Hence, the implication of Theorem 1 is
that to approximate a CCE using T samples, one can run

√
T independent simulations of the game

(possibly not identically distributed) and then average the resulting
{
ρ

(i)√
T

}√T
i=1

. From the strong

law of large numbers, this estimation converges as T → ∞ with probability 1 to C0 since ρ
(i)√
T

is

bounded and
{
ρ

(i)√
T

}√T
i=1

are independent.

Remark 1 (Finite Games). One useful special case of Theorem 1 is that of finite games (i.e., multi-
armed bandits). To see that, choose the action set to be the K-dimensional simplex, i.e., A = ∆K .
Let Un : {1, . . . ,K}N → [0, 1] be the reward function of player n in the finite game. Then we can
define the reward function of the continuous game un : AN → [0, 1] for every x ∈ ∆K as follows:

un (x) , Ea∼x {Un (a)} (5)

where the expectation averages a ∈ {1, . . . ,K}N according to the distribution that x defines on
1, . . . ,K. This is indeed a special case of our formulation above since the simplex ∆K is compact,
and un (x) is linear and therefore continuous. Moreover, we have

Ex∗∼ρ {un (x∗)} = Ex∗∼ρ
{
Ea∗∼x∗ {Un (a∗)}

}
= Ea∗∼φ(ρ,x∗) {Un (a∗)} (6)

where φ (ρ,x) is the distribution over {1, . . . ,K} that is induced by randomizing x according to
ρ and then randomizing a according to x (i.e., the compound distribution with x as the random
parameter). Since the maximum of un is attained at the corners of the simplex, we also have

max
xn∈A

Ex∗∼ρ {un (xn,x∗−n)} = max
an∈{1,...,K}

Ea∗∼φ(ρ,x∗)
{
Un
(
an,a

∗
−n
)}
. (7)

Due to (6) and (7), Definition 3 coincides with the definition of a CCE for a finite game,
which results from Definition 3 with A = {1, . . . ,K} and any arbitrary reward functions {un :
{1, . . . ,K}N → [0, 1]}n. Then P

(
AN
)

takes the form of the K-dimensional simplex.
It is important to notice that FKM cannot be applied in a finite game with bandit feedback. While

FKM can certainly be applied to linear cost functions, it would require the player to obtain un(x) as
feedback, which is the expected cost incurred to a player that only picks one discrete arm each turn
at random, according to a distribution xn. For this reason, we also analyze the weighted-regret of
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the EXP3 algorithm, which can work with discrete arm choices and bandit feedback. Remarkably,

requiring less feedback, EXP3 also achieves better expected regret for this linear case. If l
(i)
t is the

cost of playing arm i at round t, then the expected cost of playing a random arm at according to the
distribution xt ∈ ∆K is

E
{
l
(at)
t

}
= E

{
E

{
K∑
i=1

x
(i)
t l

(i)
t | xt

}}
= E

{
K∑
i=1

x
(i)
t l

(i)
t

}
. (8)

Hence, EXP3 also leads to faster convergence to the set of CCE in finite games.

The general result of Theorem 1 implies stronger results for special classes of games where the
set of CCE has an interesting structure. For example, in strictly monotone games the unique CCE
places probability one on the unique pure NE (Ui (2008)). Another example is a polymatrix game,
which is a finite action set game where each player plays a separate two-player zero-sum game against
each of her neighbors on a given graph. For polymatrix games, for which a two-player zero-sum game
is a special case, it was shown in Cai and Daskalakis (2011) that the marginal distributions of the
CCE are a NE. However, this result holds only for multi-armed bandits since it assumes discrete
action sets. Our next section establishes that the weighted ergodic average of two no weighted-regret
algorithms in a two-player zero-sum game converges to the set of NE for multi-armed bandits and
bandit convex optimization.

3.2 Nash Equilibrium for Two-Player Convex-Concave Zero-Sum Games

In this subsection, we consider two-player zero-sum games where the action set A ⊂ Rn of both
players is convex and compact. The cost function u : A × A → [0, 1] is assumed to be continuous,
convex in the first argument and concave in the second. When the row player plays y and the
column player plays z, the first pays a cost of u (y, z) and the second gains a reward of u (y, z).

For two-player zero-sum games, we show that algorithms with no weighted-regret lead to the set
of Nash equilibria (NE). A NE is an action profile such that no player wants to switch an action
given that the other players keep their actions. For our convergence argument, we define the set of
all approximate (pure) NE of a two-player zero-sum game:

Definition 5. Define a two-player zero-sum game where the action set of both players is A ⊂ Rn
and the cost function is u : A×A → [0, 1]. The set of all ε-NE points of this game is defined as:

Nε =

{
(y∗, z∗) ∈ A×A | u (y∗, z∗) ≤ min

y∈A
u (y, z∗) + ε, u (y∗, z∗) ≥ max

z∈A
u (y∗, z)− ε

}
(9)

and the set of NE points is N0 with ε = 0.

The NE is a more exclusive solution concept than the CCE, so our result is stronger for this
special case of a two-player zero-sum game. This holds since if a NE exists, it is always a CCE, which
follows immediately from Definition 3 and Definition 5 by substituting the distribution that gives
the NE action profile with probability 1 as the distribution ρ. For a two-player zero-sum game with
a convex and continuous cost function and compact action sets, a pure NE always exists (Nikaidô
and Isoda, 1955; Debreu, 1952) so N0 is non-empty.

It was shown in Bailey and Piliouras (2018) that for the no-delay case, the last iterate (yt, zt)
does not converge in general to a NE and even moves away from it. Instead, it is the ergodic average
action that converges to the set of NE N0. With delayed feedback, the entity that converges to N0

in our two-player zero-sum game scenario is the weighted ergodic average of the actions {at}t. For
the special case of ηt = η for all t for some η > 0, the weighted ergodic average of at is just its
ergodic average.
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Definition 6. For a weight sequence {ηt} and horizon T , the weighted ergodic average of a sequence
of actions {at} is defined as

āT ,

∑T
t=1 ηtat∑T
t=1 ηt

. (10)

Then, the following theorem establishes the convergence to the set of NE N0. Following Remark
1, we can apply Theorem 2 to a finite game with cost table U : {1, . . . ,K}×{1, . . . ,K} → [0, 1] such

that y, z are mixed actions (distributions over {1, . . . ,K}), and u (y, z) ,
∑K
i=1

∑K
j=1 y

(i)z(j)U (i, j).
Since the players’ payoffs (”value of the game”) are the same in all NE of a two-player zero-sum

game (Cesa-Bianchi and Lugosi, 2006, Page 182), algorithms with no weighted-regret can be used
to approximate this outcome, regardless of the NE that the weighted ergodic average approximates.

Theorem 2. Let two players play a zero-sum game with a convex and compact action set A ⊂ Rn
and a cost function u (y, z) : A×A → [0, 1]. Assume that u (y, z) is convex in y and concave in z
and is continuous. Let yt and zt be the actions of the row and column players at round t, and let
ȳT and z̄T be their weighted ergodic averages. Let {ηt} be the non-increasing weight sequence. Let
{drt} and {dct} be the delay sequence of the row player and the column player. If both players use a
no weighted-regret algorithm with respect to {drt} , {dct} then, as T →∞:

1. (ȳT , z̄T ) converges in L1 to the set of Nash equilibria N0 of the two-player zero-sum game.

2. U (ȳT , z̄T ) converges in L1 to the value of the game min
y

max
z

U (y, z) = max
z

min
y
U (y, z).

Proof See Appendix.

4. Doubling Trick for Online Learning with Delays

Online learning under delayed feedback introduces another key parameter, which is the sum of delays
D =

∑T
t=1 dt. The sum of delays appears in the expected regret bound of many online algorithms

and is required to tune their step-size and other parameters. If D or a tight upper bound for it is
unknown, then an adaptive algorithm is needed.

With no delays, the standard doubling trick (see Cesa-Bianchi et al. (1997)) can be used if T is
unknown. However, the same doubling trick does not work with delayed feedback. We now present
a novel doubling trick for the delayed feedback case, where T and D are unknown.

Our enhanced doubling trick is two-dimensional, as each epoch is indexed by a delay index w
as well as a time index h. Compared to that, our previous doubling trick in Bistritz et al. (2019)
only tracked a delay index w. As a result, the new doubling trick leads to tighter regret bounds.

For example, it yields O
(√

(TK +D) logK
)

instead of O
(√

(TK2 +D) logK
)

for EXP3. More

importantly, the doubling trick in Bistritz et al. (2019) required to analyze the regret of the algorithm
that employed it. In comparison, the new doubling trick is plug and play since it provably retains
the regret bound for when D and T are known for a wide class of online learning algorithms.

Our doubling trick assumes that a regret bound of the form O
(
k1D

d + k2T
c + k3T

aDb
)

is avail-
able if T,D are known, for some constants k1, k2, k3 ≥ 0 and 0 ≤ a, b, c, d ≤ 1. We divide the time
horizon into super-epochs, indexed by ν, each consists of epochs as explained below. A super-epoch
is a set Eν of consecutive rounds that all use the same algorithm parameters Pν (e.g., a step-size
ην). Let νt be the index of the super-epoch that contains round t. Let mt be the number of missing
feedback samples at round t. A missing feedback sample at round t is a sample from τ ≤ t such that
νt = ντ (i.e., belongs to the same super-epoch) that was not received before or at round t.

An epoch is the set of consecutive rounds where the sum of delays is within a given interval and
the time index is within another given interval. To enable that, we employ a delay index counter w

12
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and a time index counter h. We increase w every time when
∑t
τ=1mτ , that tracks D, doubles. We

increase h every time when the number of rounds t doubles. We then define the (h,w) epoch as

Th,w =

{
t |2w−1 ≤

t∑
τ=1

mτ < 2w, 2h−1 ≤ t < 2h

}
. (11)

The (h,w) epochs are then partitioned into super-epochs as follows (also illustrated in Fig. 1):

• For each h, the super-epoch E = Sh is the set of (h,w) such that 2k22ch ≥ k12dw + k32ah2bw.

• For each w, the super-epoch E = Sw is the set of (h,w) such that 2k12dw ≥ k22ch + k32ah2bw.

• All other epochs (h,w) /∈ Sh ∪ Sw are each a separate super-epoch E = {(h,w)}.

During the (h,w) ∈ Eν epoch, the algorithm equipped with our doubling trick uses the parameters
Pν (e.g., Pν = {ην , δν} for FKM). Different epochs (h1, w1) and (h2, w2) in the same super-epoch
use the same set of parameters. As shown in Fig. 1, this can only be the case if h1 = h2 or w1 = w2.
Feedback samples from previous super-epochs are discarded once received, and are no longer counted
in
∑t
τ=1mτ after their super-epoch has ended. The resulting algorithm is detailed in Algorithm 1.

Fig. 1 illustrates the partition of epochs into super epochs used for our doubling trick. We can
see that the (h,w) epoch space is split into three regions with three different types of super-epochs.
In the upper one (in blue) Dd dominates the regret, in the middle one (in pink) T aDb dominates
the regret and in the lower one (in orange) T c dominates the regret. Each blue, pink, or orange
box is a super-epoch on which we apply our regret bound separately. The grey arrows represent the
actual path that the epoch indices {(h,w)} went through.

h

w

Figure 1: 2D Doubling Trick. Each box is a different super-epoch, and each dot is a different epoch.

The next Lemma proves that our doubling trick tracks D, similar in spirit to how the standard
doubling trick tracks T up to a factor of 2. It also bounds the largest delay and time indices possible.

Lemma 1. Let H,W be the last time and delay indices, respectively. Let Sw,Sh be super-epochs, as
defined below (11). Let Tw be the set of all rounds in Sw and τw , max

t∈Tw
t. Let Wh be the maximal w

such that (h,w) ∈ Sh. Let Th be the set of all rounds in Sh and τh , max
t∈Th

t. Algorithm 1 maintains:

1. For every w and h,
∑
t∈Tw min {dt, τw − t+ 1} ≤ 2w−1 and

∑
t∈Th min {dt, τh − t+ 1} ≤ 2Wh .

2. W ≤ log2

∑T
t=1 min {dt, T − t+ 1}+ 1 and H ≤ log2 (T + 2)− 1.
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Algorithm 1 2D Doubling Trick Wrapper for Unknown T and D

Initialization: Set h = 1, w = 1, ν = 1. Choose an algorithm Alg (Pν), where Pν is the set of the
algorithm parameters. Initialize p1,P1. Let R (T,D,P∗ (T,D)) = k1D

d + k2T
c + k3T

aDb be an
expected regret bound for when D,T are known, that applies to Alg (P∗ (T,D)). Divide the (h,w)
space into super-epochs as detailed below (11).
For t = 1, ..., T do

1. Pick an action at ∈ K at random according to the distribution pt.

2. Let C̃t be the set of delayed costs ls (as) received at round t such that νs = νt (i.e., originated
in the current super-epoch). Calculate the number of missing samples at round t by computing
the difference between the number of rounds since the beginning of the super-epoch and the
number of samples from this super-epoch received so far:

mt =

(
t− min

τ∈{t′ | νt=νt′}
τ + 1

)
−

∑
τ∈{t′ | νt=νt′}

∣∣∣C̃τ ∣∣∣ . (12)

3. Update the delay index: if
∑t
τ=1mτ ≥ 2w, then update w ← w + 1.

4. Update the time index: if t ≥ 2h, then update h← h+ 1.

5. Start a new super-epoch: if the new h,w indices are outside the current super-epoch, i.e.,
(h,w) /∈ Eν , then start a new super-epoch with parameters Pν+1 ← P∗

(
2hν+1 , 2wν+1

)
, where

hν , wν are the maximal h,w indices in super-epoch Eν :

(a) Initialize the algorithm with these parameters, i.e., Alg (Pν+1).

(b) Increase the super-epoch index ν ← ν + 1.

6. Using only the samples in C̃t, update the distribution pt according to Alg (Pν).

End

Proof Let MSw be the set of feedback samples for costs in Sw that are not received within Sw.
Every round t ∈ Tw such that t /∈MSw contributes exactly dt to

∑
t∈Tw

mt, since the t-th feedback

is missing for dt rounds in Tw. Every round t ∈MSw contributes τw− t+1 ≤ dt to
∑
t∈Tw

mt before
it stops being counted. Therefore∑

t∈Tw

min {dt, τw − t+ 1} ≤
∑
t∈Tw

mt ≤
(a)

2w−1 (13)

where (a) follows since if
∑
t∈Tw mt > 2w−1 then

∑t
τ=1mτ ≥ 2w−1 +2w−1 = 2w and the delay index

w should have already increased to w + 1. Applying the same argument on T
h
, we obtain that∑

t∈Th

min {dt, τh − t+ 1} ≤
∑
t∈Th

mt ≤
(a)

2Wh (14)

where (a) follows since if
∑
t∈Th mt > 2Wh then

∑t
τ=1mτ ≥ 2Wh so w must have increased to Wh+1.

For the second part of the lemma, 2H+1 − 2 =
∑H
h=1 2h ≤ T so H ≤ log2 (T + 2)− 1, and

T∑
t=1

min {dt, T − t+ 1} ≥
(a)

T∑
t=1

mt ≥ 2W−1 (15)
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where (a) uses that every sample is counted in
∑T
t=1mt for at most dt or T − t+ 1 rounds.

Now we can prove our main result of this section. The first assumption is merely the regret bound
that one can obtain if T and D are known. The second assumption says that holding the parameters
P fixed, the regret bound is non-decreasing with T and D. As we see in Section 5 and Section 6,
these basic assumptions hold for FKM and EXP3.

Theorem 3. Let {dt} be a delay sequence such that the cost from round t is received at round

t + dt. Let T be the time horizon and define D =
∑T
t=1 min {dt, T − t+ 1}. Let R (T,D,P (T,D))

be an upper bound on the expected regret (Definition 1) of an online learning algorithm that uses the
parameters P (T,D). Assume:

1. There exists a sequence P∗ (T,D) and constants k1, k2, k3 ≥ 0 and 0 ≤ a, b, c, d ≤ 1 such that
for all T,D:

R (T,D,P∗ (T,D)) ≤ k1D
d + k2T

c + k3T
aDb. (16)

2. For a fixed P∗, R (T,D,P∗) is non-decreasing with T and D.

Then if Algorithm 1 is used to track P∗ (T,D), it achieves a total expected regret of

R (T,D) = O
(
k1D

d + k2T
c + k3T

aDb
)
. (17)

Proof We apply the regret bound for each of the super-epoch types Sh,Sw and {(h,w)} as follows
(defined below (11) and illustrated in Fig. 1):

Type 1 (Sh): Let Wh be the largest w such that (h,w) ∈ Sh. Let Th be the length of Sh and
let Dh ,

∑
t∈Th min {dt, τh − t+ 1} ≤ 2Wh , using Lemma 1. By applying the regret bound on Sh:

RSh ≤
(a)

R
(
Th, Dh,P∗

(
2h, 2Wh

))
≤
(b)
R
(
2h, 2Wh ,P∗

(
2h, 2Wh

))
≤ k12Whd+k22hc+k32ha2Whb ≤ 3k22hc

(18)
where (a) follows since Algorithm 1 uses P∗

(
2h, 2Wh

)
, and (b) from condition 2 of the Theorem.

Type 2 (Sw): Let Hw be the largest h such that (h,w) ∈ Sw. Let Tw be the length of Sw and
let Dw ,

∑
t∈Tw min {dt, τw − t+ 1} ≤ 2w−1, using Lemma 1. By applying the regret bound on Sw:

RSw ≤ R
(
Tw, Dw,P∗

(
2Hw , 2w

))
≤ R

(
2Hw , 2w,P∗

(
2Hw , 2w

))
≤ k12wd+k22Hwc+k32Hwa2wb ≤ 3k12wd.

(19)
Type 3 ({(h,w)}): For this case, we must have 2k32ha2wb ≥ k12wd + k22ch, so

Rh,w ≤ R
(
Th,w, Dh,w,P∗

(
2h, 2w

))
≤ R

(
2h, 2w,P∗

(
2h, 2w

))
≤ k12wd+k22hc+k32ha2wb ≤ 3k32ha2wb.

(20)
Then the total regret is bounded by

E {R (T )} =

H∑
h=1

RSh +
W∑
w=1

RSw +
∑

(h,w)/∈Sh∪Sw

Rh,w ≤
(a)

3k1

W∑
w=1

2dw+3k2

H∑
h=1

2ch+3k3

H∑
h=1

2ah
W∑
w=1

2bw ≤ 6k1
2dW − 1

2d − 1
+6k2

2cH − 1

2c − 1
+12k3

2aH − 1

2a − 1

2bW − 1

2b − 1
≤
(b)

6k1
(2D)

d − 1

2d − 1
+ 6k2

(T + 2)
c − 1

2c − 1
+ 12k3

(T + 2)
a − 1

2a − 1

(2D)
b − 1

2b − 1
= O

(
k1D

d + k2T
c + k3T

aDb
)

(21)

where (a) uses the bounds in (18),(19),(20) even for epochs that do not occur (that trivially have
zero regret), or that end after the last round. Inequality (b) uses part 2 of Lemma 1 to upper bound
H and W . We define the expressions before the last equality of (21) according to their continu-
ous extensions at a, b, c, d = 0, which yield logarithmic terms in T or D. Note that logD ≤ 2 log T .
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5. The FKM Algorithm for Adversarial Bandit Convex Optimization
with Delayed Feedback

In bandit convex optimization, the action at is chosen from a convex and compact set K ⊂ Rn with
diameter |K| , max

x,y∈K
‖x− y‖. Without the loss of generality, we assume that K contains the unit

ball centered at the zero vector. The cost functions lt (at) ∈ [0, 1] are convex for all t and Lipschitz
continuous with parameter L. The player has no access to the gradient of lt, and only receives the
value of lt (at) at the beginning of round t+dt. In the FKM algorithm, the player uses the cost value
to estimate the gradient. The idea is to use a perturbation ut, drawn uniformly at random on the
n-dimensional unit sphere S1. Then, instead of playing the unperturbed action xt, the player plays

at = xt + δut for a sampling radius δ > 0. Let Kδ =
{
x | 1

1−δx ∈ K
}

. To ensure that xt + δut ∈ K,

we maintain xt ∈ Kδ by projecting into Kδ after each gradient step. Since the cost functions are
Lipschitz continuous, this projection creates a bias that decreases with δ.

Define the following filtration
Ft = σ ({xτ | τ ≤ t}) (22)

which is generated from all the past unperturbed actions. With a slight abuse of notation, we use
Fs− to denote the filtration induced from all xτ for τ ≤ t and all xq− for rounds q ∈ St that the
algorithm used their feedback before using the feedback from round s, but including xs− .

The purpose of the action perturbation is to allow for an estimator for the gradient at at with a
bias that decreases with δ. This bias adds up to the bias that results from projecting into Kδ. On
the other hand, the variance of the estimator increases with δ, introducing a bias-variance trade-off.

Lemma 2 (Flaxman et al. (2005, Lemma 2.1)). Let δ > 0 and define l̂ (x) , Eu∈S1 {l (x + δu)}
where S1 is the unit sphere. Let g = n

δ l (x + δu)u. Then Eu∈S1 {g} = ∇l̂ (x).

The next Lemma is the main result of this section, used to prove both Theorem 4 and Lemma 4.

Lemma 3 (Weighted-Regret Bound for FKM). Let {ηt} be a non-increasing step-size sequence. Let
δ be the sampling radius. For every t, let lt : K → [0, 1] be a convex cost function that is Lipschitz

continuous with parameter L. Let a∗ = arg min
a∈K

∑T
t=1 ηtlt (a). Let {dt} be a delay sequence such

that the cost from round t is received at round t+ dt. Define the set M = {t | t+ dt > T, t ∈ [1, T ]}
of all samples that are not received before round T . Then using FKM (Algorithm 2) guarantees:

1. For an oblivious adversary:

T∑
t=1

ηt (E {lt (at)} − lt (a∗)) ≤
∑
t∈M

ηt+
|K|2

2
+(3 + |K|)Lδ

∑
t/∈M

ηt+
1

2

n2

δ2

∑
t/∈M

η2
t+2L

n

δ

∑
t/∈M

η2
t dt.

(23)

2. For an adaptive adversary:

T∑
t=1

ηtE {lt (at)− lt (a∗)} ≤

∑
t∈M

ηt +
|K|2

2
+ (3 + |K|)Lδ

∑
t/∈M

ηt + |K|

√√√√2
∑
t/∈M

η2
t

(
n2

δ2
+ L2

)
+

1

2

n2

δ2

∑
t/∈M

η2
t (1 + 4dt) .

(24)

Proof See Appendix.
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Algorithm 2 FKM with delays

Initialization: Let {ηt} be a positive non-increasing sequence. Let δ < 1 . Set x1 = 0.
For t = 1, ..., T do

1. Draw ut ∈ S1 uniformly at random, where S1 is the n-dimensional unit sphere.

2. Play at = xt + δut.

3. Obtain a set of delayed costs ls (as) for all s ∈ St and compute gs = n
δ ls (as)us for each.

4. Let smin = min
s∈St

s and smax = max
s∈St

s. Set xs−min
= xt. For every s ∈ St, update

xs+ =
∏
Kδ

(
xs− − ηsgs

)
(25)

where Kδ =
{
x | 1

1−δx ∈ K
}

, and then set xt+1 = xs+max
.

End

The following theorem establishes the expected regret bound for FKM with delays. It is proved
by optimizing over a constant step-size η and sampling radius δ in Lemma 3.

Theorem 4. Let η > 0 and 0 < δ < 1. For every t, let lt : K → [0, 1] be a convex cost

function that is Lipschitz continuous with parameter L. Let a∗ = arg min
a∈K

∑T
t=1 lt (a). Let {dt}

be a delay sequence such that the cost from round t is received at round t + dt. Define the set
M = {t | t+ dt > T, t ∈ [1, T ]} of all samples that are not received before round T . Then the ex-
pected regret of FKM (Algorithm 2) against an oblivious adversary satisfies

E {R (T )} =
T∑
t=1

E {lt (at)− lt (a∗)} ≤

|M|+
(

(3 + |K|) δL+
1

2
η
n2

δ2

)
(T − |M|) +

|K|2

2η
+ 2Ln

η

δ

∑
t/∈M

dt. (26)

Furthermore, for

η = |K|min

 1

n
T−

3
4 ,

1√
n
T−

1
3

(∑
t/∈M

dt

)− 1
3

 and δ = max

T− 1
4 , T−

2
3

(∑
t/∈M

dt

) 1
3

 (27)

we obtain

E {R (T )} = O

nT 3
4 +
√
n

(∑
t/∈M

dt

) 1
3

T
1
3 + |M|

 . (28)

Proof First note that if |M| = Θ (T ) then E {R (T )} = O (T ) and otherwise T − |M| = Θ (T ). To
obtain (26), substitute ηt = η in Lemma 3 for an oblivious adversary and divide both sides by η.

We have Θ (δT ) = Θ
(
η
δ2T

)
= Θ

(
1
η

)
for η = |K|

n T
− 3

4 and δ = T−
1
4 , hence this choice of parameters

minimizes the order of magnitude of the T dependence of the following expression:

min
δ,η

(
(3 + |K|) δL (T − |M|) +

1

2
η
n2

δ2
(T − |M|) +

|K|2

2η

)
= O

(
nT

3
4

)
. (29)
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Since Θ (δT ) = Θ
(
η
δ

∑
t/∈M dt

)
= Θ

(
1
η

)
for η = 1√

n

(
1

T
∑
t/∈M dt

) 1
3

and δ = T−
2
3

(∑
t/∈M dt

) 1
3 , then

this choice of parameters minimizes the order of magnitude of the T dependence of the following
expression:

min
δ,η

(
(3 + |K|) δL (T − |M|) +

|K|2

2η
+ 2Lη

n

δ

∑
t/∈M

dt

)
= O

√n(∑
t/∈M

dt

) 1
3

T
1
3

 . (30)

Therefore (26) cannot have a better T dependence than in (28) for any η, δ. For the choice in (27)
we have

n2 η

δ2
T =

|K|min
{
nT

1
4 , n

3
2T

2
3

(∑
t/∈M dt

)− 1
3

}
max

{
T−

1
2 , T−

4
3

(∑
t/∈M dt

) 2
3

} ≤
(a)

O
(
nT

3
4

)
(31)

where (a) follows since min{a,b}
max{c,d} ≤

a
c . For the choice in (27) we also have

η

δ
n
∑
t/∈M

dt =
|K|min

{
T−

3
4

∑
t/∈M dt,

√
nT−

1
3

(∑
t/∈M dt

) 2
3

}
max

{
T−

1
4 , T−

2
3

(∑
t/∈M dt

) 1
3

} ≤
(a)

O

√n(∑
t/∈M

dt

) 1
3

T
1
3

 (32)

where (a) follows since min{a,b}
max{c,d} ≤

b
d . Therefore, for the choice in (27)

T∑
t=1

(E {lt (at)} − lt (a∗)) ≤ |M|+
(

(3 + |K|)L+
|K|
2

)
max

nT 3
4 ,
√
nT

1
3

(∑
t/∈M

dt

) 1
3


+O

(
nT

3
4

)
+O

√n(∑
t/∈M

dt

) 1
3

T
1
3

 = O

nT 3
4 +
√
n

(∑
t/∈M

dt

) 1
3

T
1
3 + |M|

 . (33)

The next Corollary shows that the bound of Theorem 4 is slightly tighter than O
(
nT

3
4 +
√
nD

1
3T

1
3

)
,

where one sums D =
∑T
t=1 min {dt, T − t+ 1} instead of

∑
t/∈M dt in our regret bound (28), depend-

ing on the pattern of the missing samples.

Corollary 1. Choose the fixed η and δ according to (27). For every t, let lt : K → [0, 1] be a con-

vex cost function that is Lipschitz continuous with parameter L. Let a∗ = arg min
a∈K

∑T
t=1 lt (a).

Let {dt} be a delay sequence such that the cost from round t is received at round t + dt. Let

D =
∑T
t=1 min {dt, T − t+ 1}. Then the expected regret of FKM (Algorithm 2) against an obliv-

ious adversary satisfies

E {R (T )} =
T∑
t=1

(E {lt (at)} − lt (a∗)) = O
(
nT

3
4 +
√
nD

1
3T

1
3

)
. (34)

Proof Them , |M|missing samples contribute at least m(m+1)
2 ≥ m2

2 toD =
∑T
t=1 min {dt, T − t+ 1}.

This follows since the best case is when the feedback of round T is delayed by one and arrives after
T , the feedback of round T − 1 now has to be delayed by at least 2 to arrive after T and so on, m
times. Therefore

T
1
3D

1
3 ≥

(
T
∑
t/∈M

dt + T
m2

2

) 1
3

≥
(a)

1

2

(
2T
∑
t/∈M

dt

) 1
3

+
1

2

(
Tm2

) 1
3 ≥ T

1
3

2
2
3

(∑
t/∈M

dt

) 1
3

+
m

2
(35)

18



No Weighted-Regret Learning in Adversarial Bandits with Delays

where (a) follows from the concavity of f (x) = x
1
3 . We conclude that the regret in (34) is greater

than that in (28).

5.1 Agnostic FKM

If the horizon T and sum of delays D are unknown, then we can apply Algorithm 1 to wrap FKM.
The next Theorem is an immediate application of Theorem 3 on the FKM regret bound for this
agnostic case. The resulting bound retains the same order of magnitude as the bound of Corollary
1 even though D and T are unknown. The only difference with the bound of Theorem 4 arises
because the doubling trick discards samples that cross super-epochs. Hence, the bound below uses
D =

∑T
t=1 min {dt, T − t+ 1} instead of

∑
t/∈M dt and |M|.

Theorem 5. For every t, let lt : K → [0, 1] be a convex cost function that is Lipschitz continuous
with parameter L. Let {dt} be a delay sequence such that the cost from round t is received at round

t+dt. Let D =
∑T
t=1 min {dt, T − t+ 1}. If the player uses Algorithm 1 to wrap FKM (Algorithm 2)

such that in the (h,w) epoch ηh,w = |K|min
{

1
n2−

3h
4 , 1√

n
2−

h+w
3

}
and δh,w = δ0 max

{
2−

h
4 , 2

w−2h
3

}
for δ0 < 1, then the expected regret of FKM (Algorithm 2) against an oblivious adversary satisfies

E {R (T )} = O
(
nT

3
4 +
√
nD

1
3T

1
3

)
. (36)

Proof Consider the regret bound in (26) after bounding |M| ≤
√

2D (as in Corollary 1), T −|M| ≤
T and

∑
t/∈M dt ≤ D. For the choice in (27), this bound takes the form O(nT

3
4 +
√
nT

1
3D

1
3 +D

1
2 )

(where T
1
3D

1
3 ≥ D

1
2 ) so it matches Assumption 1 in Theorem 3 with a = b = 1

3 , c = 3
4 and d = 1

2 .
This bound also satisfies Assumption 2 since it is increasing with T and D for any η, δ.

5.2 No Weighted-Regret Property for FKM

In this subsection, we provide conditions for FKM to have no weighted-regret with respect to the
delay sequence and its step-size sequence as the weight sequence of Section 3. As discussed in
Section 3,

∑∞
t=1 ηt =∞ is necessary for the no weighted-regret property to be non-trivial. All other

conditions of Lemma 4 are as tight as the bound of Lemma 3.

Lemma 4. FKM with a non-increasing and positive step-size sequence {ηt} and sampling radius δT
has no weighted-regret with respect to the sequence of delays {dt} and {ηt} as the weight sequence,
if the following three conditions hold:

1.
∑∞
t=1 ηt =∞.

2. lim
t→∞

ηtdt <∞ and
∑∞
t=1 η

2
t dt <∞.

3. lim
T→∞

δT = 0 and lim
T→∞

δ2
T

∑T
t=1 ηt =∞.

Proof Let M = {t | t+ dt > T, t ∈ [1, T ]} . Define t∗ (T ) = min
t∈M

t, and note that t∗ (T ) → ∞ as

T →∞ since t+ dt ≥ t, and f (t) = t is increasing. Since ηt is non-increasing then∑
t∈M

ηt ≤ |M| ηt∗(T ) ≤ (T − t∗ (T ) + 1) ηt∗(T ) ≤ dt∗(T )ηt∗(T ). (37)
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Let A = (3 + |K|)L. Therefore

lim
T→∞

E

{∑T
t=1 ηt (lt (at)− lt (a∗))∑T

t=1 ηt

}

≤
(a)

lim
T→∞

dt∗(T )ηt∗(T ) + |K|2
2 +AδT

∑T
t=1 ηt + 2n|K|

δT

√∑T
t=1 η

2
t + 1

2
n2

δ2
T

∑T
t=1 η

2
t (1 + 4dt)∑T

t=1 ηt
=
(b)

0 (38)

where (a) is Lemma 3 and (37), and (b) follows since lim
t→∞

dtηt <∞,
∑∞
t=1 η

2
t dt <∞,

∑∞
t=1 ηt =∞,

lim
T→∞

δT = 0 and lim
T→∞

δ2
T

∑T
t=1 ηt =∞.

Note that one can choose ηt = 1
t log t log log t log log log t and δT = O

(
(log log log (log T ))

− 1
3

)
to guaran-

tee no weighted-regret for all sequences such that dt = O (t log t log log t). This boundary can only be

slightly improved by adding log (log (. . . log (T ))) iteratively in this manner as long as
∑T
t=1

1
dt

=∞.
Outside this boundary, we cannot guarantee that FKM has no weighted-regret even if dt is known.
Hence, no knowledge of the individual terms of the sequence dt is required to tune ηt and δT such
that FKM has no weighted-regret for all sequences inside this boundary, which can be arbitrarily
extended to include all the sequences for which Lemma 4 holds. However, if a tighter bound on
the rate of growth of dt is available then one can improve the convergence rate to the set of CCE
by picking a more slowly decaying ηt than ηt = 1

t log t log log t log log log t . This still would not require
knowledge of the individual terms in dt. In general, for a given T , FKM gives an ε-CCE with

ε = O
(

max
{

1
δ2
T

∑T
t=1 ηt

, δT

})
, as given in (38).

The following Proposition shows that FKM can have no weighted-regret even when it has linear
regret in T . As a result, FKM can be used to approximate a CCE in a non-cooperative game with
convex cost functions or a NE in a two-player convex-concave zero-sum game despite not having
no-regret guarantees.

Proposition 2. There exist a delay sequence {dt} and Lipschitz continuous convex functions {l1, ..., lT }
on [0, 1] such that for a large enough T

E {R (T )} =

T∑
t=1

E {lt (at)− lt (a∗)} ≥ T

4 (|K|+ 1)
2 (39)

but still the step-sizes {ηt} and sampling radius δT for Algorithm 2 (FKM) can be chosen such that
it has no weighted-regret with respect to {dt} and {ηt} as the weight sequence.

Proof Let dt = t and choose δT = 0.1 (log log(T + 1))
− 1

3 , ηt = 1
t log(t+1) for all t ≥ 1, for which∑T

t=1 ηt = O (log log T ) ,
∑∞
t=1 dtη

2
t < ∞ and also δT → 0 and δ2

T

∑T
t=1 ηt → ∞ as T → ∞. Hence,

by Lemma 4 we obtain that FKM has no weighted-regret with respect to dt and ηt. However, the
feedback for the last T

2 rounds is never received. Therefore, the unperturbed action xt is xT
2

for all

t ≥ T
2 . Consider the sequence of costs lt (a) = 0 for all t ≤ T

2 and lt (a) =

∥∥∥a− 1√
n
1
∥∥∥2

(|K|+1)2 for all t > T
2

where 1 ∈ Rn is a vector of ones. Starting from x1 = 0 and computing gt = 0 for all t ≤ T
2 we have

xT
2

= 0. Then, from the Lipschitz continuity of lt we obtain for all t > T
2 , for large enough T ,

E {lt (at)} = E
{
lt

(
xT

2
+ δTut

)}
≥ E {lt (0)} − δTL =

1

(|K|+ 1)
2 − δTL ≥

1

2 (|K|+ 1)
2 (40)

which means that this sequence yields an expected regret of at least T
4(|K|+1)2 .
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6. The EXP3 Algorithm for Adversarial Multi-Armed Bandits with
Delayed Feedback

Consider a player that at each round t picks one out of K arms. Let at be the arm the player chooses

at round t. The cost at round t of playing arm i is l
(i)
t ∈ [0, 1], and let lt =

(
l
(1)
t , ..., l

(K)
t

)
be the cost

vector. At round t, the EXP3 algorithm, detailed in Algorithm 3, chooses an arm at random using
a distribution that depends on the history of the game. The variant when γt 6= 0, as we use against
an adaptive adversary, is known as EXP3-IX (see Neu (2015)). We denote the vector of probabilities
of the player for choosing arms at round t by pt ∈ ∆K , where ∆K denotes the K-simplex. This is
also known as the mixed action of the player. We also define the following filtration

Ft = σ ({as | s+ ds ≤ t} ∪ {ls | s ≤ t}) (41)

which is generated from all the actions for which the feedback was received up to round t and all
cost functions up to round t. Note that the mixed action pt is a Ft-measurable random variable
since Ft includes everything that could affect the algorithm up to round t. With a slight abuse of
notation, we use Fs− to denote the filtration induced from all actions for which the feedback has
been received and used up to step s− and all the cost functions up to round t.

The next Lemma is the main result of this section, used to prove both Theorem 6 and Lemma 6.

Lemma 5 (Weighted-Regret Bound for EXP3). Let {ηt} be a non-increasing step-size sequence

such that ηt ≤ 1
2e
−2 for all t. Let

{
l
(i)
t

}
be a cost sequence such that l

(i)
t ∈ [0, 1] for every t, i. Let

{dt} be a delay sequence such that the cost from round t is received at round t + dt. Define the set
M∗ of all samples that are not received before round T or that were delayed by dt ≥ 1

e2ηt
− 1. Then

using EXP3 (Algorithm 3) guarantees:

1. With an oblivious adversary and γt = 0 for all t:

E

{
T∑
t=1

ηtl
(at)
t −min

i

T∑
t=1

ηtl
(i)
t

}
≤ logK +

e2

2
K

T∑
t=1

η2
t + 4

∑
t/∈M∗

η2
t dt +

∑
t∈M∗

ηt. (42)

2. With an adaptive adversary and γt = ηt for all t:

E

{
T∑
t=1

ηtl
(at)
t −min

i

T∑
t=1

ηtl
(i)
t

}
≤ 2 + 2 logK + (1 +

e2

2
)K

T∑
t=1

η2
t + 4e2K

∑
t/∈M∗

η2
t dt +

∑
t∈M∗

ηt.

(43)

Proof See Appendix.

The following theorem establishes the expected regret bound for EXP3 with delays. It is proved
by optimizing over a constant step-size η in Lemma 5.

Theorem 6. Let
{
l
(i)
t

}
be a cost sequence such that l

(i)
t ∈ [0, 1] for every t, i. Let {dt} be a

delay sequence such that the cost from round t is received at round t + dt. Define the set M =
{t | t+ dt > T, t ∈ [1, T ]} of all samples that are not received before round T . Let us choose the

fixed step-size η = e−2

2

√
logK

KT+
∑
t/∈M dt

. Then the expected regret of EXP3 (Algorithm 3) against an

oblivious adversary satisfies

E {R (T )} = E

{
T∑
t=1

〈lt,pt〉 −min
i

T∑
t=1

l
(i)
t

}
= O

√√√√logK

(
KT +

∑
t/∈M

dt

)
+ |M|

 . (46)
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Algorithm 3 EXP3 with delays

Initialization: Let {ηt} and {γt} be non-negative non-increasing sequences such that η1 ≤ e−2

2 and

set L̃
(i)
1 = 0 and p

(i)
1 = 1

K for i = 1, ...,K.
For t = 1, ..., T do

1. Choose an arm at at random according to the distribution pt.

2. Collect in St all the rounds s for which l
(as)
s arrived at round t after a delay of ds ≤ 1

e2ηs
− 1.

3. Set L̃
(i)
t = L̃

(i)
t−1 for all i. Update the weights of arm as for all s ∈ St using

L̃
(as)
t = L̃

(as)
t + ηs

l
(as)
s

p
(as)
s + γs

. (44)

4. Update the mixed action for i = 1, . . . ,K using

p
(i)
t+1 =

e−L̃
(i)
t∑K

j=1 e
−L̃(j)

t

. (45)

End

Proof We choose ηt = η in (42) of Lemma 5 and define D =
{
t | dt ≥ 1

e2η − 1 and t+ dt ≤ T
}

so

M∗ =M∪D in the statement of Lemma 5. Now divide both sides by η:

E

{
T∑
t=1

l
(at)
t −min

i

T∑
t=1

l
(i)
t

}
≤ logK

η
+
e2

2
ηKT + 4η

∑
t/∈M∗

dt + |M|+ |D| . (47)

Then, choosing η = e−2

2

√
logK

KT+
∑
t/∈M dt

yields (46). Note that for this choice |D| ≤
∑
t/∈M dt

e−2η−1−1 ≤√(∑
t/∈M dt

)
logK, since

∑
t/∈M dt ≥

(
1
e2η − 1

)
|D| (discarded samples in D are not missing).

Similar to the bandit convex optimization case, the bound of Theorem 6 is tighter than O
(√

logK (KT +D)
)

for D =
∑T
t=1 min {dt, T − t+ 1}, as the next Corollary shows.

Corollary 2. Let η = e−2

2

√
logK

KT+
∑
t/∈M dt

. Let
{
l
(i)
t

}
be a cost sequence such that l

(i)
t ∈ [0, 1] for

every t, i. Let {dt} be a delay sequence such that the cost from round t is received at round t+dt. Let

D =
∑T
t=1 min {dt, T − t+ 1}. Then the expected regret of EXP3 (Algorithm 3) against an oblivious

adversary satisfies

E {R (T )} = E

{
T∑
t=1

〈lt,pt〉 −min
i

T∑
t=1

l
(i)
t

}
= O

(√
logK (KT +D)

)
. (48)
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Proof The m = |M| missing samples contribute at least m(m+1)
2 to D (as in Corollary 1), so

√
logK (KT +D) ≥

√√√√logK

(
KT +

∑
t/∈M

dt +
m (m+ 1)

2

)

≥
(a)

1

2

√√√√2 logK

(
KT +

∑
t/∈M

dt

)
+

1

2

√
logKm (m+ 1) ≥ O

√√√√logK

(
KT +

∑
t/∈M

dt

)+
|M|

4

(49)

where (a) follows from the concavity of f (x) =
√
x.

6.1 Agnostic EXP3

The step-size η = e−2

2

√
logK

KT+
∑
t/∈M dt

used in Algorithm 3 requires knowing the horizon T and the

sum of delays D. When these parameters are unknown, we can apply Algorithm 1 to wrap EXP3.
The next Theorem is an immediate application Theorem 3 on the EXP3 regret bound for this
agnostic case. The resulting bound retains the same order of magnitude as the bound of Corollary
2 even though D and T are unknown. The only difference with the bound of Theorem 6 arises
because the doubling trick discards samples that cross super-epochs. Hence, the bound below uses
D =

∑T
t=1 min {dt, T − t+ 1} instead of

∑
t/∈M dt and |M|.

Theorem 7. Let
{
l
(i)
t

}
be a cost sequence such that l

(i)
t ∈ [0, 1] for every t, i. Let {dt} be a delay

sequence such that the cost from round t is received at round t+dt. Let D =
∑T
t=1 min {dt, T − t+ 1}.

If the player uses Algorithm 1 to wrap EXP3 (Algorithm 3) with step size ηh,w = e−2

2

√
logK

K2h+2w
for

epoch (h,w), then the regret against an oblivious adversary satisfies

E {R (T )} = E

{
T∑
t=1

〈lt,pt〉 −min
i

T∑
t=1

l
(i)
t

}
= O

(√
logK (KT +D)

)
. (50)

Proof Consider the regret bound in (47) after bounding |M| ≤
√

2D, (as in the proof of Corol-
lary 2), T − |M| ≤ T ,

∑
t/∈M∗ dt ≤ D and |D| ≤

√
D logK (as in the proof of Theorem 6). For

η = e−2

2

√
logK
KT+D , this bound yields that of Corollary 2 which is of the form

√
TK logK+

√
D logK,

so it matches Assumption 1 in Theorem 3 with a = b = 0 and c = d = 1
2 . This bound also satisfies

Assumption 2 since it is increasing with T and D for any η.

6.2 No Weighted-Regret Property for EXP3

In this subsection, we provide conditions for EXP3 to have no weighted-regret with respect to the
delay sequence and its step-size sequence as the weight sequence of Section 3. As discussed in
Section 3,

∑∞
t=1 ηt =∞, is necessary for the no weighted-regret property to be non-trivial. All other

conditions of Lemma 6 are as tight as the bound of Lemma 5.

Lemma 6. EXP3 with a non-increasing and positive step-size sequence {ηt} such that ηt ≤ 1
2e
−2

for all t has no weighted-regret with respect to the sequence of delays {dt} and {ηt} as the weight
sequence, if the following two conditions hold:
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1.
∑∞
t=1 ηt =∞.

2. lim
t→∞

ηtdt <∞ and
∑∞
t=1 η

2
t dt <∞.

Proof Define the set of missing samples M = {t | t+ dt > T} and the set of discarded samples
DT =

{
t |dtηt > e−2 − ηt

}
. Define t∗ (T ) = min

t∈M
t, and note that t∗ (T ) → ∞ as T → ∞ since

t+ dt ≥ t, and f (t) = t is increasing. Since ηt is non-increasing then∑
t∈M

ηt ≤ |M| ηt∗(T ) ≤ (T − t∗ (T ) + 1) ηt∗(T ) ≤ dt∗(T )ηt∗(T ). (51)

Given
∑∞
t=1 η

2
t dt < ∞ and

∑∞
t=1 ηt = ∞ we must have lim

t→∞
ηtdt = 0 if this limit exists, so

lim
T→∞

|DT | <∞. Therefore for the optimal arm i∗

lim
T→∞

E
{∑T

t=1 ηt

(
l
(at)
t − l(i

∗)
t

)}
∑T
t=1 ηt

≤
(a)

lim
T→∞

η1 |DT |+ dt∗(T )ηt∗(T ) + 4 logK + 5K
∑T
t=1 η

2
t (1 + 6dt)∑T

t=1 ηt
=
(b)

0

(52)
where (a) is Lemma 5 and (51), and (b) uses dtηt → 0 as t→∞,

∑∞
t=1 ηt =∞ and

∑∞
t=1 dtη

2
t <∞.

Note that one can choose ηt = 1
t log t log log t log log log t to guarantee no weighted-regret for all

sequences such that dt = (t log t log log t). This boundary can only be slightly improved by adding
log (log (. . . log (T ))) iteratively in this manner as long as

∑∞
t=1

1
dt

=∞. Outside this boundary, we
cannot guarantee that EXP3 has no weighted-regret even if dt is known. Hence, no knowledge of the
individual terms of the sequence dt is required to tune ηt such that EXP3 has no weighted-regret for
all sequences inside this boundary, which can be arbitrarily extended to include all the sequences
for which Lemma 6 holds. However, if a tighter bound on the rate of growth of dt is available then
one can improve the convergence rate to the set of CCE by picking a more slowly decaying ηt than
ηt = 1

t log t log log t log log log t . This still would not require knowledge of the individual terms in dt. In

general, for a given T , EXP3 gives an ε-CCE with ε = O
(

1∑T
t=1 ηt

)
, as given in (52).

The following Proposition shows that EXP3 can have no weighted-regret even when it has linear
regret in T . As a result, EXP3 can be used to approximate a CCE in a discrete non-cooperative
game or a NE in a discrete two-player zero-sum game despite not having no-regret guarantees.

Proposition 3. There exist a delay sequence {dt} and a cost sequence
{
l
(1)
t , ..., l

(K)
t

}
t

with 0 ≤

l
(i)
t ≤ 1 for all t and i, such that

E {R (T )} = E

{
T∑
t=1

〈lt,pt〉 −min
i

T∑
t=1

l
(i)
t

}
≥
(

1− 1

K

)
T

2
(53)

but still the step-sizes {ηt} for Algorithm 3 (EXP3) can be chosen such that it has no weighted-regret
with respect to {dt} and {ηt} as the weight sequence.

Proof Let dt = t and ηt = 1
t log(t+1) for all t, for which dtη

2
t = 1

t log2(t+1)
so
∑∞
t=1 ηt = ∞,∑∞

t=1 dtη
2
t <∞ and lim

t→∞
ηtdt = 0. Hence, by Lemma 6 we obtain that EXP3 has no weighted-regret

with respect to dt and ηt. However, the feedback for the last T
2 rounds is never received. Therefore,

the mixed action pt does not change for all t ≥ T
2 . Then the cost sequence such that l

(i)
t = 0 for all

i and all t ≤ T
2 and l

(1)
t = 0, l

(j)
t = 1 for all j > 1 and all t > T

2 yields an expected regret of exactly(
1− 1

K

)
T
2 .
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7. Conclusions

We studied the weighted-regret of online learning with adversarial bandit feedback and an arbitrary
delay sequence {dt}. Our results have implications both for the single-agent and multi-agent cases.

For the single-agent case, our weighted-regret bounds yield standard regret bounds as a special

case. We showed an expected regret bound of O
(
nT

3
4 +
√
nT

1
3D

1
3

)
for FKM andO

(√
logK (KT +D)

)
for EXP3, where D =

∑T
t=1 min {dt, T − t+ 1}. These bounds hold even if D,T are unknown thanks

to a novel doubling trick. Our doubling trick can be applied to any online learning algorithm with
delays in a plug-and-play manner. Under mild conditions, the novel doubling trick provably retains
the order of magnitude dependence on D, T (and other parameters) of the regret bound for when
D,T are known.

Our single-agent results in this paper focus on FKM and EXP3 since they are the most widely
used algorithms for bandit convex optimization and multi-armed bandits, respectively. Therefore it
is crucial to understand how they perform under delays, which are prevalent in practical systems.
However, this leaves open the question of what are the best algorithms for delayed bandit feedback.

For multi-armed bandits the lower bound is O
(√
KT +D logK

)
, which is achieved by the al-

gorithm of Zimmert and Seldin (2020). EXP3, which has lower computational complexity, achieves
this lower bound up to the logK that factors KT , which is negligible if the average delay is larger

than O
(

K
logK

)
.

For bandit convex optimization, much less is understood. A breakthrough was made in Bubeck
et al. (2017), that introduced a bandit convex optimization algorithm that achieves an expected

regret of O
(
n9.5
√
T log7.5 T

)
. Recently, it was shown in Lattimore (2020) that an algorithm exists

that achieves an expected regret of O(n2.5
√
T log T ), which improves the bound from Bubeck and

Eldan (2016). However, the result in Lattimore (2020) is non-constructive so an algorithm that
achieves the improved bound is still unknown. Compared to FKM, the algorithm in Bubeck et al.
(2017) suffers from a few drawbacks. First, the n dependence is a high-degree polynomial, which is
much worse than the linear dependence of FKM. Second, the algorithm proposed in Bubeck et al.
(2017) has a T dependent complexity per round. Since this new algorithm may need a very large T
to have lower regret than FKM, a T dependant complexity is a serious practical concern. Finally,
it is an open question how robust the algorithm in Bubeck et al. (2017) is to delays. The main
difficulty seems to be that their algorithm requires increasing the step-size multiplicatively by a
factor larger than one once a certain condition holds. An increasing step-size sequence conflicts
with the T,D-dependent tuning that optimizes the expected regret with delays or the decreasing
step-size sequence that guarantees no weighted-regret for unbounded delay sequences. In contrast,
FKM gives a weighted-regret bound as a function of ηt that can be easily tuned.

For the multi-agent case, we proved that if the algorithms have no weighted-regret, then the
expected weighted ergodic distribution of play converges to the set of coarse correlated equilibria
(CCE) for a general non-cooperative game. For a two-player zero-sum game, the weighted ergodic
average of play converges in L1 to the set of Nash equilibria. Then, we showed that FKM and
EXP3 have no weighted-regret with their step-size sequence as the weight sequence even under
significant unbounded delay sequences (e.g., dt = O (t log t)) for which their regret is Θ(T ). Hence,
by simulating a game and endowing the players with FKM or EXP3, we can use the weighted
ergodic distribution or average to approximate an equilibrium. By tuning the weights according to
the conditions we provide, this approximation method can still converge even if the algorithms have
linear regret. Since delays are prevalent when simulating model-free multi-agent interactions (i.e.,
games), this extends the set of tools that can approximate equilibria in practice. Approximating
equilibria of model-free games in a simulated environment can help to predict their outcomes in
practice, or design distributed algorithms in case the equilibria have good global performance.

Our results highlight the role of no weighted-regret in online learning under delayed feedback.
This motivates to further study the analogy between no weighted-regret under delays to no-regret
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in the standard no-delay case. In particular, it might be possible to prove results on the internal
weighted-regret, based on the techniques introduced in Blum and Mansour (2007) for multi-armed
bandits. An internal weighted-regret bound will allow approximating the correlated equilibrium in
delayed feedback environments, generalizing our result on external weighted-regret and the CCE.
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8. Proof of Theorem 1

We start by showing that E {ρT } = E
{∑T

t=1 ηtδat∑T
t=1 ηt

}
converges to an ε-CCE of the game as T →∞,

for every ε > 0. For each n, define the cost function ln,t (an) = 1− un (an,a−n,t). Let ε > 0. Since
each player n has no weighted-regret with respect to dnt and ηt, then there exists a T0 > 0 such that
for all T > T0, we have for every n and every action an ∈ A:

E
{
Ea∗∼ρT

{
un
(
an,a

∗
−n
)
− un (a∗)

}}
=
(a)

E

{∑T
t=1 ηt (un (an,a−n,t)− un (at))∑T

t=1 ηt

}

= E

{∑T
t=1 ηt (ln,t (an,t)− ln,t (an))∑T

t=1 ηt

}
≤
(b)
ε (54)

where (a) uses the definition of ρT and (b) follows since player n has no weighted-regret. Now pick
an = arg max

a′n∈A
Ea∗∼ρT

{
un
(
a′n,a

∗
−n
)}

in (54). Since Ea∗∼ρT
{
un
(
an,a

∗
−n
)
− un (a∗)

}
is linear in

ρT , then

E
{
Ea∗∼ρT

{
un
(
an,a

∗
−n
)
− un (a∗)

}}
= Ea∗∼E{ρT }

{
un
(
an,a

∗
−n
)
− un (a∗)

}
(55)

so we conclude that by definition E {ρT } is an ε-CCE.
Let ∆ > 0. From Lemma 7, we know that there exists an ε∆ > 0 such that for all ε ≤ ε∆ we have

min
ρ∗∈C0

‖ρε − ρ∗‖ ≤ ∆ for all ρε ∈ Cε. From (54) we know that there exists a large enough T1 such

that for all T > T1 we have E {ρT } ∈ Cε∆ , which implies that min
ρ∗∈C0

‖E {ρT } − ρ∗‖ ≤ ∆. Therefore,

E {ρT } converges to the set of CCE C0 as T →∞.

9. Proof of Theorem 2

Recall that the weighted ergodic average of at is āT ,
∑T
t=1 ηtat∑T
t=1 ηt

. Let ε > 0. Define the ergodic

average of the value of the game by

uT =

∑T
t=1 ηtu (yt, zt)∑T

t=1 ηt
. (56)

Define the row cost function lr,t (y) = u (y, zt). Since the row player has no weighted-regret with
respect to drt and ηt then there exists a T1 > 0 such that for all T > T1 and every y ∈ A (even in
hindsight):

E {uT − u (y, z̄T )} ≤
(a)

E

{∑T
t=1 ηt (u (yt, zt)− u (y, zt))∑T

t=1 ηt

}

= E

{∑T
t=1 ηt (lr,t (yt)− lr,t (y))∑T

t=1 ηt

}
≤
(b)

ε

2
(57)

where (a) uses the concavity of u (y, z̄T ) in z̄T and (b) uses the no weighted-regret of the algorithm.
Define the column cost function lc,t (z) = 1−u (yt, z). Since the column player has no weighted-

regret with respect to dct and ηt, then there exists a T2 > 0 such that for all T > T2 and for every
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z ∈ A (even in hindsight):

E {u (ȳT , z)− uT } ≤
(a)

E

{∑T
t=1 ηt (u (yt, z)− u (yt, zt))∑T

t=1 ηt

}

= E

{∑T
t=1 ηt (lc,t (zt)− lc,t (z))∑T

t=1 ηt

}
≤
(b)

ε

2
(58)

where (a) uses the convexity of u (ȳT , z) in ȳT and (b) uses the no weighted-regret of the algorithm.
Now define the best-response to z̄T as ybT = arg min

y′
u (y′, z̄T ) and the best-response to ȳT as

zbT = arg max
z′

u (ȳT , z
′) . By choosing y = ybT , z = z̄T in (57) and (58) and adding them together

we conclude that for all T > max {T1, T2}

E
{∣∣∣∣u (ȳT , z̄T )−min

y′
u (y′, z̄T )

∣∣∣∣} =
(a)

E
{
uT − u

(
ybT , z̄T

)}
+ E {u (ȳT , z̄T )− uT } ≤ ε (59)

where (a) follows since u (ȳT , z̄T ) ≥ u
(
ybT , z̄T

)
. By choosing instead y = ȳT , z = zbT in (57) and

(58) and adding them together we conclude that for all T > max {T1, T2}

E
{∣∣∣u (ȳT , z̄T )−max

z′
u (ȳT , z

′)
∣∣∣} =

(a)
E {uT − u (ȳT , z̄T )}+ E

{
u
(
ȳT , z

b
T

)
− uT

}
≤ ε (60)

where (a) follows since u (ȳT , z̄T ) ≤ u
(
ȳT , z

b
T

)
.

Let ∆ > 0. From Lemma 7, we know that there exists an ε∆ > 0 such that for all ε ≤ ε∆ we
have min

x∗∈N0

‖xε − x∗‖ ≤ ∆ for all xε ∈ Nε. Let δ > 0 and let ε = ε∆δ
2 > 0. Then from (59),(60) we

know that there exists a large enough T3 such that for all T > T3, using Markov inequality:

P
(∣∣∣∣u (ȳT , z̄T )−min

y′
u (y′, z̄T )

∣∣∣∣ ≥ ε∆

)
≤

E
{∣∣∣∣u (ȳT , z̄T )−min

y′
u (y′, z̄T )

∣∣∣∣}
ε∆

=
δ

2
(61)

and

P
(∣∣∣u (ȳT , z̄T )−max

z′
u (ȳT , z

′)
∣∣∣ ≥ ε∆

)
≤

E
{∣∣∣u (ȳT , z̄T )−max

z′
u (ȳT , z

′)
∣∣∣}

ε∆
=
δ

2
. (62)

Hence by the union bound over (61) and (62):

P
(

min
x∗∈N0

‖(ȳT , z̄T )− x∗‖ ≤ ∆

)
≥ P ((ȳT , z̄T ) ∈ Nε∆) ≥ 1− δ (63)

so (ȳT , z̄T ) converges in probability to the set of NE. Since (ȳT , z̄T )−x∗ is bounded, it implies that

E
{

min
x∗∈N0

‖(ȳT , z̄T )− x∗‖
}
→ 0 as T →∞. Since u is continuous, u (ȳT , z̄T )→ v in probability as

T →∞ where v is the value of the game. Since u is bounded, u (ȳT , z̄T )→ v in L1 as T →∞.

10. The Set of Approximate Equilibria Approaches the Set of Equilibria

The following lemma shows that for a given game, the sets of ε-NE and ε-CCE converge to the sets
of NE and CCE, respectively, when ε → 0. It allows us to convert convergence to Nε and Cε for
each ε > 0 to convergence to N0 and C0.

Lemma 7. Let dN (ε) = max
xε∈Nε

min
x∗∈N0

‖xε − x∗‖ and dC (ε) = max
ρε∈Cε

min
ρ∗∈C0

‖ρε − ρ∗‖ . Then dN (ε)→ 0

and dC (ε)→ 0 as ε→ 0.
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Proof Let Aε (y) =
{
x ∈ AN |ui (x) ≥ ui (yi,x−i)− ε , ∀i

}
. This is a compact set since Aε (y) =⋂

i f
−1
i,y ([−ε, ui,max]) for the continuous fi,y (x) = ui (x) − ui (yi,x−i) and ui,max = max

x∈AN
fi,y (x).

Now note that Nε =
⋂

y∈AN Aε (y), since Nε only includes action profiles x where no deviation
y gives any player more than ε gain. Hence Nε is compact for all ε ≥ 0. Since N 1

n
and N0 are

compact, we can define the sequence {x̃n} such that

x̃n ∈ arg max
xε∈N 1

n

min
x∗∈N0

‖xε − x∗‖ . (64)

Since AN is compact then the infinite sequence x̃n has a subsequence x̃nk that converges to a
point x̃ ∈ AN (i.e., Bolzano–Weierstrass Theorem, see Simmons (1963)). Since Nε1 ⊆ Nε2 if
ε2 ≥ ε1, we must have x̃ ∈

⋂∞
n=1N 1

n
so max

yi
ui (yi, x̃−i) − ui (x̃) ≤ 1

n for all n, implying that

max
yi

ui (yi, x̃−i) ≤ ui (x̃) and x̃ ∈ N0. The fact that Nε1 ⊆ Nε2 if ε2 ≥ ε1 also implies that dN (ε)

is non-increasing. Additionally, dN (ε) is bounded since AN is bounded. Hence, lim
n→∞

dN
(

1
n

)
exists.

However, since x̃nk ∈ N 1
nk

and x̃ ∈ N0 then

dN

(
1

nk

)
= max

xε∈N 1
nk

min
x∗∈N0

‖xε − x∗‖ = min
x∗∈N0

‖x̃nk − x∗‖ ≤ ‖x̃nk − x̃‖ (65)

so lim
k→∞

dN

(
1
nk

)
= 0 since x̃nk → x̃ . Hence, we must have lim

n→∞
dN
(

1
n

)
= 0 and lim

ε→0
dN (ε) = 0.

Let P
(
AN
)

be the set of all Borel probability measures over AN , equipped with the weak-*
topology (see Simmons (1963)). As discussed in Section 3, a CCE is a CE when all of the departure
functions are constant and therefore continuous. Hence, by simply replacing the zero constant of the
half-space with −ε in the last line of the proof of Stoltz and Lugosi (2007, Theorem 9, Page 194), we
conclude from their Theorem 9 that Cε is compact for all ε ≥ 0. Define ρ̃n ∈ arg max

ρε∈C 1
n

min
ρ∗∈C0

‖ρε − ρ∗‖.

Then, Prokhorov’s Theorem, given as Proposition 8 in (Stoltz and Lugosi, 2007, Page 194), states
that there exists a subsequence ρ̃nk that converges to a point ρ̃ ∈ P

(
AN

)
. Since Cε1 ⊆ Cε2 if ε2 ≥ ε1

then ρ̃ ∈
⋂∞
n=1 C 1

n
and therefore Ex∗∼ρ̃

{
max
yi

ui
(
yi,x

∗
−i
)
− ui (x∗)

}
≤ 0 so ρ̃ ∈ C0. Following the

same argument as in (65) we conclude that lim
ε→0

dC (ε) = 0.

11. Upper Bound on the Effect of the Delays on the Regret

Lemma 8. Let {ηt} be a non-increasing step-size sequence. Let {dt} be a delay such that the cost
from round t is received at round t + dt. Let St be the set of feedback samples received and used at
round t. Define the set M∗ of all samples that are not received and used before round T . Then

T∑
t=1

∑
s∈St

ηs

t−1∑
r=s

∑
q∈Sr

ηq +
∑

q∈St,q<s
ηq

 ≤ 2
∑
t/∈M∗

η2
t dt. (66)

Proof Up to the weights ηq, the quantity inside the parentheses in (66):

Qs,t ,
t−1∑
r=s

∑
q∈Sr

ηq +
∑

q∈St,q<s
ηq (67)
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counts of the number of feedback samples received and used between round s and round t such
that s ∈ St, before the feedback from round s was used. To prove (66), we want to upper bound∑T
t=1

∑
s∈St ηsQs,t for all possible delay sequences {dt}. A sample can be received and used between

round s and round t if it belongs to one of two types:

1. The first type is a feedback sample from q ≥ s that is received and used before the feedback
from round s is used. There are a maximum of ds feedback samples of this type. We denote
the contribution of these samples to Qs,t by Q1

s,t. Each feedback sample can contribute ηq ≤ ηs
with q ≥ s (since ηt is non-increasing) to Q1

s,t for s ∈ St. We over count them by giving each
Q1
s,t term all of its ds possible samples of this type. Summing over all t:

T∑
t=1

∑
s∈St

ηsQ
1
s,t ≤

T∑
t=1

∑
s∈St

η2
sds =

∑
t/∈M∗

η2
sds. (68)

2. The second type is a feedback sample from q < s that is received and used before s is used.
We denote the contribution of these samples to Qs,t by Q2

s,t. The samples from round q can
contribute to a maximum of dq different Q2

s,t terms, all with s ≥ q. This follows simply because
the feedback sample of q is not received before q+ dq. Let Γq be the set of rounds s such that
the samples from round q contribute to Q2

s,t. Then

T∑
t=1

∑
s∈St

ηsQ
2
s,t =

(a)

∑
q/∈M∗

∑
s∈Γq

ηsηq ≤
(b)

∑
q/∈M∗

η2
q |Γq| ≤

∑
q/∈M∗

η2
qdq (69)

where (a) follows since only rounds q that their feedback is received and used sometime before
round T are counted in Q2

s,t for some s, t. Inequality (b) uses ηs ≤ ηq since ηt is non-increasing
and s ≥ q for all s ∈ Γq.

Summing the contribution to (67) from these two possible types of samples, we have Qs,t =
Q1
s,t +Q2

s,t so by summing (68) and (69) we obtain (66).

12. Proof of Lemma 3: Weighted-Regret of FKM with Delays

Recall that St is the set of feedback samples received and used at round t, and thatM = {t | t+ dt > T}
is the set of samples that are not received before round T . Let a∗ = arg min

a∈K

∑T
t=1 ηtlt (a) and note

that a∗ is random for an adaptive adversary. We have

T∑
t=1

ηtE {lt (at)− lt (a∗)} = E

{
T∑
t=1

∑
s∈St

ηs (ls (as)− ls (a∗))

}
+ E

{∑
t∈M

ηt (lt (at)− lt (a∗))

}

≤
(a)

E

{
T∑
t=1

∑
s∈St

ηs (ls (as)− ls (a∗))

}
+
∑
t∈M

ηt

≤
(b)

E

{
T∑
t=1

∑
s∈St

ηs (ls (xs)− ls (a∗))

}
+
∑
t∈M

ηt + δL
∑
t/∈M

ηt (70)

where (a) uses lt (a) ∈ [0, 1] and (b) uses |ls (xs)− ls (as)| ≤ L ‖xs − as‖ ≤ δL.
Define s−, s+ as the step a moment before and a moment after the algorithm uses the feedback

from round s, which updates the action from as− to as+ . Both s− and s+ are algorithm update
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steps that take place in round t of the game if s ∈ St. Define the projection a∗δ =
∏
Kδ (a∗), where

Kδ =
{
x | 1

1−δx ∈ K
}

as defined in Algorithm 2. Recall that l̂ (x) = Eu∈S1 {l (x + δu)}. We bound

the first term in (70) as follows

T∑
t=1

∑
s∈St

ηs (ls (xs)− ls (a∗)) ≤
(a)

L |K| δ
∑
t/∈M

ηt +
T∑
t=1

∑
s∈St

ηs (ls (xs)− ls (a∗δ))

≤
(b)

(2 + |K|)Lδ
∑
t/∈M

ηt +
T∑
t=1

∑
s∈St

ηs

(
l̂s (xs)− l̂s (a∗δ)

)
(71)

where (a) follows from the Lipschitz continuity of ls since
∥∥a∗ −∏Kδ (a∗)

∥∥ ≤ ‖a∗ − (1− δ)a∗‖ ≤
δ |K|. Inequality (b) uses the Lipschitz continuity again, this time on ls (xs) and ls (a∗δ):

l̂s (x)− ls (x) = Eu∈S1 {ls (x + δu)− ls (x)} ≤ δLEu∈S1 {‖u‖} = δL. (72)

Now recall that gt = n
δ lt (xt + δut)ut where ut is on the unit sphere S1, and define

ht (x) , l̂t (x) +
(
gt −∇l̂t (xt)

)T
x (73)

for which ∇ht (xt) = gt and E {ht (x)} = E
{
l̂t (x)

}
for all x, and also E {ht (xt)} = E

{
l̂t (xt)

}
since ut is independent of xt and lt (see Lemma 2). Next note that

∥∥xs+ − a∗δ
∥∥2

=

∥∥∥∥∥∏
Kδ

(
xs− − ηs∇hs (xs)

)
− a∗δ

∥∥∥∥∥
2

≤
(a)

∥∥(xs− − a∗δ
)
− ηs∇hs (xs)

∥∥2

=
∥∥xs− − a∗δ

∥∥2 − 2ηs
〈
xs− − a∗δ ,∇hs (xs)

〉
+ η2

s ‖∇hs (xs)‖2 =
∥∥xs− − a∗δ

∥∥2
+ η2

s ‖∇hs (xs)‖2

− 2ηs 〈xs − a∗δ ,∇hs (xs)〉 − 2ηs

〈
t−1∑
r=s

∑
q∈Sr

(
xq+ − xq−

)
+

∑
q∈St,q<s

(
xq+ − xq−

)
,∇hs (xs)

〉
≤
(b)

∥∥xs− − a∗δ
∥∥2 − 2ηs (hs (xs)− hs (a∗δ)) + η2

s ‖gs‖
2

− 2ηs

〈
t−1∑
r=s

∑
q∈Sr

(
xq+ − xq−

)
+

∑
q∈St,q<s

(
xq+ − xq−

)
,∇hs (xs)

〉
(74)

where (a) follows since
∏
Kδ is the projection of xs− − ηs∇hs (xs) onto the convex Kδ. Inequality

(b) uses the convexity and differentiability of hs on Kδ, so hs (a∗δ) ≥ hs (xs) + 〈a∗δ − xs,∇hs (xs)〉.

12.1 Adaptive Adversary

First note that for any x ∈ K∣∣∣∣∣∑
t/∈M

ηt

(
l̂t (x)− ht (x)

)∣∣∣∣∣ =
(a)

∣∣∣∣∣∑
t/∈M

ηt

〈
gt −∇l̂t (xt) ,x

〉∣∣∣∣∣
≤ ‖x‖

∥∥∥∥∥∑
t/∈M

ηt

(
gt −∇l̂t (xt)

)∥∥∥∥∥ ≤ |K|
∥∥∥∥∥∑
t/∈M

ηt

(
gt −∇l̂t (xt)

)∥∥∥∥∥ (75)
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where (a) uses (73). The expectation of the last term can be bounded as follows

E2

{∥∥∥∥∥∑
t/∈M

ηt

(
gt −∇l̂t (xt)

)∥∥∥∥∥
}
≤ E


∥∥∥∥∥∑
t/∈M

ηt

(
gt −∇l̂t (xt)

)∥∥∥∥∥
2
 =

∑
t/∈M

η2
tE
{∥∥∥gt −∇l̂t (xt)

∥∥∥2
}

+
∑
t1 /∈M

∑
t1 6=t2

ηt1ηt2E
{〈

gt1 −∇l̂t1 (xt1) , gt2 −∇l̂t2 (xt2)
〉}
≤
(a)

2
∑
t/∈M

η2
tE
{
‖gt‖

2
+
∥∥∥∇l̂t (xt)

∥∥∥2
}
≤
(b)

2
∑
t/∈M

η2
t

(
n2

δ2
+ L2

)
(76)

where (a) uses that
〈
gt1 −∇l̂t1 (xt1) ,E

{
gt2 −∇l̂t2 (xt2) |σ (Ft2 ,ut1)

}〉
= 0 for all t1 < t2, which

follows from Lemma 2. Inequality (b) uses that l̂t is differentiable and L-Lipschitz continuous.
Then

E

{
T∑
t=1

∑
s∈St

ηs

(
l̂s (xs)− l̂s (a∗δ)

)}
≤
(a)

E

{
T∑
t=1

∑
s∈St

ηs (hs (xs)− hs (a∗δ))

}
+ |K|

√√√√2

T∑
t=1

∑
s∈St

η2
s

(
n2

δ2
+ L2

)
≤
(b)

1

2

T∑
t=1

∑
s∈St

E
{∥∥xs− − a∗δ

∥∥2 −
∥∥xs+ − a∗δ

∥∥2
}

+
1

2

T∑
t=1

∑
s∈St

η2
sE
{
‖gs‖

2
}

+ |K|

√√√√2
∑
t/∈M

η2
t

(
n2

δ2
+ L2

)

−
T∑
t=1

∑
s∈St

ηsE


〈
t−1∑
r=s

∑
q∈Sr

(
xq+ − xq−

)
+

∑
q∈St,q<s

(
xq+ − xq−

)
,E
{
∇hs (xs) | Fs−

}〉 ≤(c)
|K|2

2
+

n2

2δ2

∑
t/∈M

η2
t + |K|

√√√√2
∑
t/∈M

η2
t

(
n2

δ2
+ L2

)

+
n

δ

T∑
t=1

∑
s∈St

ηs

t−1∑
r=s

∑
q∈Sr

E
{∥∥xq+ − xq−

∥∥}+
∑

q∈St,q<s
E
{∥∥xq+ − xq−

∥∥} (77)

where (a) uses (75) and (76) on x = a∗δ and E {hs (xs)} = E
{
l̂s (xs)

}
, (b) uses (74) and (c) uses the

telescopic sum with ‖x0 − a∗δ‖
2−‖xT − a∗δ‖

2 ≤ |K|2, that gs = n
δ ls (xs + δus)us, and also Cauchy-

Schwarz and then applying Lemma 2 to obtain
∥∥E{∇hs (xs) | Fs−

}∥∥ ≤ E
{
‖gs‖ | Fs−

}
≤ n

δ . Finally
we bound the last term by bounding∥∥xq+ − xq−

∥∥
2

=

∥∥∥∥∥∏
Kδ

(
xq− − ηqgq

)
− xq−

∥∥∥∥∥
2

≤
(a)

ηq
∥∥gq∥∥2

≤ nηq
δ

(78)

where (a) follows since
∏
Kδ is the projection of xq− − ηqgq onto the convex Kδ. We obtain

n

δ

T∑
t=1

∑
s∈St

ηs

t−1∑
r=s

∑
q∈Sr

E
{∥∥xq+ − xq−

∥∥}+
∑

q∈St,q<s
E
{∥∥xq+ − xq−

∥∥}
≤ n2

δ2

T∑
t=1

∑
s∈St

ηs

t−1∑
r=s

∑
q∈Sr

ηq +
∑

q∈St,q<s
ηq

 ≤
(a)

2
n2

δ2

∑
t/∈M

η2
t dt (79)
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where (a) uses Lemma 8. We conclude by applying (79) on (77) and adding (71) and (70).

12.2 Oblivious Adversary

For an oblivious adversary, lq is not random and for q > s does not depend on as, so by Lemma 2∥∥E{∇hs (xs) | Fs−
}∥∥ =

(a)

∥∥∥E{n
δ
ls (xs + δus)us | Fs−

}∥∥∥ =
∥∥∥∇l̂s (xs)

∥∥∥ ≤
(b)
L (80)

where (a) uses (73) and (b) follows since l̂s is differentiable and L-Lipschitz continuous. Then

T∑
t=1

∑
s∈St

ηsE
{
l̂s (xs)− l̂s (a∗δ)

}
=
(a)

T∑
t=1

∑
s∈St

ηsE {hs (xs)− hs (a∗δ)}

≤
(b)

1

2

T∑
t=1

∑
s∈St

E
{∥∥xs− − a∗δ

∥∥2 −
∥∥xs+ − a∗δ

∥∥2
}

+
1

2

T∑
t=1

∑
s∈St

η2
sE
{
‖gs‖

2
}
−

T∑
t=1

∑
s∈St

ηsE


〈
t−1∑
r=s

∑
q∈Sr

(
xq+ − xq−

)
+

∑
q∈St,q<s

(
xq+ − xq−

)
,E
{
∇hs (xs) | Fs−

}〉
≤
(c)

|K|2

2
+

n2

2δ2

∑
t/∈M

η2
t + L

T∑
t=1

∑
s∈St

ηs

t−1∑
r=s

∑
q∈Sr

E
{∥∥xq+ − xq−

∥∥}+
∑

q∈St,q<s
E
{∥∥xq+ − xq−

∥∥}
(81)

where (a) uses E
{
l̂s (xs)

}
= E {hs (xs)} and E

{
l̂s (a∗δ)

}
= E {hs (a∗δ)} as explained below (73)

(since with an oblivious adversary, a∗δ is not random), (b) uses (74) and (c) uses the telescopic sum

with ‖x0 − a∗δ‖
2 − ‖xT − a∗δ‖

2 ≤ |K|2, ‖gs‖ ≤ n
δ , and Cauchy-Schwarz with (80). Finally, we use

(78) to bound the last term in (81):

L

T∑
t=1

∑
s∈St

ηs

t−1∑
r=s

∑
q∈Sr

E
{∥∥xq+ − xq−

∥∥}+
∑

q∈St,q<s
E
{∥∥xq+ − xq−

∥∥}
≤ Ln

δ

T∑
t=1

∑
s∈St

ηs

t−1∑
r=s

∑
q∈Sr

ηq +
∑

q∈St,q<s
ηq

 ≤
(a)

2L
n

δ

∑
t/∈M

η2
t dt (82)

where (a) uses Lemma 8. We conclude by applying (82) on (81) and adding (71) and (70).
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13. Proof of Lemma 6: Weighted-Regret of EXP3 with Delays

Recall that M∗ is the set of missing or discarded samples. Let s−, s+ as the step a moment before
and a moment after the algorithm uses the feedback from round s, which updates the mixed action
from ps− to ps+ . Both s− and s+ are algorithm update steps that take place in round t of the game
if s ∈ St. Let sT be the last feedback to be updated.

We begin by the standard EXP3 analysis for arbitrary l̃s (Lattimore and Szepesvári, 2020),
but with careful consideration to both the interleaved arrivals and the weight ηs. Recall that

L̃
(i)
t =

∑
t/∈M∗ ηt

l
(i)
t 1{at=i}

p
(i)
t +γt

, as defined in Algorithm 3. Define Φ (t) = − log
(∑K

i=1 e
−L̃(i)

t

)
and

l̃t =

(
0, ...,

l
(at)
t

p
(at)
t +γt

, ..., 0

)
. Then

Φ (s+)− Φ (s−) = − log

∑K
i=1 e

−L̃(i)
s− e−ηs l̃

(i)
s∑K

j=1 e
−L̃(j)

s−

 = − log

(
K∑
i=1

p(i)
s−e
−ηs l̃(i)s

)

≥
(a)
− log

(
K∑
i=1

p(i)
s−

(
1− ηs l̃(i)s +

1

2
η2
s

(
l̃(i)s

)2
))

= − log

(
1−

K∑
i=1

p(i)
s−

(
ηs l̃

(i)
s −

1

2
η2
s

(
l̃(i)s

)2
))

≥
(b)
ηs

K∑
i=1

p(i)
s− l̃

(i)
s −

η2
s

2

K∑
i=1

p(i)
s−

(
l̃(i)s

)2

(83)

where (a) is e−x ≤ 1− x+ 1
2x

2 and (b) is log (1− x) ≤ −x. Hence, iterating (83) over s yields

Φ
(
s+
T

)
− Φ (1) =

T∑
t=1

∑
s∈St

(Φ (s+)− Φ (s−)) ≥
T∑
t=1

∑
s∈St

ηs

K∑
i=1

p(i)
s− l̃

(i)
s −

1

2

T∑
t=1

∑
s∈St

η2
s

K∑
i=1

p(i)
s−

(
l̃(i)s

)2

.

(84)

Next we upper bound Φ
(
s+
T

)
− Φ (1). We have for i∗ , arg min

i

∑T
t=1 ηtl

(i)
t that

Φ
(
s+
T

)
− Φ (1) = − log

 K∑
j=1

e
−L̃(j)

s
+
T

+ logK ≤
(a)

L̃
(i∗)

s+T
+ logK =

T∑
t=1

∑
s∈St

ηs l̃
(i∗)
s + logK (85)

where (a) omits positive terms from
∑K
j=1 e

−L̃(j)

s
+
T . We conclude from (84) and (85) that

T∑
t=1

∑
s∈St

ηs

K∑
i=1

p(i)
s− l̃

(i)
s −

T∑
t=1

∑
s∈St

ηs l̃
(i∗)
s ≤ logK +

1

2

T∑
t=1

∑
s∈St

η2
s

K∑
i=1

p(i)
s−

(
l̃(i)s

)2

. (86)

Now observe that

K∑
i=1

p(i)
s− l̃

(i)
s =

K∑
i=1

p(i)
s−

l
(i)
s 1{as=i}

p
(i)
s + γs

=
K∑
i=1

(
p(i)
s + γs

) l(i)s 1{as=i}

p
(i)
s + γs

−
K∑
i=1

(
p(i)
s + γs − p(i)

s−

) l(i)s 1{as=i}

p
(i)
s + γs

= l(as)s − γs
K∑
i=1

l̃(i)s +
K∑
i=1

(
p(i)
s− − p

(i)
s

)
l̃(i)s . (87)

36



No Weighted-Regret Learning in Adversarial Bandits with Delays

Using
p(i)
s−

p
(i)
s

≤ e2 from Lemma 9, we obtain

K∑
i=1

p(i)
s−

(
l̃(i)s

)2

=
K∑
i=1

p(i)
s−

(
l
(i)
s 1{as=i}

p
(i)
s + γs

)2

≤ e2
K∑
i=1

p
(i)
s

p
(i)
s + γs

l
(i)
s 1{as=i}

p
(i)
s + γs

≤ e2
K∑
i=1

l̃(i)s . (88)

Taking the weighted sum of (87) over t /∈M∗ and subtracting
∑T
t=1

∑
s∈St ηs l̃

(i∗)
s from both sides:

T∑
t=1

∑
s∈St

ηsl
(as)
s −

T∑
t=1

∑
s∈St

γsηs

K∑
i=1

l̃(i)s +
T∑
t=1

∑
s∈St

ηs

K∑
i=1

(
p(i)
s− − p

(i)
s

)
l̃(i)s −

T∑
t=1

∑
s∈St

ηs l̃
(i∗)
s

=
T∑
t=1

∑
s∈St

ηs

K∑
i=1

p(i)
s− l̃

(i)
s −

T∑
t=1

∑
s∈St

ηs l̃
(i∗)
s

≤
(a)

logK +
1

2

T∑
t=1

∑
s∈St

η2
s

K∑
i=1

p(i)
s−

(
l̃(i)s

)2

≤
(b)

logK +
1

2

T∑
t=1

∑
s∈St

e2η2
s

K∑
i=1

l̃(i)s (89)

where (a) uses (86) and (b) uses (88). Rearranging (89) and subtracting
∑T
t=1

∑
s∈St ηsl

(i∗)
s from

both sides gives

T∑
t=1

∑
s∈St

ηs

(
l(as)s − l(i

∗)
s

)
≤

T∑
t=1

∑
s∈St

ηs

K∑
i=1

(
p(i)
s − p(i)

s−

)
l̃(i)s︸ ︷︷ ︸

A

+ logK+
T∑
t=1

∑
s∈St

ηs

(
l̃(i
∗)

s − l(i
∗)

s

)
+

T∑
t=1

∑
s∈St

(
γsηs +

e2

2
η2
s

) K∑
i=1

l̃(i)s .

(90)

13.1 Adaptive Adversary with γt = ηt

13.1.1 Taking the Expectation

Define W
(i)
1 =

∑T
t=1

∑
s∈St ηs

(
l̃
(i)
s − l(i)s

)
− logK. From Lemma 11 with δ ← δ

K and α
(i)
s = ηs and

α
(j)
s = 0 for all j 6= i we get by using the union bound that

P
(

max
i
W

(i)
1 ≥ log

1

δ

)
≤ KP

(
T∑
t=1

∑
s∈St

ηs

(
l̃(i)s − l(i)s

)
≥ log

K

δ

)
≤ δ (91)

so by substituting x = log 1
δ so dx = −dδδ

E
{

max
i
W

(i)
1

}
≤
∞∫

0

P
(

max
i
W

(i)
1 ≥ x

)
dx =

1∫
0

1

δ
P
(

max
i
W

(i)
1 ≥ log

1

δ

)
dδ ≤ 1. (92)

Define W2 =
∑T
t=1

∑
s∈St

(
γsηs + e2

2 η
2
s

)∑K
i=1

(
l̃
(i)
s − l(i)s

)
. From Lemma 11 with α

(i)
s = γsηs +

e2

2 η
2
s ≤ 2ηs for all i we get P

(
W2 ≥ log 1

δ

)
≤ δ, so using (92) on W2 we obtain E {W2} ≤ 1.
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From E
{

max
i
W

(i)
1

}
≤ 1 and E {W2} ≤ 1 we conclude that

E

{
max
i

T∑
t=1

∑
s∈St

ηs

(
l̃(i)s − l(i)s

)
+

T∑
t=1

∑
s∈St

(
γsηs +

e2

2
η2
s

) K∑
i=1

l̃(i)s

}
≤

logK + 2 +
T∑
t=1

∑
s∈St

(
γsηs +

e2

2
η2
s

) K∑
i=1

l(i)s ≤ logK + 2 +K
T∑
t=1

∑
s∈St

(
γsηs +

e2

2
η2
s

)
. (93)

13.1.2 The Effect of Delays

Next we bound the A term in (90), which quantifies the effect of the delays. Let s ∈ St, and let q
be a round for which the feedback is used after or at round s, but before the feedback from round

s is used. Define hi

(
L̃q−

)
, p

(i)
q− = e

−L̃(i)
q−∑K

j=1 e
−L̃(j)

q−
, so p

(i)
q+ = hi

(
L̃q− + ηq l̃q

)
. Using Lemma 10 with

x = L̃q− and ∆ = ηq l̃q (so h (x) = pq−) yields

∥∥∥pq− − pq+

∥∥∥
1
≤ 2ηq

K∑
i=1

p(i)
q− l̃

(i)
q = 2ηq

K∑
i=1

p(i)
q−

l
(i)
q 1{aq=i}

p
(i)
q + γq

≤
(a)

2e2ηq

K∑
i=1

p(i)
q

l
(i)
q 1{aq=i}

p
(i)
q + γq

≤ 2e2ηq

K∑
i=1

l(i)q 1{aq=i} = 2e2ηql
(qq)
q ≤ 2e2ηq (94)

where (a) uses
p(i)
q−

p
(i)
q

≤ e2 from Lemma 9. Hence

〈
l̃s,pq− − pq+

〉
=

K∑
i=1

(
p(i)
q− − p

(i)
q+

) l(i)s 1{as=i}

p
(i)
s + γs

≤
(a)

2e2ηq

K∑
i=1

l
(i)
s 1{as=i}

p
(i)
s + γs

≤ 2e2ηq

K∑
i=1

1{as=i}

p
(i)
s + γs

(95)

where (a) follows since p
(i)
q− − p

(i)
q+ ≤

∣∣∣p(i)
q− − p

(i)
q+

∣∣∣ ≤ ∥∥∥pq− − pq+

∥∥∥
1
≤ 2e2ηq. Using (95) we can write

E
{〈

l̃s,pq− − pq+

〉
| Fs

}
≤ 2e2ηq

K∑
i=1

E

{
1{as=i}

p
(i)
s + γs

| Fs

}
=
(a)

2e2ηq

K∑
i=1

p
(i)
s

p
(i)
s + γs

≤ 2e2ηqK (96)
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where (a) uses that p
(i)
s is Fs-measurable and that as = i with probability p

(i)
s . Hence the A term

in (90) can be bounded as

E

{
T∑
t=1

∑
s∈St

ηs

〈
l̃s,ps − ps−

〉}

= E

{
T∑
t=1

∑
s∈St

ηs

(〈
l̃s,pt − ps−

〉
+

t−1∑
r=s

〈
l̃s,pr − pr+1

〉)}

= E


T∑
t=1

∑
s∈St

ηs

 ∑
q∈St,q<s

〈
l̃s,pq− − pq+

〉
+

t−1∑
r=s

∑
q∈Sr

〈
l̃s,pq− − pq+

〉
=

T∑
t=1

∑
s∈St

ηs

 ∑
q∈St,q<s

E
{〈

l̃s,pq− − pq+

〉}
+

t−1∑
r=s

∑
q∈Sr

E
{〈

l̃s,pq− − pq+

〉}
≤
(a)

2e2K

T∑
t=1

∑
s∈St

ηs

 ∑
q∈St,q<s

ηq +

t−1∑
r=s

∑
q∈Sr

ηq

 ≤
(b)

4e2K
∑
t/∈M∗

η2
t dt (97)

where (a) uses (96) with the tower rule, and (b) uses Lemma 8.

13.1.3 Concluding the Proof

We conclude that for i∗ , arg min
i

∑T
t=1 ηtl

(i)
t :

E

{
T∑
t=1

ηt

(
l
(at)
t − l(i

∗)
t

)}
≤
(a)

E

{
T∑
t=1

∑
s∈St

ηs

(
l(as)s − l(i

∗)
s

)}
+
∑
t∈M∗

ηt

≤
(b)

E

{
T∑
t=1

∑
s∈St

ηs

K∑
i=1

(
p(i)
s − p(i)

s−

)
l̃(i)s

}
+ logK

+ E

{
T∑
t=1

∑
s∈St

(
ηs

(
l̃(i
∗)

s − l(i
∗)

s

)
+

(
γsηs +

e2

2
η2
s

) K∑
i=1

l̃(i)s

)}
+
∑
t∈M∗

ηt

≤
(c)

4e2K
∑
t/∈M∗

η2
t dt + 2 +

(
1 +

e2

2

)
K

T∑
t=1

∑
s∈St

η2
s + 2 logK +

∑
t∈M∗

ηt

(98)

where (a) uses that 0 ≤ l(i)t ≤ 1 for every i and t, (b) is (90) and (c) is (93) and (97) for γs = ηs.

13.2 Oblivious Adversary with γt = 0

13.2.1 Taking the Expectation

With an oblivious adversary E
{
l̃
(i)
s

}
= l

(i)
s E

{
1{as=i}

p
(i)
s

}
= l

(i)
s for each s and i, since l

(i)
s is not

random. Then for any i, in particular i∗ , arg min
i

∑T
t=1 ηtl

(i)
t , we have

E

{
T∑
t=1

∑
s∈St

ηs

(
l̃(i
∗)

s − l(i
∗)

s

)
+
e2

2

T∑
t=1

∑
s∈St

η2
s

K∑
i=1

l̃(i)s

}
=
e2

2

T∑
t=1

∑
s∈St

η2
s

K∑
i=1

l(i)s ≤
e2

2
K

T∑
t=1

∑
s∈St

η2
s .

(99)
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13.2.2 The Effect of Delays

Let s ∈ St, and let q be a round for which the feedback is used after or at round s, but before the
feedback from round s is used. Using Lemma 10 with x = L̃q− and ∆ = ηq l̃q, so h (x) = pq− yields

E
{∥∥∥pq− − pq+

∥∥∥
1
| Fq−

}
≤ 2ηqE

{
K∑
i=1

p(i)
q− l̃

(i)
q | Fq−

}

=
(a)

2ηq

K∑
i=1

p(i)
q−E

{
l̃(i)q | Fq−

}
=
(b)

2ηq

K∑
i=1

p(i)
q− l

(i)
q ≤ 2ηq

K∑
i=1

p(i)
q− = 2ηq (100)

where (a) uses that p
(i)
q− is Fq− -measurable and (b) uses that p

(i)
q is Fq− -measurable (since q < q−)

and that l̃
(i)
q is

l(i)q

p
(i)
q

with probability p
(i)
q and zero otherwise. Note that aq given Fq is independent

of Fq− since by definition the feedback from aq was not received until round q−. This is unique to
the oblivious adversary case when lr for r > s is not a random variable that depends on aq, which
the adversary observes already at the end of round q. Then for every q ∈ Sr for r < t or q ∈ St such
that q < s we have

E
{〈

l̃s,pq− − pq+

〉}
= E

{
E

{
K∑
i=1

(
p(i)
q− − p

(i)
q+

) l(i)s 1{as=i}

p
(i)
s

| Fs−

}}

= E

{
K∑
i=1

(
p(i)
q− − p

(i)
q+

)
E

{
l
(i)
s 1{as=i}

p
(i)
s

| Fs−

}}

= E

{
K∑
i=1

(
p(i)
q− − p

(i)
q+

)
l(i)s

}
= E

{〈
ls,pq− − pq+

〉}
≤
(a)

E
{
‖ls‖∞

∥∥∥pq− − pq+

∥∥∥
1

}
≤
(b)

E
{∥∥∥pq− − pq+

∥∥∥
1

}
≤
(c)

2ηq (101)

where (a) is Hölder’s inequality, (b) uses 0 ≤ l(i)t ≤ 1 and (c) uses (100) and the tower rule. Therefore

E

{
T∑
t=1

∑
s∈St

ηs

〈
l̃s,ps − ps−

〉}

= E

{
T∑
t=1

∑
s∈St

ηs

(〈
l̃s,pt − ps−

〉
+

t−1∑
r=s

〈
l̃s,pr − pr+1

〉)}

=
T∑
t=1

∑
s∈St

ηs

 ∑
q∈St,q<s

E
{〈

l̃s,pq− − pq+

〉}
+

t−1∑
r=s

∑
q∈Sr

E
{〈

l̃s,pq− − pq+

〉}
≤
(a)

2
T∑
t=1

∑
s∈St

ηs

 ∑
q∈St,q<s

ηq +
t−1∑
r=s

∑
q∈Sr

ηq

 ≤
(b)

4
∑
t/∈M∗

η2
t dt (102)

where (a) follows from (101) and (b) follows from Lemma 8.
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13.2.3 Concluding the Proof

We conclude that for i∗ , arg min
i

∑T
t=1 ηtl

(i)
t :

E

{
T∑
t=1

ηtl
(at)
t −

T∑
t=1

ηtl
(i∗)
t

}
≤
(a)

E

{
T∑
t=1

∑
s∈St

ηs

(
l(as)s − l(i

∗)
s

)}
+
∑
t∈M∗

ηt ≤
(b)

logK +
e2

2
K

T∑
t=1

η2
t + 4

∑
t/∈M∗

η2
t dt +

∑
t∈M∗

ηt (103)

where (a) uses that 0 ≤ l(i)t ≤ 1 for every i and t, and (b) uses (90), (99) and (102).

13.3 EXP3 Auxiliary Lemmas

The following lemma generalizes Lemma 2 from Cesa-Bianchi et al. (2019) to a sequence of delays
{dt} and a sequence of step-sizes {ηt}.

Lemma 9. Let {ηt} be a positive non-increasing step-size sequence such that ηt ≤ 1
2e
−2 for all t.

Let D =
{
t | dt ≥ 1

e2ηt
− 1
}

. Then for every s, t such that s ∈ St (so s /∈ D) Algorithm 3 maintains

for all i = 1, ...,K both
p(i)
s+

p
(i)
s−
≤ 1

1−e2ηs and
p(i)
s−

p
(i)
s

≤ e2.

Proof The proof follows by induction on the feedback arrival index. Let s be the first feedback to

arrive. Before that, at s−, we have p
(i)
s− = 1

K and
p(i)
s−

p
(i)
s

= 1 for all i. Then, the first update satisfies

p
(i)
s−

p
(i)
s+

=
1
K

1
K e
−ηsl̃

(i)
s∑K

j=1
1
K e
−ηsl̃

(j)
s

≥ 1− 1

K
+

1

K
e
−ηs l

(as)
s

1
K

+γs ≥ 1 +
1

K

(
e−ηsKl

(as)
s − 1

)
≥ 1− ηsl(as)s ≥ 1− e2ηs.

(104)
Now let s be any arbitrary round for which the feedback arrives at time t. According to the inductive

hypothesis, we have
p(i)
q+

p
(i)
q−
≤ 1

1−e2ηq for all q ∈ {r ∈ St, r < s} ∪
{⋃t−1

r=s Sr
}

. Define s0 as the minimal

q < s such that s ≤ q + dq ≤ t and q /∈ D (if it exists). Then for all i = 1, ...,K

p
(i)
s−

p
(i)
s

=

t−1∏
r=s

∏
q∈Sr

∏
q∈St,q<s

p
(i)
q+

p
(i)
q−

≤
(a)

t−1∏
r=s

∏
q∈Sr

∏
q∈St,q<s

(
1 +

e2ηq
1− e2ηq

)

≤
(b)

(
1 +

1

e−2η−1
s0 − 1

)ds0 (
1 +

1

e−2η−1
s − 1

)ds
≤
(c)
e2 (105)

where (a) uses the inductive hypothesis and (c) uses that by definition ds0 ≤ e−2η−1
s0 − 1 and

ds ≤ e−2η−1
s − 1. If s0 does not exist then the first factor is one (i.e., ds0 = 0). Inequality (b) uses

that the product runs over all rounds q /∈ D for which the feedback is received between s and s−.

Feedback from q ∈ D is discarded and has no effect on
p(i)
s−

p
(i)
s

. The received feedback includes no more

than ds0 samples of rounds before s. This follows since there are at most ds0 rounds between s0

and s (since s ≤ s0 + ds0 by definition), and each of them contributes at most one feedback that is
received between s and s−. We have ηq ≤ ηs0 for each such round q, since ηt is non-increasing. It
also includes no more than ds feedback samples of rounds after s, since all these feedback samples
are received before s−, which occurs during round t = s+ ds. We have ηr ≤ ηs for each such round
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r. We conclude that the update at s−, occurring at time t using the feedback for as, satisfies:

p
(i)
s−

p
(i)
s+

=

e
−L̃(i)

s−∑K
j=1 e

−L̃(j)
s−

e
−L̃(i)

s+∑K
j=1 e

−L̃(j)
s+

=

e
−L̃(i)

s−∑K
j=1 e

−L̃(j)
s−

e
−L̃(i)

s− e−ηsl̃
(i)
s∑K

j=1 e
−L̃(j)

s− e−ηsl̃
(j)
s

≥
∑K
j=1 e

−L̃(j)
s− e−ηs l̃

(j)
s∑K

j=1 e
−L̃(j)

s−

≥

∑K
j=1 e

−L̃(j)
s−

(
1− ηs l̃(j)s

)
∑K
j=1 e

−L̃(j)
s−

= 1− ηs
K∑
j=1

p(j)
s− l̃

(j)
s = 1− ηsp(as)

s−

l
(as)
s

p
(as)
s + γs

≥ 1− ηs
p

(as)
s−

p
(as)
s

≥
(a)

1− e2ηs (106)

where (a) follows from (105). Hence
p(i)
s+

p
(i)
s−
≤ 1

1−e2ηs and the proof is complete.

The next lemma shows standard smoothness properties of the softmax function, and we provide it
here for completeness.

Lemma 10. Let hi (x) = e−xi∑K
j=1 e

−xj and h (x) = (h1 (x) , ..., hK (x)). Then ∀x ∈ RK and ∀∆ ∈ RK+

‖h (x)− h (x + ∆)‖1 ≤ 2 〈h (x) ,∆〉 . (107)

Proof For all x ∈ RK and ∆ ∈ RK+

hi (x + ∆)− hi (x) =
e−xi−∆i∑K
j=1 e

−xj−∆j

− e−xi∑K
j=1 e

−xj
≥
(a)

(
e−∆i − 1

)
hi (x) ≥

(b)
−∆ihi (x) (108)

where (a) follows since
∑K
j=1 e

−xj−∆j ≤
∑K
j=1 e

−xj and (b) since 1−x ≤ e−x for all x ≥ 0. We also

have for all x ∈ RK and ∆ ∈ RK+ that

hi (x + ∆)− hi (x) =
e−xi−∆i∑K
j=1 e

−xj−∆j

− e−xi∑K
j=1 e

−xj
≤
(a)

e−xi−∆i∑K
j=1 e

−xj−∆j

− e−xi−∆i∑K
j=1 e

−xj
=

hi (x + ∆)

(
1−

∑K
j=1 e

−xj−∆j∑K
l=1 e

−xl

)
= hi (x + ∆)

∑K
j=1 e

−xj
(
1− e−∆j

)∑K
l=1 e

−xl
≤
(b)
hi (x + ∆)

∑K
j=1 ∆je

−xj∑K
l=1 e

−xl

(109)

where (a) uses e−xj ≥ e−xj−∆j and (b) uses 1− x ≤ e−x for all x ≥ 0. Combining (108) and (109):

‖h (x)− h (x + ∆)‖1 =
K∑
i=1

|hi (x)− hi (x + ∆)| ≤
(a)

K∑
i=1

hi (x + ∆)

 K∑
j=1

∆je
−xj∑K

l=1 e
−xl


+

K∑
i=1

∆ihi (x) =

 K∑
j=1

(
∆j

e−xj∑K
l=1 e

−xl

) K∑
i=1

hi (x + ∆) + 〈h (x) ,∆〉 =
(b)

2 〈h (x) ,∆〉 (110)

where (a) uses |hi (x + ∆)− hi (x)| ≤ max

{
∆ihi (x) , hi (x + ∆)

∑K
j=1 ∆je

−xj∑K
l=1 e

−xl

}
for all i, due to (108)

and (109). Equality (b) uses that
∑K
i=1 hi (x + ∆) = 1 by definition.

The next Lemma is taken from Neu (2015), and we provide a (very) slightly modified proof to verify
that the same result holds even when the order of arrivals changes as a result of the delayed feedback.
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Lemma 11. Let l̃
(i)
t =

l
(i)
t 1{at=i}

p
(i)
t +γt

. If
{
α

(i)
t

}
is a non-negative sequence such that α

(i)
t ≤ 2γt for all

t and all i, then

P

( ∑
t/∈M∗

K∑
i=1

α
(i)
t

(
l̃
(i)
t − l

(i)
t

)
> log

1

δ

)
≤ δ. (111)

Proof Define the filtration Gt = σ ({aτ | τ < t}) and note that lt is Gt-measurable. We have

l̃
(i)
t =

l
(i)
t 1{at=i}

p
(i)
t + γt

≤
l
(i)
t 1{at=i}

p
(i)
t + γtl

(i)
t 1{at=i}

=
1

2γt

2γt
l
(i)
t

p
(i)
t

1{at=i}

1 + γt
l
(i)
t

p
(i)
t

1{at=i}

≤
(a)

1

2γt
log

(
1 + 2γt

l
(i)
t

p
(i)
t

1{at=i}

)
(112)

where (a) uses x
1+ x

2
≤ log (1 + x) which holds for x ≥ 0. Then

E
{
e
∑K
i=1 α

(i)
t l̃

(i)
t | Gt

}
≤ E

e
∑K
i=1

α
(i)
t

2γt
log

(
1+2γt

l
(i)
t

p
(i)
t

1{at=i}

)
| Gt


≤
(a)

E

e
∑K
i=1 log

(
1+α

(i)
t

l
(i)
t

p
(i)
t

1{at=i}

)
| Gt

 = E

{
K∏
i=1

(
1 + α

(i)
t

l
(i)
t

p
(i)
t

1{at=i}

)
| Gt

}

=
(b)

E

{
1 +

K∑
i=1

α
(i)
t

l
(i)
t

p
(i)
t

1{at=i} | Gt

}
=
(c)

1 +
K∑
i=1

α
(i)
t l

(i)
t ≤ e

∑K
i=1 α

(i)
t l

(i)
t (113)

where (a) uses x log (1 + y) ≤ log (1 + xy) which holds for y > −1 and 0 ≤ x ≤ 1, since α
(i)
t ≤ 2γt.

Inequality (b) uses that 1{at=i}1{at=j} = 0 for all i 6= j, and (c) uses that p
(i)
t and l

(i)
t are Gt-

measurable and that given Gt, at = i with probability p
(i)
t .

Since l
(i)
t is Gt-measurable then (113) yields E

{
e
∑K
i=1 α

(i)
t

(
l̃
(i)
t −l

(i)
t

)
| Gt
}
≤ 1 for all i. Let S =∑T

t=1 |St|. Let τl be l-th round for which the feedback is not missing or discarded, so τ1 ≤ τ2 ≤
. . . ≤ τS . Then

E
{
e
∑S
l=1

∑K
i=1 α

(i)
τl

(l̃(i)τl −l
(i)
τl

)
}

= E
{
E
{
e
∑S
l=1

∑K
i=1 α

(i)
τl

(l̃(i)τl −l
(i)
τl

) | GτS
}}

=
(a)

E
{
e
∑S−1
l=1

∑K
i=1 α

(i)
τl

(l̃(i)τl −l
(i)
τl

)E
{
e
∑K
i=1 α

(i)
τS

(l̃(i)τS−l
(i)
τS

) | GτS
}}
≤ E

{
e
∑S−1
l=1

∑K
i=1 α

(i)
τl

(l̃(i)τl −l
(i)
τl

)
}

(114)

where (a) uses that aτ1 , lτ1 ,pτ1 , . . . , aτS−1
, lττS−1

,pτS−1
are GτS -measurable.

Iterating over (114) yields E
{
e
∑
t/∈M∗

∑K
i=1 α

(i)
t

(
l̃
(i)
t −l

(i)
t

)}
≤ 1, so by Markov’s inequality

P

( ∑
t/∈M∗

K∑
i=1

α
(i)
t

(
l̃
(i)
t − l

(i)
t

)
> log

1

δ

)
= P

(
e
∑
t/∈M∗

∑K
i=1 α

(i)
t

(
l̃
(i)
t −l

(i)
t

)
>

1

δ

)
≤ δE

{
e
∑
t/∈M∗

∑K
i=1 α

(i)
t

(
l̃
(i)
t −l

(i)
t

)}
≤ δ. (115)
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