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—— Abstract

We show that the first-order theory of Sturmian words over Presburger arithmetic is decidable.
Using a general adder recognizing addition in Ostrowski numeration systems by Baranwal, Schaeffer
and Shallit, we prove that the first-order expansions of Presburger arithmetic by a single Sturmian
word are uniformly w-automatic, and then deduce the decidability of the theory of the class of
such structures. Using an implementation of this decision algorithm called Pecan, we automatically
reprove classical theorems about Sturmian words in seconds, and are able to obtain new results
about antisquares and antipalindromes in characteristic Sturmian words.
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1 Introduction

It has been known for some time that, for certain infinite words ¢ = cgcico - -+ over a finite
alphabet ¥, the first-order logical theory FO(N, <,+,0,1,n +— ¢,) is decidable. In the
case where c is a k-automatic sequence for k > 2, this is due to Biichi [5], although his
original proof was flawed. The correct statement appears, for example, in Bruyere et al. [4].
Although the worst-case running time of the decision procedure is truly formidable (and
non-elementary), it turns out that an implementation can, in many cases, decide the truth of
interesting and nontrivial first-order statements about automatic sequences in a reasonable
length of time. Thus, one can easily reprove known results, and obtain new ones, merely by
translating the desired result into the appropriate first-order statement ¢ and running the
decision procedure on . For an example of the kinds of things that can be proved, see, for
example, Go¢, Henshall, and Shallit [6].

More generally, the same ideas can be used for other kinds of sequences defined in terms

of some numeration system for the natural numbers. Such a numeration system provides a

unique (up to leading zeros) representation for n as a sum of terms of some other sequence

(Sn)n>1. If the sequence ¢ = ¢geica - -+ can be computed by a finite automaton taking the

representation of n as input, and if further, the addition of represented integers is computable
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Decidability for Sturmian words

by another finite automaton, then once again the first-order theory FO(N, <,4,0,1,n — ¢;,)
is decidable. This is the case, for example, for the so-called Fibonacci-automatic sequences
in Mousavi, Schaeffer, and Shallit [14] and the Pell-automatic sequences in Baranwal and
Shallit [3].

More generally, the same kinds of ideas can handle Sturmian words. For quadratic numbers,
this was first observed by Hieronymi and Terry [9]. In this paper we extend those results to all
Sturmian characteristic words. Thus, the first-order theory of Sturmian characteristic words
is decidable. As a result, many classical theorems about Sturmian words, which previously
required intricate proofs, can be proved automatically by a theorem-prover in a few seconds.
As examples, in Section 7 we reprove basic results such as the balanced property and the
subword complexity of these words.

Let a, p € R be such that « is irrational. The Sturmian word with slope o and intercept
p is the infinite {0, 1}-word cqa,p = ca,p(1)ca,p(2) - - - such that for all n € N

Ca,p(n) = la(n+1) +p] — [an+p| - [a].

When p = 0, we call c, ¢ the characteristic word of slope o. Sturmian words and their
combinatorical properties have been studied extensively. We refer the reader to the survey
by Berstel and Séébold [12, Chapter 2]. Note that ¢, , can be understood as a function from
N to {0,1}. Let £ be the signature! of the first-order logical theory FO(N, <, +,0,1) and let
L. denote the signature obtained by adding a single unary function symbol ¢ to £. Now let
N, p be the Lo-structure (N, <,+,0,1,n — ¢4 ,(n)), where we expand Presburger arithmetic
by a Sturmian word interpreted as a unary function. The main result of this paper is the
decidability of the theory of the collection of such expansions. Set Irr := (0,1) \ Q. Let
Ksturmian := {Na,, @ a € Irr,p € R}, and let Kepar := {Nayo : a € Irr}.

» Theorem A. The first-order logical theories® FO(Kgsturmian) and FO(Kenar) are decidable.

So far, decidability was only known for individual FO(N,,,), and only for very particular a.
By [9] the logical theory FO(N, o) is decidable when « is a quadratic irrational®. Moreover,
if the continued fraction of « is not computable, it can be seen rather easily that FO(N,,0)
is undecidable.

Theorem A is rather powerful, as it allows to automatically decide combinatorial statements
about all Sturmian words. Consider the L.-sentence ¢

W (p>0) = (Vi 3j > ine(j) # (i +p))

We observe that N, , = ¢ if and only if ¢, , is not eventually periodic. Thus the decision
procedure from Theorem A allows us to check that no Sturmian word is eventually periodic.
Of course, it is well-known that no Sturmian word is eventually periodic, but this example
indicates potential applications of Theorem A. We outline some of these in Section 7.

! In model theory this is usually called (or identified with) the language of the theory. However, here this
conflicts with the convention of calling an arbitrary set of words a language.

2 Given a signature Lo and a class K of Lo-structures, the first-order logical theory of K is defined as the
set of all Lo-sentences that are true in all structures in K. This theory is denoted by FO(K).

3 A real number is quadratic if it is the root of a quadratic equation with integer coefficients.
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We not only prove Theorem A, but instead establish a vastly more general theorem of which
Theorem A is an immediate corollary. To state this general result, let £,, be the signature of
FO(R, <,+,Z), and let L,, o be the extension of L,, by a unary predicate. For oo € Ry, we
let R, denote L,, o-structure (R, <,+,Z,aZ). When « € Q, it has long been known that
FO(R,) is decidable (arguably due to Skolem [19]). Recently this result was extended to
quadratic numbers.

» Fact 1 (Hieronymi [7, Theorem A]). Let o be a quadratic irrational. Then FO(Ry) is
decidable.

See also Hieronymi, Nguyen and Pak [8] for a computational complexity analysis of this
decision procedure. The proof of Fact 1 establishes that if « is quadratic, then R, is
an w-automatic structure; that is it can be represented by Biichi automata. Since every
w-automatic structure has a decidable first-order theory, so does R,. See Khoussainov
and Minnes [10] for a survey on w-automatic structures. The key insight needed to prove
w-automaticity of R is that addition in the Ostrowski-numeration system based on « is
recognizable by a Biichi automaton when « is quadratic. See Section 2 for a definition of
Ostrowski numeration systems.

As observed in [7], there are examples of non-quadratic irrationals « such that R, has an
undecidable theory and hence is not w-automatic. However, in this paper we show that
the common theory of the R, is decidable. Let K denote the class of L, -structures
{Ro : a€Irr}.

» Theorem B. The theory FO(K) is decidable.

Indeed, we will even prove a substantial generalization of Theorem B. For each £,,, ,-sentence
@, we set My, :={a €Irr : Ry = ¢}. Let Irrguaq be the set of all quadratic irrational real
numbers in Irr. Define M = (Irr, <, (M), (4)gelrrgu.q) to be the expansion of the dense
linear order (Irr, <) by predicates for M, for each £,, ,-sentence ¢, and constant symbols
for each quadratic irrational real number in Irr.

» Theorem C. The theory FO(M) is decidable.

Observe that Fact 1 and Theorem B follow immediately from Theorem C. We outline how
Theorem B implies Theorem A. Note that for every irrational «, the structure R, defines
the usual floor function || : R — Z, the singleton {a} and the successor function on aZ.
Hence R, also defines the set {(p,an,cq,(n)) : p € R,n € N}. From the definability of
{a}, we have that the function from aN to {0,a} given by an — aca,,(n) is definable in
Ra. Thus the L.-structure (aN, <,+,0, @, an — acq,,(n)) can be defined in R,, and this
definition is uniform in «. Since the former structure is £ -isomorphic to Ny ,, we have that
for every L.-sentence ¢ there is an L,, o-formula 1 (x) such that

¢ € FO(Kgturmian) if and only if Vx ¥ (x) € FO(K) and
© € FO(Kepar) if and only if 4(0) € FO(K).

Even Theorem C is not the most general result we prove. Its statement is more technical and
we postpone it until Section 6. However, we want to point out that we can add predicates for
interesting subsets of Irr to M without changing the decidability of the theory. Examples of
such subsets are the set of all a € Irr such that the terms in the continued fraction expansion
of o are powers of 2, or the set of all a € Irr such that the terms in the continued fraction
expansion of a are not in some fixed finite set. This means we can not only automatically
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Decidability for Sturmian words

prove theorems about all characteristic Sturmian words, but also prove theorems about
all characteristic Sturmian words whose slope is one of these sets. There is a limit to this
technique. If we add a predicate for the set of all « € Irr such that the terms of continued
fraction expansion of « are bounded, or add a predicate for the set of elements in Irr whose
continued fractions has strictly increasing terms, then our method is unable to conclude
whether the resulting structure has a decidable theory. See Section 6 for a more precise
statement about what kind of predicates can be added.

The proof of Theorem C follows closely the proof from [7] of the w-automaticity of R,, for fixed
quadratic a. Here we show that the construction of the Biichi automata needed to represent
Ra is actually uniform in «. See Abu Zaid, Gradel, and Reinhardt [20] for a systematic
study of uniformly automatic classes of structures. Deduction of Theorem C from this result
is then rather straightforward. The key ingredient to establish the w-automaticity of R,
is an automaton that can perform addition in Ostrowski-numeration systems. By [9] there
is an automaton that recognizes the addition relation for a-Ostrowski numeration systems
for fixed quadratic a. So for a fixed quadratic number, there exists a 3-input automaton
that accepts the a-Ostrowski representations of all triples of natural numbers x,y, z with
x4+ y = z. In order to prove Theorem C, we need a uniform version of such an adder. This
general adder is described in Baranwal, Schaeffer, and Shallit [2]. There a 4-input automaton
is constructed that accepts 4-tuples consisting of an encoding of a real number « and three
a-Ostrowski representations of natural numbers x, y, z with x4+y = z. See Section 4 for details.

As mentioned above, an implementation of the decision algorithm provided by Theorem A
can be used to study Sturmian words. We created a software program called Pecan [15]
that includes such an implementation. Pecan is inspired by Walnut [13] by Mousavi, an
automated theorem-prover for deciding properties of automatic words. The main difference is
that Walnut is based on finite automata, while Pecan uses Biichi automata. In our setting it
is more convenient to work with Biichi automata instead of finite automata, since the infinite
families of words we want to consider—like Sturmian words—are indexed by real numbers.
Section 7 provides more information about Pecan and contains further examples how Pecan
is used prove statements about Sturmian words. Pecan’s implementation is discussed in more
detail in [16].
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2 Preliminaries

Throughout, i, j, k, £, m, n are used for natural numbers. Let X,Y be two setsand Z C X xY.
For z € X, we let Z, denote the set {y € Y : (z,y) € Z}. Similarly, given a function
f: X xY — W and z € X, we write f, for the function f, : Y — W that maps y € Y to

f(z,y).

Given a (possibly infinite word) w over an alphabet X, we write w; for the i-th letter of
w, and w|, for wy - --w,. We write |w| for the length of w. We denote the set of infinite
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words over X by 3¢. If ¥ is totally ordered by an <, we let <)cx denote the corresponding
lexicographic order on X“. Letting u,v € X¥, we also write u <colex v if there is a maximal ¢
such that u; # v;, and u; < v; for this i. Note that while <)cx is a total order on ¢, the
order <colex is only a partial order. However, for a given o € X, the order <olex is a total
order on the set of all words v € X* such that v; is eventually equal to o.

A Biichi automaton (over an alphabet Y) is a quintuple A = (Q, X, A, I, F') where @Q is
a finite set of states, X is a finite alphabet, A C @ x ¥ X @ is a transition relation, I C @ is
a set of initial states, and F' C () is a set of accept states.

Let A = (Q,%,A,1,F) be a Biichi automaton. Let ¢ € ¥¥. A run of ¢ from p is an
infinite sequence s of states in @ such that so = p, ($n,0n, sSnt1) € Aforalln < |o]. If p € I,
we say s is a run of ¢. Then o is accepted by A if there is a run sgsy - -+ of o such that
{n : s, € F} is infinite. We call this run an accepting run. We let L(.A) be the set of words
accepted by A. There are other types of w-automata with different acceptance conditions,
but in this paper we only consider Biichi automata.

Let 3 be a finite alphabet. We say a subset X C X% is w-regular if it is recognized by
some Biichi automaton. Let uq,...,u, € X¢. We define the convolution c(u1,...,u,) of
U, ..., U, as the element of (X")¥ whose value at position ¢ is the n-tuple consisting of the
values of uy, ..., u, at position i. We say that X C (X¢)" is w-regular if ¢(X) is w-regular.

» Fact 2. The collection of w-regular sets is closed under union, intersection, complementa-
tion and projection.

Closure under complementation is due to Biichi [5]. We refer the reader to Khoussainov and
Nerode [11] for more information and a proof of Fact 2. As consequence of Fact 2, we have
that for every w-regular subset W C (X¢)™*" the set {s € (X¥)™ : Vt e (X¥)" (s,t) € W}
is also w-regular.

2.1 w-regular structures

Let U = (U; Ry, ..., Ry) be a structure, where U is a non-empty set and Ry, ..., R, are
relations on U. We say U is w-regular if its domain and its relations are w-regular.

Biichi’s theorem [5] on the decidability of monadic second-order theory of one successor
immediately gives the following well-known fact.

» Fact 3. Let U be an w-reqular structure. Then the theory FO(U) is decidable.

In this paper, we will consider families of w-regular structures that are uniform in the
following sense. Fix m € N and a map ar: {1,...,m} — N. Let Z be a set and for z € Z
let U, be a structure (U,; Ry 2, ..., Ry, ) such that R, , C Ufr(i). We say that (U,).cz is a
uniform family of w-regular structures if

{(z,y) : y€U,} is w-regular,
{91, Yar) © W1s- -+ Yar(i)) € Ri 2} is w-regular for each i € {1,...,m}.
From Biichi’s theorem, we immediately obtain the following.
» Fact 4. Let (U.).cz be a uniform family of w-reqular structures, and let ¢ be a formula

in the signature of these structures. Then the set {(z,u) : z € Z,u € Uy, U, = p(u)} is
w-regular, and the theory FO({U, : z € Z}) is decidable.
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Decidability for Sturmian words

Proof. When ¢ is an atomic formula, the statement follows immediately from the definition
of a uniform family of w-regular structures and the w-regularity of equality. By Fact 2, the
statement holds for all formulas. |

2.2 Binary representations

For k € N5y and b = bobiby - - - by, € {0,1}*, we define [b] := > "1 b;k*. For N € N we say
b€ {0,1}* is a binary representation of N if [b] = N.

Throughout this paper, we will often consider infinite words over the (infinite) alphabet
{0,1}*. Let []2 : ({0,1}*)¥ — N¥ be the function that maps v = ujus--- € ({0,1}*)* to
[u1]2[uz]2]us]z - - - We will consider the following different relations on ({0,1}*)«.

Let uw,v € ({0,1}*)“. We write u <jex,2 v if [u]s is lexicographically smaller than [v];. We
write u <colex,2 v if there is a maximal ¢ such that [u;]2 # [vi]2, and [u]2 < [v;]2. Note that
while <jex 2 is a total order on ({0,1}*)“, the order <golex,2 is only a partial order. However,
<colex,2 18 a total order on the set of all words v € ({0,1}*)“ such that [v]; is eventually 0.
Let u = ujug -+ ,v =vvg--- € ({0,1}*)“. Let k be minimal such that [ug]s # [vk]2. We
write u <alex,2 v if either k is even and [ux]s < [vg]2, or k is odd and [ug]2 > [vg]a.

2.3 Ostrowski representations

We now introduce Ostrowski representations based on the continued fraction expansions of
real numbers. We refer the reader to Allouche and Shallit [1] and Rockett and Sziisz [18] for
more details. A finite continued fraction expansion [ag; a1, ...,a;] is an expression of

the form )
an + 1
ay + —————
et

ag

For a real number «, we say [ag;a1,...,ak,...] is the continued fraction expansion of
o if @ = limg_olag; a1, ..., ax] and ag € Z, a; € N5 for ¢ > 0. In this situation, we write
« = [ag; a1, ...|. Every irrational number has precisely one continued fraction expansion. We
recall the following well-known fact about continued fractions.

» Fact 5. Let o = [ag;a1,...],¢/ = [aj;a],...] € R be irrational. Let k € N be minimal

such that ay, # aj.. Then o < o if and only if

k is even and ap < a., or
k>
k is odd and aj > a;.

For the rest of this subsection, fix a positive irrational real number o € (0,1) and let
[ag; a1, ag, . ..] be the continued fraction expansion of a.

Let k > 1. A quotient py/q; € Q is the k-th convergent of « if p, € N, ¢, € Z,
ged(pg, gr) = 1 and 2—: = [ag;a,...,ax]. Set p_1 :=1,¢g_1 := 0 and pg := ag,qo := 1. The
convergents satisfy the following equations for n > 1:

Pn = apPn—1 +Pn-2, Gn = Anfdn—1 + gn—2.

The k-th difference [y of « is defined as 8y := qra — pr. We use the following facts about
k-th differences: for all n € N
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1. B, > 0 if and only if n is even,
2. Bo>—P1> 02> —pF3>pP4>...,and
3. _571 = an+25n+1 + an+4ﬁn+3 + an+6/8n+5 +....

We now recall a numeration system due to Ostrowski [17].

» Fact 6 ([18, Ch. II-§4]). Let X € N. Then X can be written uniquely as

N
X = an-l-IQn- (1)
n=0

where 0 < by < a1, 0 <b,i1 < apg1 and b, = 0 whenever b1 = ap41.

For X € N satisfying (1) we write X = [b1bs - - bpbpt1]a and call the word byby - - - b1 an
a-Ostrowski representation of X. This representation is unique up to trailing zeros. Let
X,Y € Nand let b1by - -- b, 41 and cqca - - - ¢p41 be a-Ostrowski representations of X and Y
respectively. Since Ostrowski representations are obtained by a greedy algorithm, one can see
easily that X <Y if and only if b1bs - - - b,, 1 is co-lexicographically smaller than cicg - - ¢py1-

We now introduce a similar way to represent real numbers, also due to Ostrowski [17]. Let
I,, be the interval [|a] — a,1+ [a] — ).

» Fact 7 (cp. [18, Ch. I.6 Theorem 1]). Let x € I,. Then x can be written uniquely as

Z br11Bk, (2)
k=0

where by, € Z with 0 < by < ag, and bg—1 = 0 whenever by, = ag, (in particular, by # a1 ), and
by # ay for infinitely many odd k.

For x € I, satisfying (2) we write © = [b1b2 -], and call the infinite word biby--- the
a-Ostrowski representation of x. This is closely connected to the integer Ostrowski repres-
entation. Note that for every real number there a unique element of I, such that that their
difference is an integer. We define f, : R — I, to be the function that maps = to = — u,
where u is the unique integer such that x —u € I,.

» Fact 8 ([7, Lemma 3.4]). Let X € N be such that chvzo bit1qr ts the a-Ostrowski
representation of X. Then fo(aX) = > poobit1Bk is the a-Ostrowski representation of
falaX), where byy1 =0 for k> N.

Since B > 0 if and only if & is even, the order of two elements in I, can be determined by
the Ostrowski representation as follows.

» Fact 9 ([7, Fact 2.13]). Let z,y € I, with © # y and let [b1bz---]o and [cica -] be the
a-Ostrowski representations of x and y. Let k € N be minimal such that by # c. Then
x <y if and only if

(i) bp+1 < cpy1 if k is even;
(i) bxy1 > cxv1 if k is odd.
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3 #-binary encoding

In this section, we introduce #-binary coding. Fix the alphabet ¥4 := {0,1,#}. Let Hy
denote the set of all infinite ¥4-words in which # appears infinitely many times. Clearly
H, is w-regular.

Let Cy : ({0,1}*)¥ — Ho map an infinite word b = b1babs - -+ over {0,1}* to the infinite
Yu-word #bi #ba#bs# - - - We note that the map Cy is a bijection.

Let u = ujuguz -+ ,v = vivug -+ € E“#i. We say v and v are aligned if for all 1 € N
u; = # if and only if v; = #.

This defines an w-regular equivalence relation on 3. We denote this equivalence relation by
~4. The following fact follows easily.

» Fact 10. The following sets are w-regular:

{(u,v) € HZ : u~y v and C;l(u) <lex,2 C;l(v)}
{(u,v) € HZ, : u~4 v and C;l(u) <colex,2 Cﬁ;l(v)},
{(u,v) € HY : u~y v and C;l(u) <alex,2 C;l(v)}.

3.1 #-binary coding of continued fractions
We now code the continued fraction expansions of real numbers as infinite ¥4-words.

» Definition 11. Let « € (0,1) be irrational such that [0;a1,as, .. .| is the continued fraction
expansion of a. Let u = ujug --- € ({0,1}*)% such that u; € {0,1}* is a binary representation
of a; for eachi € Z>o. We say that Cy(u) is a #-binary coding of the continued fraction

of a.
Let R be the set of elements of X% of the form (#(0|1)*1(0[1)*)*. Obviously, R is w-regular.

» Lemma 12. Let w € R. Then there is a unique irrational number a € [0,1] such that w is
a #-binary coding of the continued fraction of .

The proof of Lemma 12 is in Appendix A. For w € R, let a(w) be the real number given by
Lemma 12. When v = (vy,...,v,) € R™, we write a(v) for (a(v1),...,a(v,)).

Even though continued fractions are unique, their #-binary codings are not, because binary
representations can have trailing zeroes. This ambiguity is required in order to properly
recognize relationships between multiple numbers, as one of the numbers involved may
require more bits in a coefficient than the other(s). Occasionally we need to ensure that all
possible representations of a given tuple of numbers are contained in a set. For this reason,
we introduce the zero-closure of subsets of R™.

» Definition 13. Let X C R™. The zero-closure of X is {u € R™ : Fv € X a(u) =a(v)}.
» Lemma 14. Let X C R"™ be w-reqular. Then the zero-closure of X is also w-reqular.

The essence of the proof is that trailing zeroes are the only way that #-binary codings of the
same number can differ. The details of proof are technical and can be found in Appendix A.

» Lemma 15. The set {(w1,ws) € R? : w1 ~gx wy and a(w;) < a(ws)} is w-regular.

Proof. Let wy,ws € R be such that wy ~% wy. By Fact 5 we have that a(wy) < a(ws) if
only C’;(wl) <alex,2 C’;l(wg). Thus w-regularity follows from Fact 10. <
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» Lemma 16. Let a € [0,1) be a quadratic irrational. Then {w € R : a(w) = a} s
w-reqular.

Proof. The continued fraction expansion of a is eventually periodic. Thus there is an
eventually periodic u € ({0,1}*)“ such that Cx(u) is a #-binary coding of the continued
fraction of a. The singleton set containing an eventually periodic string is w-regular. It
remains to expand this set to contain all representations via Lemma, 14. <

> Lemma 17. The set {w € R : a(w) < 1} is w-regular.

Proof. Let a(w) = [0; a1, az,...]. It is easy to see that a(w) < 3 if and only if a; > 1. Thus
we need only check that a; # 1. The set of w € R for which this true is just R\ Y, where
Y C 3 is given by the regular expression #10*(#(0U 1)*)“. <

3.2 #-Ostrowski-representations
We now extend the #-binary coding to Ostrowski representations.

» Definition 18. Let v,w € (Z4)¥, let = x12023--- € N¥ and let b = bibabs--- €
({0,1}*)“ be such that w = Cy(b) and [bi]a = x; for each i.

For N € N, we say that w is a #-v-Ostrowski representation of X if v and w are
aligned and z is an a(v)-Ostrowski representation of N.

For c € I, we say that w is a #-v-Ostrowski representation of c if v and w are
aligned and x is an a(v)-Ostrowski representation of c.

We let A, denote the set of all words w € X% such that w is a #-v-Ostrowski representation
of some ¢ € Iy, and similarly, by Afin the set of all words w € Y, such that w is a
#-v-Ostrowski representation of some N € N.

» Lemma 19. The sets
A= (v w) : ve Rwe AT}, and A= {(v,w) : v€ Rw € A,}.
are w-reqular. Moreover, A C A,

The straightforward proof is in Appendix A.

» Definition 20. Let v € R. We define Z, : AT™ — N to be the function that maps w to the
natural number whose #-v-Ostrowski representation is w.

Similarly, we define O, : Ay — I () to be the function that maps w to the real number whose
#-v-Ostrowski representation is w.

» Lemma 21. Letv e R. Then Z, : Ag“ — N and O, : Ay — I are bijective.
The proof is in Appendix A.
» Definition 22. Let v € R. We write 0, for Z,(0), and 1, for Z;1(1).

» Lemma 23. The relations 0, = {(v,0,) : v € R} and 1, = {(v,1,) : v € R} are
w-regular.

» Lemma 24. Let s € A", Then a(v)Z,(s) — O,(s) € Z and

Ov(]-'u> = {a(v) Zfa(v) = %;

a(v) —1 otherwise.

14:9
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Again, proofs of these lemmas are in Appendix A.
» Lemma 25. The sets

) EXL 1 oste AMMAZ(s) < Z,(t)},

<= {(
<:={(v,5,t) €5 : s,t € Ay AOy(s) < Oy(1)}

(

are w-regular.

v, S
v, S

Proof of Lemma 25. For <" first recall that for X,Y € N and « irrational, we have
X <Y if and only if the a-Ostrowski representation of X is co-lexicographically smaller than
the a-Ostrowski representation of Y. Therefore, we need only recognize co-lexicographic
ordering on the list of coefficients, with each coefficient ordered according to binary. This
follows immediately from Fact 10.

For <, note that by Fact 9 the usual order on real numbers corresponds to the alternative
lexicographic ordering on real Ostrowski representations. Therefore, we need only recognize
the alternating lexicographic ordering on the list of coefficients, with each coefficient ordered
according to binary. This follows immediately from Fact 10. <

We consider R" as a topological space using the usual order topology. For X C R", we

denote its topological closure by X.

» Corollary 26. Let W C (Z;;H)* w-regular be such that W C {(v, $1,...,5p) € (E;ﬂ)*
S1y..+,8n € Ay}. Then the following set is also w-regular:

W ={(v,s1,...,8,) € (Z%“)* D81y 80 € Ay A (Oy(81)y- -, 04(8,)) € O(Wy) }.

Proof. Let (v,s1,...,8,) € (E;‘H)* be such that s1,...,s, € A,. Let X; = O,(s;). By the
definition of the topological closure, we have that (X1,...,X,) € O(W,) if and only if for all
Yi,..Y0,Z1,...,Z, e RwithY; < X; < Z; for i = 1,...,n there are X' = (X1,...,X]) €
O(W,,) such that V; < X! < Z; for i = 1,...,n. Thus by Lemma 25, (v, s1,...,8,) € W if
and only if for all t1,...¢,,u1,...,u, € A, with t; < s; < u;, there are s’ = (s,...,s),) € W,

such that ¢; < s, < Z; for i = 1,...,n. The latter condition is w-regular by Fact 2. |

4 Recognizing addition in Ostrowski numeration systems

The key to the rest of this paper is a general automaton for recognizing addition of Ostrowski
representations uniformly. We will prove the following.

» Theorem 27. The set @ := {(v, 51, 52,53) : 51,82,83 € ABAZ, (51)+ Z,(52) = Z,(53)}
is w-reqular.

Proof. In [2, Section 3] the authors generate an automaton A over the alphabet N* such
that a finite word (dy, 1, y1,21)(dz2, T2, Y2, 22) = * * (A, Ty Yms 2m) € (N*)* is accepted by A
if and only if there are d,,41,... € Nand z,y, z € N such that for « = [0;d;,ds,...] we have

[T122 .. Zmla =2, [Y1Y2 - - YUmla = U, [2122- .. Zm]a = 2, and 2+ y = 2.

We now describe how to adjust the the automaton A for our purposes. The input alphabet
will be X7, instead of N*. The new automaton will take four inputs w, s1, s2, s3, where
51, 82,83 € Al We can construct this automaton as follows:
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s 1. Begin with the automaton A from [2].

w2 2. Add an initial state that transitions to the original start state on (#,#, #, #). This will
403 ensure that the first character in each string is #.

s 3. Replace each transition in the automaton with a sub-automaton that recognizes the

405 corresponding relationship between w, s1, S2, 83 in binary. As an example, one of the
406 transitions in Figure 3 of [2] is given as “—d; + 1,” meaning that it represents all
a07 cases where, letting w;, s15, S2;, S;3 be the ith letter of w, s1, s2, s3 respectively, we have
408 83; — S1; — S9; = —w; + 1. This is an affine and hence an automatic relation. Thus it can
409 be recognized by a sub-automaton.

a0 4. The accept states in the resulting automaton are precisely the accept states from the
a1 original automaton.

a2 The resulting automaton recognizes @, |

sz The automaton constructed above has 82 states. Using our software Pecan, we can formally
sa  check that this automaton recognizes the set in Theorem 27. Following a strategy already
a5 used in Mousavi, Schaeffer, and Shallit [14, Remark 2.1] we check that our adder satisfies
a6 the standard recursive definition of addition on the natural numbers; that is for all z,y € N

417 O-I-y:y
a1 s(z)+y=s(z+y)

419

20 where z,y € N and s(x) denotes the successor of  in N. The successor function on N can be
w1 defined using only < as follows:

422 s(x) =y if and only if (z <y) A (Vz (z < x) V (2 > y)).
w23 Thus in Pecan we define bco_succ(a,x,y) as

45 bco_succ(a,x,y) := bco_valid(a,x) A bco_valid(a,y) A bco_leq(x,y)
s A —bco_eq(x,y) A Vz. bco_valid(a,z) => (bco_leq(z,x) V bco_leq(y,z))

w28 where bco_eq recognizes {(x,y) : © = y}, bco_leq recognizes {(z,y) : = <colex ¥}, and
w29  bco_valid recognizes Ag,. We now confirm that our adder satisfies the above equations using

a0 the following Pecan code:
431
422 Let x,y,z be ostrowski(a).

433 Theorem ("Addition base case (0 + y = y).", {

434 Va. Vx,y,z. bco_zero(x) => (bco_adder(a,x,y,z) < bco_eq(y,z))
435 } ) .

43 Theorem ("Addition inductive case (s(x) + y = s(x + y)).", {

437 Va. Vx,y,z,u,v. (bco_succ(a,u,x) A bco_succ(a,v,z))

438 => (bco_adder(a,x,y,z) < bco_adder(a,u,y,v))
w3

w1 In the above code bco_adder recognizes @1, beo_zero recognizes 0., and bco_succ recognizes
w {(v,2,y): 2,y € Ain 7, (x) +1 = Z,(y)}. Pecan confirms both statements are true. This
sz proves Theorem 27 modulo correctness of Pecan and the correctness of the implementations
aa  of the automata for bco_eq, bco_leq, bco_valid and bco_zero. For more details about Pecan,
ws  see Section 7.

446

a7 Using Corollary 26 we can extend the automaton in Theorem 27 to an automaton for addition
ws  modulo 1 on I,. The details are in Appendix B.

uo  » Lemma 28. The set @ := {(v, $1, 82, $3) : 1, S2, 83 € AyAOy(51)+0,(s2) = Oy(s3) (mod 1)}
w0 is w-regular. Moreover, ®™ C @.
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5  The uniform w-regularity of R,

In this section, we turn to the question of the decidability of the logical first-order theory
of R4. Recall that R, := (R, <,+,Z,aZ) for a € R. The main result of this section is the
following:

» Theorem 29. There is a uniform family of w-regular structures (D, )yer such that D, ~
Ra(v) for each v € R.

Theorem 29 then hinges on the following lemma.

» Lemma 30. There is a uniform family of w-reqular structures (Co)acr Such that Cq ~
([~ala), ), <,+,N,a(a)N) for each a € R.

The proof of Lemma 30 is a uniform version of the argument given in [7] that also fixes
some minor errors of the original proof. By Lemma 10 and Theorem 27, we already know
that Z, : (Afin, <fin gfin) (N, <, +) is an isomorphism for every v € R. As our eventual
goal also requires us to define the set aN, it turns out to be much more natural to instead
use the isomorphism a(v)Z, : (Afin, <fin afin)y 5 (o (v)N, <, +) and recover Z. We do so by

following the argument in [7]. The full proof is availabe in Appendix C.

Proof of Theorem 29. We just observe that ([—a,00), <,+,N,aN) defines (in a matter
uniform in «) an isomorphic copy of R,. Now apply Lemma 30. |

6 Decidability results

We are now ready to prove the results listed in the introduction. We first recall some
notation. Let £,, be the signature of the first-order structure (R, <,+,Z), and let £, , be
the extension of £,, by a unary predicate. For o € R+, let R, denote the L,, ,-structure
(R, <, +,7Z,aZ). For each L, .-sentence ¢, we set R, :={v € R : Ry | ¢}

» Theorem 31. Let ¢ be an L, o-sentence. Then R, is w-regular.

Proof. By Theorem 29 there is a uniform family of w-regular structures (D, ),cr such that
such that D, >~ R, () for each v € R. Then R, = {v € R : D, |= ¢}. This set is w-regular
by Fact 4. |

Let N = (R; (Ry)y, (X)XCR" w-regular) be the relational structure on R with the relations
R, for every L-sentences ¢ and X C R™ w-regular. Because N is an w-regular structure,
the theory of N is decidable.

We now proceed towards the proof of Theorem C. Recall that Irr := (0,1) \ Q.

» Definition 32. Let X C Irr". Let Xg be defined by
Xr:={(vi,...,0n) €ER™ : w1 ~p vy ~g o~ v A (a(v1),...,a(v,)) € X}
We say X is recognizable modulo ~4 if Xp is w-regular.

» Lemma 33. The collection of sets recognizable modulo ~y is closed under Boolean
operations and coordinate projections.
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Proof. Let X,Y C Irr be recognizable modulo ~4. It is clear that (X NY)r = XgNYx.
Thus X NY is recognizable modulo ~x. Let X¢ be Irr™ \ X, the complement of X. For ease
of notation, set E := {(v1,...,0,) € R™ : w1 ~g Vg ~g -+ ~zu vy }. Then

(X)Dr=A(v1,...,v0) €ER"™ 1 w1 ~yg Vg~ - o Uy A ((v1), .., (vy)) & X}
=ENn{(v,...,v,) € R" : (a(v1),...,a(v,)) & X}
=En{(v1,...,vn) € R" :(a(v1),...,avy)) § X V (v ~op Vg ~oge -+~ U) }
=En(R"\ Xg).

This set is w-regular, and hence X¢ is recognizable modulo ~.

For coordinate projections, it is enough to consider projections onto the first n—1 coordinates.
Let n > 0 and let 7 be the coordinate projection onto first n — 1 coordinates. Observe that
7(X)={(a1,...,an_1) ER"™ : Ja,, €R (ay,...,0p_1,0,) € X}. Thus 7(X)g is equal
to {(vi,...,vp—1) E RV v~y s~ vpg A, (avr), . a(vn—1), ) € X} Note
that v — «a(v) is a surjection R — (0,1) \ Q. Thus 7(X)g is also equal to:

{(vi, oy Un1) E R vy vy oo v vy ATy, (alvr), - avn)) € X T

Unfortunately, this set is not necessarily equal to w(Xpg). There might be tuples
(v1,...,Vn—1) such that no v, can be found, because it would require more bits in one
of its coefficients than vy, ...,v,_1 have for that coefficient. But 7n(Xpg) always contains
some representation of a(v1),...,a(v,—1) with the appropriate number of digits. We need
only ensure that removal of trailing zeroes does not affect membership in the language. Thus
m(X)g is just the zero-closure of 7(Xg). Thus 7(X)pg is w-regular by Lemma 14. <

» Theorem 34. Let Xy,..., X, be recognizable modulo ~4 by Biichi automata A, ..., A\,
and let Q be the structure (Irr; Xq,...,Xy). Then the theory of Q is decidable.

Proof. By Lemma 33 every set definable in Q is recognizable modulo ~4. Moreover, for
each definable set Y the automaton that recognizes Y modulo ~4, can be computed from the
automata A, ..., A\. Let ¥ be a sentence in the signature of Q. Without loss of generality,
we can assume that 1 is of the form Iz x(z). Set Z := {a € Irr" : Q |= x(a)}. Observe
that Q k= v if and only if Z is non-empty. Note for every a € Irr" there are vy,...,v, € R
such that vy ~yg vy ~yg -+ ~u v, and (a(v1),...,a(v,)) = a. Thus Z is non-empty if and
only if {(v1,...,v,) € R™ : v1 ~vg Vg ~vgg -~ U A (a(1), ..., avy)) € Z} is non-empty.
Thus to decide whether Q = 1, we first compute the automaton B that recognizes Z modulo
~4, and then check whether the automaton accepts any word.

<

We are now ready to prove Theorem C; that is decidability of the theory of the structure
M = (Irr, <, (My), (4)qeIrrquaq )s Where M, is defined for each L,, ,-formula as M, :=
{aerr : R, E ¢}

Proof of Theorem C. We just need to check that the relations we are adding are all recog-
nizable modulo ~4. By Lemma 15 the ordering < is recognizable modulo ~. By Lemma
16, the singleton {q} is is recognizable modulo ~4 for every ¢ € Irrguaq. Since M, = a(R,),
recognizability of M, modulo ~ follows from Theorem 31. |

We can add to M a predicate for every subset of Irr” that is recognizable modulo ~, and
preserve the decidability of the theory. The reader can check that examples of subsets of
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Irr recognizable modulo ~4 are the set of all « € Irr such that the terms in the continued
fraction expansion of a are powers of 2, the set of all a € Irr such that the terms in the
continued fraction expansion of a are in (or are not in) some fixed finite set, and the set of
all o € Irr such that all even (or odd) terms in their continued fraction expansion are 1.

7 Automatically Proving Theorems about Sturmian Words

We have created an automatic theorem-prover based on the ideas and the decision algorithms
outlined above, called Pecan [15]. We use Pecan to provide proofs of known and unknown
results about characteristic Sturmian words. We begin by giving automated proofs for
several classical result result about Sturmian words. We refer the reader to [12] for more
information and traditional proofs of these results.

In the following, we assume that a € R and 1, j, k,n, m,p, s are a-Ostrowski representations.
This can be expressed in Pecan as

Let a € bco_standard.
Let i,j,k,n,m,p,s € ostrowski(a).

We write ¢,,0(¢) as $C[i] in Pecan.
» Theorem 35. Characteristic Sturmian words are balanced and aperiodic.

Proof of Theorem 35. To show that a characteristic Sturmian word c,,o is balanced, note
that it is sufficient to show that there is no palindrome w in c,,¢ such that Ow0 and
1wl are in cq (see [12, Proposition 2.1.3]). We encode this in Pecan as follows. The
predicate palindrome(a,i,n) is true when cqli..i +n] = cqpofi..i + n]®. The predicate
factor_len(a,i,n,j) is true when ¢, o[i..i + n] = cq0[j..7 + 1.

Theorem ("Balanced", {

Va. —(Ji,n. palindrome(a,i,n) A
(3j. factor_len(a,i,n,j) A $C[j-1]
(dk. factor_len(a,i,n,k) A $C[k-1]

0 A $C[j+nl
1 A $C[k+n]

0) A
1))

.

Pecan takes 321.73 seconds to prove the theorem.

Encoding the property that a word is eventually periodic is straightforward:

eventually_periodic(a, p) :=
P >0 A In. Vi. if i > n then $C[i] = $C[i+p]

The resulting automaton has 4941 states and 35776 edges, and takes 117.78 seconds to build.
We then state the theorem in Pecan, which confirms the theorem is true.

Theorem ("Aperiodic", {
Va. Vp. if p > O then —eventually_periodic(a, p)
B

<

Let w € {0,1}*. We let w denote the {0, 1}-word obtained by replacing each 1 in w by 0 and
each 0 in w by 1. A word w € {0,1}* is an antisquare if w = v for some v € {0,1}*. We
define Ap : (0,1) \ Q - N U {oo} to map an irrational o to the maximum order of any anti-
square in ¢4 ¢ if such a maximum exists, and to co otherwise. We let A, : (0,1)\Q — NU{oco}



579
580
581
582
583
584
585
586
587
588
589
590
591

592

593

594

595

596

597
598

599
600

601
602

603

604
605

606
607
608
609

610

8

613

614

615

616

617
618

619

620
621

&3

624

P. Hieronymi, D. Ma, R. Oei, L. Schaeffer, C. Schulz and J. Shallit

map o to the maximum length of any antisquare in c, o if such a maximum exists and oo
otherwise. Note that Ap(a) = 240 ().

R

We let w® denote the reversal of a word w. We say a word w is a palindrome if w = w’.

A word w € {0,1}* is an antipalindrome if w = w®. We set Ap : (0,1)\ Q — NU {oc}
to be the map that takes an irrational o to the maximum length of any antipalindrome in
Ca,0 if such a maximum, and to co otherwise. We will use Pecan to prove that Ap(a), Ar ()
and Ap(«) are finite for every a. While the quantities Ap(a), Ap(a) and Ar(«a) can be
arbitrarily large, we prove the new results that the length of the Ostrowski representations
of these quantities is bounded, independent of «.

Let o € (0,1) be irrational and N € N. Let |N|, denote the length of the a-Ostrowski
representation of N, that is the index of the last nonzero digit of a-Ostrowski representation
of N, or 0 otherwise.

» Theorem 36. For every irrational o € (0,1)
Ao(@)]a <4, [Ap(@)]a <4, |AL(@)]a < 6, Ao(a) < Ap(a) < Ap(a) = 240(a).
There are irrational numbers o, § € (0,1) such that Ao(a) = Ap(a) and Ap(B) = AL(S).

Proof. Using Pecan, we create automata which compute Ap, Ap, and Ap:

Ao(a,n) := has_antisquare(a,n) A Vm.has_antisquare(a,m) = m <n
Ap(a,n) := has_antipalindrome(a,n) A ¥m.has_antipalindrome(a,m) = m <n

Ar(a,n) :=has_antisquare_len(a,n) A Vm.has_antisquare_len(a,m) = m <n

We build automata recognizing a-Ostrowski representations of at most 4 and 6 nonzero
digits, called has_4_digits(n) and has_6_digits(n). Then we use Pecan to prove all the
parts of the theorem by checking the following statement.

Theorem (" (i), (ii), (iii), amd (iv)", {

Va. has_4_digits (max_antisquare(a)) A
has_4_digits(max_antipalindrome(a)) A
has_6_digits (max_antisquare_len(a)) A
max_antisquare(a) <= max_antipalindrome (a) A
max_antipalindrome (a) <= max_antisquare_len(a)

.

We also use Pecan to find examples of the equality: when a = [0;3, 3,1], we have Ap(a) =
Ap(a) =2, and when a = [0;4,2,1], we have Ap(a) = Ar(a) = 2. <

» Theorem 37. For every irrational o € (0,1), all antisquares and antipalindromes in cq o
are either of the form (01)* or of the form (10)*.

Proof. We begin by creating a predicate called is_all_01 stating that a subword ¢, o[i..i+n]
is of the form (01)* or (10)*. We do this simply stating that cq o[k] # ca,0lk + 1] for all k
with:1<k<i+n-—1.

is_all 01(a,i,n) :=
Vk. if i <= k A k < i+n-1 then $C[k] # $C[k+1]

We can now directly state both parts of the theorem; Pecan proves both in 76.1 seconds.
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Theorem ("All antisquares are of the form (01) * or (10)~x", {

Va.
).

Vi,n. if antisquare(a,i,n) then is_all O01(a,i,n)

Theorem ("All antipalindromes are of the form (01)~* or (10)~*", {

Va.
).
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« A  Proofs from Section 2

s Proof of Lemma 12. By the definition of R, there is wiws--- € ((0]1)*1(0]1)*)* such that
o8 W = HwiHwaF# - . Since w; € (0/1)*1(0]1)*, we have that w; is a {0, 1}-word containing at
eer least one 1. Let a; be the natural number that a; = [w;]s. Because w; contains a 1, we must
es  have a; # 0. Thus w is a #-binary coding of the infinite continued fraction of the irrational
w0 « = [0;a1,as,...]. Uniqueness follows directly from the fact that both binary expansions
s0 and continued fraction expansions only represent one number. <

s Proof of Lemma 14. Let A be a Biichi automaton recognizing X. We use @ to denote the
w2 set of states of A. We create a new automaton A’ that recognizes the zero-closure of X, as
e03  follows:

(Step 1) Start with the automata A.

(Step 2) For each transition on the n-tuple (#,...,#) from a state p to a state ¢, we add a new
696 state u(p,q) that loops to itself on the n-tuple (0,...,0) and transitions to state ¢ on
697 (#,...,7#). We add a transition from p to u(p,q) on (0,...,0).

(Step 3) For every pair p,q of states of A for which p has a run to ¢ on a word of the form

699 (0,...,0)™(#,...,#) for some m, we add a transition from state p to a new state v(p, q)
700 on (#,...,#), and for every transition out of state g, we create a copy of the transition
701 that starts at state v(p,q) instead. If any original run from state p to state ¢ passes
702 through a final state, we make v(p, q) a final state.

(Step 4) Denote the resulting automaton by A’ and its set of states by Q’.

¢ We now show that L(A’) is the zero-closure of X. We first show that the zero-closure is
s contained in L(A’). Let v € X and w € R be such that a(v) = a(w). Let b =b1bg--- ,c =
w5 cicg € ({0,1}%)¢ such that Cx(b) = v and Cx(c) = w. Since a(v) = a(w), we have that
wr [bi]a = [¢i]2 for i € N. Therefore, for each i € N, the words b; and ¢; only differ by trailing
08 zeroes. Let s = 8189+ € Q¥ be an accepting run of v on A. We now transfer this run into
0 an accepting run s’ = sjsh--- of w on A’. For i € N, let y(i) be the position of the i-th
mo (#,...,7#) in v and let z(4) be the position of the i-th (#,...,#) in w. For each i € N, we

lz(i)-‘rl e 3;(i+1) of states of A’ as follows:

1. If |¢;| = |b;], then ¢; = b;. We set

= define a sequence s

7

oy
o

/ ! —
713 Sz(i)+1 s Sz(i+1) = Sy(i)—‘,—l cee Sy(i+1)’

2. If |¢;] > |bi], then ¢; = b;(0, ..., 0)lel=1b1 We set

7

oy
=

! /
5 Sz()+1 """ Sz(i+1)

716 = Sy(i)+1 " Sy —1 H(Sy(i+1)—15 Sy(i+1)) * *  H(Sy(i+1)—15 Sy(i+1) Sy(i+1)

7 (lei|—]bs|)-times
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Thus the new run follows the old run up to s,(;4+1)—1 and then transitions to one of the
newly added states in the Step 2. It loops on (0,...,0) for |¢;| — |b;| — 1-times before
moving t0 Sy(it1)-

3. If ;] < |bi], then b; = ¢;(0,...,0)P=lel - We set

!

S2(i)+1" " Slz(i+1) = Syl Sy() e Y (Sy(d+ei s Sy(i+1))

The new run utilizes one of the newly added (#,...,#) transitions and corresponding
states added in Step 3.

The reader can now easily check that s’ is an accepting run of w on A’.

We now show that L(A’) is contained in the zero-closure of X. We prove that the only
accepting runs on A’ are based on accepting runs on A with trailing zeroes either added or
removed. Let w = wywsy -+ € L(A’) and let ¢ = ¢1eo- -+ € ({0,1}*)“ be such that Cx(c) = w.
Let ' = s{s5--+ € Q" be an accepting run of w on A’. We construct v € X and a run
s = 8182+ € Q¥ of wy on A such that a(v) = a(w) and s is an accepting run of v. We
start by setting v := wywsy -+ and s:= ssh--- . For each i € N, we replace w; in v and s
in s as follows:

1. If s} € @, then we make no changes to s} and w;.
2. If i = p(p, q) for some p, q € Q, we delete the s in s and delete w; in v.
3. If s; = v(p, q) for some p,q € Q, then we replace

(a) sibyarunt =ty tpyq of (0,...,0)"(#,...,#) from p to ¢, and
(b) w; by (0,...,0)"(#, ..., #).
If v(p, q) is a final state of A’, we choose ¢ such that it passed through a final state of A.

It is clear that the resulting s is in @“. The reader can check s is an accepting run of v on
A and that a(v) = a(w). Thus w is in the zero-closure of X. <

Proof of Lemma 19. The statement that Ai® C A, follows immediately from the definitions
of A" and A and Fact 8. It is left to establish the w-regularity of the two sets.

For (1): Let B D Afin be the set of all pairs (v,w) such that v € R and v ~4 w. Note
that B is w-regular. Let (v, w) € B. Since v and w have infinitely many # characters and
are aligned, there are unique a = ajas--- ,b = biba--- € ({0,1}*)* such that Cx(a) = v,
C4(b) = w and |a;| = |b;| for each i € N. Then by Fact 6, (v,w) € A if and only if

(a) b has finitely many 1 characters;
(b) bl <colex @13

(¢) b; <colex a; for all 1 > 1;

(d) if bz = a;, then bi,1 =0.

It is easy to check that all four conditions are w-regular.
For (2): As above, let (v,w) € B. Since v and w have infinitely many # characters and

are aligned, there are unique a = ajag--- ,b = biba--- € ({0,1}*)* such that Cx(a) = v,
Cy(b) = w and |a;| = |b;| for each ¢ € N. Then by Fact 7, (v,w) € A if and only if

(e) bl <colex @13
(f) b; <colex a; for all 7 > 1;
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(g) if b; = a;, then b;_1 = 0;
(h) b; # a; for infinitely many odd i.

Again, it is easy to see that all for conditions are w-regular. |

Proof of Lemma 21. We first consider injectivity. By Fact 6 and Fact 7 a number in N or
in I,(,) only has one a(v)-Ostrowski representation. So we need only explain why such a
representation will only have one encoding in Afi" (respectively A,). This follows from the
uniqueness of binary representations up to the length of the representation, and from the
fact that the requirement of having the # characters aligned with v determines the length of
each binary-encoded coefficient.

For surjectivity we need only explain why an «(v)-Ostrowski representation can always be
encoded into a string in A" (respectively 4,). It suffices to show that the requirement of
having the # characters aligned with v will never result in needing to fit the binary encoding
of a number into too few characters, i.e. that it will never result in having to encode a natural
number n in binary in fewer than 1 + |log, n] characters. Since the function 1 + [log, n] is
monotone increasing, we can encode any natural number below n in k characters if we can
encode n in binary in k characters. However, by Fact 6 and Fact 7, the coeflicients in an
a(v)-Ostrowski representation never exceed the corresponding coefficients in the continued
fraction for a(v), i.e. b, < ay,.

<

Proof of Lemma 23. Recognizing 0, is trivial, as the Ostrowski representations of 0 are of
the form 0---0 for all irrational «. Thus 0, is just the relation

{(v,w) :v € R,w is v with all 1 bits replaced by 0 bits}.

This is clearly w-regular.

We now consider 1,. Let a = [0;a1,a2,...] be an irrational number. If a; > 1, the
a-Ostrowski representations of 1 are of the form 10---0. If a3 = 1, the a-Ostrowski
representations of 1 are of the form 010---0. Thus, in order to recognize 1., we only need
to be able to recognize if a number in binary representation is 0, 1, or greater than 1. Of
course, this is easily done on a Biichi automaton. <

Proof of Lemma 24. By Fact 8, O,(s) = fo(a(v)Zy(s)). Thus

a(v)Zy(s) = Ou(s) = a(v)Zy(s) = fala(v) Zu(s)),
which is an integer by the definition of f. By the definition of 1, and by Fact 8, we

know O,(1,) = fa(c) is the unique element of I,(, that differs from a(v) by an integer.

If 0 < a(v) < %, then —a(v) < a(v) < 1 — a(v). Thus in this case, a(v) € I, and
0,(1,) = a(v). When 1 < a(v) <1, then —a < a — 1 < 1 — a. Therefore a(v) — 1 € Iy
and O,(1,) = a(v) — 1.

<

B Proofs from Section 3

Proof of Lemma 28. First, let v, s, 52, 53 be such that sy, 52,53 € A", We claim that on
this domain, (sy, s2, 83) € @, if and only if (s1, 52, s3) € ®f". By Fact 8 we know that for all
s € Afin

a(v)Zy(8) — Oy(s) =0 (mod 1). (3)
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Let (s1, 82, 83) € @M. Then by (3)

O,(s3) = a(v)Z,(s3) (mod 1)
= a(v)Z,(s1) + a(v)Z,(s2)
0, (s1) + Oy(s2) (mod 1).

Thus (s1, $2,83) € By-

Now suppose that (s1, S2,83) € @,. Then by (3) and the definition of @, we obtain that
a(v)Z(s1) + a(v)Z(s2) = a(v)Z(s3) (mod 1). However, then a(v)(Z(s1) + Z(s2) — Z(s3)) =
0 (mod 1). Since « is irrational, we obtain Z(s1)+ Z(s2) — Z(s3) = 0. Thus (s1, s2, s3) € @i

Thus for each v € R, we have @, N (Af")3 = @fin. Let v € R. We observe that the set
O, (Af™) is dense in O,(A,). Since addition is continuous, it follows that O, (") is dense
in O,(®,). Since the graph of a continuous function is closed, the topological closure of
O, (&fi") is O,(®,). Thus @ is w-regular by Corollary 26. <

C Proofs from Section 4

In this section we present the proof of Lemma 30. We first state and prove three lemmas
used in the proof.

» Lemma 38. Let v € R, and let t1,ts,t3 € A, be such that t1 ®, to = t3. Then

Ov(tg,) +1 if 0, <, t1 and t3 <, to;
Ov(tl> + Ou(t2> = Ov(tg) -1 lf t1 <y 0y and to <y t3;
O,(t3) otherwise.

Proof. For ease of notation, let @ = «(v), and set x; = O, (t;) for i = 1,2,3. By definition
of @, we have that x1, 72,23 € I5(y) With 21 + 2 = 23 (mod 1). Note that ; <, t; if and
only if x; < ;.

We first consider the case that 0 < z1 and x3 < x5. Thus 7 + 22 > 1 — «. Note that

—a=1l-a—-1<z+22—-1<(l-a)+(1l-a)—1=1-2a<1—a.

Thus 1 + 22 — 1€ I, and 3 = x1 + x2 — 1.
Now assume that x1 < 0 and 9 < 3. Then x1 + x5 < —«, and therefore

l—a>r+z+1>(—a)+(—a)+1=(1—-a)—a> —a.
Thus 21 + 29 + 1 € I, and hence x3 = 1 + x5 + 1.
Finally consider that 0,x; are ordered the same way as xo, x3. Since x1 + 22 = 23 (mod 1),
we know that |x; — 0| and |x3 — xs| differ by an integer k. If k > 0, would imply that
one of these differences is at least 1, which is impossible within the interval I,. Therefore

r1 — 0 = x3 — x5 and hence 3 = x1 + xo.
<

ForieN,seti, :=1,®---P1,.
—_———

i times
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» Lemma 39. The set F := {(v,5) € A" . Z,(s)a(v) < 1} is w-regular, and for each
(v,8) e F

O, (s) = {a(U)Zv(S) if (oz(v). +1)Zy(s) < 1;
a(v)Zy,(s) — 1 otherwise.

Proof. By Lemma 17, we can first consider the case that a(v) > % In this situation, F, is
just the set {0,,1,}, and hence obviously w-regular.

Now assume that a(v) < % Let w be the <f"-minimal element of A" with w <, 0,. We
will show that

F,={sec Alin . s=<fing)
Then w-regularity of F' follows then immediately.

Let n € N be maximal such that na(v) < 1. It is enough to show that Z,(w) = n. By Lemma
24, 0,(1,) = a(v). Hence 1a(v),2a(v),...,(n—1)a(v) € Iyw), but na(v) > 1 —a(v). Then
fori=1,...,n—-1

0,(iy) = ia(v), Oy(ny) =na(v) —1 <0.
Soi, =0, fori=1,...,n, but n, <0,. Thus n, = w and Z,(w) = n. <

» Lemma 40. Let v € R and t € A", Then there is an s € F, and t' € A" such that
t' =, 0 and t =t @, s. In particular, A" = {t € Ai* . ¢t <,0,} @, F,.

Proof of Lemma 40. Let n € N be maximal such that na < 1. Let t € A", We need to
find s € A" and u € F, such that t = s ®f" v. We can easily reduce to the case that ¢ = 0,
and Z,(t) > n.

Let i € {0,...,n} be such that 0 > O,(t) —ia > —a. Then let s € Af® be such that
Z,(s) = Zy(t) —i. Note t = s @™ i,. Thus we only need to show that s < 0,.

To see this, observe that by Lemma 39
0u(8) + ai = 0,(s) + Oy (iy) = Oy(t) (mod 1).

Since Oy (t) — ia(v) € Iy, we know that Oy(s) = O,(t) — ia(v) < 0. Therefore O, (s)

=
0,. <

Proof of Lemma 30. Define B C Af® to be {(v,s) € Afin : s <, 0,}. Clearly, B is
w-regular. We now define <Z and @7 such that for each v € R, the structure (B, <2, ®5)
is isomorphic to (N, <, +) under the map g, defined as g,(s) = a(v)Z,(s) — O,(s).

We define <% to be the restriction of <" to B. That is, for (v, s1), (v,s2) € B we have
(v,51) <P (v, 52) if and only if (v,s1) <" (v, 52).

It is immediate that < is w-regular, since both B and <fi" are w-regular.

We define @8 as follows:
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(v, 81 By S2) if 51 @R 55 <, 0y

(v, 81 By 82 By 1,) otherwise.

o (1) © (0,5) = {

s We now show that g, (s1 ©F s2) = g,(s1) + gu(s2) for every s, s2 € B,.

876

sn Let (v,s1), (v,s2) € B. We first consider the case that s; @, s2 <, 0,. By Lemma 38,
ss Oy(s1 Dy 52) = Oy(s1) + Oy(s2). Thus

79 go(s1 @7 52) = gu(s1 By 52)

(V) Zy (51 By $2) — Ou(51 By 82)
Zy(81) + aZy(s2) — Oy(s1) — Oy(s2)
9u(51) + gu(s2).

©
®
S

«
«

)
©
2

s« Now suppose that s; @, s2 =4 0,. Since —a(v) < O,(s1), 0y (s2) < 0, we get that
885 1—a(v) > Ou(s1) + Oy(s2) + a(v) > —af(v).

sss Lhus by Lemma 24,

w Ou(s1 @y 52 @y Ly) = Oy(s1) + Ou(s2) + a(v).

s We obtain

889 gv(sl @vB 32) = gv(sl Dy s2 Dy ]—v)

890 = aZ,(s1 Dy s2 Dy 1) — Oy(51 By $2 Dy 1)
o1 = a(v)(Zs(s1) + Zu(52)) + a(v) — Oy(s1) — Ou(s2) — (v)
% = gu(51) + gu(s52)-

se  Since s1 <, so if and only if Z,(s1) < Z,(s2), we get that g, is an isomorphism between
895 (Bm-<§,@f) and (N, <, +).
896

sv  Let C be defined by
508 {(v,s,t) € (E‘%i)?’ : (v,s) € BA (v,t) € A}.

0o Clearly C' is w-regular. Let T, : C\, — [—a(v),00) C R map (s,t) — gy(s) + Oy(t).

900

o1 Note that T;, is bijective for each v € R, since every real number decomposes uniquely into a
o2 sum n +y, where n € Z and y € I,,.

903

ws  We define an ordering <$ on C, lexicographically: (si,t1) <$ (sa,t2) if either

Name ‘ Definition
A {(v,w) : v € R, w is a #-v-Ostrowski representation}

Afin {(v,w) : v € R, w is a #-v-Ostrowski representation and eventually 0}
B {(v,s) € A" . 5<,0,}
C {(v,s,t) : (v,s) € BA(v,t) € A}

Table 1 Definitions of sets used in the proof
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51 =B s, or
s1 = S and t1 <, to.

The set
{(’U,Sl,tl,SQ,tg) : (Sl,tl), (Sz,tg) S Cv A\ (Sl,tl) -<UC (SQ,tQ)}

is w-regular. We can easily check that (s1,t;) <& (so,t2) if and only if T, (s1,t1) < Ty(s2,t2).

v

Let 07 be g;1(0) and 17 be g;1(1). Let ©F be the (partial) inverse of ©Z. We define ¢¢
for (s1,t1), (s2,t2) € C as follows:
(51 8P 5o 6B 18 11 @, ta) ift1 <0, Aty <y t1 By to;
(81,751) @UC (82,t2) = (81 @E S92 EBE 1B7t1 @v tg) if Ov < tl A\ tl @v t2 <v tz;
(51 ©F 59,1 @y ta) otherwise.
(Note that @ is only a partial function, as the case where s; = so = 0% and t; < 0, Aty <,

t1 @, t2 is outside of the domain of ©8.) It is easy to check that @ is w-regular. It follows
directly from Lemma 38 that

To((s1,11) @ (s2,t2)) = Tul((s1,11)) + To((s2, t2)).

Thus for each v € R, the function T, is an isomorphism between (C,, <5, &%) and
([—a(v),0),<,+). To finish the proof, it is left to establish the w-regularity of the fol-
lowing two sets:

1. {(v,s,t) € C : T,(s,t) € N},
2. {(v,s,t) € C : Ty(s,t) € a(u)N}.

For (1), observe that the set T, !(N) is just the set {(s,t) € C, : t = 0,}.

For (2), consider the following two sets:

Uy ={(v,s,t) € C : s=t},
Uy ={(v,0,,t) €C : t € F,}

Let 1§ be T,71(1). Set
U:={(v,(s1,t1) ®y (0u,t2)) : (v,51,t1) € U1, (v,04,t2) € Uz, t2 = 0}
U {(U, (Sl,tl) @f) (Ov,tg)@lg) : (U,Sl,tl) EUl,(’U,Ov,tQ) € Us,tg -<0}

The set U is clearly w-regular, since both U; and U, are w-regular. We now show that
T,(U) = a(v)N.

Map Domain Codomain
«@ R Irr
O, Ay Io(w)
Z, Al N
gv = a(v)Zy — Oy B, N
Ty := go + O, Cy [—a(v),00) CR

Table 2 A list of the maps and their domains and codomains.
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14:24  Decidability for Sturmian words

o Let (v,s,8) € Uy and (v,0,,t) € Us. If ¢ = 0,, then by Lemma 39

035 Ty((s,8) ®c (04,1)) = Ty(s,8) + Ty(0,,1)
036 = a(v)Zy(8) — Oy(8) + Oy(s) + Oy(t)
a(v)Z,

937 = a(v)Zy(s) + a(v)Z,(t) = a(v)Z,(s By t).

938

o9 If t < 0,, then by Lemma 39

940 T,((s,5) ®S (0,,1) @S 19) =T, (s,5) + Tp(0,,1) + 1
oa1 = a(v)Z,(8) — O,(8) + O,(s) + O, (t) + 1
92 = a(v)Z,(s) + a(v)Z,(t) = a(v)Z,(s By t).

st Thus T,,(U) C a(v)N. By Lemma 40, T, (U) = a(v)N.

945
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