SHARP: Software Hint-Assisted
Memory Access Prediction for Graph Analytics

Pengmiao Zhang
University of Southern California
Los Angeles, USA
pengmiao@usc.edu

Anant V. Nori
Processor Architecture Research Lab
Intel Labs
Bangalore, India
anant.v.nori @intel.com

Abstract—With the rise of large-scale graph analytics, graph
processing is increasingly bottlenecked by memory performance.
Data prefetching is a technique that can hide memory latency,
which relies on accurate prediction of memory accesses. While
recent machine learning approaches have performed well on
memory access prediction, they are restricted to building general
models, ignoring the shift of memory access patterns follow-
ing the change of processing phases in software. Therefore,
we propose SHARP: a novel Software Hint-Assisted memoRy
access Prediction approach for graph analytics under Scatter-
Gather paradigm on multi-core shared-memory machines. We
introduce software hints, generated from programmer insertion,
that explicitly indicate the processing phase of a graph processing
program, i.e., scatter or gather. Assisted by the software hints,
we develop phase-specific prediction models that use attention-
based neural networks, trained by memory traces with rich
context information. We use three widely-used graph algorithms
and a variety of datasets for evaluation. With regard to F1-
score, SHARP outperforms the widely-used model Delta-LSTM
by 16.45%-18.93% for the scatter phase and 9.50%-22.25% for
the gather phase, and outperforms the state-of-the-art model
TransFetch by 3.66%-7.48% for the scatter phase and 2.69 %—
7.59% for the gather phase.

Index Terms—memory access prediction, graph analytics, soft-
ware hint, attention mechanism

I. INTRODUCTION

Graphs are widely used structures describing network data
in multiple scientific and engineering domains, such as social
media, bioinformatics, and transportation. Graph Analytics are
analytic tools used to determine the strength and direction
of relationships between objects in a graph. With the rise of
big data, graph analytics offer high potential in exploring the
relationship between objects because of the virtue of graphs
in explicitly representing relations through a set of entities
(vertices) and their inter-connections (edges) [1].

Graph processing is typically bounded by memory latency
due to the "memory wall” problem [2], [3]. Though prior
works have proposed using distributed frameworks to process
very large graphs on clusters [4], [5], the high communica-
tion overheads hinder the performance of clusters [6]. With

Rajgopal Kannan
US Army Research Lab-West
Los Angeles, USA
rajgopal.kannan.civ@army.mil

Xiangzhi Tong
Xi’an Jiaotong-Liverpool University
Suzhou, China
Xiangzhi.Tong18 @student.xjtlu.edu.cn

Viktor K. Prasanna
University of Southern California
Los Angeles, USA
prasanna@usc.edu

the advance in DDR capacity allowing large graphs to fit
in the main memory of a single server, many frameworks
have been developed for high-performance graph analytics on
shared-memory machines [7]-[10]. However, arbitrary data
accesses and updates in the shared-memory machine cause the
cores to stall waiting for data fetch from DRAM. Algorithm-
level optimizations have been proposed in prior works to
improve memory efficiency, such as block propagation [11]
and partition-centric paradigm [10], [12].

Data prefetching is a technique that hides memory access
latency by predicting future data accesses and brings the data
closer (in a hierarchical memory system) to the processor be-
fore it is requested [13]-[15]. Effective prefetching depends on
accurate memory access prediction. Traditional prefetchers use
pre-defined rules, based on heuristic patterns [16], [17], spatial
locality [18]-[21] or temporal locality of references [22], [23],
to predict future accesses. These methods suffer from low
adaptability and low generalizability [24], [25], making them
not powerful enough to speed up the increasingly complex
memory access patterns from graph analytics algorithms.

Machine Learning (ML) algorithms have entered the do-
main of memory access prediction, offering insight into data
prefetching. Rahman et al. [26] use logistic regression and de-
cision tree for pattern classification. Long Short-Term Memory
(LSTM) model is widely used due to its high performance
in sequence modeling [25], [27]-[29]. The combination of
LSTM with existing prefetchers [30], meta-learning [31], and
attention mechanism [32] are also explored in prior work.
Recently, Zhang et al. [33] proposed TransFetch that uses fine-
grained memory address input and an attention-based model
for multi-label memory access prediction, achieving state-of-
the-art performance.

Existing ML-based memory access prediction approaches
are restricted to building general models, ignoring the change
of memory access patterns caused by the shift of graph
processing phases. For example, graph analytics algorithms
programmed under Scatter-Gather paradigm [10], [12], [34]

have two distinct phases for each iteration: scatter for prop-
agating the current value of a vertex to its neighbors along
edges, and gather for accumulating values from neighbors
to compute the next value of a vertex. The memory access
patterns are notably different for the two phases, which chal-
lenges the training of a general model [35]. Moreover, context
information including thread number and read/write operations
have not been fully exploited by prior work. By extracting and
utilizing the phase and context information, we aim to build
a memory access prediction model that can achieve higher
prediction performance.

We propose SHARP, a novel software hint-assisted memory
access prediction approach for graph analytics under Scatter-
Gather paradigm for multi-core shared-memory machines.
First, we introduce software hints, generated from programmer
insertion, that explicitly and precisely indicate the processing
phase for a graph processing program. According to the
software hint regarding phases, two phase-specific models are
developed for scatter and gather phases respectively. For infer-
ence, a simple switch controls the model selection triggered
by software hints. Second, we generate context-rich memory
traces. Context information including program counter, page
distance, thread ID, and read/write operation are extracted
along with memory addresses. Third, we train attention-
based delta predictors as the phase-specific models to fit the
mapping between context-rich memory address sequence and
future address deltas (difference from future addresses to the
current address). SHARP can be easily extended to other
paradigms [36] and graph machine learning [37] with multiple
processing phases.

Our contribution can be summarized as follows:

o We introduce software hints that are indicators of phases
in a graph processing program using Scatter-Gather
paradigm. According to the software hints, we analyze
the memory accesses for the two phases and demonstrate
the notable pattern differences.

o We propose SHARP, a novel approach to predict memory
accesses assisted by the software hints. SHARP uses
two phase-specific attention-based models, trained by
context-rich memory traces of the corresponding phase,
and selected by the software hints for inference.

e We evaluate SHARP using three popular graph algo-
rithms on a variety of datasets. with regard to Fl1-
score, SHARP outperforms the widely-used model Delta-
LSTM by 16.45%—-18.93% for the scatter phase and
9.50%—22.25% for the gather phase, outperforms state-of-
the-art TransFetch by 3.66%—7.48% for the scatter phase
and 2.69%-7.59% for the gather phase.

II. BACKGROUND

A. Scatter-Gather Graph Processing Paradigm

Scatter-Gather is a widely-used parallel programming
paradigm for graph processing [10], [38], [39]. Scatter-Gather
decouples the message sending from the message collection
and state update [40]. As is shown in Figure 1, for each

iteration, a graph processing algorithm under vertex-centric
Scatter-Gather paradigm operates in two phases:
1) Scatter: a vertex propagate updates (the current state of
the vertex) to its neighbors along edge.
2) Gather: a vertex accumulate updates (states of neigh-
bors) to compute the next state of the vertex.

oo | T E 00
3) | i

Scatter

Example graph Gather

Fig. 1: Graph processing in Scatter-Gather paradigm.

A Fartition-Centric Scatter-Gather paradigm is proposed in
Graph Processing Over Partitions (GPOP) [10] by generalizing
the vertices in the vertex-centric Scatter-Gather paradigm to
parts of a graph. Assuming the entire graph can fit into
the main memory, the graph is partitioned to fit better in
caches. GPOP ensures high locality of memory reference
and improves memory efficiency for graph processing from
algorithm perspective, which offers opportunity for memory
access prediction from architecture perspective.

Existing methods develop one general model for the entire
application running period, ignoring the pattern differences
of the phases in graph processing. We extract the phase
information from software and exploit the information for
developing higher-performing memory prediction models.

B. ML for Memory Access Prediction

Memory access prediction is a task that exploiting the
correlation between history memory accesses, detecting the
memory access patterns, and predicting future memory access
addresses, which is essential for effective data prefetching.

While traditional methods for memory access prediction use
table-based predictors exploiting spatial or temporal locality
of memory references [19], [20], [22], [23], [41], Machine
Learning (ML) algorithms have shown advantage in a data-
driven approach [25].

A general problem formulation for the ML-based modeling
of memory access prediction is: Let X; = {z1,zo,...,2n}
be the sequence of N history memory addresses at time ¢; let
Y: = {y1, 92, ..., yr } be a set of k outputs that will be accessed
in the future; a ML model can be trained to approximate
P(Y;|X;), the probability that the future addresses Y; will
be accessed given the history events X;.

While most existing ML models use past memory access
sequence as the model input, there are two settings for the
output future accesses, as is shown in Figure 2. First, Hashemi
et al. [42] and Srivastava et al. [24], [43] predicts the globally
next memory access, as is shown in Figure 2a. While this
setting allows entire address space prediction, the interleave of
patterns hinders the prediction performance. Second, Zhang et
al. [33], [44] proposes predicting next memory access within

D[Page | Offset|
A
Input

Input

— Predict

v A W N P
N N PN R
v A W N

2
1
2
2

O > 0 W
0o > O W

— Predict

(a) Predict the next access globally (b) Predict within a page range

Fig. 2: Two settings for memory access prediction.

a spatial range to the current address, as is shown in Figure 2b
with the spatial range as one page, which have shown state-of-
the-art performance by predicting more trackable patterns. In
this work we use the second setting by predicting the memory
access within a spatial range.

ITI. APPROACH
A. Overall Design

Figure 3 shows the overview of SHARP. First, software
hints indicating the phases in graph processing are generated
from a graph application (see Section III-B). According to
the software hints, a phase-specific model for the scatter or
gather phase is selected. The models are trained by context-
rich memory traces, using memory address sequences and the
corresponding context information as input (see Section III-C).
The models are based on attention mechanism and predict
future memory address deltas in the format of bitmap as output
(see Section III-D). By adding the current address and the
predicted future deltas, SHARP can predict multiple future
memory accesses for one inference.

Graph Application Phase-Specific Models Delta Bitmap
- U — —
O 0
o4 L
Preprocessing 1
e —l
Hint: scatter phase launches : 1
cater operatons. Context-Rich |Address
Memory Trace Context —{ o
Generation —
Scatter Model 1
..... 0
__synchronize()_
Hin: gather phise completed Gather Model o

Select (S)

Fig. 3: Overall design of SHARP.

Software Hints

B. Software Hints

We introduce software hints that serve as indicators of graph
processing phases in a program. The software can be generated
from either programmer insertion or profiling [45].

We illustrate the software hints from programmer insertion
using the partition-centric Scatter-Gather paradigm proposed
by GPOP [10], as is described in Algorithm 1. For a given
graph G(V,E) in the format of Compressed Sparse Row
(CSR), let N;(v) denotes the in-neighbors of vertex v and
N,(v) denotes the out-neighbors of vertex v. The graph is

Algorithm 1 An interation of Partition-Centric Scatter-Gather

with Programmer Insertion of Software Hints

1: P: set or partitions
2: # Hint: scatter phase launches

3: for p € P do in parallel > Scatter
4: for all v € p do

5 for all ¢ € N,[v] do

6 bin[p|[q] < scatter Func(v)

7: end for

8 end for

9 for all v € p do

10: val[v] « init Func(v)

11: end for

12: __synchronize()__

13: # Hint: scatter phase completed

14: # Hint: gather phase launches

15: for p € P do in parallel > Gather

16: for all msg € bin[:][p] do

17: for all v € msg.id do

18: val[v] < gather Func(val[v],v)
19: end for

20: end for

21: for all v € p do

22 val[v] < filter Func(v)

23: end for

24: __synchronize()__
25: # Hint: gather phase completed

partitioned to P parts for partition-centric processing. For
one iteration, all the partitions will be processed in parallel
twice: in the scatter phase and in the gather phase. In the
scatter phase, the vertex data will be updated to bins that store
the destination vertex IDs, defined in scatter F'unc. Then,
the current vertex values will be reinitialized for gathering
using initF'unc. In the gather phase, a partition will read the
messages from the corresponding bins to update vertex values
using gather Func. Then, a filter Func is defined to process
the vertex value. We insert hints in the software code to label
the launching and completing of the scatter and gather phases,
as is shown in Algorithm 1 Line 2, Line 13-14, and Line 25.

Due to the two separate traversals of the input graph, the
memory access patterns of scatter phase and gather phase
are dramatically different. We visualize the memory access
patterns of PageRank under graph Wikipedia hyperlinks [46]
in Figure 4 using 3D scatter plots. We extract the first 40K
memory accesses following the launching of a phase, triggered
by the software hints. The dimensions in the plots are the
page address, the block index, and the program counter. The
comparison between the scatter phase memory access pattern
(Figure 4a) and the gather phase memory access pattern
(Figure 4b) demonstrates the pattern differences in program
counters, frequently accessed pages, and the distribution of
accessed blocks.

The pattern differences between the two phases motivates

Block Index

" 94,908,661,904,000
94,908,681,902.000

T 94908,681,900,000

94,908,681,898,000

7 9490868189600

2317106490~ >
34332066959
34332067034
34332067098 >
No 3433216409

Program Counter
Page Address 34332190937

< 94,908,681,894,000
94,908,681,893,000

(a) Scatter

Block Index

7 94,908681,904,000
94,908,681,902,000

94,908,681,900,000

T 94,908,681,898,000

" 94,908,681,896,000

23171064920
34332066954
UI067010
34332067061 S
34332067113 > <
DEE

Program Counter
Page Address 94508.681854,000 9

94,908,681,893,000

(b) Gather

Fig. 4: Different memory access patterns between scatter and gather phases in graph processing. Three dimensions are page
address, program counter, and block index, where block index is the page offset shifted by block offset considering memory

accesses are operated in the unit of a block.

the design of phase-specific models. Instead of one general
prediction models for the entire process like existing methods,
we use two separate models, each trained specifically for
one operation phase, i.e., scatter or gather. In prediction, the
selection of model is controlled by the software hints.

C. Context-Rich Memory Trace

The context enhancement effect by program counter (PC)
and page distance for memory access prediction has been
proved in previous work [33]. For graph applications on
multi-core shared-memory machines, we extract more context
information for memory access prediction, which formulates
context-rich memory trace, including features:

e Memory access address. Our approach works on virtual
address space, each address is processed using fine-
grained address segmentation method [33]. Using the size
of page offset, we split one address into a vector of
segments for further model input.

o Program counter (PC). PC value is compressed using a
folding method hash function and then normalized using
the range of the hash function.

« Page distance (PD). For a sequence of memory access
of prediction model input, the page address distance
(absolute difference) from history accesses to the current
address indicates the spatial locality. The inversion of
page distance is injected to the model for facilitating
model training.

e Thread ID (TH). Our approach is designed for multi-
threaded shared-memory parallel graph applications. The
shared-memory accesses are requested from interleaved
threads. Therefore, we apply thread ID for an access
to enhance access prediction. The thread ID need to
be normalized using the total number of threads as
preprocessing.

o Read/Write (RW). The direction of memory access, in-
cluding read and write, can provide more precise infor-
mation compared with program counter. This feature is
binary and can be directly fed into a prediction model.

A summary of the features for the context-rich memory
trace is shown in Table I.

TABLE I: Context-Rich Memory Trace

Feature Description Type
Address Memory address processed by segmentation Vector[Int]
PC Program counter processed by hashing Float
PD Inversion of page distance Float
TH The thread ID that request the memory access Int
RW Memory access direction: read or write Binary

D. Attention-Based Delta Predictor

We build attention-based memory access delta predictors
as the phase-specific models, as is shown in Figure 5. The
scatter model and the gather model have the same structure,
but trained independently using context-rich memory traces for
the corresponding phases only. We describe the input, output,
structure, and loss function of a predictor in detail in this
section.

Address ! Linear (Transformer | [Classification
Address0 | Projection Layers Head
1 4

Add & Norm
I Feed Forward
Add & Norm

Multi-Head
Attention

o[efelelo[e]e
=IN]JOJlW]lOLIO| =

Probability
of Deltas

Fig. 5: The structure of an attention-based delta predictor,
serving as the phase-specific model in SHARP.

1) Input Features: The model input includes two cate-
gories: memory addresses and the context information, both
from a window of history N accesses. The segmented memory
addresses are flattened and fed into a linear layer for further
processing. The context information, including PC, PD, TH,
and RW, as processed in Table I, are concatenated and em-

bedded first, then injected into the model as side-information
through addition operation.

2) Transformer Layers: We apply Transformer [47] to
learn the latent patterns from the input features. Transformer
is an attention-based neural network that has shown high
performance in natural language processing [48] and computer
vision [49]. One transformer layer is made up by a multi-head
attention (MSA), a point-wise feed-forward network (FFN),
their perspective residual connections and normalizations, as
is shown in Figure 5 and Equation 1-4.

. QKT >
Attention(Q, K = softmax 1
@K.V) (“C)v o
head; — Attention (QWZQ, KWK, VWiV))

MSA(Q, K, V) = Concat (heady, ..., headg) W¢ (3)
FFN(z) = max (0, zW7 + by) Wy + by @)

where () represents the queries; K the keys; V' the values;
d the dimension of layer input; VVZ»Q7 WE WY, and WO the
projection matrices for multi-head attention; H the number
of heads; Wy, Wy, by, and by are the projection matrices and
biases for the feed-forward network.

3) Multi-Label Classification: After the latent features are
extracted from the Transformer layers, a multi-layer perceptron
is designed as a classification head. The model is trained
using deltas in the format of bitmap as labels. The labels
are first collected from future memory address deltas (address
difference from the future access and the current access) within
a spatial range, then mapped to a bitmap with 1 indicating the
appearance of the corresponding delta. The independent and
multiple labels in bitmap formulate the problem as multi-label
classification. We use binary cross-entropy loss to train the
model:

N
L= —% Zy log (p (v:)) + (1 —yi) log (1 —p(y:)) (5)

where y; is the label and p(y;) is the predicted probability for
sample ¢ being 1, which indicates the probability of a delta,
as is shown in the model output of Figure 5.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: We evaluate SHARP and the baselines using
6 real world graph datasets [50] from a variety of domains,
as is summarized in Table II. The graphs are represented in
compressed sparse row (CSR) format for algorithm processing.

TABLE II: Graph Datasets

Dataset Description # Vertices | # Edges
amazon [51] Purchase networks 0.26 M 1.23 M
google [52] Google web graph 0.88 M 5.11' M
roadCA [52] California Road network 1.96 M 276 M

soclj [52] LiveJournal social network 4.84 M 68.99 M

wiki [46] Wikipedia hyperlinks 1.79 M 28.51 M
youtube [53] Youtube social network 1.13 M 299 M

2) Algorithms: We implemented three widely used graph
processing algorithms based on GPOP framework [10]:

o Breadth-First Search (BFS) — A graph search and
traverse algorithm that starts from a source node and
traverses the graph in a level-based approach.

o Connected Components (CC) — Labels connected com-
ponents (path exists between two nodes) in a graph,
implemented using Label Propagation method [54].

o PageRank (PR) — A node ranking algorithm that deter-
mines the “popularity” of nodes in a graph, proposed for
the sorting of web search results [55].

The implemented algorithms are based on Scatter-Gather
paradigm and hints indicating the processing phases are in-
serted in the software.

3) Trace Generation: We develop a Pintool using Intel
Pin [56] to obtain memory access traces. Our Pintool detects
the memory access operations and records the corresponding
context information. The Pintool can also detect the inserted
software hints and record the current operation phase of a
memory access.

B. Metrics

We use Fl-score to evaluate the memory access prediction
performance. Fl-score is a weighted average of precision and
recall [58], defined as Equation 6-8:

.. True Positive
Precision = — — (6)
True Positive + False Positive

True Positive
Recall = — Y :)
True Positive 4 False Negative

Fl =2 x Prec%s%on x Recall)
Precision + Recall

C. Baselines

We compare SHARP with state-of-the-art models for mem-
ory access prediction in prior works. Agnostic to the phases
in graph processing, the baseline models are trained using the
same memory traces and labels (delta bitmap):

e Delta-LSTM [25] — Consecutive address deltas are cal-
culated as the LSTM input, recurrently process the input
sequence.

o TransFetch [33] — Addresses are segmented as the in-
put for an attention-based model. Context with program
counter and page distance are incorporated.

D. Training and Evaluation

Based on the software hints on phases, we split the memory
trace for an application into four sets with equal lengths:
scatter training, scatter testing, gather training, and gather
testing. For baselines, we use the mix of the scatter training
set and gather training set for model training. For SHARP, we
train two models using the two training sets, respectively. All
models are evaluated using the two testing sets.

TABLE III: F1-Score of SHARP and Baselines

Graph
Algorithm | Phase Model amazon | google [roadCA | soclj | wiki [youtube | Average
Delta-LSTM [57] 0.7454 0.6953 0.6814 0.7507 | 0.7177 0.9194 0.7545
Scatter TransFetch [33] 0.8314 0.7769 0.8191 0.8634 | 0.8156 0.9652 0.8465
BFS SHARP 0.8851 0.8042 0.8724 0.8856 | 0.8544 0.9678 0.8786
Delta-LSTM 0.6808 0.6546 0.6884 0.7254 | 0.7450 0.7678 0.7976
Gather TransFetch 0.7401 0.7533 0.8249 0.8585 | 0.8439 0.8936 0.8206
SHARP 0.8400 0.8138 0.8739 0.9135 | 0.8860 0.9074 0.8734
Delta-LSTM 0.8097 0.8359 0.8164 0.8168 | 0.8274 0.7880 0.8161
Scatter TransFetch 0.9628 0.9558 0.9322 0.9159 | 0.9325 0.9175 0.9363
CC SHARP 0.9792 0.9746 0.9720 0.9532 | 0.9760 0.9684 0.9706
Delta-LSTM 0.7721 0.7748 0.7445 0.7717 | 0.8072 0.7474 0.7964
Gather TransFetch 0.9389 0.9581 0.9484 0.9408 | 0.9448 0.9575 0.9481
SHARP 0.9726 0.9780 0.9707 0.9739 | 0.9789 0.9673 0.9736
Delta-LSTM 0.8610 0.6001 0.8765 0.6930 | 0.6194 0.8751 0.7578
Scatter TransFetch 0.9632 0.8594 0.9532 0.7389 | 0.7660 0.8781 0.8359
PR SHARP 0.9792 0.8662 0.9751 0.8168 | 0.8162 0.9313 0.8984
Delta-LSTM 0.8224 0.7974 0.7415 0.7751 | 0.7289 0.7501 0.7698
Gather TransFetch 0.8326 0.8217 0.7739 0.8381 | 0.8283 0.8305 0.8192
SHARP 0.8926 0.9157 0.9098 0.8949 | 0.8543 0.8842 0.8814
TABLE IV: Effectiveness of Phase information, we explore the effectiveness of phases. Three
[Phase | Model [Precision | Recall | Fi-Score | models are implemented:
Phase-agnostic 0.8968 0.8641 0.8802 o Phase-agnostic model — The base model trained with a
Scatter | Phase-informed 0.8991 0.8790 0.8889
Phase-specific 0.9093 08975 0.9034 mix of .sc;‘atter training set and gather tralnlqg set.
Phase-agnostic 55772 08618 08604 . 'Phase-ln‘ Orl'nf.:d merl — The base model with the phase
Gather [Phase-informed | 0.8813 0.8780 0.8796 information injected into the model as context.
Phase-specific 0.8957 0.8986 0.8971 o Phase-specific model — Two base models trained for the
TABLE V: Effecti . two phases using the corresponding training sets.
: ectiveness of Context . . .
Results are shown in Table IV. Phase-specific models achieve
[Phase | Model | Precision | Recall [FI-Score] the highest performance, offering 2.63% higher Fl-score for
SHARP | 0.9200 0.9131 0.9165 scatter and 3.19% higher F1-score for gather, compared with
w/o PC 0.9133 0.9012 0.9072 the ph fi del
Scatter [w/o TH | 09108 09122 | 09115 € phase-agnostic model.
w/o RW 0.0187 0.9129 09158 2) Effectiveness of context: Based on SHARP, we remove
w/o PD [0.9073 0.9096 0.9084 the components of context and show the results at Table V.
S}/IAII}g g-g;gf g-gg‘z‘g g-gggg Results show that each context component contributes to the
W/0
Gather wio TH 109114 09016 0:9065 model performance. PC and PD show hlgher. 1nﬂuenpe than
w/o RW | 0.9017 0.902 0.9018 TH and RW. For scatter phase TH is more influential than
w/o PD | 0.9009 0.5044 0.9026 RW while for gather phase RW shows higher influence.
V. CONCLUSION
E. Results

Table III shows the Fl-score of SHARP and the baselines.
The average Fl-score is calculated by the micro-averaged
precision and recall [59]. From the table we can observe
that SHARP achieves the best performance across all the
algorithms and graphs. For scatter phase, SHARP outperforms
Delta-LSTM by 16.45%—-18.93% and outperforms TransFetch
by 3.66%-7.48%. For gather phase, SHARP outperforms
Delta-LSTM by 9.50%-22.25% and outperforms TransFetch
by 2.69%—7.59%.

F. Ablation Study

To evaluate the effectiveness of components in SHARP, we
conduct ablation studies on phase and context. Average preci-
sion, recall, and F1-score across all algorithms are reported.

1) Effectiveness of phase: Based on a base model, the
attention-based predictor without the incorporation of context

We presented SHARP, a novel way to predict memory
accesses for graph analytics under Scatter-Gather paradigm
for multi-core shared-memory machines. The keys to our
approach are using software hints to indicate the processing
phases, using attention-based models to conduct phase-specific
memory access prediction, and using context-rich memory
traces as model input for training and inference. Compared
with state-of-the-art models, SHARP achieves up to 22.25%
higher F1-score than Delta-LSTM and up to 7.59% higher F1-
score than TransFetch. In future work, we plan to explore the
optimization of SHARP in hardware implementation and its
integration into computer architecture.

ACKNOWLEDGMENT

This work has been supported by the U.S. National Science
Foundation under grant numbers CCF-1912680 and PPoSS-
2119816.

[1]

[2]

[3]

[5]

[6]

[7

—

[8]

[9]

(10]

(1]

[12]

[13]
[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

A. Drosou, I. Kalamaras, S. Papadopoulos, and D. Tzovaras, “An
enhanced graph analytics platform (gap) providing insight in big network
data,” Journal of Innovation in Digital Ecosystems, vol. 3, no. 2, pp. 83—
97, 2016.

W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications
of the obvious,” ACM SIGARCH computer architecture news, vol. 23,
no. 1, pp. 20-24, 1995.

C. Carvalho, “The gap between processor and memory speeds,” in Proc.
of IEEE International Conference on Control and Automation, 2002.
G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. ACM, 2010, pp. 135-146.

M. Han and K. Daudjee, “Giraph unchained: barrierless asynchronous
parallel execution in pregel-like graph processing systems,” Proceedings
of the VLDB Endowment, vol. 8, no. 9, pp. 950-961, 2015.

F. McSherry, M. Isard, and D. G. Murray, “Scalability!
but at what cost?” in Proceedings of the 15th USENIX
Conference on Hot Topics in Operating Systems, ser. HOTOS’15.
USENIX Association, 2015, pp. 14-14. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2831090.2831104

J. Shun and G. E. Blelloch, “Ligra: a lightweight graph processing
framework for shared memory,” in ACM Sigplan Notices, vol. 48. ACM,
2013, pp. 135-146.

N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor, M. J.
Anderson, S. G. Vadlamudi, D. Das, and P. Dubey, “Graphmat: High
performance graph analytics made productive,” Proceedings of the VLDB
Endowment, vol. 8, no. 11, pp. 1214-1225, 2015.

D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure
for graph analytics,” in Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles. ACM, 2013, pp. 456-471.

K. Lakhotia, R. Kannan, S. Pati, and V. Prasanna, “Gpop: A scalable
cache-and memory-efficient framework for graph processing over parts,”
ACM Transactions on Parallel Computing (TOPC), vol. 7, no. 1, pp. 1-
24, 2020.

S. Beamer, K. Asanovi¢, and D. Patterson, “Reducing pagerank commu-
nication via propagation blocking,” in 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). 1EEE, 2017, pp. 820—
831.

K. Lakhotia, R. Kannan, and V. Prasanna, “Accelerating pagerank
using partition-centric processing,” in 2018 USENIX Annual Technical
Conference (USENIX ATC 18). USENIX Association, 2018.

M. Dubois, M. Annavaram, and P. Stenstrom, Parallel computer orga-
nization and design. cambridge university press, 2012.

S. P. Vander Wiel and D. J. Lilja, “When caches aren’t enough: Data
prefetching techniques,” Computer, vol. 30, no. 7, pp. 23-30, 1997.

S. Byna, Y. Chen, and X.-H. Sun, “A taxonomy of data prefetching
mechanisms,” in 2008 International Symposium on Parallel Architec-
tures, Algorithms, and Networks (i-span 2008). 1EEE, 2008, pp. 19-24.
A. J. Smith, “Sequential program prefetching in memory hierarchies,”
Computer, vol. 11, no. 12, pp. 7-21, 1978.

N. P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,” ACM
SIGARCH Computer Architecture News, vol. 18, no. 2SI, pp. 364-373,
1990.

S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Spatial memory streaming,” ACM SIGARCH Computer Architecture
News, vol. 34, no. 2, pp. 252-263, 2006.

P. Michaud, “Best-offset hardware prefetching,” in 2016 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2016, pp. 469-480.

M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H.
Pugsley, and Z. Chishti, “Efficiently prefetching complex address pat-
terns,” in 2015 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 1EEE, 2015, pp. 141-152.

J. Kim, S. H. Pugsley, P. V. Gratz, A. N. Reddy, C. Wilkerson, and
Z. Chishti, “Path confidence based lookahead prefetching,” in 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2016, pp. 1-12.

A. Jain and C. Lin, “Linearizing irregular memory accesses for improved
correlated prefetching,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, 2013, pp. 247-259.

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Domino
temporal data prefetcher,” in 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA). 1EEE, 2018, pp.
131-142.

A. Srivastava, A. Lazaris, B. Brooks, R. Kannan, and V. K. Prasanna,
“Predicting memory accesses: the road to compact ml-driven prefetcher,”
in Proceedings of the International Symposium on Memory Systems,
2019, pp. 461-470.

M. Hashemi, K. Swersky, J. A. Smith, G. Ayers, H. Litz,
J. Chang, C. Kozyrakis, and P. Ranganathan, “Learning memory
access patterns,” CoRR, vol. abs/1803.02329, 2018. [Online]. Available:
http://arxiv.org/abs/1803.02329

S. Rahman, M. Burtscher, Z. Zong, and A. Qasem, “Maximizing hard-
ware prefetch effectiveness with machine learning,” in 2015 IEEE 17th
International Conference on High Performance Computing and Com-
munications, 2015 IEEE 7th International Symposium on Cyberspace
Safety and Security, and 2015 IEEE 12th International Conference on
Embedded Software and Systems, Aug. 2015, pp. 383-389.

L. Peled, U. Weiser, and Y. Etsion, “A neural network memory prefetcher
using semantic locality,” arXiv preprint arXiv:1804.00478, 2018.

Y. Zeng and X. Guo, “Long short term memory based hardware
prefetcher: a case study,” in Proceedings of the International Symposium
on Memory Systems, 2017, pp. 305-311.

P. Braun and H. Litz, “Understanding memory access patterns for
prefetching,” in International Workshop on Al-assisted Design for Ar-
chitecture (AIDArc), held in conjunction with ISCA, 2019.

P. Zhang, A. Srivastava, B. Brooks, R. Kannan, and V. K. Prasanna,
“Raop: Recurrent neural network augmented offset prefetcher,” in The
International Symposium on Memory Systems, 2020, pp. 352-362.

P. Zhang, A. Srivastava, T.-Y. Wang, C. A. De Rose, R. Kannan,
and V. K. Prasanna, “C-memmap: clustering-driven compact, adaptable,
and generalizable meta-lstm models for memory access prediction,”
International Journal of Data Science and Analytics, pp. 1-14, 2021.
Z. Shi, A. Jain, K. Swersky, M. Hashemi, P. Ranganathan, and C. Lin,
“A hierarchical neural model of data prefetching,” in Proceedings of
the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2021, pp. 861-873.
P. Zhang, A. Srivastava, A. V. Nori, R. Kannan, and V. K. Prasanna,
“Fine-grained address segmentation for attention-based variable-degree
prefetching,” in Proceedings of the 19th ACM International Conference
on Computing Frontiers, 2022, pp. 103-112.

S. Zhou and V. K. Prasanna, “Accelerating graph analytics on cpu-
fpga heterogeneous platform,” in 2017 29th International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD).
IEEE, 2017, pp. 137-144.

K. A. Kaufman and R. S. Michalski, “Learning from inconsistent
and noisy data: the aql8 approach,” in International Symposium on
Methodologies for Intelligent Systems. Springer, 1999, pp. 411-419.
R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “Graphx:
A resilient distributed graph system on spark,” in First international
workshop on graph data management experiences and systems, 2013,
pp. 1-6.

F. Xia, K. Sun, S. Yu, A. Aziz, L. Wan, S. Pan, and H. Liu, “Graph
learning: A survey,” IEEE Transactions on Artificial Intelligence, vol. 2,
no. 2, pp. 109-127, 2021.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, 2010, pp. 135-146.

J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“{PowerGraph}: Distributed {Graph-Parallel} computation on natural
graphs,” in 10th USENIX symposium on operating systems design and
implementation (OSDI 12), 2012, pp. 17-30.

V. Kalavri, V. Vlassov, and S. Haridi, “High-level programming abstrac-
tions for distributed graph processing,” IEEE Transactions on Knowledge
and Data Engineering, vol. 30, no. 2, pp. 305-324, 2017.

S. Kumar and C. Wilkerson, “Exploiting spatial locality in data caches
using spatial footprints,” in Proceedings. 25th Annual International
Symposium on Computer Architecture (Cat. No. 98CB36235). 1EEE,
1998, pp. 357-368.

M. Hashemi, K. Swersky, J. A. Smith, G. Ayers, H. Litz, J. Chang,
C. Kozyrakis, and P. Ranganathan, “Learning memory access patterns,”
arXiv preprint arXiv:1803.02329, 2018.

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

[58]

[59]

A. Srivastava, T.-Y. Wang, P. Zhang, C. A. F. De Rose, R. Kannan,
and V. K. Prasanna, “Memmap: Compact and generalizable meta-lstm
models for memory access prediction,” in Pacific-Asia Conference on
Knowledge Discovery and Data Mining. Springer, 2020, pp. 57-68.
P. Zhang, A. Srivastava, R. Kannan, A. V. Nori, and V. K. Prasanna,
“Transformap: Transformer for memory access prediction,” in The
International Symposium on Computer Architecture (ISCA), ML for
Computer Architecture and Systems Workshop, 2021, 2021.

F. Wen, M. Qin, P. Gratz, and N. Reddy, “Software hint-driven data
management for hybrid memory in mobile systems,” ACM Transactions
on Embedded Computing Systems (TECS), vol. 21, no. 1, pp. 1-18,
2022.

H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich, “Local higher-
order graph clustering,” in Proceedings of the 23rd ACM SIGKDD
international conference on knowledge discovery and data mining, 2017,
pp. 555-564.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998-6008.

L. Dong, S. Xu, and B. Xu, “Speech-transformer: a no-recurrence
sequence-to-sequence model for speech recognition,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 1EEE, 2018, pp. 5884-5888.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

J. Leskovec, L. A. Adamic, and B. A. Huberman, “The dynamics of
viral marketing,” ACM Transactions on the Web (TWEB), vol. 1, no. 1,
pp. 5-es, 2007.

J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community
structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters,” Internet Mathematics, vol. 6, no. 1, pp. 29-123,
2009.

J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” Knowledge and Information Systems, vol. 42,
no. 1, pp. 181-213, 2015.

L. He, X. Ren, Q. Gao, X. Zhao, B. Yao, and Y. Chao, “The connected-
component labeling problem: A review of state-of-the-art algorithms,”
Pattern Recognition, vol. 70, pp. 25-43, 2017.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.
C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” SIGPLAN
Not., vol. 40, no. 6, pp. 190-200, Jun. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1064978.1065034

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

D. M. Powers, “Evaluation: from precision, recall and f-measure
to roc, informedness, markedness and correlation,” arXiv preprint
arXiv:2010.16061, 2020.

N. Ghamrawi and A. McCallum, “Collective multi-label classification,”
in Proceedings of the 14th ACM international conference on Information
and knowledge management, 2005, pp. 195-200.

