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Abstract15

We show that the first-order theory of Sturmian words over Presburger arithmetic is decidable.16

Using a general adder recognizing addition in Ostrowski numeration systems by Baranwal, Schaeffer17

and Shallit, we prove that the first-order expansions of Presburger arithmetic by a single Sturmian18

word are uniformly ω-automatic, and then deduce the decidability of the theory of the class of19

such structures. Using an implementation of this decision algorithm called Pecan, we automatically20

reprove classical theorems about Sturmian words in seconds, and are able to obtain new results21

about antisquares and antipalindromes in characteristic Sturmian words.22
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1 Introduction27

It has been known for some time that, for certain infinite words c = c0c1c2 · · · over a finite28

alphabet Σ, the first-order logical theory FO(N, <,+, 0, 1, n ↦→ cn) is decidable. In the29

case where c is a k-automatic sequence for k ≥ 2, this is due to Büchi [5], although his30

original proof was flawed. The correct statement appears, for example, in Bruyère et al. [4].31

Although the worst-case running time of the decision procedure is truly formidable (and32

non-elementary), it turns out that an implementation can, in many cases, decide the truth of33

interesting and nontrivial first-order statements about automatic sequences in a reasonable34

length of time. Thus, one can easily reprove known results, and obtain new ones, merely by35

translating the desired result into the appropriate first-order statement φ and running the36

decision procedure on φ. For an example of the kinds of things that can be proved, see, for37

example, Goč, Henshall, and Shallit [6].38

39

More generally, the same ideas can be used for other kinds of sequences defined in terms40

of some numeration system for the natural numbers. Such a numeration system provides a41

unique (up to leading zeros) representation for n as a sum of terms of some other sequence42

(sn)n≥1. If the sequence c = c0c1c2 · · · can be computed by a finite automaton taking the43

representation of n as input, and if further, the addition of represented integers is computable44
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14:2 Decidability for Sturmian words

by another finite automaton, then once again the first-order theory FO(N, <,+, 0, 1, n ↦→ cn)45

is decidable. This is the case, for example, for the so-called Fibonacci-automatic sequences46

in Mousavi, Schaeffer, and Shallit [14] and the Pell-automatic sequences in Baranwal and47

Shallit [3].48

49

More generally, the same kinds of ideas can handle Sturmian words. For quadratic numbers,50

this was first observed by Hieronymi and Terry [9]. In this paper we extend those results to all51

Sturmian characteristic words. Thus, the first-order theory of Sturmian characteristic words52

is decidable. As a result, many classical theorems about Sturmian words, which previously53

required intricate proofs, can be proved automatically by a theorem-prover in a few seconds.54

As examples, in Section 7 we reprove basic results such as the balanced property and the55

subword complexity of these words.56

57

Let α, ρ ∈ R be such that α is irrational. The Sturmian word with slope α and intercept58

ρ is the infinite {0, 1}-word cα,ρ = cα,ρ(1)cα,ρ(2) · · · such that for all n ∈ N59

cα,ρ(n) = ⌊α(n+ 1) + ρ⌋ − ⌊αn+ ρ⌋ − ⌊α⌋.60

When ρ = 0, we call cα,0 the characteristic word of slope α. Sturmian words and their61

combinatorical properties have been studied extensively. We refer the reader to the survey62

by Berstel and Séébold [12, Chapter 2]. Note that cα,ρ can be understood as a function from63

N to {0, 1}. Let L be the signature1 of the first-order logical theory FO(N, <,+, 0, 1) and let64

Lc denote the signature obtained by adding a single unary function symbol c to L. Now let65

Nα,ρ be the Lc-structure (N, <,+, 0, 1, n ↦→ cα,ρ(n)), where we expand Presburger arithmetic66

by a Sturmian word interpreted as a unary function. The main result of this paper is the67

decidability of the theory of the collection of such expansions. Set Irr := (0, 1) \ Q. Let68

Ksturmian := {Nα,ρ : α ∈ Irr, ρ ∈ R}, and let Kchar := {Nα,0 : α ∈ Irr}.69

▶ Theorem A. The first-order logical theories2 FO(Ksturmian) and FO(Kchar) are decidable.70

So far, decidability was only known for individual FO(Nα,ρ), and only for very particular α.71

By [9] the logical theory FO(Nα,0) is decidable when α is a quadratic irrational3. Moreover,72

if the continued fraction of α is not computable, it can be seen rather easily that FO(Nα,0)73

is undecidable.74

75

Theorem A is rather powerful, as it allows to automatically decide combinatorial statements76

about all Sturmian words. Consider the Lc-sentence φ77

∀p (p > 0) →
(︂

∀i ∃j j > i ∧ c(j) ̸= c(j + p)
)︂

78

We observe that Nα,ρ |= φ if and only if cα,ρ is not eventually periodic. Thus the decision79

procedure from Theorem A allows us to check that no Sturmian word is eventually periodic.80

Of course, it is well-known that no Sturmian word is eventually periodic, but this example81

indicates potential applications of Theorem A. We outline some of these in Section 7.82

83

1 In model theory this is usually called (or identified with) the language of the theory. However, here this
conflicts with the convention of calling an arbitrary set of words a language.

2 Given a signature L0 and a class K of L0-structures, the first-order logical theory of K is defined as the
set of all L0-sentences that are true in all structures in K. This theory is denoted by FO(K).

3 A real number is quadratic if it is the root of a quadratic equation with integer coefficients.
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We not only prove Theorem A, but instead establish a vastly more general theorem of which84

Theorem A is an immediate corollary. To state this general result, let Lm be the signature of85

FO(R, <,+,Z), and let Lm,a be the extension of Lm by a unary predicate. For α ∈ R>0, we86

let Rα denote Lm,a-structure (R, <,+,Z, αZ). When α ∈ Q, it has long been known that87

FO(Rα) is decidable (arguably due to Skolem [19]). Recently this result was extended to88

quadratic numbers.89

▶ Fact 1 (Hieronymi [7, Theorem A]). Let α be a quadratic irrational. Then FO(Rα) is90

decidable.91

See also Hieronymi, Nguyen and Pak [8] for a computational complexity analysis of this92

decision procedure. The proof of Fact 1 establishes that if α is quadratic, then Rα is93

an ω-automatic structure; that is it can be represented by Büchi automata. Since every94

ω-automatic structure has a decidable first-order theory, so does Rα. See Khoussainov95

and Minnes [10] for a survey on ω-automatic structures. The key insight needed to prove96

ω-automaticity of Rα is that addition in the Ostrowski-numeration system based on α is97

recognizable by a Büchi automaton when α is quadratic. See Section 2 for a definition of98

Ostrowski numeration systems.99

100

As observed in [7], there are examples of non-quadratic irrationals α such that Rα has an101

undecidable theory and hence is not ω-automatic. However, in this paper we show that102

the common theory of the Rα is decidable. Let K denote the class of Lm,a-structures103

{Rα : α ∈ Irr}.104

▶ Theorem B. The theory FO(K) is decidable.105

Indeed, we will even prove a substantial generalization of Theorem B. For each Lm,a-sentence106

φ, we set Mφ := {α ∈ Irr : Rα |= φ}. Let Irrquad be the set of all quadratic irrational real107

numbers in Irr. Define M = (Irr, <, (Mφ)φ, (q)q∈Irrquad) to be the expansion of the dense108

linear order (Irr, <) by predicates for Mφ for each Lm,a-sentence φ, and constant symbols109

for each quadratic irrational real number in Irr.110

▶ Theorem C. The theory FO(M) is decidable.111

Observe that Fact 1 and Theorem B follow immediately from Theorem C. We outline how112

Theorem B implies Theorem A. Note that for every irrational α, the structure Rα defines113

the usual floor function ⌊·⌋ : R → Z, the singleton {α} and the successor function on αZ.114

Hence Rα also defines the set {(ρ, αn, cα,ρ(n)) : ρ ∈ R, n ∈ N}. From the definability of115

{α}, we have that the function from αN to {0, α} given by αn ↦→ αcα,ρ(n) is definable in116

Rα. Thus the Lc-structure (αN, <,+, 0, α, αn ↦→ αcα,ρ(n)) can be defined in Rα, and this117

definition is uniform in α. Since the former structure is Lc-isomorphic to Nα,ρ, we have that118

for every Lc-sentence φ there is an Lm,a-formula ψ(x) such that119

φ ∈ FO(Ksturmian) if and only if ∀x ψ(x) ∈ FO(K) and120

φ ∈ FO(Kchar) if and only if ψ(0) ∈ FO(K).121

Even Theorem C is not the most general result we prove. Its statement is more technical and122

we postpone it until Section 6. However, we want to point out that we can add predicates for123

interesting subsets of Irr to M without changing the decidability of the theory. Examples of124

such subsets are the set of all α ∈ Irr such that the terms in the continued fraction expansion125

of α are powers of 2, or the set of all α ∈ Irr such that the terms in the continued fraction126

expansion of α are not in some fixed finite set. This means we can not only automatically127

CSL 2022



14:4 Decidability for Sturmian words

prove theorems about all characteristic Sturmian words, but also prove theorems about128

all characteristic Sturmian words whose slope is one of these sets. There is a limit to this129

technique. If we add a predicate for the set of all α ∈ Irr such that the terms of continued130

fraction expansion of α are bounded, or add a predicate for the set of elements in Irr whose131

continued fractions has strictly increasing terms, then our method is unable to conclude132

whether the resulting structure has a decidable theory. See Section 6 for a more precise133

statement about what kind of predicates can be added.134

135

The proof of Theorem C follows closely the proof from [7] of the ω-automaticity of Rα for fixed136

quadratic α. Here we show that the construction of the Büchi automata needed to represent137

Rα is actually uniform in α. See Abu Zaid, Grädel, and Reinhardt [20] for a systematic138

study of uniformly automatic classes of structures. Deduction of Theorem C from this result139

is then rather straightforward. The key ingredient to establish the ω-automaticity of Rα140

is an automaton that can perform addition in Ostrowski-numeration systems. By [9] there141

is an automaton that recognizes the addition relation for α-Ostrowski numeration systems142

for fixed quadratic α. So for a fixed quadratic number, there exists a 3-input automaton143

that accepts the α-Ostrowski representations of all triples of natural numbers x, y, z with144

x+ y = z. In order to prove Theorem C, we need a uniform version of such an adder. This145

general adder is described in Baranwal, Schaeffer, and Shallit [2]. There a 4-input automaton146

is constructed that accepts 4-tuples consisting of an encoding of a real number α and three147

α-Ostrowski representations of natural numbers x, y, z with x+y = z. See Section 4 for details.148

149

As mentioned above, an implementation of the decision algorithm provided by Theorem A150

can be used to study Sturmian words. We created a software program called Pecan [15]151

that includes such an implementation. Pecan is inspired by Walnut [13] by Mousavi, an152

automated theorem-prover for deciding properties of automatic words. The main difference is153

that Walnut is based on finite automata, while Pecan uses Büchi automata. In our setting it154

is more convenient to work with Büchi automata instead of finite automata, since the infinite155

families of words we want to consider—like Sturmian words—are indexed by real numbers.156

Section 7 provides more information about Pecan and contains further examples how Pecan157

is used prove statements about Sturmian words. Pecan’s implementation is discussed in more158

detail in [16].159
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2 Preliminaries165

Throughout, i, j, k, ℓ,m, n are used for natural numbers. Let X,Y be two sets and Z ⊆ X×Y .166

For x ∈ X, we let Zx denote the set {y ∈ Y : (x, y) ∈ Z}. Similarly, given a function167

f : X × Y → W and x ∈ X, we write fx for the function fx : Y → W that maps y ∈ Y to168

f(x, y).169

170

Given a (possibly infinite word) w over an alphabet Σ, we write wi for the i-th letter of171

w, and w|n for w1 · · ·wn. We write |w| for the length of w. We denote the set of infinite172
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words over Σ by Σω. If Σ is totally ordered by an ≺, we let ≺lex denote the corresponding173

lexicographic order on Σω. Letting u, v ∈ Σω, we also write u ≺colex v if there is a maximal i174

such that ui ̸= vi, and ui < vi for this i. Note that while ≺lex is a total order on Σω, the175

order ≺colex is only a partial order. However, for a given σ ∈ Σ, the order ≺colex is a total176

order on the set of all words v ∈ Σω such that vj is eventually equal to σ.177

178

A Büchi automaton (over an alphabet Σ) is a quintuple A = (Q,Σ,∆, I, F ) where Q is179

a finite set of states, Σ is a finite alphabet, ∆ ⊆ Q× Σ ×Q is a transition relation, I ⊆ Q is180

a set of initial states, and F ⊆ Q is a set of accept states.181

182

Let A = (Q,Σ,∆, I, F ) be a Büchi automaton. Let σ ∈ Σω. A run of σ from p is an183

infinite sequence s of states in Q such that s0 = p, (sn, σn, sn+1) ∈ ∆ for all n < |σ|. If p ∈ I,184

we say s is a run of σ. Then σ is accepted by A if there is a run s0s1 · · · of σ such that185

{n : sn ∈ F} is infinite. We call this run an accepting run. We let L(A) be the set of words186

accepted by A. There are other types of ω-automata with different acceptance conditions,187

but in this paper we only consider Büchi automata.188

189

Let Σ be a finite alphabet. We say a subset X ⊆ Σω is ω-regular if it is recognized by190

some Büchi automaton. Let u1, . . . , un ∈ Σω. We define the convolution c(u1, . . . , un) of191

u1, . . . , un as the element of (Σn)ω whose value at position i is the n-tuple consisting of the192

values of u1, . . . , un at position i. We say that X ⊆ (Σω)n is ω-regular if c(X) is ω-regular.193

▶ Fact 2. The collection of ω-regular sets is closed under union, intersection, complementa-194

tion and projection.195

Closure under complementation is due to Büchi [5]. We refer the reader to Khoussainov and196

Nerode [11] for more information and a proof of Fact 2. As consequence of Fact 2, we have197

that for every ω-regular subset W ⊆ (Σω)m+n the set {s ∈ (Σω)m : ∀t ∈ (Σω)n (s, t) ∈ W}198

is also ω-regular.199

2.1 ω-regular structures200

Let U = (U ;R1, . . . , Rm) be a structure, where U is a non-empty set and R1, . . . , Rm are201

relations on U . We say U is ω-regular if its domain and its relations are ω-regular.202

203

Büchi’s theorem [5] on the decidability of monadic second-order theory of one successor204

immediately gives the following well-known fact.205

▶ Fact 3. Let U be an ω-regular structure. Then the theory FO(U) is decidable.206

In this paper, we will consider families of ω-regular structures that are uniform in the207

following sense. Fix m ∈ N and a map ar : {1, . . . ,m} → N. Let Z be a set and for z ∈ Z208

let Uz be a structure (Uz;R1,z, . . . , Rm,z) such that Ri,z ⊆ U
ar(i)
z . We say that (Uz)z∈Z is a209

uniform family of ω-regular structures if210

{(z, y) : y ∈ Uz} is ω-regular,211

{(z, y1, . . . , yar(i)) : (y1, . . . , yar(i)) ∈ Ri,z} is ω-regular for each i ∈ {1, . . . ,m}.212

From Büchi’s theorem, we immediately obtain the following.213

▶ Fact 4. Let (Uz)z∈Z be a uniform family of ω-regular structures, and let φ be a formula214

in the signature of these structures. Then the set {(z, u) : z ∈ Z, u ∈ Uz, Uz |= φ(u)} is215

ω-regular, and the theory FO({Uz : z ∈ Z}) is decidable.216

CSL 2022



14:6 Decidability for Sturmian words

Proof. When φ is an atomic formula, the statement follows immediately from the definition217

of a uniform family of ω-regular structures and the ω-regularity of equality. By Fact 2, the218

statement holds for all formulas. ◀219

2.2 Binary representations220

For k ∈ N>1 and b = b0b1b2 · · · bn ∈ {0, 1}∗, we define [b]k :=
∑︁n

i=0 bik
i. For N ∈ N we say221

b ∈ {0, 1}∗ is a binary representation of N if [b]2 = N .222

223

Throughout this paper, we will often consider infinite words over the (infinite) alphabet224

{0, 1}∗. Let [·]2 : ({0, 1}∗)ω → Nω be the function that maps u = u1u2 · · · ∈ ({0, 1}∗)ω to225

[u1]2[u2]2[u3]2 · · · We will consider the following different relations on ({0, 1}∗)ω.226

Let u, v ∈ ({0, 1}∗)ω. We write u <lex,2 v if [u]2 is lexicographically smaller than [v]2. We227

write u <colex,2 v if there is a maximal i such that [ui]2 ̸= [vi]2, and [ui]2 < [vi]2. Note that228

while <lex,2 is a total order on ({0, 1}∗)ω, the order <colex,2 is only a partial order. However,229

<colex,2 is a total order on the set of all words v ∈ ({0, 1}∗)ω such that [v]j is eventually 0.230

Let u = u1u2 · · · , v = v1v2 · · · ∈ ({0, 1}∗)ω. Let k be minimal such that [uk]2 ≠ [vk]2. We231

write u <alex,2 v if either k is even and [uk]2 < [vk]2, or k is odd and [uk]2 > [vk]2.232

2.3 Ostrowski representations233

We now introduce Ostrowski representations based on the continued fraction expansions of
real numbers. We refer the reader to Allouche and Shallit [1] and Rockett and Szüsz [18] for
more details. A finite continued fraction expansion [a0; a1, . . . , ak] is an expression of
the form

a0 + 1

a1 + 1

a2 + 1
. . . + 1

ak

For a real number α, we say [a0; a1, . . . , ak, . . . ] is the continued fraction expansion of234

α if α = limk→∞[a0; a1, . . . , ak] and a0 ∈ Z, ai ∈ N>0 for i > 0. In this situation, we write235

α = [a0; a1, . . . ]. Every irrational number has precisely one continued fraction expansion. We236

recall the following well-known fact about continued fractions.237

▶ Fact 5. Let α = [a0; a1, . . . ], α′ = [a′
0; a′

1, . . . ] ∈ R be irrational. Let k ∈ N be minimal238

such that ak ̸= a′
k. Then α < α′ if and only if239

k is even and ak < a′
k, or240

k is odd and ak > a′
k.241

For the rest of this subsection, fix a positive irrational real number α ∈ (0, 1) and let242

[a0; a1, a2, . . . ] be the continued fraction expansion of α.243

Let k ≥ 1. A quotient pk/qk ∈ Q is the k-th convergent of α if pk ∈ N, qk ∈ Z,244

gcd(pk, qk) = 1 and pk

qk
= [a0; a1, . . . , ak]. Set p−1 := 1, q−1 := 0 and p0 := a0, q0 := 1. The245

convergents satisfy the following equations for n ≥ 1:246

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2.247
248

The k-th difference βk of α is defined as βk := qkα− pk. We use the following facts about249

k-th differences: for all n ∈ N250
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1. βn > 0 if and only if n is even,251

2. β0 > −β1 > β2 > −β3 > β4 > . . . , and252

3. −βn = an+2βn+1 + an+4βn+3 + an+6βn+5 + . . . .253

We now recall a numeration system due to Ostrowski [17].254

▶ Fact 6 ([18, Ch. II-§4]). Let X ∈ N. Then X can be written uniquely as255

X =
N∑︂

n=0
bn+1qn. (1)256

where 0 ≤ b1 < a1, 0 ≤ bn+1 ≤ an+1 and bn = 0 whenever bn+1 = an+1.257

For X ∈ N satisfying (1) we write X = [b1b2 · · · bnbn+1]α and call the word b1b2 · · · bn+1 an258

α-Ostrowski representation of X. This representation is unique up to trailing zeros. Let259

X,Y ∈ N and let b1b2 · · · bn+1 and c1c2 · · · cn+1 be α-Ostrowski representations of X and Y260

respectively. Since Ostrowski representations are obtained by a greedy algorithm, one can see261

easily that X < Y if and only if b1b2 · · · bn+1 is co-lexicographically smaller than c1c2 · · · cn+1.262

263

We now introduce a similar way to represent real numbers, also due to Ostrowski [17]. Let264

Iα be the interval
[︁
⌊α⌋ − α, 1 + ⌊α⌋ − α

)︁
.265

▶ Fact 7 (cp. [18, Ch. II.6 Theorem 1]). Let x ∈ Iα. Then x can be written uniquely as266

∞∑︂
k=0

bk+1βk, (2)267

where bk ∈ Z with 0 ≤ bk ≤ ak, and bk−1 = 0 whenever bk = ak,(in particular, b1 ̸= a1), and268

bk ̸= ak for infinitely many odd k.269

For x ∈ Iα satisfying (2) we write x = [b1b2 · · · ]α and call the infinite word b1b2 · · · the270

α-Ostrowski representation of x. This is closely connected to the integer Ostrowski repres-271

entation. Note that for every real number there a unique element of Iα such that that their272

difference is an integer. We define fα : R → Iα to be the function that maps x to x − u,273

where u is the unique integer such that x− u ∈ Iα.274

▶ Fact 8 ([7, Lemma 3.4]). Let X ∈ N be such that
∑︁N

k=0 bk+1qk is the α-Ostrowski275

representation of X. Then fα(αX) =
∑︁∞

k=0 bk+1βk is the α-Ostrowski representation of276

fα(αX), where bk+1 = 0 for k > N .277

Since βk > 0 if and only if k is even, the order of two elements in Iα can be determined by278

the Ostrowski representation as follows.279

▶ Fact 9 ([7, Fact 2.13]). Let x, y ∈ Iα with x ̸= y and let [b1b2 · · · ]α and [c1c2 · · · ]α be the280

α-Ostrowski representations of x and y. Let k ∈ N be minimal such that bk ̸= ck. Then281

x < y if and only if282

(i) bk+1 < ck+1 if k is even;283

(ii) bk+1 > ck+1 if k is odd.284

CSL 2022



14:8 Decidability for Sturmian words

3 #-binary encoding285

In this section, we introduce #-binary coding. Fix the alphabet Σ# := {0, 1,#}. Let H∞286

denote the set of all infinite Σ#-words in which # appears infinitely many times. Clearly287

H∞ is ω-regular.288

289

Let C# : ({0, 1}∗)ω → H∞ map an infinite word b = b1b2b3 · · · over {0, 1}∗ to the infinite290

Σ#-word #b1#b2#b3# · · · We note that the map C# is a bijection.291

Let u = u1u2u3 · · · , v = v1v2v3 · · · ∈ Σω
#. We say u and v are aligned if for all i ∈ N292

ui = # if and only if vi = #.293

This defines an ω-regular equivalence relation on Σω
#. We denote this equivalence relation by294

∼#. The following fact follows easily.295

▶ Fact 10. The following sets are ω-regular:296

{(u, v) ∈ H2
∞ : u ∼# v and C−1

# (u) <lex,2 C
−1
# (v)},297

{(u, v) ∈ H2
∞ : u ∼# v and C−1

# (u) <colex,2 C
−1
# (v)},298

{(u, v) ∈ H2
∞ : u ∼# v and C−1

# (u) <alex,2 C
−1
# (v)}.299

3.1 #-binary coding of continued fractions300

We now code the continued fraction expansions of real numbers as infinite Σ#-words.301

▶ Definition 11. Let α ∈ (0, 1) be irrational such that [0; a1, a2, . . . ] is the continued fraction302

expansion of α. Let u = u1u2 · · · ∈ ({0, 1}∗)ω such that ui ∈ {0, 1}∗ is a binary representation303

of ai for each i ∈ Z≥0. We say that C#(u) is a #-binary coding of the continued fraction304

of α.305

Let R be the set of elements of Σω
# of the form (#(0|1)∗1(0|1)∗)ω. Obviously, R is ω-regular.306

▶ Lemma 12. Let w ∈ R. Then there is a unique irrational number α ∈ [0, 1] such that w is307

a #-binary coding of the continued fraction of α.308

The proof of Lemma 12 is in Appendix A. For w ∈ R, let α(w) be the real number given by309

Lemma 12. When v = (v1, . . . , vn) ∈ Rn, we write α(v) for (α(v1), . . . , α(vn)).310

311

Even though continued fractions are unique, their #-binary codings are not, because binary312

representations can have trailing zeroes. This ambiguity is required in order to properly313

recognize relationships between multiple numbers, as one of the numbers involved may314

require more bits in a coefficient than the other(s). Occasionally we need to ensure that all315

possible representations of a given tuple of numbers are contained in a set. For this reason,316

we introduce the zero-closure of subsets of Rn.317

▶ Definition 13. Let X ⊆ Rn. The zero-closure of X is {u ∈ Rn : ∃v ∈ X α(u) = α(v)}.318

▶ Lemma 14. Let X ⊆ Rn be ω-regular. Then the zero-closure of X is also ω-regular.319

The essence of the proof is that trailing zeroes are the only way that #-binary codings of the320

same number can differ. The details of proof are technical and can be found in Appendix A.321

▶ Lemma 15. The set {(w1, w2) ∈ R2 : w1 ∼# w2 and α(w1) < α(w2)} is ω-regular.322

Proof. Let w1, w2 ∈ R be such that w1 ∼# w2. By Fact 5 we have that α(w1) < α(w2) if323

only C−1
# (w1) <alex,2 C

−1
# (w2). Thus ω-regularity follows from Fact 10. ◀324
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▶ Lemma 16. Let a ∈ [0, 1) be a quadratic irrational. Then {w ∈ R : α(w) = a} is325

ω-regular.326

Proof. The continued fraction expansion of a is eventually periodic. Thus there is an327

eventually periodic u ∈ ({0, 1}∗)ω such that C#(u) is a #-binary coding of the continued328

fraction of a. The singleton set containing an eventually periodic string is ω-regular. It329

remains to expand this set to contain all representations via Lemma 14. ◀330

▶ Lemma 17. The set {w ∈ R : α(w) < 1
2 } is ω-regular.331

Proof. Let α(w) = [0; a1, a2, . . . ]. It is easy to see that α(w) < 1
2 if and only if a1 > 1. Thus332

we need only check that a1 ≠ 1. The set of w ∈ R for which this true is just R \ Y , where333

Y ⊆ Σω
# is given by the regular expression #10∗(#(0 ∪ 1)∗)ω. ◀334

3.2 #-Ostrowski-representations335

We now extend the #-binary coding to Ostrowski representations.336

▶ Definition 18. Let v, w ∈ (Σ#)ω, let x = x1x2x3 · · · ∈ Nω and let b = b1b2b3 · · · ∈337

({0, 1}∗)ω be such that w = C#(b) and [bi]2 = xi for each i.338

For N ∈ N, we say that w is a #-v-Ostrowski representation of X if v and w are339

aligned and x is an α(v)-Ostrowski representation of N .340

For c ∈ Iα(v), we say that w is a #-v-Ostrowski representation of c if v and w are341

aligned and x is an α(v)-Ostrowski representation of c.342

We let Av denote the set of all words w ∈ Σω
# such that w is a #-v-Ostrowski representation343

of some c ∈ Iα(v), and similarly, by Afin
v the set of all words w ∈ Σω

# such that w is a344

#-v-Ostrowski representation of some N ∈ N.345

▶ Lemma 19. The sets346

Afin := {(v, w) : v ∈ R,w ∈ Afin
v }, and A := {(v, w) : v ∈ R,w ∈ Av}.347

are ω-regular. Moreover, Afin ⊆ A.348

The straightforward proof is in Appendix A.349

▶ Definition 20. Let v ∈ R. We define Zv : Afin
v → N to be the function that maps w to the350

natural number whose #-v-Ostrowski representation is w.351

Similarly, we define Ov : Av → Iα(v) to be the function that maps w to the real number whose352

#-v-Ostrowski representation is w.353

▶ Lemma 21. Let v ∈ R. Then Zv : Afin
v → N and Ov : Av → Iα(v) are bijective.354

The proof is in Appendix A.355

▶ Definition 22. Let v ∈ R. We write 0v for Z−1
v (0), and 1v for Z−1

v (1).356

▶ Lemma 23. The relations 0∗ = {(v,0v) : v ∈ R} and 1∗ = {(v,1v) : v ∈ R} are357

ω-regular.358

▶ Lemma 24. Let s ∈ Afin
v . Then α(v)Zv(s) −Ov(s) ∈ Z and359

Ov(1v) =
{︄
α(v) if α(v) < 1

2 ;
α(v) − 1 otherwise.

360
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14:10 Decidability for Sturmian words

Again, proofs of these lemmas are in Appendix A.361

▶ Lemma 25. The sets362

≺fin := {(v, s, t) ∈ Σ3
# : s, t ∈ Afin

v ∧ Zv(s) < Zv(t)},363

≺ := {(v, s, t) ∈ Σ3
# : s, t ∈ Av ∧Ov(s) < Ov(t)}364

365

are ω-regular.366

Proof of Lemma 25. For ≺fin, first recall that for X,Y ∈ N and α irrational, we have367

X < Y if and only if the α-Ostrowski representation of X is co-lexicographically smaller than368

the α-Ostrowski representation of Y . Therefore, we need only recognize co-lexicographic369

ordering on the list of coefficients, with each coefficient ordered according to binary. This370

follows immediately from Fact 10.371

372

For ≺, note that by Fact 9 the usual order on real numbers corresponds to the alternative373

lexicographic ordering on real Ostrowski representations. Therefore, we need only recognize374

the alternating lexicographic ordering on the list of coefficients, with each coefficient ordered375

according to binary. This follows immediately from Fact 10. ◀376

We consider Rn as a topological space using the usual order topology. For X ⊆ Rn, we377

denote its topological closure by X.378

▶ Corollary 26. Let W ⊆ (Σn+1
# )∗ ω-regular be such that W ⊆ {(v, s1, . . . , sn) ∈ (Σn+1

# )∗ :379

s1, . . . , sn ∈ Av}. Then the following set is also ω-regular:380

W := {(v, s1, . . . , sn) ∈ (Σn+1
# )∗ : s1, . . . , sn ∈ Av ∧ (Ov(s1), . . . , Ov(sn)) ∈ O(Wv)}.381

Proof. Let (v, s1, . . . , sn) ∈ (Σn+1
# )∗ be such that s1, . . . , sn ∈ Av. Let Xi = Ov(si). By the382

definition of the topological closure, we have that (X1, . . . , Xn) ∈ O(Wv) if and only if for all383

Y1, . . . Yn, Z1, . . . , Zn ∈ R with Yi < Xi < Zi for i = 1, . . . , n there are X ′ = (X ′
1, . . . , X

′
n) ∈384

O(Wv) such that Yi < X ′
i < Zi for i = 1, . . . , n. Thus by Lemma 25, (v, s1, . . . , sn) ∈ W if385

and only if for all t1, . . . tn, u1, . . . , un ∈ Av with ti ≺ si ≺ ui, there are s′ = (s′
1, . . . , s

′
n) ∈ Wv386

such that ti ≺ s′
i ≺ Zi for i = 1, . . . , n. The latter condition is ω-regular by Fact 2. ◀387

4 Recognizing addition in Ostrowski numeration systems388

The key to the rest of this paper is a general automaton for recognizing addition of Ostrowski389

representations uniformly. We will prove the following.390

▶ Theorem 27. The set ⊕fin := {(v, s1, s2, s3) : s1, s2, s3 ∈ Afin
v ∧Zv(s1)+Zv(s2) = Zv(s3)}391

is ω-regular.392

Proof. In [2, Section 3] the authors generate an automaton A over the alphabet N4 such393

that a finite word (d1, x1, y1, z1)(d2, x2, y2, z2) · · · (dm, xm, ym, zm) ∈ (N4)∗ is accepted by A394

if and only if there are dm+1, . . . ∈ N and x, y, z ∈ N such that for α = [0; d1, d2, . . . ] we have395

[x1x2 . . . xm]α = x, [y1y2 . . . ym]α = y, [z1z2 . . . zm]α = z, and x+ y = z.396

397

We now describe how to adjust the the automaton A for our purposes. The input alphabet398

will be Σ4
# instead of N4. The new automaton will take four inputs w, s1, s2, s3, where399

s1, s2, s3 ∈ Afin
w . We can construct this automaton as follows:400
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1. Begin with the automaton A from [2].401

2. Add an initial state that transitions to the original start state on (#,#,#,#). This will402

ensure that the first character in each string is #.403

3. Replace each transition in the automaton with a sub-automaton that recognizes the404

corresponding relationship between w, s1, s2, s3 in binary. As an example, one of the405

transitions in Figure 3 of [2] is given as “−di + 1,” meaning that it represents all406

cases where, letting wi, s1i, s2i, si3 be the ith letter of w, s1, s2, s3 respectively, we have407

s3i − s1i − s2i = −wi + 1. This is an affine and hence an automatic relation. Thus it can408

be recognized by a sub-automaton.409

4. The accept states in the resulting automaton are precisely the accept states from the410

original automaton.411

The resulting automaton recognizes ⊕fin. ◀412

The automaton constructed above has 82 states. Using our software Pecan, we can formally413

check that this automaton recognizes the set in Theorem 27. Following a strategy already414

used in Mousavi, Schaeffer, and Shallit [14, Remark 2.1] we check that our adder satisfies415

the standard recursive definition of addition on the natural numbers; that is for all x, y ∈ N416

0 + y = y417

s(x) + y = s(x+ y)418
419

where x, y ∈ N and s(x) denotes the successor of x in N. The successor function on N can be420

defined using only < as follows:421

s(x) = y if and only if (x < y) ∧ (∀z (z ≤ x) ∨ (z ≥ y)).422

Thus in Pecan we define bco_succ(a,x,y) as423
424

bco_succ (a,x,y) := bco_valid (a,x) ∧ bco_valid (a,y) ∧ bco_leq (x,y)425

∧ ¬bco_eq (x,y) ∧ ∀z. bco_valid (a,z) => ( bco_leq (z,x) ∨ bco_leq (y,z))426427

where bco_eq recognizes {(x, y) : x = y}, bco_leq recognizes {(x, y) : x ≤colex y}, and428

bco_valid recognizes Afin. We now confirm that our adder satisfies the above equations using429

the following Pecan code:430
431

Let x,y,z be ostrowski (a).432

Theorem (" Addition base case (0 + y = y).", {433

∀a. ∀x,y,z. bco_zero (x) => ( bco_adder (a,x,y,z) ⇔ bco_eq (y,z))434

}).435

Theorem (" Addition inductive case (s(x) + y = s(x + y)).", {436

∀a. ∀x,y,z,u,v. ( bco_succ (a,u,x) ∧ bco_succ (a,v,z))437

=> ( bco_adder (a,x,y,z) ⇔ bco_adder (a,u,y,v))438

}).439440

In the above code bco_adder recognizes ⊕fin, bco_zero recognizes 0∗, and bco_succ recognizes441

{(v, x, y) : x, y ∈ Afin
v , Zv(x) + 1 = Zv(y)}. Pecan confirms both statements are true. This442

proves Theorem 27 modulo correctness of Pecan and the correctness of the implementations443

of the automata for bco_eq, bco_leq, bco_valid and bco_zero. For more details about Pecan,444

see Section 7.445

446

Using Corollary 26 we can extend the automaton in Theorem 27 to an automaton for addition447

modulo 1 on Iα. The details are in Appendix B.448

▶ Lemma 28. The set ⊕ := {(v, s1, s2, s3) : s1, s2, s3 ∈ Av∧Ov(s1)+Ov(s2) ≡ Ov(s3) (mod 1)}449

is ω-regular. Moreover, ⊕fin ⊆ ⊕.450
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14:12 Decidability for Sturmian words

5 The uniform ω-regularity of Rα451

In this section, we turn to the question of the decidability of the logical first-order theory452

of Rα. Recall that Rα := (R, <,+,Z, αZ) for α ∈ R. The main result of this section is the453

following:454

▶ Theorem 29. There is a uniform family of ω-regular structures (Dv)v∈R such that Dv ≃455

Rα(v) for each v ∈ R.456

Theorem 29 then hinges on the following lemma.457

▶ Lemma 30. There is a uniform family of ω-regular structures (Ca)a∈R such that Ca ≃458

([−α(a),∞), <,+,N, α(a)N) for each a ∈ R.459

The proof of Lemma 30 is a uniform version of the argument given in [7] that also fixes460

some minor errors of the original proof. By Lemma 10 and Theorem 27, we already know461

that Zv : (Afin
v ,≺fin

v ,⊕fin
v ) → (N, <,+) is an isomorphism for every v ∈ R. As our eventual462

goal also requires us to define the set αN, it turns out to be much more natural to instead463

use the isomorphism α(v)Zv : (Afin
v ,≺fin

v ,⊕fin
v ) → (α(v)N, <,+) and recover Z. We do so by464

following the argument in [7]. The full proof is availabe in Appendix C.465

Proof of Theorem 29. We just observe that ([−α,∞), <,+,N, αN) defines (in a matter466

uniform in α) an isomorphic copy of Rα. Now apply Lemma 30. ◀467

6 Decidability results468

We are now ready to prove the results listed in the introduction. We first recall some469

notation. Let Lm be the signature of the first-order structure (R, <,+,Z), and let Lm,a be470

the extension of Lm by a unary predicate. For α ∈ R>0, let Rα denote the Lm,a-structure471

(R, <,+,Z, αZ). For each Lm,a-sentence φ, we set Rφ := {v ∈ R : Rα(v) |= φ}.472

▶ Theorem 31. Let φ be an Lm,a-sentence. Then Rφ is ω-regular.473

Proof. By Theorem 29 there is a uniform family of ω-regular structures (Dv)v∈R such that474

such that Dv ≃ Rα(v) for each v ∈ R. Then Rφ = {v ∈ R : Dv |= φ}. This set is ω-regular475

by Fact 4. ◀476

Let N = (R; (Rφ)φ, (X)X⊆Rn ω-regular) be the relational structure on R with the relations477

Rφ for every L-sentences φ and X ⊆ Rn ω-regular. Because N is an ω-regular structure,478

the theory of N is decidable.479

We now proceed towards the proof of Theorem C. Recall that Irr := (0, 1) \ Q.480

▶ Definition 32. Let X ⊆ Irrn. Let XR be defined by481

XR := {(v1, . . . , vn) ∈ Rn : v1 ∼# v2 ∼# · · · ∼# vn ∧ (α(v1), . . . , α(vn)) ∈ X}482

We say X is recognizable modulo ∼# if XR is ω-regular.483

▶ Lemma 33. The collection of sets recognizable modulo ∼# is closed under Boolean484

operations and coordinate projections.485
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Proof. Let X,Y ⊆ Irr be recognizable modulo ∼#. It is clear that (X ∩ Y )R = XR ∩ YR.486

Thus X ∩ Y is recognizable modulo ∼#. Let Xc be Irrn \ X, the complement of X. For ease487

of notation, set E := {(v1, . . . , vn) ∈ Rn : v1 ∼# v2 ∼# · · · ∼# vn}. Then488

(Xc)R = {(v1, . . . , vn) ∈ Rn : v1 ∼# v2 ∼# · · · ∼# vn ∧ (α(v1), . . . , α(vn)) /∈ X}489

= E ∩ {(v1, . . . , vn) ∈ Rn : (α(v1), . . . , α(vn)) /∈ X}490

= E ∩ {(v1, . . . , vn) ∈ Rn : (α(v1), . . . , α(vn)) /∈ X ∨ ¬(v1 ∼# v2 ∼# · · · ∼# vn)}491

= E ∩ (Rn \XR).492
493

This set is ω-regular, and hence Xc is recognizable modulo ∼#.494

495

For coordinate projections, it is enough to consider projections onto the first n−1 coordinates.496

Let n > 0 and let π be the coordinate projection onto first n− 1 coordinates. Observe that497

π(X) = {(α1, . . . , αn−1) ∈ Rn−1 : ∃αn ∈ R (α1, . . . , αn−1, αn) ∈ X}. Thus π(X)R is equal498

to {(v1, . . . , vn−1) ∈ Rn−1 : v1 ∼# · · · ∼# vn−1 ∧ ∃αn : (α(v1), . . . , α(vn−1), αn) ∈ X}. Note499

that v ↦→ α(v) is a surjection R↠ (0, 1) \ Q. Thus π(X)R is also equal to:500

{(v1, . . . , vn−1) ∈ Rn−1 : v1 ∼# · · · ∼# vn−1 ∧ ∃vn : (α(v1), . . . , α(vn)) ∈ X}.501

Unfortunately, this set is not necessarily equal to π(XR). There might be tuples502

(v1, . . . , vn−1) such that no vn can be found, because it would require more bits in one503

of its coefficients than v1, . . . , vn−1 have for that coefficient. But π(XR) always contains504

some representation of α(v1), . . . , α(vn−1) with the appropriate number of digits. We need505

only ensure that removal of trailing zeroes does not affect membership in the language. Thus506

π(X)R is just the zero-closure of π(XR). Thus π(X)R is ω-regular by Lemma 14. ◀507

▶ Theorem 34. Let X1, . . . , Xn be recognizable modulo ∼# by Büchi automata A∞, . . . ,A\,508

and let Q be the structure (Irr; X1, . . . ,Xn). Then the theory of Q is decidable.509

Proof. By Lemma 33 every set definable in Q is recognizable modulo ∼#. Moreover, for510

each definable set Y the automaton that recognizes Y modulo ∼#, can be computed from the511

automata A∞, . . . ,A\. Let ψ be a sentence in the signature of Q. Without loss of generality,512

we can assume that ψ is of the form ∃x χ(x). Set Z := {a ∈ Irrn : Q |= χ(a)}. Observe513

that Q |= ψ if and only if Z is non-empty. Note for every a ∈ Irrn there are v1, . . . , vn ∈ R514

such that v1 ∼# v2 ∼# · · · ∼# vn and (α(v1), . . . , α(vn)) = a. Thus Z is non-empty if and515

only if {(v1, . . . , vn) ∈ Rn : v1 ∼# v2 ∼# · · · ∼# vn ∧ (α(v1), . . . , α(vn)) ∈ Z} is non-empty.516

Thus to decide whether Q |= ψ, we first compute the automaton B that recognizes Z modulo517

∼#, and then check whether the automaton accepts any word.518

◀519

We are now ready to prove Theorem C; that is decidability of the theory of the structure520

M = (Irr, <, (Mφ)φ, (q)q∈Irrquad), where Mφ is defined for each Lm,a-formula as Mφ :=521

{α ∈ Irr : Rα |= φ}.522

Proof of Theorem C. We just need to check that the relations we are adding are all recog-523

nizable modulo ∼#. By Lemma 15 the ordering < is recognizable modulo ∼#. By Lemma524

16, the singleton {q} is is recognizable modulo ∼# for every q ∈ Irrquad. Since Mφ = α(Rφ),525

recognizability of Mφ modulo ∼# follows from Theorem 31. ◀526

We can add to M a predicate for every subset of Irrn that is recognizable modulo ∼#, and527

preserve the decidability of the theory. The reader can check that examples of subsets of528
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14:14 Decidability for Sturmian words

Irr recognizable modulo ∼# are the set of all α ∈ Irr such that the terms in the continued529

fraction expansion of α are powers of 2, the set of all α ∈ Irr such that the terms in the530

continued fraction expansion of α are in (or are not in) some fixed finite set, and the set of531

all α ∈ Irr such that all even (or odd) terms in their continued fraction expansion are 1.532

7 Automatically Proving Theorems about Sturmian Words533

We have created an automatic theorem-prover based on the ideas and the decision algorithms534

outlined above, called Pecan [15]. We use Pecan to provide proofs of known and unknown535

results about characteristic Sturmian words. We begin by giving automated proofs for536

several classical result result about Sturmian words. We refer the reader to [12] for more537

information and traditional proofs of these results.538

539

In the following, we assume that a ∈ R and i, j, k, n,m, p, s are a-Ostrowski representations.540

This can be expressed in Pecan as541

542
Let a ∈ bco_standard .543

Let i,j,k,n,m,p,s ∈ ostrowski (a).544545

We write ca,0(i) as $C[i] in Pecan.546

▶ Theorem 35. Characteristic Sturmian words are balanced and aperiodic.547

Proof of Theorem 35. To show that a characteristic Sturmian word cα,0 is balanced, note548

that it is sufficient to show that there is no palindrome w in cα,0 such that 0w0 and549

1w1 are in cα,0 (see [12, Proposition 2.1.3]). We encode this in Pecan as follows. The550

predicate palindrome(a,i,n) is true when ca,0[i..i + n] = ca,0[i..i + n]R. The predicate551

factor_len(a,i,n,j) is true when ca,0[i..i+ n] = ca,0[j..j + n].552

553
Theorem (" Balanced ", {554

∀a. ¬(∃i,n. palindrome (a,i,n) ∧555

(∃j. factor_len (a,i,n,j) ∧ $C[j-1] = 0 ∧ $C[j+n] = 0) ∧556

(∃k. factor_len (a,i,n,k) ∧ $C[k-1] = 1 ∧ $C[k+n] = 1))557

}).558559

Pecan takes 321.73 seconds to prove the theorem.560

561

Encoding the property that a word is eventually periodic is straightforward:562

563
eventually_periodic (a, p) :=564

p > 0 ∧ ∃n. ∀i. if i > n then $C[i] = $C[i+p]565566

The resulting automaton has 4941 states and 35776 edges, and takes 117.78 seconds to build.567

We then state the theorem in Pecan, which confirms the theorem is true.568

569
Theorem (" Aperiodic ", {570

∀a. ∀p. if p > 0 then ¬eventually_periodic (a, p)571

}) .572573

◀574

Let w ∈ {0, 1}∗. We let w denote the {0, 1}-word obtained by replacing each 1 in w by 0 and575

each 0 in w by 1. A word w ∈ {0, 1}∗ is an antisquare if w = vv for some v ∈ {0, 1}∗. We576

define AO : (0, 1) \ Q → N ∪ {∞} to map an irrational α to the maximum order of any anti-577

square in cα,0 if such a maximum exists, and to ∞ otherwise. We let AL : (0, 1)\Q → N∪{∞}578
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map α to the maximum length of any antisquare in cα,0 if such a maximum exists and ∞579

otherwise. Note that AL(α) = 2AO(α).580

581

We let wR denote the reversal of a word w. We say a word w is a palindrome if w = wR.582

A word w ∈ {0, 1}∗ is an antipalindrome if w = wR. We set AP : (0, 1) \ Q → N ∪ {∞}583

to be the map that takes an irrational α to the maximum length of any antipalindrome in584

cα,0 if such a maximum, and to ∞ otherwise. We will use Pecan to prove that AO(α), AL(α)585

and AP (α) are finite for every α. While the quantities AO(α), AP (α) and AL(α) can be586

arbitrarily large, we prove the new results that the length of the Ostrowski representations587

of these quantities is bounded, independent of α.588

589

Let α ∈ (0, 1) be irrational and N ∈ N. Let |N |α denote the length of the α-Ostrowski590

representation of N , that is the index of the last nonzero digit of α-Ostrowski representation591

of N , or 0 otherwise.592

▶ Theorem 36. For every irrational α ∈ (0, 1)593

|AO(α)|α ≤ 4, |AP (α)|α ≤ 4, |AL(α)|α ≤ 6, AO(α) ≤ AP (α) ≤ AL(α) = 2AO(α).594

There are irrational numbers α, β ∈ (0, 1) such that AO(α) = AP (α) and AP (β) = AL(β).595

Proof. Using Pecan, we create automata which compute AO, AP , and AL:596

AO(α, n) := has_antisquare(α, n) ∧ ∀m.has_antisquare(α,m) =⇒ m ≤ n597

AP (α, n) := has_antipalindrome(α, n) ∧ ∀m.has_antipalindrome(α,m) =⇒ m ≤ n598

AL(α, n) := has_antisquare_len(α, n) ∧ ∀m.has_antisquare_len(α,m) =⇒ m ≤ n599
600

We build automata recognizing α-Ostrowski representations of at most 4 and 6 nonzero601

digits, called has_4_digits(n) and has_6_digits(n). Then we use Pecan to prove all the602

parts of the theorem by checking the following statement.603

604
Theorem ("(i), (ii), (iii), and (iv)", {605

∀a. has_4_digits (max_antisquare(a)) ∧606

has_4_digits ( max_antipalindrome (a)) ∧607

has_6_digits (max_antisquare_len(a)) ∧608

max_antisquare(a) <= max_antipalindrome (a) ∧609

max_antipalindrome (a) <= max_antisquare_len(a)610

}).611612

We also use Pecan to find examples of the equality: when α = [0; 3, 3, 1], we have AO(α) =613

AP (α) = 2, and when α = [0; 4, 2, 1], we have AP (α) = AL(α) = 2. ◀614

▶ Theorem 37. For every irrational α ∈ (0, 1), all antisquares and antipalindromes in cα,0615

are either of the form (01)∗ or of the form (10)∗.616

Proof. We begin by creating a predicate called is_all_01 stating that a subword cα,0[i..i+n]617

is of the form (01)∗ or (10)∗. We do this simply stating that cα,0[k] ̸= cα,0[k + 1] for all k618

with i ≤ k < i+ n− 1.619

620
is_all_01(a,i,n) :=621

∀k. if i <= k ∧ k < i+n-1 then $C[k] ̸= $C[k+1]622623

We can now directly state both parts of the theorem; Pecan proves both in 76.1 seconds.624
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14:16 Decidability for Sturmian words

625
Theorem ("All antisquares are of the form (01)^* or (10)^* ", {626

∀a. ∀i,n. if antisquare(a,i,n) then is_all_01(a,i,n)627

}).628

629

Theorem ("All antipalindromes are of the form (01)^* or (10)^* ", {630

∀a. ∀i,n. if antipalindrome(a,i,n) then is_all_01(a,i,n)631

}).632633

◀634
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A Proofs from Section 2684

Proof of Lemma 12. By the definition of R, there is w1w2 · · · ∈ ((0|1)∗1(0|1)∗)ω such that685

w = #w1#w2# · · · . Since wi ∈ (0|1)∗1(0|1)∗, we have that wi is a {0, 1}-word containing at686

least one 1. Let ai be the natural number that ai = [wi]2. Because wi contains a 1, we must687

have ai ̸= 0. Thus w is a #-binary coding of the infinite continued fraction of the irrational688

α = [0; a1, a2, . . . ]. Uniqueness follows directly from the fact that both binary expansions689

and continued fraction expansions only represent one number. ◀690

Proof of Lemma 14. Let A be a Büchi automaton recognizing X. We use Q to denote the691

set of states of A. We create a new automaton A′ that recognizes the zero-closure of X, as692

follows:693

(Step 1) Start with the automata A.694

(Step 2) For each transition on the n-tuple (#, . . . ,#) from a state p to a state q, we add a new695

state µ(p, q) that loops to itself on the n-tuple (0, . . . , 0) and transitions to state q on696

(#, . . . ,#). We add a transition from p to µ(p, q) on (0, . . . , 0).697

(Step 3) For every pair p, q of states of A for which p has a run to q on a word of the form698

(0, . . . , 0)m(#, . . . ,#) for some m, we add a transition from state p to a new state ν(p, q)699

on (#, . . . ,#), and for every transition out of state q, we create a copy of the transition700

that starts at state ν(p, q) instead. If any original run from state p to state q passes701

through a final state, we make ν(p, q) a final state.702

(Step 4) Denote the resulting automaton by A′ and its set of states by Q′.703

We now show that L(A′) is the zero-closure of X. We first show that the zero-closure is704

contained in L(A′). Let v ∈ X and w ∈ R be such that α(v) = α(w). Let b = b1b2 · · · , c =705

c1c2 ∈ ({0, 1}∗)ω such that C#(b) = v and C#(c) = w. Since α(v) = α(w), we have that706

[bi]2 = [ci]2 for i ∈ N. Therefore, for each i ∈ N, the words bi and ci only differ by trailing707

zeroes. Let s = s1s2 · · · ∈ Qω be an accepting run of v on A. We now transfer this run into708

an accepting run s′ = s′
1s

′
2 · · · of w on A′. For i ∈ N, let y(i) be the position of the i-th709

(#, . . . ,#) in v and let z(i) be the position of the i-th (#, . . . ,#) in w. For each i ∈ N, we710

define a sequence s′
z(i)+1 · · · s′

z(i+1) of states of A′ as follows:711

1. If |ci| = |bi|, then ci = bi. We set712

s′
z(i)+1 · · · s′

z(i+1) := sy(i)+1 · · · sy(i+1).713

2. If |ci| > |bi|, then ci = bi(0, . . . , 0)|ci|−|bi|. We set714

s′
z(i)+1 · · · s′

z(i+1)715

:= sy(i)+1 · · · sy(i+1)−1 µ(sy(i+1)−1, sy(i+1)) · · ·µ(sy(i+1)−1, sy(i+1)⏞ ⏟⏟ ⏞
(|ci|−|bi|)-times

sy(i+1)716

717
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Thus the new run follows the old run up to sy(i+1)−1 and then transitions to one of the718

newly added states in the Step 2. It loops on (0, . . . , 0) for |ci| − |bi| − 1-times before719

moving to sy(i+1).720

3. If |ci| < |bi|, then bi = ci(0, . . . , 0)|bi|−|ci|. We set721

s′
z(i)+1 · · · s′

z(i+1) := sy(i)+1 · · · sy(i)+|ci|ν(sy(i)+|ci|, sy(i+1))722

The new run utilizes one of the newly added (#, . . . ,#) transitions and corresponding723

states added in Step 3.724

The reader can now easily check that s′ is an accepting run of w on A′.725

726

We now show that L(A′) is contained in the zero-closure of X. We prove that the only727

accepting runs on A′ are based on accepting runs on A with trailing zeroes either added or728

removed. Let w = w1w2 · · · ∈ L(A′) and let c = c1c2 · · · ∈ ({0, 1}∗)ω be such that C#(c) = w.729

Let s′ = s′
1s

′
2 · · · ∈ Q′ω be an accepting run of w on A′. We construct v ∈ X and a run730

s = s1s2 · · · ∈ Qω of w2 on A such that α(v) = α(w) and s is an accepting run of v. We731

start by setting v := w1w2 · · · and s := s′
1s

′
2 · · · . For each i ∈ N, we replace wi in v and s′

i732

in s as follows:733

1. If s′
i ∈ Q, then we make no changes to s′

i and wi.734

2. If s′
i = µ(p, q) for some p, q ∈ Q, we delete the s′

i in s and delete wi in v.735

3. If si = ν(p, q) for some p, q ∈ Q, then we replace736

(a) s′
i by a run t = t1 · · · tn+1 of (0, . . . , 0)n(#, ...,#) from p to q, and737

(b) wi by (0, . . . , 0)n(#, ...,#).738

If ν(p, q) is a final state of A′, we choose t such that it passed through a final state of A.739

It is clear that the resulting s is in Qω. The reader can check s is an accepting run of v on740

A and that α(v) = α(w). Thus w is in the zero-closure of X. ◀741

Proof of Lemma 19. The statement that Afin ⊆ A, follows immediately from the definitions742

of Afin and A and Fact 8. It is left to establish the ω-regularity of the two sets.743

744

For (1): Let B ⊇ Afin be the set of all pairs (v, w) such that v ∈ R and v ∼# w. Note745

that B is ω-regular. Let (v, w) ∈ B. Since v and w have infinitely many # characters and746

are aligned, there are unique a = a1a2 · · · , b = b1b2 · · · ∈ ({0, 1}∗)ω such that C#(a) = v,747

C#(b) = w and |ai| = |bi| for each i ∈ N. Then by Fact 6, (v, w) ∈ Afin if and only if748

(a) b has finitely many 1 characters;749

(b) b1 <colex a1;750

(c) bi ≤colex ai for all i > 1;751

(d) if bi = ai, then bi−1 = 0.752

It is easy to check that all four conditions are ω-regular.753

754

For (2): As above, let (v, w) ∈ B. Since v and w have infinitely many # characters and755

are aligned, there are unique a = a1a2 · · · , b = b1b2 · · · ∈ ({0, 1}∗)ω such that C#(a) = v,756

C#(b) = w and |ai| = |bi| for each i ∈ N. Then by Fact 7, (v, w) ∈ A if and only if757

(e) b1 <colex a1;758

(f) bi ≤colex ai for all i > 1;759
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(g) if bi = ai, then bi−1 = 0;760

(h) bi ̸= ai for infinitely many odd i.761

Again, it is easy to see that all for conditions are ω-regular. ◀762

Proof of Lemma 21. We first consider injectivity. By Fact 6 and Fact 7 a number in N or763

in Iα(v) only has one α(v)-Ostrowski representation. So we need only explain why such a764

representation will only have one encoding in Afin
v (respectively Av). This follows from the765

uniqueness of binary representations up to the length of the representation, and from the766

fact that the requirement of having the # characters aligned with v determines the length of767

each binary-encoded coefficient.768

769

For surjectivity we need only explain why an α(v)-Ostrowski representation can always be770

encoded into a string in Afin
v (respectively Av). It suffices to show that the requirement of771

having the # characters aligned with v will never result in needing to fit the binary encoding772

of a number into too few characters, i.e. that it will never result in having to encode a natural773

number n in binary in fewer than 1 + ⌊log2 n⌋ characters. Since the function 1 + ⌊log2 n⌋ is774

monotone increasing, we can encode any natural number below n in k characters if we can775

encode n in binary in k characters. However, by Fact 6 and Fact 7, the coefficients in an776

α(v)-Ostrowski representation never exceed the corresponding coefficients in the continued777

fraction for α(v), i.e. bn ≤ an.778

◀779

Proof of Lemma 23. Recognizing 0∗ is trivial, as the Ostrowski representations of 0 are of
the form 0 · · · 0 for all irrational α. Thus 0∗ is just the relation

{(v, w) : v ∈ R,w is v with all 1 bits replaced by 0 bits}.

This is clearly ω-regular.780

We now consider 1∗. Let α = [0; a1, a2, . . . ] be an irrational number. If a1 > 1, the781

α-Ostrowski representations of 1 are of the form 10 · · · 0. If a1 = 1, the α-Ostrowski782

representations of 1 are of the form 010 · · · 0. Thus, in order to recognize 1∗, we only need783

to be able to recognize if a number in binary representation is 0, 1, or greater than 1. Of784

course, this is easily done on a Büchi automaton. ◀785

Proof of Lemma 24. By Fact 8, Ov(s) = fα(α(v)Zv(s)). Thus786

α(v)Zv(s) −Ov(s) = α(v)Zv(s) − fα(α(v)Zv(s)),787

which is an integer by the definition of f . By the definition of 1v and by Fact 8, we788

know Ov(1v) = fα(α) is the unique element of Iα(v) that differs from α(v) by an integer.789

If 0 < α(v) < 1
2 , then −α(v) < α(v) < 1 − α(v). Thus in this case, α(v) ∈ Iα(v) and790

Ov(1v) = α(v). When 1
2 < α(v) < 1, then −α < α− 1 < 1 − α. Therefore α(v) − 1 ∈ Iα(v)791

and Ov(1v) = α(v) − 1.792

◀793

B Proofs from Section 3794

Proof of Lemma 28. First, let v, s1, s2, s3 be such that s1, s2, s3 ∈ Afin
v . We claim that on795

this domain, (s1, s2, s3) ∈ ⊕v if and only if (s1, s2, s3) ∈ ⊕fin
v . By Fact 8 we know that for all796

s ∈ Afin
v797

α(v)Zv(s) −Ov(s) ≡ 0 (mod 1). (3)798
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14:20 Decidability for Sturmian words

Let (s1, s2, s3) ∈ ⊕fin
v . Then by (3)799

Ov(s3) ≡ α(v)Zv(s3) (mod 1)800

= α(v)Zv(s1) + α(v)Zv(s2)801

≡ Ov(s1) +Ov(s2) (mod 1).802
803

Thus (s1, s2, s3) ∈ ⊕v.804

805

Now suppose that (s1, s2, s3) ∈ ⊕v. Then by (3) and the definition of ⊕, we obtain that806

α(v)Z(s1) + α(v)Z(s2) ≡ α(v)Z(s3) (mod 1). However, then α(v)(Z(s1) +Z(s2) −Z(s3)) ≡807

0 (mod 1). Since α is irrational, we obtain Z(s1)+Z(s2)−Z(s3) = 0. Thus (s1, s2, s3) ∈ ⊕fin
v .808

809

Thus for each v ∈ R, we have ⊕v ∩ (Afin
v )3 = ⊕fin

v . Let v ∈ R. We observe that the set810

Ov(Afin
v ) is dense in Ov(Av). Since addition is continuous, it follows that Ov(⊕fin

v ) is dense811

in Ov(⊕v). Since the graph of a continuous function is closed, the topological closure of812

Ov(⊕fin
v ) is Ov(⊕v). Thus ⊕ is ω-regular by Corollary 26. ◀813

C Proofs from Section 4814

In this section we present the proof of Lemma 30. We first state and prove three lemmas815

used in the proof.816

▶ Lemma 38. Let v ∈ R, and let t1, t2, t3 ∈ Av be such that t1 ⊕v t2 = t3. Then817

Ov(t1) +Ov(t2) =

⎧⎪⎪⎨⎪⎪⎩
Ov(t3) + 1 if 0v ≺v t1 and t3 ≺v t2;
Ov(t3) − 1 if t1 ≺v 0v and t2 ≺v t3;
Ov(t3) otherwise.

818

819

Proof. For ease of notation, let α = α(v), and set xi = Ov(ti) for i = 1, 2, 3. By definition820

of ⊕v, we have that x1, x2, x3 ∈ Iα(v) with x1 + x2 ≡ x3 (mod 1). Note that ti ≺v tj if and821

only if xi < xj .822

We first consider the case that 0 < x1 and x3 < x2. Thus x1 + x2 > 1 − α. Note that823

−α = 1 − α− 1 < x1 + x2 − 1 < (1 − α) + (1 − α) − 1 = 1 − 2α < 1 − α.824

Thus x1 + x2 − 1 ∈ Iα and x3 = x1 + x2 − 1.825

Now assume that x1 < 0 and x2 < x3. Then x1 + x2 < −α, and therefore826

1 − α > x1 + x2 + 1 ≥ (−α) + (−α) + 1 = (1 − α) − α > −α.827

Thus x1 + x2 + 1 ∈ Iα and hence x3 = x1 + x2 + 1.828

829

Finally consider that 0, x1 are ordered the same way as x2, x3. Since x1 + x2 ≡ x3 (mod 1),830

we know that |x1 − 0| and |x3 − x2| differ by an integer k. If k > 0, would imply that831

one of these differences is at least 1, which is impossible within the interval Iα. Therefore832

x1 − 0 = x3 − x2 and hence x3 = x1 + x2.833

◀834

For i ∈ N, set iv := 1v ⊕ · · · ⊕ 1v⏞ ⏟⏟ ⏞
i times

.835
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▶ Lemma 39. The set F := {(v, s) ∈ Afin : Zv(s)α(v) < 1} is ω-regular, and for each836

(v, s) ∈ F837

Ov(s) =
{︄
α(v)Zv(s) if (α(v) + 1)Zv(s) < 1;
α(v)Zv(s) − 1 otherwise.

838

Proof. By Lemma 17, we can first consider the case that α(v) > 1
2 . In this situation, Fv is839

just the set {0v,1v}, and hence obviously ω-regular.840

841

Now assume that α(v) < 1
2 . Let w be the ≺fin

v -minimal element of Afin
v with w ≺v 0v. We842

will show that843

Fv = {s ∈ Afin
v : s ⪯fin

v w}.844

Then ω-regularity of F follows then immediately.845

846

Let n ∈ N be maximal such that nα(v) < 1. It is enough to show that Zv(w) = n. By Lemma847

24, Ov(1v) = α(v). Hence 1α(v), 2α(v), . . . , (n− 1)α(v) ∈ Iα(v), but nα(v) > 1 −α(v). Then848

for i = 1, . . . , n− 1849

Ov(iv) = iα(v), Ov(nv) = nα(v) − 1 < 0.850

So iv ⪰ 0v for i = 1, . . . , n, but nv ≺ 0v. Thus nv = w and Zv(w) = n. ◀851

▶ Lemma 40. Let v ∈ R and t ∈ Afin
v . Then there is an s ∈ Fv and t′ ∈ Afin

v such that852

t′ ⪯v 0 and t = t′ ⊕v s. In particular, Afin
v = {t ∈ Afin

v : t ⪯v 0v} ⊕v Fv.853

Proof of Lemma 40. Let n ∈ N be maximal such that nα < 1. Let t ∈ Afin
v . We need to854

find s ∈ Afin
v and u ∈ Fv such that t = s⊕fin

v v. We can easily reduce to the case that t ≻ 0v855

and Zv(t) > n.856

857

Let i ∈ {0, . . . , n} be such that 0 ≥ Ov(t) − iα > −α. Then let s ∈ Afin
v be such that858

Zv(s) = Zv(t) − i. Note t = s⊕fin
v iv. Thus we only need to show that s ⪯ 0v.859

860

To see this, observe that by Lemma 39861

Ov(s) + αi ≡ Ov(s) +Ov(iv) ≡ Ov(t) (mod 1).862

Since Ov(t) − iα(v) ∈ Iα(v), we know that Ov(s) = Ov(t) − iα(v) ≤ 0. Therefore Ov(s) ⪯863

0v. ◀864

Proof of Lemma 30. Define B ⊆ Afin to be {(v, s) ∈ Afin : s ⪯v 0v}. Clearly, B is865

ω-regular. We now define ≺B and ⊕B such that for each v ∈ R, the structure (Bv,≺B
v ,⊕B

v )866

is isomorphic to (N, <,+) under the map gv defined as gv(s) = α(v)Zv(s) −Ov(s).867

868

We define ≺B to be the restriction of ≺fin to B. That is, for (v, s1), (v, s2) ∈ B we have869

(v, s1) ≺B (v, s2) if and only if (v, s1) ≺fin (v, s2).870

It is immediate that ≺B is ω-regular, since both B and ≺fin are ω-regular.871

872

We define ⊕B as follows:873
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(v, s1) ⊕B (v, s2) =
{︄

(v, s1 ⊕v s2) if s1 ⊕fin
v s2 ⪯v 0v;

(v, s1 ⊕v s2 ⊕v 1v) otherwise.
874

We now show that gv(s1 ⊕B
v s2) = gv(s1) + gv(s2) for every s1, s2 ∈ Bv.875

876

Let (v, s1), (v, s2) ∈ B. We first consider the case that s1 ⊕v s2 ⪯v 0v. By Lemma 38,877

Ov(s1 ⊕v s2) = Ov(s1) +Ov(s2). Thus878

gv(s1 ⊕B
v s2) = gv(s1 ⊕v s2)879

= α(v)Zv(s1 ⊕v s2) −Ov(s1 ⊕v s2)880

= αZv(s1) + αZv(s2) −Ov(s1) −Ov(s2)881

= gv(s1) + gv(s2).882
883

Now suppose that s1 ⊕v s2 ≻v 0v. Since −α(v) ≤ Ov(s1), Ov(s2) ≤ 0, we get that884

1 − α(v) > Ov(s1) +Ov(s2) + α(v) ≥ −α(v).885

Thus by Lemma 24,886

Ov(s1 ⊕v s2 ⊕v 1v) = Ov(s1) +Ov(s2) + α(v).887

We obtain888

gv(s1 ⊕B
v s2) = gv(s1 ⊕v s2 ⊕v 1v)889

= αZv(s1 ⊕v s2 ⊕v 1v) −Ov(s1 ⊕v s2 ⊕v 1v)890

= α(v)
(︁
Zv(s1) + Zv(s2)

)︁
+ α(v) −Ov(s1) −Ov(s2) − α(v)891

= gv(s1) + gv(s2).892
893

Since s1 ≺v s2 if and only if Zv(s1) < Zv(s2), we get that gv is an isomorphism between894

(Bv,≺B
v ,⊕B

v ) and (N, <,+).895

896

Let C be defined by897

{(v, s, t) ∈ (Σω
#)3 : (v, s) ∈ B ∧ (v, t) ∈ A}.898

Clearly C is ω-regular. Let Tv : Cv → [−α(v),∞) ⊆ R map (s, t) ↦→ gv(s) +Ov(t).899

900

Note that Tv is bijective for each v ∈ R, since every real number decomposes uniquely into a901

sum n+ y, where n ∈ Z and y ∈ Iv.902

903

We define an ordering ≺C
v on Cv lexicographically: (s1, t1) ≺C

v (s2, t2) if either904

Name Definition
A {(v, w) : v ∈ R, w is a #-v-Ostrowski representation}

Afin {(v, w) : v ∈ R, w is a #-v-Ostrowski representation and eventually 0}
B {(v, s) ∈ Afin : s ⪯v 0v}
C {(v, s, t) : (v, s) ∈ B ∧ (v, t) ∈ A}

Table 1 Definitions of sets used in the proof
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s1 ≺B
v s2, or905

s1 = s2 and t1 ≺v t2.906

The set907

{(v, s1, t1, s2, t2) : (s1, t1), (s2, t2) ∈ Cv ∧ (s1, t1) ≺C
v (s2, t2)}908

is ω-regular. We can easily check that (s1, t1) ≺C
v (s2, t2) if and only if Tv(s1, t1) < Tv(s2, t2).909

Let 0B be g−1
v (0) and 1B be g−1

v (1). Let ⊖B be the (partial) inverse of ⊕B . We define ⊕C
910

for (s1, t1), (s2, t2) ∈ C as follows:911

(s1, t1) ⊕C
v (s2, t2) =

⎧⎪⎪⎨⎪⎪⎩
(s1 ⊕B

v s2 ⊖B 1B , t1 ⊕v t2) if t1 ≺ 0v ∧ t2 ≺v t1 ⊕v t2;
(s1 ⊕B

v s2 ⊕B
v 1B , t1 ⊕v t2) if 0v ≺ t1 ∧ t1 ⊕v t2 ≺v t2;

(s1 ⊕B
v s2, t1 ⊕v t2) otherwise.

912

(Note that ⊕C is only a partial function, as the case where s1 = s2 = 0B and t1 ≺ 0v ∧ t2 ≺v913

t1 ⊕v t2 is outside of the domain of ⊖B .) It is easy to check that ⊕C is ω-regular. It follows914

directly from Lemma 38 that915

Tv((s1, t1) ⊕C
v (s2, t2)) = Tv((s1, t1)) + Tv((s2, t2)).916

Thus for each v ∈ R, the function Tv is an isomorphism between (Cv,≺C
v ,⊕C

v ) and917

([−α(v),∞), <,+). To finish the proof, it is left to establish the ω-regularity of the fol-918

lowing two sets:919

1. {(v, s, t) ∈ C : Tv(s, t) ∈ N},920

2. {(v, s, t) ∈ C : Tv(s, t) ∈ α(u)N}.921

For (1), observe that the set T−1
v (N) is just the set {(s, t) ∈ Cv : t = 0v}.922

923

For (2), consider the following two sets:924

U1 = {(v, s, t) ∈ C : s = t},925

U2 = {(v,0v, t) ∈ C : t ∈ Fv}.926

Let 1C
v be T−1

v (1). Set927

U := {(v, (s1, t1) ⊕c
v (0v, t2)) : (v, s1, t1) ∈ U1, (v,0v, t2) ∈ U2, t2 ⪰ 0}928

∪ {(v, (s1, t1) ⊕c
v (0v, t2) ⊕ 1C

v ) : (v, s1, t1) ∈ U1, (v,0v, t2) ∈ U2, t2 ≺ 0}929
930

The set U is clearly ω-regular, since both U1 and U2 are ω-regular. We now show that931

Tv(U) = α(v)N.932

933

Map Domain Codomain
α R Irr

Ov Av Iα(v)

Zv Afin
v N

gv := α(v)Zv − Ov Bv N
Tv := gv + Ov Cv [−α(v), ∞) ⊆ R

Table 2 A list of the maps and their domains and codomains.
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Let (v, s, s) ∈ U1 and (v,0v, t) ∈ U2. If t ⪰ 0v, then by Lemma 39934

Tv((s, s) ⊕C (0v, t)) = Tv(s, s) + Tv(0v, t)935

= α(v)Zv(s) −Ov(s) +Ov(s) +Ov(t)936

= α(v)Zv(s) + α(v)Zv(t) = α(v)Zv(s⊕v t).937
938

If t ≺ 0v, then by Lemma 39939

Tv((s, s) ⊕C
v (0v, t) ⊕C

v 1C
v ) = Tv(s, s) + Tv(0v, t) + 1940

= α(v)Zv(s) −Ov(s) +Ov(s) +Ov(t) + 1941

= α(v)Zv(s) + α(v)Zv(t) = α(v)Zv(s⊕v t).942
943

Thus Tv(U) ⊆ α(v)N. By Lemma 40, Tv(U) = α(v)N.944

◀945
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