
Journal of Machine Learning Research 23 (2022) 1-45 Submitted 2/20; Published 2/22

Scaling-Translation-Equivariant Networks with Decomposed

Convolutional Filters

Wei Zhu zhu@math.umass.edu

Department of Mathematics and Statistics

University of Massachusetts Amherst

Amherst, MA 01003, USA

Qiang Qiu qiang.qiu@duke.edu

Department of Electrical and Computer Engineering

Purdue University

West Lafayette, Indiana 47907, USA

Robert Calderbank robert.calderbank@duke.edu

Guillermo Sapiro guillermo.sapiro@duke.edu

Department of Electrical and Computer Engineering

Duke University

Durham, NC 27708, USA

Xiuyuan Cheng xiuyuan.cheng@duke.edu

Department of Mathematics

Duke University

Durham, NC 27708, USA

Editor: Honglak Lee

Abstract

Encoding the scale information explicitly into the representation learned by a convolu-
tional neural network (CNN) is beneficial for many computer vision tasks especially when
dealing with multiscale inputs. We study, in this paper, a scaling-translation-equivariant
(ST -equivariant) CNN with joint convolutions across the space and the scaling group,
which is shown to be both sufficient and necessary to achieve equivariance for the regular
representation of the scaling-translation group ST . To reduce the model complexity and
computational burden, we decompose the convolutional filters under two pre-fixed separable
bases and truncate the expansion to low-frequency components. A further benefit of the
truncated filter expansion is the improved deformation robustness of the equivariant repre-
sentation, a property which is theoretically analyzed and empirically verified. Numerical
experiments demonstrate that the proposed scaling-translation-equivariant network with
decomposed convolutional filters (ScDCFNet) achieves significantly improved performance
in multiscale image classification and better interpretability than regular CNNs at a reduced
model size.

Keywords: convolutional neural network (CNN), computer vision, scaling-translation-
equivariant, decomposed convolutional filters, deformation robust equivariant representation

c©2022 Wei Zhu, Qiang Qiu, Robert Calderbank, Guillermo Sapiro and Xiuyuan Cheng.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/20-099.html.

Zhu, Qiu, Calderbank, Sapiro and Cheng

1. Introduction

Convolutional neural networks (CNNs) have achieved great success in machine learning
problems such as image classification (Krizhevsky et al., 2012), object detection (Ren et al.,
2015), and semantic segmentation (Long et al., 2015; Ronneberger et al., 2015). Compared
to fully-connected networks, CNNs through spatial weight sharing have the benefit of being
translation-equivariant, i.e., translating the input leads to a translated version of the output.
This property is crucial for many vision tasks such as image recognition and segmentation.
However, regular CNNs are not equivariant to other important group transformations such
as rescaling and rotation, and it is beneficial in some applications to also encode such group
information explicitly into the network representation.

Several network architectures have been designed to achieve (2D) roto-translation-
equivariance (SE(2)-equivariance) (Weiler and Cesa, 2019; Cheng et al., 2019; Hoogeboom
et al., 2018; Worrall et al., 2017; Bekkers et al., 2017; Zhou et al., 2017; Marcos et al., 2017;
Weiler et al., 2018b), i.e., roughly speaking, if the input is spatially rotated and translated,
the output is transformed accordingly. The feature maps of such networks typically include
an extra index for the rotation group SO(2). Building on the idea of group convolutions
proposed by Cohen and Welling (2016) for discrete symmetry groups, Cheng et al. (2019),
Worrall et al. (2017), and Weiler et al. (2018b) constructed SE(2)-equivariant CNNs by
conducting group convolutions jointly across the space and SO(2) using steerable filters
(Freeman and Adelson, 1991).

Scaling-translation-equivariant (ST -equivariant) CNNs, on the other hand, are usually
studied in a less general setting in the existing literature. In particular, joint convolutions
across the space and the scaling group S are typically not proposed to achieve equivariance
in the general form (Kanazawa et al., 2014; Marcos et al., 2018; Xu et al., 2014; Ghosh and
Gupta, 2019). This is possibly because of two difficulties one encounters when dealing with
the scaling group: First, unlike SO(2), it is an acyclic and unbounded group; second, an
extra index in S incurs a significant increase in model parameters and computational burden.
Moreover, due to changing view angle or numerical discretization, the scaling transformation is
rarely perfect in practice. One thus needs to quantify and promote the deformation robustness
of the equivariant representation (i.e., is the model still “approximately” equivariant if the
scaling transformation is “contaminated” by a nuisance input deformation), which, to the
best of our knowledge, has not been studied in prior works.

The purpose of this paper is to address the aforementioned theoretical and practical
issues in the construction of ST -equivariant CNN models. Specifically, our contribution is
three-fold:

1. We propose a general ST -equivariant CNN architecture with a joint convolution over
R
2 and S, which is proved in Section 4 to be both sufficient and necessary to achieve

equivariance for the regular representation of the group ST .

2. A truncated decomposition of the convolutional filters under a pre-fixed separable
basis on the two geometric domains (R2 and S) is used to reduce the model size and
computational cost.

3. We prove the representation stability of the proposed architecture up to equivariant
scaling action of the input signal, guaranteeing equivariance is “approximately” achieved

2

Scaling-Translation-Equivariant Networks with Decomposed Convolutional Filters

even if the scaling effect is non-perfect. This theoretical result is crucial for the practical
implementation of ST -equivariant CNNs when signals are discrete and confined in
finite domains.

Our contribution to the family of group-equivariant CNNs is non-trivial; in particular, the
scaling group unlike SO(2) is acyclic and non-compact. This poses challenges both in theory
and in practice, so that many previous works on group-equivariant CNNs cannot be directly
extended. The concurrent independent research by Worrall and Welling (2019), Sosnovik et al.
(2020), and Bekkers (2020) also discovered and implemented joint convolutions to achieve
scaling-translation-equivariance in the general form. However, the approach by Worrall and
Welling (2019) is limited to scaling factors at only integer powers of 2, and none of the
three analyzes and promotes the deformation robustness of the equivariant representation,
especially in the practical setting where signals are discretized and computed only on compact
domains. We introduce new algorithm design and mathematical techniques to obtain general
ST -equivariant CNNs with both computational efficiency and proved representation stability.

2. Related Work

Mixed-scale CNNs. Incorporating multiscale information into a CNN representation has
been studied in many existing works. The Inception net (Szegedy et al., 2015) and its
generalizations (Szegedy et al., 2017, 2016; Li et al., 2019) stack filters of different sizes in a
single layer to address the multiscale salient features. Dilated convolutions (Pelt and Sethian,
2018; Wang et al., 2018; Yu and Koltun, 2016; Yu et al., 2017), pyramid architectures (Ke
et al., 2017; Lin et al., 2017), and multiscale dense networks (Huang et al., 2018) have
also been proposed to take into account the multiscale feature information. Although the
effectiveness of such models have been empirically demonstrated in various vision tasks, there
is still a lack of interpretability of their ability to encode the input scale information.

Group-equivariant CNNs. Group-equivariant CNNs (G-CNNs) have consistently demonstrated
their superior performance over classical CNNs by explicitly encoding group information into
the network representation. G-CNN was initially proposed by Cohen and Welling (2016)
to achieve equivariance over finite discrete symmetry groups. The idea is later generalized
in (Cohen et al., 2019; Kondor and Trivedi, 2018; Cohen and Welling, 2017), and has been
applied mainly to discrete or compact continuous groups such as 2D rotation SO(2) (Weiler
and Cesa, 2019; Cheng et al., 2019; Hoogeboom et al., 2018; Worrall et al., 2017; Bekkers
et al., 2017; Zhou et al., 2017; Marcos et al., 2017; Weiler et al., 2018b) and 3D rotation
SO(3) (Weiler et al., 2018a; Worrall and Brostow, 2018; Thomas et al., 2018; Cohen et al.,
2018; Esteves et al., 2018; Winkels and Cohen, 2018; Andrearczyk et al., 2019).

Although ST -equivariant (or invariant) CNNs have also been proposed in the literature
(Kanazawa et al., 2014; Marcos et al., 2018; Xu et al., 2014; Ghosh and Gupta, 2019), they
are typically studied in a less general setting. In particular, none of these works proposed
to conduct joint convolutions over R

2 × S as a necessary and sufficient condition to achieve
equivariance for the regular representation of the group ST , for which reason they are thus
variants of a special case of our proposed architecture where the convolutional filters in S are
Dirac delta functions (c.f. Remark 1.) The interscale convolution proposed in the independent
concurrent works by Worrall and Welling (2019), Sosnovik et al. (2020), and Bekkers (2020)

3

Zhu, Qiu, Calderbank, Sapiro and Cheng

bear the most resemblance to our proposed model. In particular, the filter expansion under
B-splines for arbitrary Lie groups proposed by Bekkers (2020) is also akin to our truncated
filter decomposition under compactly supported separable function bases. However, the
approach by Worrall and Welling (2019) is limited to scaling factors at only integer powers
of 2, and none of the three concurrent works analyzes and promotes deformation robustness
of the equivariant representation, which is important both in theory and in practice because
scaling effect is rarely perfect due to signal distortion, discretization, and truncation.

Representation stability to input deformations. Input deformations typically induce noticeable
variabilities within object classes, some of which are uninformative for the vision tasks. Models
that are stable to input deformations are thus favorable in many applications. The scattering
transform (Bruna and Mallat, 2013; Mallat, 2010, 2012) computes translation-invariant
representations that are Lipschitz continuous to deformations by cascading predefined wavelet
transforms and modulus poolings. A joint convolution over R

2 × SO(2) is later adopted by
Sifre and Mallat (2013) to build roto-translation scattering with stable rotation/translation-
invariant representations. These models, however, use pre-fixed wavelet transforms in
the networks, and are thus nonadaptive to the data. Invariance and stability of deep
convolutional representations have also be studied by Bietti and Mairal (2017, 2019) in
the context of convolutional kernel networks (Mairal, 2016; Mairal et al., 2014). DCFNet
(Qiu et al., 2018) combines a pre-fixed filter basis and learnable expansion coefficients in a
CNN architecture, achieving both data adaptivity and representation stability inherited from
the filter regularity. This idea is later extended by Cheng et al. (2019) to produce SE(2)-
equivariant representations that are Lipschitz continuous in L2 norm to input deformations
modulo a global rotation, i.e., the model stays approximately equivariant even if the input
rotation is imperfect. To the best of our knowledge, a theoretical analysis of the deformation
robustness of a ST -equivariant CNN has yet been studied, and a direct generalization of the
result by Cheng et al. (2019) is futile because the feature maps of a ST -equivariant CNN is
typically not in L2 (c.f. Remark 4.)

3. ST -Equivariant CNN And Filter Decomposition

Group-equivariance is the property of a mapping f : X → Y to commute with the group
actions on the domain X and codomain Y . More specifically, let G be a group, and Dg, Tg,
respectively, be group actions on X and Y . A function f : X → Y is said to be G-equivariant
if

f(Dgx) = Tg(f(x)), ∀ g ∈ G, x ∈ X. (1)

G-invariance is thus a special case of G-equivariance where Tg = IdY . For learning tasks
where the feature y ∈ Y is known a priori to change equivariantly to a group action g ∈ G
on the input x ∈ X, e.g. image segmentation should be equivariant to translation, it would
be beneficial to reduce the hypothesis space to include only G-equivariant models. In this
paper, we consider mainly the scaling-translation group ST = S nR

2 ∼= R×R
2, which is the

semi-direct product between the the scaling group S and the translation group R
2. Given

g = (β, v) ∈ ST and an input image x(0)(u, λ) (u ∈ R
2 is the spatial position, and λ is the

unstructured channel index, e.g. RGB channels of a color image), the scaling-translation

4

Scaling-Translation-Equivariant Networks with Decomposed Convolutional Filters

*

*

*

*

*

*

(a) A special case of ST -equivariant CNN with
(multiscale) spatial convolutions.

*

*

*

(b) The general case of ST -equivariant CNN with
joint convolutions (Theorem 1).

Figure 1: (a) A special case of ST -equivariant CNN with only (multiscale) spatial convolutions. The
previous works on ST -equivariant CNNs (Kanazawa et al., 2014; Marcos et al., 2018; Xu et al., 2014;
Ghosh and Gupta, 2019) are all variants of this architecture. (b) The general case of ST -equivariant
CNN with joint convolutions (Theorem 1) where information transfers among different scales. See
Remark 1 for more explanation.

group action Dg = Dβ,v on x(0) is defined as

Dβ,vx
(0)(u, λ) := x(0)

(

2−β(u− v), λ
)

. (2)

Constructing ST -equivariant CNNs thus amounts to finding an architecture A such that each
trained network f ∈ A commutes with the group action Dβ,v on the input and a similarly
defined group action Tβ,v (to be explained in Section 3.1) on the output.

3.1 ST -Equivariant CNNs

Inspired by Cheng et al. (2019), Weiler et al. (2018b), and Cohen et al. (2019), we consider
ST -equivariant CNNs with an extra index α ∈ S for the the scaling group S ∼= R: for each
l ≥ 1, the l-th layer output is denoted as x(l)(u, α, λ), where u ∈ R

2 is the spatial position,
α ∈ S is the scale index, and λ ∈ [Ml] := {1, . . . ,Ml} corresponds to the unstructured
channels. We use the continuous model for formal derivation, i.e., the images and feature
maps have continuous spatial and scale indices. In practice, the images are discretized
on a Cartesian grid, and the scales are computed only on a discretized finite interval (c.f.
Section 5.) We define the group action Tβ,v on the l-th layer output as a scaling-translation in
space as well as a shift in the scale channel, which corresponds to the regular representation
of the group ST on the space of l-th layer feature maps (Cohen and Welling, 2016; Cohen
et al., 2019):

Tβ,vx
(l)(u, α, λ) := x(l)

(

2−β(u− v), α− β, λ
)

, ∀ l ≥ 1. (3)

A feedforward neural network is said to be ST -equivariant (under the group actions Dβ,v

and Tβ,v) if

x(l)[Dβ,vx
(0)] = Tβ,vx

(l)[x(0)], ∀ l ≥ 1, (4)

where we slightly abuse the notation x(l)[x(0)] to denote the l-th layer output given the input
x(0). The following Theorem shows that ST -equivariance (4) is achieved if and only if joint
convolutions are conducted over S × R

2 as in (5) and (6).

5

Zhu, Qiu, Calderbank, Sapiro and Cheng

Theorem 1. A feedforward neural network with an extra index α ∈ S for layerwise output is
ST -equivariant (under the group actions Dβ,v and Tβ,v) if and only if the layerwise operations
are defined as (5) and (6):

x(1)[x(0)](u, α, λ) = σ

(

∑

λ′

∫

R2

2−2αx(0)(u+ u′, λ′)W
(1)
λ′,λ

(

2−αu′
)

du′ + b(1)(λ)

)

, (5)

x(l)[x(l−1)](u, α, λ) = σ

(

∑

λ′

∫

R2

∫

R

2−2αx(l−1)(u+ u′, α+ α′, λ′) ·

W
(l)
λ′,λ

(

2−αu′, α′
)

dα′du′ + b(l)(λ)
)

, ∀l > 1, (6)

where σ : R → R is a pointwise nonlinear function, W
(1)
λ′,λ(u) is the spatial convolutional

filter in the first layer with output channel λ and input channel λ′, and W
(l)
λ′,λ(u, α) is the

space-scale joint convolutional filter for layer l > 1.

We defer the proof of Theorem 1, as well as those of other theorems, to the appendix.
We note that the joint-convolution in Theorem 1 is a generalization of the group convolution
proposed by Cohen and Welling (2016) to a non-compact group ST in the continuous
setting, which is known to be necessary and sufficient to achieve equivariance under regular
representations of the group (Cohen et al., 2019).

Remark 1. When the convolutional filter W
(l)
λ′,λ(u, α) takes the special form W

(l)
λ′,λ(u, α) =

V
(l)
λ′,λ(u)δ(α), where δ is the Dirac delta function, the joint convolution (6) over R

2 × S
reduces to only a (multiscale) spatial convolution

x(l)[x(l−1)](u, α, λ) = σ

(

∑

λ′

∫

R2

x(l−1)(u+ u′, α, λ′)V
(l)
λ′,λ

(

2−αu′
)

2−2αdu′ + b(l)(λ)

)

, (7)

i.e., the feature maps at different scales do not transfer information among each other (see
Figure 1a). The previous works (Kanazawa et al., 2014; Marcos et al., 2018; Xu et al.,
2014; Ghosh and Gupta, 2019) on ST -equivariant CNNs are all based on this special case of
Theorem 1.

Although the joint convolutions (6) on R
2 × S provide the most general way of imposing

ST -equivariance under Dβ,v and Tβ,v, they unfortunately also incur a significant increase in
the model size and computational burden. Following the idea of Cheng et al. (2019) and Qiu
et al. (2018), we address this issue by taking a truncated decomposition of the convolutional
filters under a pre-fixed separable basis, which will be discussed in detail in the next section.

3.2 Separable Basis Decomposition

We consider decomposing the convolutional filters W
(l)
λ′,λ(u, α) under the product of two

orthogonal function bases, {ψk(u)}k and {ϕm(α)}m, which are the eigenfunctions of the
Dirichlet Laplacian on, respectively, the rectangle D = [−1, 1]2 ⊂ R

2 and Iα = [−1, 1], i.e.,
{

∆ψk = −µkψk in D,

ψk = 0 on ∂D,
and

{

ϕ′′
m = −νmϕm in Iα = [−1, 1]

ϕm(−1) = ϕm(1) = 0.
(8)

6

Scaling-Translation-Equivariant Networks with Decomposed Convolutional Filters

Remark 2. The choice of the spatial function basis {ψk(u)}k is not unique. For example,
one can also choose ψk(u) to be the eigenfunctions of the Dirichlet Laplacian on the unit
disk, i.e., the Fourier-Bessel basis (Abramowitz and Stegun, 1965) considered by Cheng
et al. (2019). The only requirement for {ψk(u)}k is that it is an orthogonal basis vanishing
on the boundary of the domain—a property we will use later in the proof of deformation
stability of the equivariant representation (Theorem 2) in Section 4. Empirically, we found
ψk(u) = ψk(u1, u2) defined in (8), which is separable in the two spatial coordinates, to
consistently achieve better results.

Compared to ψk(u), the function basis in scale {ϕm(α)}m is less restrictive, as the choice
of which does not contribute to the stability analysis for spatial deformation in Theorem 2.

However, as the joint convolutional filters W
(l)
λ′,λ(u, α) are assumed to be compactly supported

in both space and scale (otherwise it is hard to implement in practice), it is natural to choose
a compactly supported orthogonal function basis {ϕm(α)}m for scale.

In the continuous formulation, the spatial “pooling” operation is equivalent to rescaling
the convolutional filters in space. We thus assume, without loss of generality, that the
convolutional filters are compactly supported on a rescaled domain as follows

W
(1)
λ′,λ ∈ Cc(2

j1D), and W
(l)
λ′,λ ∈ Cc(2

jlD × Iα), ∀ l > 1.

Let ψj,k(u) := 2−2jψk(2
−ju), then W

(l)
λ′,λ can be decomposed under {ψjl,k}k and {ϕm}m as

W
(1)
λ′,λ(u) =

∑

k

a
(1)
λ′,λ(k)ψj1,k(u), W

(l)
λ′,λ(u, α) =

∑

m

∑

k

a
(l)
λ′,λ(k,m)ψjl,k(u)ϕm(α), l > 1 (9)

where a
(1)
λ′,λ(k) and a

(l)
λ′,λ(k,m) are the expansion coefficients of the filters. During training,

the basis functions are fixed, and only the expansion coefficients are updated. In practice,

we truncate the expansion to only low-frequency components (i.e., a
(l)
λ′,λ(k,m) are non-zero

only for k ∈ [K], m ∈ [Kα]), which are kept as the trainable parameters. Similar idea has
also been considered in the prior works (Qiu et al., 2018; Cheng et al., 2019; Jacobsen et al.,
2016). Since ψk and ϕm are the separable eigenfunctions of the Dirichlet Laplacian, standard

convergence results for generalized Fourier series apply, e.g., if W
(l)
λ′,λ ∈ Cp(D × Iα), then the

truncated expansion converges uniformly to W
(l)
λ′,λ at rate O(log(KKα)/(K

pKp
α)) (Jackson,

1930). We call the resulting model Scaling-translation-equivariant Network with Decomposed
Convolutional Filters (ScDCFNet).

Truncating the filter expansion leads directly to a reduction of network parameters and
computational burden. More specifically, let us compare the l-th convolutional layer (6) of a
ST -equivariant CNN with and without truncated basis decomposition:

Number of trainable parameters: Suppose the filters W
(l)
λ′,λ(u, α) are discretized on

a Cartesian grid of size L× L× Lα. The number of trainable parameters at the l-th layer of
an ST -equivariant CNN without basis decomposition is L2LαMl−1Ml. On the other hand,
in an ScDCFNet with truncated basis expansion up to K leading coefficients for u and Kα

coefficients for α, the number of parameters is instead KKαMl−1Ml. Hence a reduction to a
factor of KKα/L

2Lα in trainable parameters is achieved for ScDCFNet via truncated basis
decomposition. In particular, if L = 5, Lα = 5,K = 8, and Kα = 3, then the number of
parameters is reduced to (8× 3)/(52 × 5) = 19.2%.

7

Zhu, Qiu, Calderbank, Sapiro and Cheng

Remark 3. We want to point out that even though the number of trainable parameters has
been reduced after truncated expansion, the memory usage of the entire network remains the
same. The reason is that the bottleneck of memory consumption in a deep network is the
storage of the feature maps instead of the trainable weights.

Computational cost: Suppose the size of the input x(l−1)(u, α, λ) and output x(l)(u, α, λ)
at the l-th layer are, respectively, H ×W ×Ns×Ml−1 and H ×W ×Ns×Ml, where H ×W
is the spatial dimension, Ns is the number of scale channels, and Ml−1(Ml) is the number

of the unstructured input (output) channels. Let the filters W
(l)
λ′,λ(u, α) be discretized on

a Cartesian grid of size L × L × Lα. The following proposition shows that, compared to
a regular ST -equivariant CNN, the computational cost in a forward pass of ScDCFNet is
reduced again to a factor of KKα/L

2Lα.

Proposition 1. Assume Ml � L2, Lα, i.e., the number of the output channels is much
larger than the size of the convolutional filters in u and α, then the computational cost of an
ScDCFNet is reduced to a factor of KKα/L

2Lα when compared to a ST -equivariant CNN
without basis decomposition.

4. Representation Stability of ScDCFNet to Input Deformation

Apart from reducing the model size and computational burden, we demonstrate in this
section that truncating the filter decomposition has the further benefit of improving defor-
mation robustness of the equivariant representation, i.e., the equivariance relation (4) still
approximately holds true even if the spatial scaling of the input Dβ,vx

(0) is contaminated by
a local deformation. The analysis is motivated by the fact that scaling transformations are
rarely perfect in practice—they are typically subject to local distortions such as changing
view angle or numerical discretization. To quantify the distance between different feature
maps at each layer, we define the norm of x(l) as

‖x(0)‖2 =
1

M0

M0
∑

λ=1

∫

∣

∣

∣x(0)(u, λ)
∣

∣

∣

2
du, ‖x(l)‖2 = sup

α∈R

1

Ml

Ml
∑

λ=1

∫

∣

∣

∣x(l)(u, α, λ)
∣

∣

∣

2
du, l ≥ 1. (10)

Remark 4. The definition of ‖x(l)‖ is different from that of RotDCFNet (Cheng et al.,
2019), where an L2 norm is taken for the α index as well. The reason why we adopt the
L∞ norm for α in (10) is that x(l) is typically not L2 in α, since the scaling group S, unlike
SO(2), has infinite Haar measure.

We next quantify the representation stability of ScDCFNet under three mild assumptions
on the convolutional layers and input deformations. First,

(A1) The pointwise nonlinear activation σ : R → R is non-expansive, i.e., |σ(x)−σ(y)| ≤
|x− y|. For example, the rectified linear unit (ReLU) satisfies this property.

8

Scaling-Translation-Equivariant Networks with Decomposed Convolutional Filters

Next, we need a bound on the convolutional filters under certain norms. For each l ≥ 1,
define Al as































A1 := πmax

{

sup
λ

M0
∑

λ′=1

‖a
(1)
λ′,λ‖µ,

M0

M1
sup
λ′

M1
∑

λ=1

‖a
(1)
λ′,λ‖µ

}

,

Al := πmax







sup
λ

Ml−1
∑

λ′=1

∑

m

‖a
(l)
λ′,λ(·,m)‖µ,

2Ml−1

Ml

∑

m

sup
λ′

Ml
∑

λ=1

‖a
(l)
λ′,λ(·,m)‖µ







,

(11)

where the weighted l2-norm ‖a‖µ of a sequence {a(k)}k≥0 is defined as ‖a‖2µ :=
∑

k µka(k)
2,

where µk is the k-th eigenvalue of the Dirichlet Laplacian on [−1, 1]2 defined in (8). We next
assume that each Al is bounded:

(A2) For all l ≥ 1, Al ≤ 1.

The boundedness of Al is facilitated by truncating the basis decomposition to only
low-frequency components (small µk), which is one of the key idea of ScDCFNet explained
in Section 3.2. After a proper initialization of the trainable coefficients, (A2) can generally
be satisfied. The assumption (A2) implies several bounds on the convolutional filters at
each layer (c.f. Lemma 2 in the appendix), which, combined with (A1), guarantees that an
ScDCFNet is layerwise non-expansive:

Proposition 2. Under the assumption (A1) and (A2), an ScDCFNet satisfies the following.

(a) For any l ≥ 1, the mapping of the l-th layer, x(l)[·] defined in (5) and (6), is non-
expansive, i.e.,

‖x(l)[x1]− x(l)[x2]‖ ≤ ‖x1 − x2‖, ∀x1, x2.

(b) Let x
(l)
0 be the l-th layer output given a zero bottom-layer input, then x

(l)
0 (λ) depends

only on λ.

(c) Let x
(l)
c be the centered version of x(l) after removing x

(l)
0 , i.e., x

(0)
c (u, λ) := x(0)(u, λ)−

x
(0)
0 (λ) = x(0)(u, λ), and x

(l)
c (u, α, λ) := x(l)(u, α, λ) − x

(l)
0 (λ), ∀l ≥ 1, then ‖x

(l)
c ‖ ≤

‖x
(l−1)
c ‖, ∀l ≥ 1. As a result, ‖x

(l)
c ‖ ≤ ‖x

(0)
c ‖ = ‖x(0)‖.

Finally, we make an assumption on the input deformation modulo a global scale change.
Given a C2 function τ : R2 → R

2, the spatial deformation Dτ on the feature maps x(l) is
defined as

Dτx
(0)(u, λ) = x(0)(ρ(u), λ), and Dτx

(l)(u, α, λ) = x(l)(ρ(u), α, λ), l ≥ 1, (12)

where ρ(u) = u− τ(u). We assume a small local deformation on the input:

(A3) |∇τ |∞ := supu ‖∇τ(u)‖ < 1/5, where ‖ · ‖ is the operator norm.

The following theorem demonstrates the representation stability of an ScDCFNet to
input deformation modulo a global scale change.

9

Zhu, Qiu, Calderbank, Sapiro and Cheng

Theorem 2. Let Dτ be a small spatial deformation defined in (12), and let Dβ,v, Tβ,v be the
group actions corresponding to an arbitrary scaling 2−β ∈ R+ centered at v ∈ R

2 defined in
(2) and (3). In an ScDCFNet satisfying (A1), (A2), and (A3), we have, for any L,

∥

∥

∥x(L)[Dβ,v ◦Dτx
(0)]− Tβ,vx

(L)[x(0)]
∥

∥

∥ ≤ 2β+1
(

4L|∇τ |∞ + 2−jL |τ |∞
)

‖x(0)‖. (13)

Theorem 2 gauges how approximately equivariant ScDCFNet is if the input undergoes
not only a scale change Dβ,v but also a nonlinear spatial deformation Dτ , which is important
both in theory and in practice because the scaling of an object is rarely perfect in reality.
However, Theorem 2 only considers the stability of the representation under the ideal setting
where layerwise feature maps x(l)(u, α, λ) are computed (and stored) for all scales α ∈ R.
For practical implementation (to be discussed in more detail in Section 5), the scale channel
S ∼= R needs to be truncated to a finite interval I = [−T, T] ⊂ S, i.e., x(l)(u, α, λ) is only
computed for α ∈ I, which unavoidably destroys the global scaling symmetry—similar to
the fact that truncating an image to a finite spatial support destroys translation symmetry.
In practice, given the truncated l-th layer feature map x(l−1)(u, α, λ) computed only for
α ∈ I, one typically first conducts a zero-padding to x(l−1)(u, α, λ) in the scale channel before
performing the convolution in scale (Worrall and Welling, 2019; Sosnovik et al., 2020). This,
however, leads to a significant boundary “leakage” effect which destroys equivariance of the
representation (see Section 6 for detailed empirical examination of such boundary effect.)
We thus need to find a way to alleviate such boundary “leakage” issue and analyze its efficacy
by studying the equivariance error (13) after a scale channel truncation.

The idea is very simple: after taking a closer look at the definition of the first layer
operation (5), one can notice that, ignoring the bias b(1)(λ) and the nonlinear operator σ, it

is essentially the convolution of x(0) with an L1-normalized kernel 2−2αW
(1)
λ′,λ (2

−αu′):

x(1)[x(0)](u, α, λ) = σ

(

∑

λ′

∫

R2

2−2αx(0)(u+ u′, λ′)W
(1)
λ′,λ

(

2−αu′
)

du′ + b(1)(λ)

)

= σ

(

∑

λ′

x(0)(·, λ′) ∗W
(1)
λ′,λ,α(u) + b(1)(λ)

)

,

where W
(1)
λ′,λ,α(u) := 2−2αW

(1)
λ′,λ (2

−αu′) forms a (yet to be normalized) mollifier, i.e., an

approximation to identity, in R
2 (Evans, 2010). Based on the basic properties of mollifiers

(Evans, 2010), if x(0)(·, λ′) is a continuous function of u in R
2, then

lim
α→−∞

x(1)[x(0)](u, α, λ) = lim
α→−∞

σ

(

∑

λ′

x(0)(·, λ′) ∗W
(1)
λ′,λ,α(u) + b(1)(λ)

)

(14)

= σ

(

∑

λ′

Aλ′,λx
(0)(u, λ′) + b(1)(λ)

)

, (15)

where Aλ′,λ =
∫

R2 W
(1)
λ′,λ(u)du. In particular, (15) implies that the limit of x(1)[x(0)](u, α, λ)

exists as α→ −∞. This observation motivates us to consider the one-sided-replicate-padding
in the scale channel (i.e., extending the truncated scale channel I = [−T, T] beyond the

10

Scaling-Translation-Equivariant Networks with Decomposed Convolutional Filters

left end point α = −T according to Neumann boundary condition.) More specifically, the
layerwise operations are now defined as follows: for the first layer,

x̃(1)[x(0)](u, α, λ) =

{

x(1)[x(0)](u, α, λ), α ∈ [−T, T],

x(1)[x(0)](u,−T, λ), α ∈ (−∞,−T],
(16)

i.e., the computation remains the same as (5) for α ∈ I = [−T, T], and the value x(1)[x(0)](u, α, λ)
at the left end point α = −T is extended beyond the truncated scale interval I for α ≤ −T
such that the next layer scale convolution can be computed on I. Similarly, the computations
of the subsequent layer are

x̃(l)[x̃(l−1)](u, α, λ) =

{

x(l)[x̃(l−1)](u, α, λ), α ∈ [−T, T],

x(l)[x̃(l−1)](u,−T, λ), α ∈ (−∞,−T].
(17)

The following theorem quantifies the extra equivariance error incurred from scale channel
truncation after the one-sided-replicate-padding (16) and (17) is adopted.

Theorem 3. Under the same assumption of Theorem 2, if the layerwise operations are
defined as (16) and (17), given an input x(0)(·, λ) ∈ H1(R2) (the Sobolev space of functions
on R

2 with square-integrable first-order derivatives), we have, for any L,
∥

∥

∥x̃(L)[Dβ,v ◦Dτx
(0)]− Tβ,vx̃

(L)[x(0)]
∥

∥

∥ ≤ 2β+1
(

4L|∇τ |∞ + 2−jL |τ |∞
)

‖x(0)‖+O(2−T),

(18)

where the supremum over α in the definition of ‖ · ‖ on the left hand side of (18) is taken for
α ≤ min(T, T − β), the common scale domain of the feature maps x̃(L)[Dβ,v ◦Dτx

(0)] and
Tβ,vx̃

(L)[x(0)], i.e.,
∥

∥

∥
x̃(L)[Dβ,v ◦Dτx

(0)]− Tβ,vx̃
(L)[x(0)]

∥

∥

∥

2

= sup
α≤min(T,T−β)

1

ML

ML
∑

λ=1

∫

∣

∣

∣
x̃(L)[Dβ,v ◦Dτx

(0)]− Tβ,vx̃
(L)[x(0)]

∣

∣

∣

2
(u, α, λ)du.

On the contrary, if zero-padding in the scale channel is adopted (which is typically the case
such as (Worrall and Welling, 2019; Sosnovik et al., 2020)) instead of the one-sided-replicate-
padding (16) and (17), the scale channel truncation error in (18) will be O(1) instead of
O(2−T).

Theorem 3 demonstrates that the layerwise operations defined in (16) and (17) significantly
alleviate the unavoidable boundary “leakage” effect incurred from scale channel truncation,
contributing to the equivariance error (13) an exponentially decaying term in T , the length
of the truncated scale interval. We will empirically demonstrate this theoretical result in
Section 6.

5. Implementation

We discuss, in this section, the implementation details of ScDCFNet, including scale channel
truncation and feature map discretization, basis and filter generation, discrete scale-space
joint convolution, and batch-normalization.

11

Zhu, Qiu, Calderbank, Sapiro and Cheng

5.1 Scale Channel Truncation And Feature Map Discretization

As mentioned in Section 4, in practice, the layerwise feature maps x(l)(u, α, λ) can only
be computed on a truncated scale interval I = [−T, T] ⊂ R, which is discretized into a
uniform grid of size Ns. Let Hl,Wl,Ml, respectively, be the height, width, and the number
of unstructured channels of the l-th layer feature map x(l), then the input x(0)(u, λ) is
stored as an array of shape [M0, H0,W0], and the layerwise output x(l)(u, α, λ) has shape
[Ml, Ns, Hl,Wl].

Remark 5. Due to, for example, interpolation and numerical integration, feature map
discretization incurs an extra error to the equivariance of representation. Fortunately, the
stability analysis in Theorem 2 under the continuous setting suggests that some of these errors
can be mitigated. For instance, interpolating a rescaled digital image can be modeled as a
perfect spatial rescaling followed by a small local distortion, the error induced by which in
representation equivariance can be controlled in ScDCFNet thanks to Theorem 2.

5.2 Basis And Filter Generation

Let K and Kα, respectively, be the numbers of the low-frequency components to be kept in
the separable basis expansion in the spatial and scale domains. The spatial basis functions
together with their rescaled versions {2−2αψk(2

−αu′)}k,α,u′ are sampled on a uniform spatial
grid of size L× L and stored as a tensor of shape [K,Ns, L, L]; the basis functions in scale
{ϕm(α′)}m,α′ supported on the interval Iα 3 0 is sampled on a uniform grid of size Lα and
stored as a tensor of shape [Kα, Lα].

For the first layer, the truncated expansion coefficients {a
(1)
λ′,λ(k)}λ′,λ,k forming an array of

shape [M0,M1,K] are the trainable parameters of ScDCFNet at this layer, and the multiscale

convolutional filters {2−2αW
(1)
λ′,λ(2

−αu′)}λ′,λ,α,u′ are the linear combinations of the spatial

basis functions {2−2αψk(2
−αu′)}k,α,u′ under the coefficients {a

(1)
λ′,λ(k)}λ′,λ,k, stored as an

array of shape [M0,M1, Ns, L, L].

When l > 1, the tensor consisting of the l-th layer trainable coefficients {a
(l)
λ′,λ(k,m)}λ′,λ,k,m

has shape [Ml−1,Ml,K,Kα]. The joint convolutional filters {2−2αW
(l)
λ′,λ(2

−αu′, α′)}λ′,λ,α,α′,u′

of this layer are the linear combinations of the separable function bases {2−2αψk(2
−αu′)}k,α,u′

and {ϕm(α′)}m,α′ under the coefficients {a
(l)
λ′,λ(k,m)}λ′,λ,k,m, i.e., they are stored as an array

of size [Ml−1,Ml, Ns, Lα, L, L] which is the tensor product of the first two arrays followed by
a contraction with the third.

5.3 Discrete Scale-Space Joint Convolution

Given an input signal x(0)(u, λ) of shape [M0, H0,W0], a multiscale discrete spatial convolu-
tion, i.e., the discrete counterpart of (5) where integrals are replaced by summations, with

the filter {2−2αW
(1)
λ′,λ(2

−αu′)}λ′,λ,α,u′ of shape [M0,M1, Ns, L, L] is conducted to obtain the

first layer feature x(1)(u, α, λ) of shape [M1, Ns, H1,W1]. More specifically, the standard 2D
convolution is performed on the input with the filter reshaped to [M0,M1Ns, L, L], producing
an output of shape [M1Ns, H1,W1], which is subsequently resized to [M1, Ns, H1,W1].

12

Scaling-Translation-Equivariant Networks with Decomposed Convolutional Filters

Starting from the second layer, let x(l−1)(u, α, λ) be the feature of shape [Ml−1, Ns, Hl−1,Wl−1],

and F = {2−2αW
(l)
λ′,λ(2

−αu′, α′)}λ′,λ,α,α′,u′ be the filter of size [Ml−1,Ml, Ns, Lα, L, L]. The

signal x(l−1) is first shifted in the scale channel by lα ∈ [0, Lα − 1] according to one-
sided-replicate-padding (c.f. Section 4), and then convolved with the filter F [:, :, :, lα, :, :]
(after reshaping) to obtain an output tensor of size [Ml, Ns, Hl,Wl]. We iterate over all
lα ∈ [0, Lα − 1], and the l-th layer feature x(l)(u, α, λ) is the sum of the Lα tensors.

For computer vision tasks where scale-invariant features are preferred, e.g., image classifi-
cation, a max-pooling in the scale channel is conducted on the last layer feature x(L)(u, α, λ)
of size [ML, Ns, HL,WL], producing a scale-invariant output of shape [ML, HL,WL]. Without
explicitly mentioning, such max-pooling in scale is only performed in the last layer.

5.4 Batch-Normalization

Batch-normalization (Ioffe and Szegedy, 2015) accelerates network training by reducing
layerwise covariate shift, and it has become an integral part in various CNN architectures.
With an extra scale index α in the feature map x(l)(u, α, λ) of an ScDCFNet, we need to
include α in the normalization in order not to destroy ST -equivariance, i.e., a batch of

features {x
(l)
n (u, α, λ)}Nn=1 should be normalized as if it were a collection of 3D data (two

dimensions for u, and one dimension for α.)

6. Numerical Experiments

In this section, we conduct several numerical experiments for the following three purposes.

1. To demonstrate that ScDCFNet robustly achieves ST -equivariance (4) in the practical
setting where signals are discrete and scale channels are truncated, verifying the
theoretical results Theorem 2 and Theorem 3.

2. To illustrate that ScDCFNet significantly outperforms regular CNNs as well as other
competing scale-invariant/equivariant networks at a much reduced model size in multi-
scale image classification.

3. To show that a trained ScDCFNet auto-encoder is able to reconstruct rescaled versions
of the input by simply applying group actions on the image codes, demonstrating that
ScDCFNet indeed explicitly encodes the input scale information into the representation.

6.1 Data Sets And Models

The experiments are conducted on the Scaled MNIST (SMNIST), Scaled Fashion-MNIST
(SFashion), and the STL-10 data sets (Coates et al., 2011).

SMNIST and SFashion are built by rescaling the original MNIST (LeCun et al., 1998)
and Fashion-MNIST (Xiao et al., 2017) images by a factor randomly sampled from a uniform
distribution on [0.3, 1]. A zero-padding back to a size of 28 × 28 is conducted after the
rescaling. If mentioned explicitly, for some experiments, the images are resized to 56× 56 for
better visualization.

The STL-10 data set is comprised of 5,000 training and 8,000 testing labeled RGB images
belonging to 10 classes such as airplane, bird, and car. The images have a spatial resolution

13

Zhu, Qiu, Calderbank, Sapiro and Cheng

SMNIST (28× 28) test accuracy (%) SMNIST (28× 28)+ test accuracy (%)

Models Ntr = 2, 000 Ntr = 5, 000 Ntr = 10, 000 Ntr = 2, 000 Ntr = 5, 000 Ntr = 10, 000

CNN 95.01± 0.27 96.39± 0.12 97.41± 0.13 96.36± 0.43 97.27± 0.14 98.05± 0.07
SS-CNN 95.43± 0.21 96.70± 0.20 97.64± 0.08 96.13± 0.25 96.84± 0.17 97.98± 0.03
SEVF 95.09± 0.15 96.29± 0.15 97.28± 0.16 96.06± 0.25 96.68± 0.09 97.74± 0.14
LSI-CNN 95.46± 0.22 96.64± 0.08 97.56± 0.13 96.43± 0.23 97.17± 0.08 97.97± 0.05
SI-CNN 95.17± 0.21 96.58± 0.22 97.53± 0.12 96.44± 0.09 97.21± 0.27 98.08± 0.09
DSS 95.06± 0.24 96.42± 0.17 97.34± 0.13 96.56± 0.13 97.24± 0.10 98.03± 0.06
SESN 95.75± 0.21 96.87± 0.12 97.81± 0.13 96.61± 0.14 97.30± 0.15 98.11± 0.09

ScDCFNet 95.87± 0.18 97.09± 0.05 97.91± 0.08 96.68± 0.13 97.40± 0.18 98.19± 0.07

SMNIST (56× 56) test accuracy (%) SMNIST (56× 56)+ test accuracy (%)

Models Ntr = 2, 000 Ntr = 5, 000 Ntr = 10, 000 Ntr = 2, 000 Ntr = 5, 000 Ntr = 10, 000

CNN 96.15± 0.19 97.20± 0.10 98.01± 0.08 97.17± 0.12 97.75± 0.12 98.32± 0.04
SS-CNN 96.32± 0.12 97.37± 0.22 98.08± 0.12 96.90± 0.18 97.57± 0.09 98.28± 0.14
SEVF 96.23± 0.17 97.19± 0.13 98.01± 0.12 96.86± 0.14 97.51± 0.08 98.20± 0.20
LSI-CNN 96.43± 0.18 97.34± 0.17 98.13± 0.13 97.11± 0.16 97.66± 0.07 98.29± 0.16
SI-CNN 95.97± 0.18 97.24± 0.12 97.98± 0.14 97.16± 0.12 97.78± 0.06 98.44± 0.08
DSS 96.10± 0.18 97.26± 0.10 97.97± 0.10 97.19± 0.08 97.83± 0.10 98.41± 0.11
SESN 96.50± 0.19 97.52± 0.10 98.19± 0.12 97.21± 0.20 97.80± 0.11 98.40± 0.09

ScDCFNet 96.75± 0.18 97.61± 0.11 98.27± 0.09 97.32± 0.08 97.85± 0.15 98.46± 0.09

Table 1: Classification accuracy on the SMNIST data set. Models are trained on Ntr = 2K, 5K, or
10K images with spatial resolution 28× 28 or 56× 56. A plus sign “+” is used to denote the presence
of scaling data augmentation during training. Test accuracies are reported as mean ± std over five
independent realizations of the rescaled data set.

various models in the small data regime, we also report the results trained with 2,000 and
5,000 images.

Following the experimental setup by Ghosh and Gupta (2019), a baseline CNN consisting
of three convolutional and two fully-connected layers with batch-normalization is used as
a benchmark. The number of output channels of the three convolutional and the first
fully-connected layers are set to [32, 63, 95, 256]. Convolutional filters of size 7× 7 are used
in each layer. All comparing networks are built on the same CNN baseline, and the number
of trainable parameters are kept almost the same across different models by varying the
number of unstructured channels. For equivariant models, a max-pooling in the scale channel
is performed only after the final convolutional layer to produce scale-invariant features for
classification. For ST -equivariant models achieved by space-scale joint convolution such as
SESN and ScDCFNet, the filter size in scale Lα is set to 3. Finally, for ScDCFNet, we set
K = 15, Kα = 3, and Ns = 5.

All networks are trained with the Adam optimizer (Kingma and Ba, 2014) for 60 epochs
with a batch size of 128. The initial learning rate is set to 0.01 and scheduled to decrease
tenfold after 20 and 40 epochs. We conduct the experiments in 12 different settings, where

• the input images size is either 28× 28 or 56× 56;
• the models are trained with or without scaling data augmentation;
• the number of training samples Ntr is 2,000, 5,000, or 10,000.

We conduct the experiments on five independent realizations of the rescaled data, and
report the mean ± std of the test accuracy in Table 1 and Table 2, where, for instance,
(28×28) (or (28×28)+) denotes models are trained on images of size 28×28 without (or with)

16

Scaling-Translation-Equivariant Networks with Decomposed Convolutional Filters

SFashion (28× 28) test accuracy (%) SFashion (28× 28)+ test accuracy (%)

Models Ntr = 2, 000 Ntr = 5, 000 Ntr = 10, 000 Ntr = 2, 000 Ntr = 5, 000 Ntr = 10, 000

CNN 79.88± 0.60 82.71± 0.19 84.60± 0.30 81.82± 0.49 83.85± 0.51 86.53± 0.14
SS-CNN 79.24± 0.18 82.83± 0.49 85.39± 0.32 80.15± 0.31 83.09± 0.14 85.89± 0.19
SEVF 79.01± 0.45 81.76± 0.40 84.73± 0.11 79.47± 0.44 82.36± 0.30 85.23± 0.16
LSI-CNN 79.20± 0.78 82.58± 0.52 85.16± 0.14 80.15± 0.71 83.10± 0.26 86.06± 0.16
SI-CNN 79.95± 0.53 83.36± 0.29 85.32± 0.22 82.27± 0.46 84.09± 0.40 86.85± 0.15
DSS 79.82± 0.44 82.90± 0.22 84.50± 0.51 82.20± 0.51 84.04± 0.24 86.51± 0.27
SESN 80.88± 0.51 83.78± 0.27 85.93± 0.28 82.34± 0.52 84.26± 0.23 86.90± 0.27

ScDCFNet 81.32± 0.41 84.24± 0.35 86.19± 0.15 82.42± 0.38 84.31± 0.30 87.10± 0.34

SFashion (56× 56) test accuracy (%) SFashion (56× 56)+ test accuracy (%)

Models Ntr = 2, 000 Ntr = 5, 000 Ntr = 10, 000 Ntr = 2, 000 Ntr = 5, 000 Ntr = 10, 000

CNN 81.17± 0.39 84.05± 0.12 85.84± 0.47 83.35± 0.16 85.16± 0.22 87.54± 0.18
SS-CNN 80.97± 0.30 83.95± 0.33 86.42± 0.23 81.48± 0.75 84.24± 0.38 86.69± 0.23
SEVF 81.22± 0.35 84.13± 0.27 86.37± 0.30 81.88± 0.47 84.28± 0.32 86.96± 0.17
LSI-CNN 81.78± 0.47 84.49± 0.30 86.94± 0.34 82.44± 0.53 84.71± 0.26 87.32± 0.16
SI-CNN 81.11± 0.48 84.18± 0.34 86.22± 0.17 83.55± 0.40 85.18± 0.49 87.97± 0.16
DSS 81.41± 0.32 84.15± 0.25 85.91± 0.23 83.54± 0.40 85.44± 0.40 87.63± 0.07
SESN 82.34± 0.51 85.03± 0.14 86.95± 0.23 83.61± 0.40 85.40± 0.23 87.91± 0.13

ScDCFNet 83.01± 0.31 85.79± 0.26 87.63± 0.15 84.00± 0.41 86.14± 0.25 88.18± 0.17

Table 2: Classification accuracy on the SFashion data set. Models are trained on Ntr = 2K, 5K, or
10K images with spatial resolution 28× 28 or 56× 56. A plus sign “+” is used to denote the presence
of scaling data augmentation during training. Test accuracies are reported as mean ± std over five
independent realizations of the rescaled data set.

data augmentation. It can be observed from Table 1 and Table 2 that ScDCFNet consistently
outperforms all comparing methods in every experimental setting, and the improvement in
accuracy is especially pronounced in the small data regime without data augmentation.

We want to note that the results of SESN displayed in Table 1 is slightly worse than
those reported by Sosnovik et al. (2020)—this is because even though Sosnovik et al. (2020)
also propose space-scale joint convolution to achieve ST -equivariance, it is however not
implemented in their work for the SMNIST experiment, i.e., they set the support of the
convolutional filters in scale Lα to 1 instead of 3 (or no “interscale interaction” according
to the terminology by Sosnovik et al. (2020).) The deterioration in test performance of
SESN when Lα > 1 is in line with the finding by Sosnovik et al. (2020) on the STL-10 data
set that “interscale interaction” significantly reduces the accuracy of SESN due to the high
equivariance error introduced by the boundary “leakage” effect. This is however successfully
mitigated in ScDCFNet, verifying again our theoretical result Theorem 3.

We next conduct an ablation study on the role of K and Kα, i.e., the numbers of the
truncated basis functions in space and scale, on the performance of ScDCFNet. The results
of ScDCFNet on the SMNIST and SFashion data sets with varying K and Kα are shown
in Table 3. It can be observed that enlarging K and Kα, which increases the expressive
power of the network at the cost of more trainable parameters (i.e., larger model size), indeed
boosts the performance of ScDCFNet. However, the accuracy gradually plateaus around
K ≈ 12 and Kα ≈ 3. This is because high frequency filters suffer from aliasing effect after
discretization, thus introducing a larger equivariance error. This phenomenon will be further
explore in Section 6.4.

17

Zhu, Qiu, Calderbank, Sapiro and Cheng

ScDCFNet SMNIST (28× 28) accuracy (%) SMNIST (28× 28)+ accuracy (%)

Kα K # Params Ntr = 2, 000 Ntr = 5, 000 Ntr = 2, 000 Ntr = 5, 000

3 15 1.00 95.87± 0.18 97.09± 0.05 96.68± 0.13 97.40± 0.18

3 12 0.80 95.88± 0.21 97.06± 0.07 96.67± 0.19 97.38± 0.16
3 10 0.67 95.84± 0.18 97.00± 0.08 96.49± 0.09 97.23± 0.12
3 6 0.40 95.61± 0.18 96.89± 0.19 96.50± 0.15 97.17± 0.15
2 15 0.67 95.77± 0.15 97.04± 0.05 96.68± 0.31 97.34± 0.08
2 10 0.44 95.72± 0.23 96.97± 0.07 96.52± 0.11 97.30± 0.13
2 6 0.27 95.68± 0.17 96.92± 0.13 96.50± 0.14 97.09± 0.11
1 15 0.33 95.84± 0.11 96.94± 0.12 96.65± 0.19 97.38± 0.07
1 10 0.22 95.62± 0.22 96.93± 0.11 96.61± 0.12 97.26± 0.21
1 6 0.13 95.74± 0.17 96.82± 0.06 96.48± 0.13 97.17± 0.16

ScDCFNet SFashion (28× 28) accuracy (%) SFashion (28× 28)+ accuracy (%)

Kα K # Params Ntr = 2, 000 Ntr = 5, 000 Ntr = 2, 000 Ntr = 5, 000

3 15 1.00 81.32± 0.41 84.24± 0.35 82.42± 0.38 84.31± 0.30
3 12 0.80 81.23± 0.37 84.17± 0.30 82.39± 0.46 84.22± 0.40
3 10 0.67 81.03± 0.38 83.75± 0.23 81.97± 0.50 83.96± 0.42
3 6 0.40 80.88± 0.27 83.83± 0.11 81.03± 0.22 83.66± 0.21
2 15 0.67 80.88± 0.31 84.05± 0.40 82.18± 0.34 84.40± 0.30

2 10 0.44 80.65± 0.50 83.89± 0.23 81.86± 0.39 83.85± 0.39
1 6 0.27 80.82± 0.42 83.44± 0.29 81.46± 0.45 83.62± 0.24
1 15 0.33 80.74± 0.39 84.09± 0.27 82.33± 0.44 84.17± 0.32
1 10 0.22 80.89± 0.33 83.65± 0.44 81.87± 0.58 83.66± 0.23
1 6 0.13 80.60± 0.27 83.61± 0.33 81.40± 0.56 83.57± 0.48

Table 3: Ablation study on the role of K and Kα in the performance of ScDCFNet. The column
“# Params” stands for the number of parameters of the current model compared to that of the
benchmark ScDCFNet used in Table 1 and Table 2, i.e., K = 15 and Kα = 3.

Models Accuracy (%)

ResNet-16 81.98± 0.23
LSI-CNN 81.79± 0.53
SI-CNN 81.75± 0.14
SS-CNN 69.51± 1.27
DSS 82.21± 0.47
SESN 83.89± 0.05

ScDCFNet 84.90± 0.36

Table 4: Test accuracy on the STL-10 data set.

6.3.2 STL-10

We next conduct the experiments on the STL-10 data set to examine the performance of
various models on natural image classification. We use a ResNet by He et al. (2016) with
16 layers as the baseline, upon which all models are built while the number of trainable
parameters is kept almost the same. Similarly, a max-pooling in the scale channel is performed
only after the final residual block for equivariant models. For SESN and ScDCFNet, the
filter size in scale Lα is set to 2.

Following the idea of Sosnovik et al. (2020), we augment the data set during training
by applying 12 pixel zero-padding followed by random cropping. In addition, images are
randomly flipped horizontally and Cutout by DeVries and Taylor (2017) with 1 hole of 32
pixels is used. All models are trained for 1000 epochs with a batch size of 128. We use an

18

Scaling-Translation-Equivariant Networks with Decomposed Convolutional Filters

Input

ScDCFNet auto-encoderCNN auto-encoder

Figure 4: Reconstructing rescaled versions of the original test image by manipulating its image code C
according to the group action (3). The first two images on the left are the original inputs; Decoder(C)
denotes the reconstruction using the (unchanged) image code C; Decoder(Dβ,vC) and Decoder(Tβ,vC)
denote the reconstructions using the “rescaled” image codes Dβ,vC and Tβ,vC respectively according
to (2) and (3). Unlike the regular CNN auto-encoder, the ScDCFNet auto-encoder manages to
generate rescaled versions of the original input, suggesting that it successfully encodes the scale
information directly into the representation.

SGD optimizer with Nesterov momentum set to 0.9 and weight decay being 5× 10−4. The
initial learning rate is set to 0.1 and scheduled to decrease tenfold after 300, 400, 600 and
800 epochs.

We run three independent trials of the experiment, and report the mean ± std of the test
accuracy in Table 4. It is clear that ScDCFNet again achieves the best performance compared
to other models, further demonstrating its advantage in multiscale image classification.

6.4 Image Reconstruction

In the last experiment, we illustrate the ability of ScDCFNet to explicitly encode the input
scale information into the representation. To achieve this, we train an ScDCFNet auto-
encoder on the SMNIST data set with images resized to 56× 56 for better visualization. The
encoder stacks two ST -equivariant convolutional blocks with 2× 2 average-pooling, and the
decoder contains a succession of two transposed convolutional blocks with 2× 2 upsampling.
A regular CNN auto-encoder is also trained for comparison (see Table 5 in Appendix B.2 for
the detailed architecture.)

Our goal is to demonstrate that the image code produced by the ScDCFNet auto-encoder
contains the scale information of the input, i.e., by applying the group action Tβ,v (3) to the
code C of a test image before feeding it to the decoder, we can reconstruct rescaled versions
of original input. This property can be visually verified in Figure 4. In contrast, a regular
CNN auto-encoder fails to do so.

Finally, we quantitatively study the impact of basis truncation in ScDCFNet on the
reconstruction error. In the experiment, we fix the number of basis functions in scale
at Kα = 3, and train ScDCFNet auto-encoders with spatial basis functions truncated to
K = 5, 8, 12, and 15. After training the networks, we calculate the relative L2 distance
between the rescaled original images Dβ [x

(0)] and their reconstructions at 13 different scales
2β , β ∈ {−0.6,−0.5, · · · , 0.6}:

Error =

∥

∥Decoder
{

Tβ
[

Encoder
(

x(0)
)]}

−Dβ

[

x(0)
]∥

∥

L2

∥

∥Dβ

[

x(0)
]∥

∥

L2

. (19)

19

Zhu, Qiu, Calderbank, Sapiro and Cheng

Figure 5: The relative error (19) between the rescaled inputs and their reconstructions using CNN
and ScDCFNet autoencoders at 13 different scales 2β , β ∈ {−0.6,−0.5, · · · , 0.6}. The means of the
reconstruction error over the test images of SMNIST are displayed.

To adjust for the contrast loss visible in Figure 4, images are thresholded before calculating
the error (19). We display the mean of the reconstruction error over the test set of SMNIST
across 13 different scales in Figure 5. It can be observed that ScDCFNet autoencoders
significantly outperform their CNN counterpart by having a smaller error when β 6= 0,
i.e., reconstructing more accurately at a scale different from the original image. Moreover,
by reducing the number of basis functions K, the reconstruction error becomes smaller,
demonstrating again our theoretical results Theorem 2 and Theorem 3 that basis truncation
improves deformation robustness of the equivariant representation.

7. Conclusion

We propose, in this paper, a ST -equivariant CNN with joint convolutions across the space
R
2 and the scaling group S, which we show to be both sufficient and necessary to achieve

equivariance for the regular representation of the scaling-translation group. To reduce the
computational cost and model complexity incurred by the joint convolutions, the convolutional
filters supported on R

2 × S are decomposed under a separable basis across the two domains
and truncated to only low-frequency components. Moreover, the truncated filter expansion
leads also to improved deformation robustness of the equivariant representation, i.e., the
model is still approximately equivariant even if the scaling transformation is imperfect.
Experimental results suggest that ScDCFNet achieves improved performance in multiscale
image classification with greater interpretability and reduced model size compared to regular
CNN models.

For future work, we will study the application of ScDCFNet in other more complicated
vision tasks, such as object detection/localization and pose estimation, where it is beneficial
to directly encode the input scale information into the deep representation. We will explore

20

Scaling-Translation-Equivariant Networks with Decomposed Convolutional Filters

other efficient implementation of the model, e.g., using filter-bank type of techniques to
compute convolutions with multiscale spatial filters, to further reduce the computational
cost.

Acknowledgments

The research of WZ is partially supported by NSF under DMS-2052525 and DMS-2140982.
QQ is partially supported by NSF DMS-1737744. The research of RC is supported in part by
the Air Force Office of Scientific Research through award FA 9550-20-1-0266. GS is partially
supported by NSF, NGA, and ONR. XC is partially supported by NSF (DMS-1820827) and
the Alfred P. Sloan Foundation.

Appendix A. Proofs

In this appendix we provide proofs of the results that were stated without proof in the main
text.

A.1 Proof of Theorem 1

Proof of Theorem 1. We note first that (4) holds true if and only if the following being valid
for all l ≥ 1,

Tβ,vx
(l)[x(l−1)] = x(l)[Tβ,vx

(l−1)], (20)

where Tβ,vx
(0) is understood as Dβ,vx

(0). We also note that the layerwise operations of a
general feedforward neural network with an extra index α ∈ S can be written as

x(1)[x(0)](u, α, λ) = σ

(

∑

λ′

∫

R2

x(0)(u+ u′, λ′)W (1)(u′, λ′, u, α, λ)du′ + b(1)(λ)

)

, (21)

and, for l > 1,

x(l)[x(l−1)](u, α, λ) =σ

(

∑

λ′

∫

R2

∫

R

x(l−1)(u+ u′, α+ α′, λ′)

W (l)(u′, α′, λ′, u, α, λ)dα′du′ + b(l)(λ)
)

. (22)

To prove the sufficient part: when l = 1, (2), (3), and (5) lead to

Tβ,vx
(1)[x(0)](u, α, λ) = x(1)[x(0)]

(

2−β(u− v), α− β, λ
)

=σ

(

∑

λ′

∫

x(0)
(

2−β(u− v) + u′, λ′
)

W
(1)
λ′,λ

(

2−(α−β)u′
)

2−2(α−β)du′ + b(1)(λ)

)

=σ

(

∑

λ′

∫

x(0)
(

2−β(u− v + ũ), λ′
)

W
(1)
λ′,λ

(

2−αũ
)

2−2αdũ+ b(1)(λ)

)

,

21

Zhu, Qiu, Calderbank, Sapiro and Cheng

and

x(1)[Dβ,vx
(0)](u, α, λ)

=σ

(

∑

λ′

∫

R2

Dβ,vx
(0)(u+ u′, λ′)W

(1)
λ′,λ

(

2−αu′
)

2−2αdu′ + b(1)(λ)

)

=σ

(

∑

λ′

∫

R2

x(0)(2−β
(

u+ u′ − v), λ′
)

W
(1)
λ′,λ

(

2−αu′
)

2−2αdu′ + b(1)(λ)

)

.

Hence Tβ,vx
(1)[x(0)] = x(1)[Dβ,vx

(0)].
When l > 1, we have

Tβ,vx
(l)[x(l−1)](u, α, λ) = x(l)[x(l−1)]

(

2−β(u− v), α− β, λ
)

=σ

(

∑

λ′

∫ ∫

x(l−1)
(

2−β(u− v) + u′, α− β + α′, λ′
)

·

W
(l)
λ′,λ

(

2−(α−β)u′, α′
)

2−2(α−β)du′dα′ + b(l)(λ)
)

=σ

(

∑

λ′

∫ ∫

x(l−1)
(

2−β(u− v + ũ), α− β + α′, λ′
)

·

W
(l)
λ′,λ

(

2−αũ, α′
)

2−2αdũdα′ + b(l)(λ)
)

and

x(l)[Tβ,vx
(l−1)](u, α, λ)

=σ

(

∑

λ′

∫ ∫

Tβ,vx
(l−1)(u+ u′, α+ α′, λ′)W

(l)
λ′,λ

(

2−αu′, α′
)

2−2αdα′du′ + b(l)(λ)

)

=σ

(

∑

λ′

∫ ∫

x(l−1)(2−β(u+ u′ − v), α+ α′ − β, λ′) ·

W
(l)
λ′,λ

(

2−αu′, α′
)

2−2αdα′du′ + b(l)(λ)
)

Therefore Tβ,vx
(l)[x(l−1)] = x(l)[Tβ,vx

(l−1)], ∀l > 1.
To prove the necessary part: when l = 1, we have

Tβ,vx
(1)[x(0)](u, α, λ) = x(1)[x(0)]

(

2−β(u− v), α− β, λ
)

=σ

(

∑

λ′

∫

x(0)
(

2−β(u− v) + u′, λ′
)

·

W (1)
(

u′, λ′, 2−β(u− v), α− β, λ
)

du′ + b(1)(λ)
)

=σ

(

∑

λ′

∫

x(0)
(

2−β(u+ u′ − v), λ′
)

·

22

Scaling-Translation-Equivariant Networks with Decomposed Convolutional Filters

W (1)
(

2−βu′, λ′, 2−β(u− v), α− β, λ
)

2−2βdu′ + b(1)(λ)
)

,

and

x(1)[Dβ,vx
(0)](u, α, λ)

=σ

(

∑

λ′

∫

Dβ,vx
(0)
(

u+ u′, λ′
)

W (1)
(

u′, λ′, u, α, λ
)

du′ + b(1)(λ)

)

=σ

(

∑

λ′

∫

x(0)
(

2−β(u+ u′ − v), λ′
)

W (1)
(

u′, λ′, u, α, λ
)

du′ + b(1)(λ)

)

Hence for (20) to hold when l = 1, we need

W (1)
(

u′, λ′, u, α, λ
)

=W (1)
(

2−βu′, λ′, 2−β(u− v), α− β, λ
)

2−2β (23)

to hold true for all u, α, λ, u′, λ′, v, β. Keeping u, α, λ, u′, λ′, β fixed while changing v in
(23), we obtain that W (1)(u′, λ′, u, α, λ) does not depend on the third variable u. Thus

W (1) (u′, λ′, u, α, λ) =W (1) (u′, λ′, 0, α, λ) , ∀u. Define W
(1)
λ,λ(u

′) as

W
(1)
λ′,λ(u

′) :=W (1)
(

u′, λ′, 0, 0, λ
)

.

Then, for any given u′, λ′, u, α, λ, setting β = α in (23) leads to

W (1)
(

u′, λ′, u, α, λ
)

=W (1)
(

2−αu′, λ′, 2−α(u− v), 0, λ
)

2−2α

=W (1)
(

2−αu′, λ′, 0, 0, λ
)

2−2α =W
(1)
λ′,λ

(

2−αu′
)

2−2α.

Hence (21) can be written as (5).

For l > 1, a similar argument leads to

W (l)
(

u′, α′, λ′, u, α, λ
)

=W (l)
(

2−βu′, α′, λ′, 2−β(u− v), α− β, λ
)

2−2β (24)

for all u, α, λ, u′, α′, λ′, v, β. Again, keeping u, α, λ, u′, α′, λ′, β fixed while changing v in (24)
leads us to the conclusion that W (l)(u′, α′, λ′, u, α, λ) does not depend on the fourth variable
u. Define

W
(l)
λ′,λ(u

′, α′) :=W (l)
(

u′, α′, λ′, 0, 0, λ
)

.

After setting β = α in (24), for any given u′, α′, λ′, u, α, λ, we have

W (l)
(

u′, α′, λ′, u, α, λ
)

=W (l)
(

2−αu′, α′, λ′, 2−α(u− v), 0, λ
)

2−2α

=W (l)
(

2−αu′, α′, λ′, 0, 0, λ
)

2−2α =W
(l)
λ′,λ

(

2−αu′
)

2−2α.

This concludes the proof of the Theorem.

23

Zhu, Qiu, Calderbank, Sapiro and Cheng

A.2 Proof of Proposition 1

Proof of Theorem 1. In a regular ST -equivariant CNN, the l-th convolutional layer (6) is
computed as follows:

y(u, α, α′, λ, λ′) =

∫

R2

x(l−1)(u+ u′, α+ α′, λ′)W
(l)
λ′,λ

(

2−αu′, α′
)

2−2αdu′, (25)

z(u, α, λ, λ′) =

∫

R

y(u, α, α′, λ, λ′)dα′, (26)

x(l)(u, α, λ) = σ





Ml−1
∑

λ′=1

z(u, α, λ, λ′) + b(l)(λ)



 . (27)

The spatial convolutions in (25) take 2HWL2NsLαMlMl−1 flops (there are NsLαMlMl−1

convolutions in u, each taking 2HWL2 flops.) The summation over α′ in (26) requires
LαNsHWMlMl−1 flops. The summation over λ′, adding the bias, and applying the nonlinear
activation in (27) requires an additional HWNsMl(2 +Ml−1) flops. Thus the total number
of floating point computations in a forward pass through the l-th layer of a regular ST -
equivariant CNN is

HWNsMl(2L
2LαMl−1 + LαMl−1 +Ml−1 + 2). (28)

On the other hand, in an ScDCFNet with separable basis truncation up to KKα leading
coefficients, (6) can be computed via the following steps:

y(u, α, λ′,m) =

∫

R

x(l−1)(u, α+ α′, λ′)ϕm(α′)dα′ (29)

z(u, α, λ′, k,m) =

∫

R2

y(u+ u′, α, λ′,m)ψjl,k(2
−αu′)2−2αdu′ (30)

x(l)(u, α, λ) = σ





Kα
∑

m=1

K
∑

k=1

Ml−1
∑

λ′=1

z(u, α, λ′, k,m)a
(l)
λ′,λ(k,m) + b(l)(λ)



 . (31)

The convolutions in α (29) require 2LαNsHWKαMl−1 flops (there are HWKαMl−1 convolu-
tions in α, each taking 2LαNs flops.) The spatial convolutions in (30) take 2HWL2NsMl−1KαK
flops (NsMl−1KαK convolutions in u, each taking 2HWL2 flops.) The last step (31) requires
an additional 2HWNsMl(1 +KKαMl−1) flops. Hence the total number of floating point
computation for an ScDCFNet is

2HWNs(KKαMl−1Ml +Ml + L2Ml−1KαK + LαKαMl−1). (32)

In particular, when Ml � L2, Lα, the dominating terms in (28) and (32) are, respec-
tively, 2HWNsMlMl−1L

2Lα and 2HWNsMl−1MlKKα. Thus the computational cost in an
ScDCFNet has been reduced to a factor of KKα

L2Lα
.

A.3 Proof of Proposition 2

Before proving Proposition 2, we need the following two lemmas.

24

Scaling-Translation-Equivariant Networks with Decomposed Convolutional Filters

Lemma 1. Suppose that {ψk}k are the the spatial bases defined in (8), and

F (u) =
∑

k

a(k)ψj,k(u) =
∑

k

a(k)2−2jψk(2
−ju)

is a smooth function on [−2j , 2j]2, then

∫

|F (u)| du,

∫

|u| |∇F (u)| du, 2j
∫

|∇F (u)| du ≤ π‖a‖µ = π

(

∑

k

µk · a(k)
2

)1/2

. (33)

This is essentially Lemma 3.5 and Proposition 3.6 in Qiu et al. (2018) after rescaling
u. The only difference is that the basis functions ψk(u) defined in (8) are eigenfunctions of
Dirichlet Laplacian on [−1, 1]2 instead of the unit disk. The key elements of the proof, i.e.,
the orthogonality of ψk and the Poincaré inequality, still apply. Lemma 1 easily leads to the
following lemma.

Lemma 2. Let a
(l)
λ′,λ(k,m) be the coefficients of the filter W

(l)
λ′,λ(u, α) under the joint bases

{ψk}k and {ϕm}m defined in (9), and define W
(l)
λ′,λ,m(u) as

Wλ′,λ,m(u) :=
∑

k

a
(l)
λ′,λ(k,m)ψjl,k(u). (34)

We have, for all l > 1,

B
(1)
λ′,λ, C

(1)
λ′,λ, 2

j1D
(1)
λ′,λ ≤ π‖a

(1)
λ′,λ‖µ, B

(l)
λ′,λ,m, C

(l)
λ′,λ,m, 2

jlD
(l)
λ′,λ,m ≤ π‖a

(l)
λ′,λ(·,m)‖µ,

where






























B
(1)
λ′,λ :=

∫

∣

∣

∣W
(1)
λ′,λ(u)

∣

∣

∣ du, B
(l)
λ′,λ,m :=

∫

∣

∣

∣W
(l)
λ′,λ,m(u)

∣

∣

∣ du, l > 1,

C
(1)
λ′,λ :=

∫

|u|
∣

∣

∣∇uW
(1)
λ′,λ(u)

∣

∣

∣ du, C
(l)
λ′,λ,m :=

∫

|u|
∣

∣

∣∇uW
(l)
λ′,λ,m(u)

∣

∣

∣ du, l > 1,

D
(1)
λ′,λ :=

∫

∣

∣

∣
∇uW

(1)
λ′,λ(u)

∣

∣

∣
du, D

(l)
λ′,λ,m :=

∫

∣

∣

∣
∇uW

(l)
λ′,λ,m(u)

∣

∣

∣
du, l > 1.

(35)

We thus have

Bl, Cl, 2
jlDl ≤ Al,

where

B1 := max

{

sup
λ

M0
∑

λ′=1

B
(1)
λ′,λ,

M0

M1
sup
λ′

M1
∑

λ=1

B
(1)
λ′,λ

}

,

C1 := max

{

sup
λ

M0
∑

λ′=1

C
(1)
λ′,λ,

M0

M1
sup
λ′

M1
∑

λ=1

C
(1)
λ′,λ

}

,

D1 := max

{

sup
λ

M0
∑

λ′=1

D
(1)
λ′,λ,

M0

M1
sup
λ′

M1
∑

λ=1

D
(1)
λ′,λ

}

,

(36)

25

Zhu, Qiu, Calderbank, Sapiro and Cheng

and, for l > 1,

Bl := max







sup
λ

Ml−1
∑

λ′=1

∑

m

B
(l)
λ′,λ,m,

2Ml−1

Ml

∑

m

Bl,m







, Bl,m := sup
λ′

Ml
∑

λ=1

B
(l)
λ′,λ,m,

Cl := max







sup
λ

Ml−1
∑

λ′=1

∑

m

C
(l)
λ′,λ,m,

2Ml−1

Ml

∑

m

Cl,m







, Cl,m := sup
λ′

Ml
∑

λ=1

C
(l)
λ′,λ,m,

Dl := max







sup
λ

Ml−1
∑

λ′=1

∑

m

D
(l)
λ′,λ,m,

2Ml−1

Ml

∑

m

Dl,m







, Dl,m := sup
λ′

Ml
∑

λ=1

D
(l)
λ′,λ,m.

(37)

In particular, (A2) implies that Bl, Cl, 2
jlDl ≤ 1, ∀l.

Proof of Proposition 2. To simplify the notation, we omit (l) in W
(l)
λ′,λ, W

(l)
λ′,λ,m, and b(l), and

let M =Ml, M
′ =Ml−1. The proof of (a) for the case l = 1 is similar to Proposition 3.1(a)

of Qiu et al. (2018) after noticing the fact that

∫

R2

∣

∣W (2−αu)
∣

∣ 2−2αdu =

∫

R2

|W (u)| du, (38)

and we include it here for completeness. From the definition of B1 in (36), we have

sup
λ

∑

λ′

B
(1)
λ′,λ ≤ B1, and sup

λ′

∑

λ

B
(1)
λ′,λ ≤ B1

M

M ′
.

Thus, given two arbitrary functions x1 and x2, we have

∣

∣

∣

(

x(1)[x1]− x(1)[x2]
)

(u, α, λ)
∣

∣

∣

2

=

∣

∣

∣

∣

∣

σ

(

∑

λ′

∫

x1(u+ u′, λ′)Wλ′,λ

(

2−αu′
)

2−2αdu′ + b(λ)

)

−σ

(

∑

λ′

∫

x2(u+ u′, λ′)Wλ′,λ

(

2−αu′
)

2−2αdu′ + b(λ)

)∣

∣

∣

∣

∣

2

≤

∣

∣

∣

∣

∣

∑

λ′

∫

x1(u+ u′, λ′)Wλ′,λ

(

2−αu′
)

2−2αdu′

−
∑

λ′

∫

x2(u+ u′, λ′)Wλ′,λ

(

2−αu′
)

2−2αdu′

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∑

λ′

∫

(x1 − x2)(u+ u′, λ′)Wλ′,λ

(

2−αu′
)

2−2αdu′

∣

∣

∣

∣

∣

2

≤

(

∑

λ′

∫

∣

∣(x1 − x2)(u+ u′, λ′)
∣

∣

2 ∣
∣Wλ′,λ(2

−αu′)
∣

∣ 2−2αdu′

)

∑

λ′

∫

∣

∣Wλ′,λ(2
−αu′)

∣

∣ 2−2αdu′

26

Scaling-Translation-Equivariant Networks with Decomposed Convolutional Filters

=

(

∑

λ′

∫

∣

∣(x1 − x2)(u+ u′, λ′)
∣

∣

2 ∣
∣Wλ′,λ(2

−αu′)
∣

∣ 2−2αdu′

)(

∑

λ′

B
(1)
λ′,λ

)

≤B1

∑

λ′

∫

∣

∣(x1 − x2)(ũ, λ
′)
∣

∣

2 ∣
∣Wλ′,λ(2

−α (ũ− u))
∣

∣ 2−2αdũ

Therefore, for any α,

∑

λ

∫

∣

∣

∣

(

x(1)[x1]− x(1)[x2]
)

(u, α, λ)
∣

∣

∣

2
du

≤
∑

λ

∫

B1

∑

λ′

∫

∣

∣(x1 − x2)(ũ, λ
′)
∣

∣

2 ∣
∣Wλ′,λ(2

−α (ũ− u))
∣

∣ 2−2αdũdu

=B1

∑

λ′

∫

∣

∣(x1 − x2)(ũ, λ
′)
∣

∣

2

(

∑

λ

∫

∣

∣Wλ′,λ(2
−α (ũ− u))

∣

∣ 2−2αdu

)

dũ

=B1

∑

λ′

∫

∣

∣(x1 − x2)(ũ, λ
′)
∣

∣

2

(

∑

λ

B
(1)
λ′,λ

)

dũ

≤B2
1

M

M ′

∑

λ′

∫

∣

∣(x1 − x2)(ũ, λ
′)
∣

∣

2
dũ

=B2
1M‖x1 − x2‖

2

≤M‖x1 − x2‖
2,

where the last inequality makes use of the fact that B1 ≤ A1 ≤ 1 under (A2) (Lemma 2.)
Therefore

‖x(1)[x1]− x(1)[x2]‖
2 = sup

α

1

M

∑

λ

∫

∣

∣

∣

(

x(1)[x1]− x(1)[x2]
)

(u, α, λ)
∣

∣

∣

2
du

≤ ‖x1 − x2‖
2.

This concludes the proof of (a) for the case l = 1. To prove the case for any l > 1, we first
recall from (37) that

sup
λ

∑

λ′

∑

m

B
(l)
λ′,λ,m ≤ Bl, and

∑

m

Bl,m ≤ Bl
M

2M ′
, where Bl,m = sup

λ′

∑

λ

B
(l)
λ′,λ,m.

Thus, for two arbitrary functions x1 and x2, we have

∣

∣

∣

(

x(l)[x1]− x(l)[x2]
)

(u, α, λ)
∣

∣

∣

2

=

∣

∣

∣

∣

∣

σ

(

∑

λ′

∫

R2

∫

R

x1(u+ u′, α+ α′, λ′)Wλ′,λ

(

2−αu′, α′
)

2−2αdα′du′ + b(λ)

)

−σ

(

∑

λ′

∫

R2

∫

R

x2(u+ u′, α+ α′, λ′)Wλ′,λ

(

2−αu′, α′
)

2−2αdα′du′ + b(λ)

)∣

∣

∣

∣

∣

2

27

Zhu, Qiu, Calderbank, Sapiro and Cheng

≤

∣

∣

∣

∣

∣

∑

λ′

∫

R2

∫

R

(x1 − x2)(u+ u′, α+ α′, λ′)Wλ′,λ

(

2−αu′, α′
)

2−2αdα′du′

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∑

λ′

∫

R2

∫

R

(x1 − x2)(u+ u′, α+ α′, λ′)2−2α
∑

m

Wλ′,λ,m

(

2−αu′
)

ϕm(α′)dα′du′

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∑

λ′

∑

m

∫

R2

Gm(u+ u′, α, λ′)2−2αWλ′,λ,m(2−αu′)du′

∣

∣

∣

∣

∣

2

≤

(

∑

λ′

∑

m

∫

R2

∣

∣Gm(u+ u′, α, λ′)
∣

∣

2 ∣
∣Wλ′,λ,m(2−αu′)

∣

∣ 2−2αdu′

)

·

(

∑

λ′

∑

m

∫

R2

∣

∣Wλ′,λ,m(2−αu′)
∣

∣ 2−2αdu′

)

=

(

∑

λ′

∑

m

∫

R2

∣

∣Gm(ũ, α, λ′)
∣

∣

2 ∣
∣Wλ′,λ,m(2−α(ũ− u))

∣

∣ 2−2αdũ

)(

∑

λ′

∑

m

B
(l)
λ′,λ,m

)

≤Bl

∑

λ′

∑

m

∫

R2

∣

∣Gm(ũ, α, λ′)
∣

∣

2 ∣
∣Wλ′,λ,m(2−α(ũ− u))

∣

∣ 2−2αdũ,

where

Gm(u, α, λ′) :=

∫

R

(x1 − x2)(u, α+ α′, λ′)ϕm(α′)dα′. (39)

We claim (to be proved later in Lemma 3) that

M ′‖Gm‖2 = sup
α

∑

λ′

∫

R2

∣

∣Gm(u, α, λ′)
∣

∣

2
du ≤ 2M ′‖x1 − x2‖

2, ∀m.

Thus, for any α,

∑

λ

∫

R2

∣

∣

∣

(

x(l)[x1]− x(l)[x2]
)

(u, α, λ)
∣

∣

∣

2
du

≤
∑

λ

∫

R2

Bl

∑

λ′

∑

m

∫

R2

∣

∣Gm(ũ, α, λ′)
∣

∣

2 ∣
∣Wλ′,λ,m(2−α(ũ− u))

∣

∣ 2−2αdũdu

=Bl

∑

λ′

∑

m

∫

R2

∣

∣Gm(ũ, α, λ′)
∣

∣

2

(

∑

λ

∫

R2

∣

∣Wλ′,λ,m(2−α(ũ− u))
∣

∣ 2−2αdu

)

dũ

=Bl

∑

λ′

∑

m

∫

R2

∣

∣Gm(ũ, α, λ′)
∣

∣

2

(

∑

λ

B
(l)
λ′,λ,m

)

dũ

≤Bl

∑

λ′

∑

m

∫

R2

∣

∣Gm(ũ, α, λ′)
∣

∣

2
Bl,mdũ

=Bl

∑

m

(

∑

λ′

∫

R2

∣

∣Gm(ũ, α, λ′)
∣

∣

2
dũ

)

Bl,m

28

Scaling-Translation-Equivariant Networks with Decomposed Convolutional Filters

≤Bl · 2M
′‖x1 − x2‖

2
∑

m

Bl,m

≤B2
l · 2M

′‖x1 − x2‖
2 M

2M ′
≤M‖x1 − x2‖

2.

Therefore

‖x(l)[x1]− x(l)[x2]‖
2 = sup

α

1

M

∑

λ

∫

R2

∣

∣

∣

(

x(l)[x1]− x(l)[x2]
)

(u, α, λ)
∣

∣

∣

2
du

≤ ‖x1 − x2‖
2.

To prove (b), we use the method of induction. When l = 0, x
(0)
0 (u, λ) = 0 by definition.

When l = 1, x
(1)
0 (u, α, λ) = σ(b(1)(λ)). Suppose x

(l−1)
0 (u, α, λ) = x

(l−1)
0 (λ) for some l > 1,

then

x
(l)
0 (u, α, λ)

=σ

(

∑

λ′

∫

R2

∫

R

x
(l−1)
0 (u+ u′, α+ α′, λ′)W

(l)
λ′,λ

(

2−αu′, α′
)

2−2αdα′du′ + b(l)(λ)

)

=σ

(

∑

λ′

x
(l−1)
0 (λ′)

∫

R2

∫

R

W
(l)
λ′,λ

(

2−αu′, α′
)

2−2αdα′du′ + b(l)(λ)

)

=σ

(

∑

λ′

x
(l−1)
0 (λ′)

∫

R2

∫

R

W
(l)
λ′,λ

(

u′, α′
)

dα′du′ + b(l)(λ)

)

=x
(l)
0 (λ).

Part (c) is an easy corollary of part (a). More specifically, for any l > 1,

‖x(l)c ‖ = ‖x(l) − x
(l)
0 ‖ = ‖x(l)[x(l−1)]− x

(l)
0 [x

(l−1)
0]‖ ≤ ‖x(l−1) − x

(l−1)
0 ‖ = ‖x(l−1)

c ‖.

Lemma 3. Suppose ϕ ∈ L2(R) with supp(ϕm) ⊂ [−1, 1] and ‖ϕ‖L2 = 1, and x is a function
of three variables

x : R2 × R× [M] → R

(u, α, λ) 7→ x(u, α, λ)

with ‖x‖2 := supα
1
M

∑

λ

∫

R2 |x(u, α, λ)|
2du. Define G(u, α, λ) as

G(u, α, λ) :=

∫

R

x(u, α+ α′, λ)ϕ(α′)dα.

Then we have

M‖G‖2 = sup
α

∑

λ

∫

R2

|G(u, α, λ)|2 du ≤ 2M‖x‖2. (40)

29

Zhu, Qiu, Calderbank, Sapiro and Cheng

Proof of Lemma 3. Notice that, for any α, we have

∑

λ

∫

R2

|G(u, α, λ)|2 du =
∑

λ

∫

R2

∣

∣

∣

∣

∫ 1

−1
x(u, α+ α′, λ)ϕ(α′)dα′

∣

∣

∣

∣

2

du

≤
∑

λ

∫

R2

(∫ 1

−1

∣

∣x(u, α+ α′, λ)
∣

∣

2
dα′

)

‖ϕ‖2L2du

=

∫ 1

−1

(

∑

λ

∫

R2

∣

∣x(u, α+ α′, λ)
∣

∣

2
du

)

dα′

≤

∫ 1

−1
M‖x‖2dα′ = 2M‖x‖2.

Thus

sup
α

∑

λ

∫

R2

|G(u, α, λ)|2 du ≤ 2M‖x‖2.

A.4 Proof of Theorem 2

To prove Theorem 2, we need the following two Propositions.

Proposition 3. In an ScDCFNet satisfying (A1) and (A3), we have

(a) For any l ≥ 1,
∥

∥

∥x(l)[Dτx
(l−1)]−Dτx

(l)[x(l−1)]
∥

∥

∥ ≤ 4(Bl + Cl)|∇τ |∞‖x(l−1)
c ‖. (41)

(b) For any l ≥ 1, we have

‖Tβ,vx
(l)‖ = 2β‖x(l)‖, (42)

and
∥

∥

∥x(l)[Tβ,v ◦Dτx
(l−1)]− Tβ,vDτx

(l)[x(l−1)]
∥

∥

∥ ≤ 2β+2(Bl + Cl)|∇τ |∞‖x(l−1)
c ‖, (43)

where the first Tβ,v in (43) is replaced by Dβ,v when l = 1.

(c) If (A2) also holds true, then
∥

∥

∥x(l)[Dβ,v ◦Dτx
(0)]− Tβ,vDτx

(l)[x(0)]
∥

∥

∥ ≤ 2β+3l|∇τ |∞‖x(0)‖, ∀l ≥ 1. (44)

Proposition 4. In an ScDCFNet satisfying (A1) and (A3), we have, for any l ≥ 1,
∥

∥

∥
Tβ,vDτx

(l) − Tβ,vx
(l)
∥

∥

∥
≤ 2β+1|τ |∞Dl‖x

(l−1)
c ‖ ≤ 2β+1|τ |∞Dl‖x

(0)‖. (45)

If (A2) also holds true, then
∥

∥

∥
Tβ,vDτx

(l) − Tβ,vx
(l)
∥

∥

∥
≤ 2β+1−jl |τ |∞‖x(0)‖. (46)

30

Scaling-Translation-Equivariant Networks with Decomposed Convolutional Filters

Proof of Theorem 2. Putting together (44) and (46), we have

∥

∥

∥
x(L)[Dβ,v ◦Dτx

(0)]− Tβ,vx
(L)[x(0)]

∥

∥

∥

≤
∥

∥

∥x(L)[Dβ,v ◦Dτx
(0)]− Tβ,vDτx

(L)[x(0)]
∥

∥

∥+
∥

∥

∥Tβ,vDτx
(L)[x(0)]− Tβ,vx

(L)[x(0)]
∥

∥

∥

≤2β+3L|∇τ |∞‖x(0)‖+ 2β+1−jL |τ |∞‖x(0)‖

=2β+1
(

4L|∇τ |∞ + 2−jL |τ |∞
)

‖x(0)‖

This concludes the proof of Theorem 2.

Finally, we need to prove Proposition 3 and Proposition 4, where the following lemma
from Qiu et al. (2018) is useful.

Lemma 4 (Lemma A.1 of Qiu et al. (2018)). Suppose that |∇τ |∞ < 1/5, ρ(u) = u− τ(u),
then at every point u ∈ R

2,

||Jρ| − 1| ≤ |∇τ |∞(2 + |∇τ |∞), (47)

where Jρ is the Jacobian of ρ, and |Jρ| is the Jacobian determinant. As a result,

||Jρ| − 1| ,
∣

∣|Jρ−1| − 1
∣

∣ ≤ 4|∇τ |∞, (48)

and,

|Jρ| ,
∣

∣Jρ−1
∣

∣ ≤ 2. (49)

Proof of Proposition 3. Just like Proposition 2(a), the proof of Proposition 3(a) for the case
l = 1 is similar to Lemma 3.2 of Qiu et al. (2018) after the change of variable (38). We thus
focus only on the proof for the case l > 1. To simplify the notation, we denote x(l)[x(l−1)] as

y[x], and replace x
(l−1)
c , W (l), b(l), Ml−1, and Ml, respectively, by xc, W , b, M ′, and M . By

the definition of the deformation Dτ (12), we have

Dτy[x](u, α, λ) = σ

(

∑

λ′

∫

R2

∫

R

x(ρ(u) + u′, α+ α′, λ′)Wλ′,λ

(

2−αu′, α′
)

2−2αdα′du′ + b(λ)

)

,

y[Dτx](u, α, λ) = σ

(

∑

λ′

∫

R2

∫

R

x(ρ(u+ u′), α+ α′, λ′)Wλ′,λ

(

2−αu′, α′
)

2−2αdα′du′ + b(λ)

)

.

Thus

|(Dτy[x]− y[Dτx])(u, α, λ)|
2

=

∣

∣

∣

∣

∣

σ

(

∑

λ′

∫

R2

∫

R

x(ρ(u) + u′, α+ α′, λ′)Wλ′,λ

(

2−αu′, α′
)

2−2αdα′du′ + b(λ)

)

− σ

(

∑

λ′

∫

R2

∫

R

x(ρ(u+ u′), α+ α′, λ′)Wλ′,λ

(

2−αu′, α′
)

2−2αdα′du′ + b(λ)

)∣

∣

∣

∣

∣

2

31

Zhu, Qiu, Calderbank, Sapiro and Cheng

≤

∣

∣

∣

∣

∣

∑

λ′

∫

R2

∫

R

(

x(ρ(u) + u′, α+ α′, λ′)− x(ρ(u) + u′, α+ α′, λ′)
)

·

Wλ′,λ

(

2−αu′, α′
)

2−2αdα′du′
∣

∣

2

=

∣

∣

∣

∣

∣

∑

λ′

∫

R2

∫

R

(

xc(ρ(u) + u′, α+ α′, λ′)− xc(ρ(u) + u′, α+ α′, λ′)
)

·

Wλ′,λ

(

2−αu′, α′
)

2−2αdα′du′
∣

∣

2

=

∣

∣

∣

∣

∣

∑

λ′

∑

m

∫

R2

∫

R

(

xc(ρ(u) + u′, α+ α′, λ′)− xc(ρ(u) + u′, α+ α′, λ′)
)

·

Wλ′,λ,m

(

2−αu′
)

ϕm

(

α′
)

2−2αdα′du′
∣

∣

2
,

where the second equality results from the fact that x(u, α, λ)− xc(u, α, λ) = x0(λ) depends
only on λ (Proposition 2(b).) Just like the proof of Proposition 2(a), we take the integral of
α′ first, and define

Gm(u, α, λ′) :=

∫

R

xc(u, α+ α′, λ′)ϕm(α′)dα′. (50)

Thus

|(Dτy[x]− y[Dτx])(u, α, λ)|
2

≤

∣

∣

∣

∣

∣

∑

λ′

∑

m

∫

R2

(

Gm(ρ(u) + u′, α, λ′)−Gm(ρ(u+ u′), α, λ′)
)

·

Wλ′,λ,m

(

2−αu′
)

2−2αdu′
∣

∣

2

=

∣

∣

∣

∣

∣

∑

λ′

∑

m

∫

R2

Gm(v, α, λ′)Wλ′,λ,m

(

2−α(v − ρ(u))
)

2−2αdv

−
∑

λ′

∑

m

∫

R2

Gm(v, α, λ′)Wλ′,λ,m

(

2−α(ρ−1(v)− u)
)

2−2α|Jρ−1(v)|dv

∣

∣

∣

∣

∣

2

= |E1(u, α, λ) + E2(u, α, λ)|
2 ,

where

E1(u, α, λ) =
∑

λ′

∑

m

∫

R2

[

Wλ′,λ,m

(

2−α(v − ρ(u))
)

−Wλ′,λ,m

(

2−α(ρ−1(v)− u)
)]

·

2−2αGm(v, α, λ′)dv,

E2(u, α, λ) =
∑

λ′

∑

m

∫

R2

Wλ′,λ,m

(

2−α(ρ−1(v)− u)
) [

1−
∣

∣Jρ−1(v)
∣

∣

]

·

2−2αGm(v, α, λ′)dv.

Therefore

M ‖Dτy[x]− y[Dτx]‖
2 =sup

α

∑

λ

∫

R2

|(Dτy[x]− y[Dτx])(u, α, λ)|
2 du

32

Scaling-Translation-Equivariant Networks with Decomposed Convolutional Filters

≤ sup
α

∑

λ

∫

R2

|E1(u, α, λ) + E2(u, α, λ)|
2 du

=M‖E1 + E2‖
2

Hence

‖Dτy[x]− y[Dτx]‖ ≤ ‖E1 + E2‖. (51)

We thus seek to estimate ‖E1‖ and ‖E2‖ individually.
To bound ‖E2‖, we let

k
(2)
λ′,λ,m(v, u, α) :=Wλ′,λ,m

(

2−α(ρ−1(v)− u)
) [

1− |Jρ−1(v)|
]

2−2α.

Then

E2(u, α, λ) =
∑

λ′

∑

m

∫

R2

Gm(v, α, λ′)k
(2)
λ′,λ,m(v, u, α)dv,

and, for any given v and α

∫

R2

∣

∣

∣k
(2)
λ′,λ,m(v, u, α)

∣

∣

∣ du =

∫

R2

∣

∣Wλ′,λ,m

(

2−α(ρ−1(v)− u)
)∣

∣

∣

∣1− |Jρ−1(v)|
∣

∣ 2−2αdu

=
∣

∣1− |Jρ−1(v)|
∣

∣

∫

R2

∣

∣Wλ′,λ,m(ũ)
∣

∣ dũ

≤4|∇τ |∞B
(l)
λ′,λ,m,

where the last inequality comes from (48). Moreover, for any given u and α,

∫

R2

∣

∣

∣
k
(2)
λ′,λ,m(v, u, α)

∣

∣

∣ dv =

∫

R2

∣

∣Wλ′,λ,m

(

2−α(ρ−1(v)− u)
)∣

∣

∣

∣1− |Jρ−1(v)|
∣

∣ 2−2αdv

=

∫

R2

∣

∣Wλ′,λ,m(ṽ − 2−αu)
∣

∣ · ||Jρ(2αṽ)| − 1| dṽ

≤4|∇τ |∞B
(l)
λ′,λ,m,

where the last inequality is again because of (48). Thus, for any given α,

∑

λ

∫

R2

|E2(u, α, λ)|
2 du =

∑

λ

∫

R2

∣

∣

∣

∣

∣

∑

λ′

∑

m

∫

R2

Gm(v, α, λ′)k
(2)
λ′,λ,m(v, u, α)dv

∣

∣

∣

∣

∣

2

du

≤
∑

λ

∫

R2

(

∑

λ′

∑

m

∫

R2

|Gm(v, α, λ)|2
∣

∣

∣
k
(2)
λ′,λ,m(v, u, α)

∣

∣

∣
dv

)

·

(

∑

λ′

∑

m

∫

R2

∣

∣

∣k
(2)
λ′,λ,m(v, u, α)

∣

∣

∣ dv

)

du

≤
∑

λ

∫

R2

(

∑

λ′

∑

m

∫

R2

|Gm(v, α, λ)|2
∣

∣

∣
k
(2)
λ′,λ,m(v, u, α)

∣

∣

∣
dv

)

·

33

Zhu, Qiu, Calderbank, Sapiro and Cheng

(

∑

λ′

∑

m

4|∇τ |∞B
(l)
λ′,λ,m

)

du

≤4|∇τ |∞Bl

∑

m

∑

λ′

∫

R2

|Gm(v, α, λ)|2
(

∑

λ

∫

R2

∣

∣

∣
k
(2)
λ′,λ,m(v, u, α)

∣

∣

∣
du

)

dv

≤4|∇τ |∞Bl

∑

m

∑

λ′

∫

R2

|Gm(v, α, λ)|2
(

∑

λ

4|∇τ |∞B
(l)
λ′,λ,m

)

dv

≤16|∇τ |2∞Bl

∑

m

(

∑

λ′

∫

R2

|Gm(v, α, λ)|2 dv

)

Bl,m

≤16|∇τ |2∞Bl

∑

m

M ′‖Gm‖2Bl,m

Since ‖Gm‖2 ≤ 2‖xc‖
2 (by Lemma 3), and

∑

mBl,m ≤ M
2M ′Bl by definition (37), we thus

have, for any α,

∑

λ

∫

R2

|E2(u, α, λ)|
2 du ≤ 16|∇τ |2∞Bl

M

2M ′
Bl · 2M

′‖xc‖
2 =M(4|∇τ |∞Bl‖xc‖)

2. (52)

Taking supα on both sides gives us

‖E2‖ ≤ 4|∇τ |∞Bl‖xc‖. (53)

Similarly, to bound ‖E1‖, we introduce

k
(1)
λ′,λ,m(v, u, α) :=

[

Wλ′,λ,m

(

2−α(v − ρ(u))
)

−Wλ′,λ,m

(

2−α(ρ−1(v)− u)
)]

2−2α.

Then

E1(u, α, λ) =
∑

λ′

∑

m

∫

R2

Gm(v, α, λ′)k
(1)
λ′,λ,m(v, u, α)dv,

and, for any given v and α, we have

∫

R2

∣

∣

∣k
(1)
λ′,λ,m(v, u, α)

∣

∣

∣ du,

∫

R2

∣

∣

∣k
(1)
λ′,λ,m(v, u, α)

∣

∣

∣ dv ≤ 4|∇τ |∞C
(l)
λ′,λ,m. (54)

The proof of (54) is exactly the same as that of Lemma 3.2 in Qiu et al. (2018) after a change
of variable, and we thus omit the detail. Similar to the procedure we take to bound ‖E2‖,
(54) leads to

‖E1‖ ≤ 4|∇τ |∞Cl‖xc‖. (55)

Putting together (51), (53), and (55), we thus have

‖Dτy[x]− y[Dτx]‖ ≤ ‖E1 + E2‖ ≤ ‖E1‖+ ‖E2‖ ≤ 4(Bl + Cl)|∇τ |∞‖xc‖.

This concludes the proof of (a).

34

Scaling-Translation-Equivariant Networks with Decomposed Convolutional Filters

To prove (b), given any β ∈ R, and v ∈ R
2, we have

‖Tβ,vx
(l)‖2 = sup

α

1

Ml

∑

λ

∫

R2

∣

∣

∣Tβ,vx
(l)(u, α, λ)

∣

∣

∣

2
du

= sup
α

1

Ml

∑

λ

∫

R2

∣

∣

∣x(l)(2−β(u− v), α− β, λ)
∣

∣

∣

2
du

= sup
α

1

Ml

∑

λ

∫

R2

∣

∣

∣
x(l)(ũ, α− β, λ)

∣

∣

∣

2
22βdũ

= 22β‖x(l)‖2

Thus (42) holds true. As for (43), we have

∥

∥

∥
x(l)[Tβ,v ◦Dτx

(l−1)]− Tβ,vDτx
(l)[x(l−1)]

∥

∥

∥

=
∥

∥

∥
Tβ,vx

(l)[Dτx
(l−1)]− Tβ,vDτx

(l)[x(l−1)]
∥

∥

∥

=2β
∥

∥

∥x(l)[Dτx
(l−1)]−Dτx

(l)[x(l−1)]
∥

∥

∥

≤2β+2(Bl + Cl)|∇τ |∞‖x(l−1)
c ‖,

where the first equality holds valid because of Theorem 1, and the second equality comes
from (42).

To prove (c), for any 0 ≤ j ≤ l, define yj as

yj = x(l) ◦ x(l−1) ◦ · · · ◦ Tβ,v ◦Dτx
(j) ◦ · · · ◦ x(0).

We thus have

∥

∥

∥
x(l)[Dβ,v ◦Dτx

(0)]− Tβ,vDτx
(l)[x(0)]

∥

∥

∥
= ‖yl − y0‖ ≤

l
∑

j=1

‖yj − yj−1‖

=
l
∑

j=1

∥

∥

∥
x(l) ◦ · · · ◦ Tβ,v ◦Dτx

(j) ◦ · · · ◦ x(0) − x(l) ◦ · · · ◦ x(j) ◦ Tβ,v ◦Dτx
(j−1) ◦ · · · ◦ x(0)

∥

∥

∥

≤
l
∑

j=1

∥

∥

∥
Tβ,v ◦Dτx

(j)[x(j−1)]− x(j)[Tβ,v ◦Dτx
(j−1)]

∥

∥

∥

≤
l
∑

j=1

2β+2(Bj + Cj)|∇τ |∞‖x(j−1)
c ‖

≤
l
∑

k=1

2β+2 · 2|∇τ |∞‖x(0)‖ = 2β+3l|∇τ |∞‖x(0)‖,

where the second inequality is because of Proposition 2(a), the third inequality is due to
(43), and the last inequality holds true because Bl, Cl ≤ Al ≤ 1 under (A2) (Lemma 2.) This
concludes the proof of Proposition 3.

35

Zhu, Qiu, Calderbank, Sapiro and Cheng

Proof of Proposition 4. The second inequality in (45) is due to Proposition 2(c). Because of
(42), the first inequality in (45) is equivalent to

∥

∥

∥Dτx
(l) − x(l)

∥

∥

∥ ≤ 2|τ |∞Dl‖x
(l−1)
c ‖ (56)

Just like Proposition 3(a), the proof of (56) for the case l = 1 is similar to Proposition
3.4 of Qiu et al. (2018) after the change of variable (38). A similar strategy as that of
Proposition 3(a) can be used to extend the proof to the case l > 1. More specifically, denote

x(l−1), x
(l−1)
c ,W (l), b(l), respectively, as x, xc,W, and b to simplify the notation. We have

∣

∣

∣

(

Dτx
(l)[x]− x(l)[x]

)

(u, α, λ)
∣

∣

∣

2

=

∣

∣

∣

∣

∣

σ

(

∑

λ′

∫

R2

∫

R

x
(

ρ(u) + u′, α+ α′, λ′
)

Wλ′,λ

(

2−αu′, α′
)

2−2αdu′dα′ + b(λ)

)

− σ

(

∑

λ′

∫

R2

∫

R

x
(

u+ u′, α+ α′, λ′
)

Wλ′,λ

(

2−αu′, α′
)

2−2αdu′dα′ + b(λ)

)∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∑

λ′

∫

R2

∫

R

x
(

ρ(u) + u′, α+ α′, λ′
)

Wλ′,λ

(

2−αu′, α′
)

2−2αdu′dα′

−
∑

λ′

∫

R2

∫

R

x
(

u+ u′, α+ α′, λ′
)

Wλ′,λ

(

2−αu′, α′
)

2−2αdu′dα′

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

λ′

∫

R2

∫

R

xc
(

ρ(u) + u′, α+ α′, λ′
)

∑

m

Wλ′,λ,m

(

2−αu′
)

ϕm

(

α′
)

2−2αdu′dα′

−
∑

λ′

∫

R2

∫

R

xc
(

u+ u′, α+ α′, λ′
)

∑

m

Wλ′,λ,m

(

2−αu′
)

ϕm

(

α′
)

2−2αdu′dα′

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

λ′

∑

m

∫

R2

Gm(v, α, λ′)kλ′,λ,m(v, u, α)du′

∣

∣

∣

∣

∣

,

where

Gm(u, α, λ′) :=

∫

R

xc(u, α+ α′, λ′)ϕm(α′)dα′,

kλ′,λ,m(v, u, α) := 2−2α
[

Wλ′,λ,m

(

2−α(v − ρ(u))
)

−Wλ′,λ,m

(

2−α(v − u)
)]

.

Similar to (54), we have the following bound

∫

R2

∣

∣kλ′,λ,m(v, u, α)
∣

∣ du,

∫

R2

∣

∣kλ′,λ,m(v, u, α)
∣

∣ dv ≤ 2|∇τ |∞D
(l)
λ′,λ,m. (57)

Again, the proof of (57) is the same as that of Proposition 3.4 in Qiu et al. (2018) after a
change of variable. The rest of the proof follows from a similar argument as in (52) and
(53).

36

Scaling-Translation-Equivariant Networks with Decomposed Convolutional Filters

A.5 Proof of Theorem 3

Before proving Theorem 3, we need the following lemma.

Lemma 5. Under the same assumption of Theorem 3, we have, for any l,

∥

∥

∥
x̃(l)[x(0)]− x(l)[x(0)]

∥

∥

∥

2
= sup

α≤T

1

Ml

Ml
∑

λ=1

∫

∣

∣

∣
x̃(l)(u, α, λ)− x(l)(u, α, λ)

∣

∣

∣

2
du = O(2−T), (58)

where we slightly abuse the notation x̃(l) and x(l) to denote the l-th layer outputs given the
input x(0) in the first equality.

Proof of Lemma 5. We prove this lemma by induction. When l = 1, we have, for any
α ∈ [−T, T],

x̃(1)(u, α, λ) = x(1)(u, α, λ). (59)

When α ≤ −T , we have

∣

∣

∣x̃(1)(u, α, λ)− x(1)(u, α, λ)
∣

∣

∣ =
∣

∣

∣x(1)(u,−T, λ)− x(1)(u, α, λ)
∣

∣

∣

=

∣

∣

∣

∣

∣

σ

(

∑

λ′

∫

R2

22Tx(0)(u+ u′, λ′)Wλ′,λ(2
Tu′)du′ + b(λ)

)

−σ

(

∑

λ′

∫

R2

2−2αx(0)(u+ u′, λ′)Wλ′,λ(2
−2αu′)du′ + b(λ)

)∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∑

λ′

x(0)(·, λ′) ∗Wλ′,λ,−T (u)− x(0)(·, λ′) ∗Wλ′,λ,α(u)

∣

∣

∣

∣

∣

,

where Wλ′,λ,α(u) = 2−2αWλ′,λ(2
−αu) forms a mollifier in R

2. Thus, we have

∫

R2

∣

∣

∣x̃(1)(u, α, λ)− x(1)(u, α, λ)
∣

∣

∣

2
du

≤

∫

R2

∣

∣

∣

∣

∣

∑

λ′

x(0)(·, λ′) ∗Wλ′,λ,−T (u)− x(0)(·, λ′) ∗Wλ′,λ,α(u)

∣

∣

∣

∣

∣

2

du

≤

∫

R2

(

∑

λ′

∣

∣

∣x(0)(·, λ′) ∗Wλ′,λ,−T (u)− x(0)(·, λ′) ∗Wλ′,λ,α(u)
∣

∣

∣

2
)

M ′du

=M ′
∑

λ′

∥

∥

∥
x(0)(·, λ′) ∗Wλ′,λ,−T − x(0)(·, λ′) ∗Wλ′,λ,α

∥

∥

∥

2

2

≤M ′
∑

λ′

(∥

∥

∥
x(0)(·, λ′) ∗Wλ′,λ,−T −Aλ′,λx

(0)(·, λ′)
∥

∥

∥

2

+
∥

∥

∥x(0)(·, λ′) ∗Wλ′,λ,α −Aλ′,λx
(0)(·, λ′)

∥

∥

∥

2

)2
,

37

Zhu, Qiu, Calderbank, Sapiro and Cheng

where Aλ′,λ =
∫

R2 W
(1)
λ′,λ(u)du. Due to the L2 convergence of mollification (Evans, 2010), i.e.,

∥

∥f ∗Wλ′,λ,α −Aλ′,λf
∥

∥

2
≤ C2α ‖f‖H1 = O(2α), as α→ −∞,

we have

sup
α≤−T

∫

R2

∣

∣

∣
x̃(1)(u, α, λ)− x(1)(u, α, λ)

∣

∣

∣

2
du = O(2−T). (60)

Combining (60) and (59), we have

‖x̃(1) − x(1)‖2 = sup
α≤T

1

M

∑

λ

∫

∣

∣

∣
x̃(1)(u, α, λ)− x(1)(u, α, λ)

∣

∣

∣

2
du = O(2−T).

Next, we want to show that (58) holds for l > 1 assuming it holds for l − 1. Indeed, for any
α ∈ [−T, T], we have

x̃(l)(u, α, λ)− x(l)(u, α, λ) = x(l)[x̃(l−1)](u, α, λ)− x(l)[x(l−1)](u, α, λ).

Taking the supremum over α ∈ [−T, T], we have

sup
α∈[−T,T]

1

M

∑

λ

∫

∣

∣

∣
x̃(l)(u, α, λ)− x(l)(u, α, λ)

∣

∣

∣

2
du

= sup
α∈[−T,T]

1

M

∑

λ

∫

∣

∣

∣x(l)[x̃(l−1)](u, α, λ)− x(l)[x(l−1)](u, α, λ)
∣

∣

∣

2
du

≤
∥

∥

∥x(l)[x̃(l−1)]− x(l)[x(l−1)]
∥

∥

∥

2

≤
∥

∥

∥x̃(l−1) − x(l−1)
∥

∥

∥

2
= O(2−T), (61)

where the last inequality results from the non-expansiveness of x(l) (c.f. Proposition 2,) and
the last equality comes from our assumption that (58) holds for l − 1. For any α ≤ −T , we
have

1

M

∑

λ

∫

∣

∣

∣
x̃(l)(u, α, λ)− x(l)(u, α, λ)

∣

∣

∣

2
du

=
1

M

∑

λ

∫

∣

∣

∣x̃(l)(u,−T, λ)− x(l)(u, α, λ)
∣

∣

∣

2
du

=
1

M

∑

λ

∫

∣

∣

∣
x̃(l)(u,−T, λ)− x(l)(u,−T, λ) + x(l)(u,−T, λ)− x(l)(u, α, λ)

∣

∣

∣

2
du

≤
1

M

∑

λ

∫

∣

∣

∣x̃(l)(u,−T, λ)− x(l)(u,−T, λ) + x(l)(u,−T, λ)− x(l)(u, α, λ)
∣

∣

∣

2
du

≤
2

M

∑

λ

∫

∣

∣

∣x̃(l)(u,−T, λ)− x(l)(u,−T, λ)
∣

∣

∣

2
+
∣

∣

∣x(l)(u,−T, λ)− x(l)(u, α, λ)
∣

∣

∣

2
du

=O(2−T) +
2

M

∑

λ

∫

∣

∣

∣
x(l)(u,−T, λ)− x(l)(u, α, λ)

∣

∣

∣

2
du,

38

Scaling-Translation-Equivariant Networks with Decomposed Convolutional Filters

where, in the last equality, the first term O(2−T) does not depend on α ≤ −T and comes
from (61). Taking the supremum over α ≤ −T , we have

sup
α≤−T

1

M

∑

λ

∫

∣

∣

∣x̃(l)(u, α, λ)− x(l)(u, α, λ)
∣

∣

∣

2
du

≤O(2−T) + sup
α≤−T

2

M

∑

λ

∫

∣

∣

∣x(l)(u,−T, λ)− x(l)(u, α, λ)
∣

∣

∣

2
du

=O(2−T), (62)

where the last equality holds for the same reason as (60). Combining (61) and (62), we thus
have

∥

∥

∥x̃(l)[x(0)]− x(l)[x(0)]
∥

∥

∥

2
= sup

α≤T

1

Ml

Ml
∑

λ=1

∫

∣

∣

∣x̃(l)(u, α, λ)− x(l)(u, α, λ)
∣

∣

∣

2
du = O(2−T).

With Lemma 5 proven, the proof of Theorem 3 is merely an easy application of triangle
inequality:

Proof of Theorem 3.

∥

∥

∥x̃(L)[Dβ,v ◦Dτx
(0)]− Tβ,vx̃

(L)[x(0)]
∥

∥

∥

≤
∥

∥

∥
x̃(L)[Dβ,v ◦Dτx

(0)]− x(L)[Dβ,v ◦Dτx
(0)]
∥

∥

∥
+
∥

∥

∥
x(L)[Dβ,v ◦Dτx

(0)]− Tβ,vx
(L)[x(0)]

∥

∥

∥

+
∥

∥

∥Tβ,vx
(L)[x(0)]− Tβ,vx̃

(L)[x(0)]
∥

∥

∥

≤O(2−T) + 2β+1
(

4L|∇τ |∞ + 2−jL |τ |∞
)

‖x(0)‖+ 2βO(2−T) (63)

=2β+1
(

4L|∇τ |∞ + 2−jL |τ |∞
)

‖x(0)‖+O(2−T),

where the last inequality (63) comes from Lemma 5 and Theorem 2.

Appendix B. Experimental Details in Section 6

We explain in this appendix the experimental details in Section 6 of the main text.

B.1 Verification of ST -equivariance

The ScDCFNet used in this experiment has two convolutional layers, each of which is
composed of a ST -equivariant convolution (5) or (6), a batch-normalization, and a 2 × 2

spatial average-pooling. The expansion coefficients a
(1)
λ′,λ(k) and a

(2)
λ′,λ(k,m) are sampled from

a Gaussian distribution and truncated to K = 8 and Kα = 3 leading coefficients for u and α
respectively. Similarly, a regular CNN with two convolutional layers and randomly generated
5× 5 convolutional kernels is used as a baseline for comparison.

39

Zhu, Qiu, Calderbank, Sapiro and Cheng

B.2 Image Reconstruction

The network architectures for the ScDCFNet and regular CNN auto-encoders are shown in
Table 5. The filter expansion in the ScDCFNet auto-encoder is truncated to K = 8 and
Kα = 3. SGD with decreasing learning rate from 10−2 to 10−4 is used to train both networks
for 20 epochs.

Layer Regular auto-encoder ScDCF auto-encoder

1 c7x7x1x8 ReLU ap2x2 sc(15)13x13x1x4 ReLU ap2x2

2 c7x7x8x16 ReLU ap2x2 sc(15)13x13x3x4x8 ReLU ap2x2

3 fc128 ReLU fc4096 ReLU fc128 ReLU fc4096 ReLU

4 ct7x7x16x8 ReLU us2x2 ct7x7x16x8 ReLU us2x2

5 ct7x7x8x1 ReLU us2x2 ct7x7x8x1 ReLU us2x2

Table 5: Architectures of the auto-encoders used for the experiment in Section 6.4. The encoded
representation is the output of the second layer. cLxLxM’xM: a regular convolutional layer with
M’ input channels, M output channels, and LxL spatial kernels. apLxL: LxL average-pooling.
sc(Ns)LxLxM’xM: the first-layer convolution (5) in ScDCFNet, where Ns is the number of scale
channels, and LxL is the spatial kernel size. sc(Ns)LxLxLαxM’xM: the l-th layer (l > 1) convolution
(6) in ScDCFNet, where the extra symbol Lα stands for the filter size in α. fcM: a fully connected layer
with M output channels. ctLxLxM’xM: transposed-convolutional layers with M’ input channels, M
output channels, and LxL spatial kernels. us2x2: 2x2 spatial upsampling. Batch-normalization (not
shown in the table) is used after each convolutional layer.

References

Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions: with formulas,
graphs, and mathematical tables, volume 55. Courier Corporation, 1965.

Vincent Andrearczyk, Julien Fageot, Valentin Oreiller, Xavier Montet, and Adrien De-
peursinge. Exploring local rotation invariance in 3D CNNs with steerable filters. In
International Conference on Medical Imaging with Deep Learning, pages 15–26. PMLR,
2019.

Erik J Bekkers. B-spline cnns on lie groups. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=H1gBhkBFDH.

Erik Johannes Bekkers, Marco Loog, Bart M ter Haar Romeny, and Remco Duits. Template
matching via densities on the roto-translation group. IEEE transactions on pattern analysis
and machine intelligence, 40(2):452–466, 2017.

Alberto Bietti and Julien Mairal. Invariance and stability of deep convolutional represen-
tations. In NIPS 2017-31st Conference on Advances in Neural Information Processing
Systems, pages 1622–1632, 2017.

Alberto Bietti and Julien Mairal. Group invariance, stability to deformations, and complexity
of deep convolutional representations. The Journal of Machine Learning Research, 20(1):
876–924, 2019.

40

Scaling-Translation-Equivariant Networks with Decomposed Convolutional Filters

Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. IEEE transac-
tions on pattern analysis and machine intelligence, 35(8):1872–1886, 2013.

Xiuyuan Cheng, Qiang Qiu, Robert Calderbank, and Guillermo Sapiro. RotDCF: Decom-
position of convolutional filters for rotation-equivariant deep networks. In International
Conference on Learning Representations, 2019.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in
unsupervised feature learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pages 215–223. JMLR Workshop and Conference
Proceedings, 2011.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International
conference on machine learning, pages 2990–2999, 2016.

Taco Cohen and Max Welling. Steerable CNNs. In International Conference on Learning
Representations, 2017.

Taco S. Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical CNNs. In
International Conference on Learning Representations, 2018.

Taco S Cohen, Mario Geiger, and Maurice Weiler. A general theory of equivariant cnns on
homogeneous spaces. In Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural
networks with cutout. arXiv preprint arXiv:1708.04552, 2017.

Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis. Learning
SO(3) equivariant representations with spherical CNNs. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 52–68, 2018.

Lawrence C. Evans. Partial differential equations. American Mathematical Society, Provi-
dence, R.I., 2010. ISBN 9780821849743 0821849743.

William T. Freeman and Edward H Adelson. The design and use of steerable filters. IEEE
Transactions on Pattern Analysis & Machine Intelligence, (9):891–906, 1991.

Rohan Ghosh and Anupam K Gupta. Scale steerable filters for locally scale-invariant
convolutional neural networks. arXiv preprint arXiv:1906.03861, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

Emiel Hoogeboom, Jorn W.T. Peters, Taco S. Cohen, and Max Welling. Hexaconv. In
International Conference on Learning Representations, 2018.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian
Weinberger. Multi-scale dense networks for resource efficient image classification. In
International Conference on Learning Representations, 2018.

41

Zhu, Qiu, Calderbank, Sapiro and Cheng

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Francis Bach and David Blei, editors, Proceedings
of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of
Machine Learning Research, pages 448–456, Lille, France, 07–09 Jul 2015. PMLR.

Dunham Jackson. The theory of approximation, volume 11. American Mathematical Soc.,
1930.

Jorn-Henrik Jacobsen, Jan van Gemert, Zhongyu Lou, and Arnold WM Smeulders. Structured
receptive fields in CNNs. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2610–2619, 2016.

Angjoo Kanazawa, Abhishek Sharma, and David Jacobs. Locally scale-invariant convolutional
neural networks. arXiv preprint arXiv:1412.5104, 2014.

Tsung-Wei Ke, Michael Maire, and Stella X Yu. Multigrid neural architectures. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6665–6673,
2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution
in neural networks to the action of compact groups. In Jennifer Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages 2747–2755. PMLR, 10–15 Jul 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang. Selective kernel networks. 2019.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge
Belongie. Feature pyramid networks for object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2117–2125, 2017.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015.

Julien Mairal. End-to-end kernel learning with supervised convolutional kernel networks. In
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

42

Scaling-Translation-Equivariant Networks with Decomposed Convolutional Filters

Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid. Convolutional kernel
networks. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems, volume 27. Curran Associates,
Inc., 2014.

Stéphane Mallat. Recursive interferometric representation. In Proc. of EUSICO conference,
Danemark, 2010.

Stéphane Mallat. Group invariant scattering. Communications on Pure and Applied Mathe-
matics, 65(10):1331–1398, 2012.

Diego Marcos, Michele Volpi, Nikos Komodakis, and Devis Tuia. Rotation equivariant vector
field networks. In Proceedings of the IEEE International Conference on Computer Vision,
pages 5048–5057, 2017.

Diego Marcos, Benjamin Kellenberger, Sylvain Lobry, and Devis Tuia. Scale equivariance in
CNNs with vector fields. arXiv preprint arXiv:1807.11783, 2018.

Daniël M Pelt and James A Sethian. A mixed-scale dense convolutional neural network for
image analysis. Proceedings of the National Academy of Sciences, 115(2):254–259, 2018.

Qiang Qiu, Xiuyuan Cheng, Robert Calderbank, and Guillermo Sapiro. DCFNet: Deep neural
network with decomposed convolutional filters. In Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 4198–4207, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems
28, pages 91–99. Curran Associates, Inc., 2015.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells,
and Alejandro F. Frangi, editors, Medical Image Computing and Computer-Assisted Inter-
vention – MICCAI 2015, pages 234–241, Cham, 2015. Springer International Publishing.
ISBN 978-3-319-24574-4.

Laurent Sifre and Stéphane Mallat. Rotation, scaling and deformation invariant scattering
for texture discrimination. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1233–1240, 2013.

Ivan Sosnovik, Michał Szmaja, and Arnold Smeulders. Scale-equivariant steerable networks.
In International Conference on Learning Representations, 2020.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolu-
tions. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1–9, 2015.

43

Zhu, Qiu, Calderbank, Sapiro and Cheng

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2818–2826, 2016.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and
Patrick Riley. Tensor field networks: Rotation-and translation-equivariant neural networks
for 3d point clouds. arXiv preprint arXiv:1802.08219, 2018.

Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison
Cottrell. Understanding convolution for semantic segmentation. In 2018 IEEE Winter
Conference on Applications of Computer Vision (WACV), pages 1451–1460. IEEE, 2018.

Maurice Weiler and Gabriele Cesa. General e(2)-equivariant steerable cnns. In Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco Cohen. 3d steerable
cnns: Learning rotationally equivariant features in volumetric data. In Advances in Neural
Information Processing Systems, pages 10381–10392, 2018a.

Maurice Weiler, Fred A Hamprecht, and Martin Storath. Learning steerable filters for
rotation equivariant cnns. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 849–858, 2018b.

Marysia Winkels and Taco S Cohen. 3D G-CNNs for pulmonary nodule detection. arXiv
preprint arXiv:1804.04656, 2018.

Daniel Worrall and Gabriel Brostow. Cubenet: Equivariance to 3D rotation and translation.
In Proceedings of the European Conference on Computer Vision (ECCV), pages 567–584,
2018.

Daniel Worrall and Max Welling. Deep scale-spaces: Equivariance over scale. In Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Brostow.
Harmonic networks: Deep translation and rotation equivariance. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 5028–5037, 2017.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, 2017.

Yichong Xu, Tianjun Xiao, Jiaxing Zhang, Kuiyuan Yang, and Zheng Zhang. Scale-invariant
convolutional neural networks. arXiv preprint arXiv:1411.6369, 2014.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. In
International Conference on Learning Representations, 2016.

44

Scaling-Translation-Equivariant Networks with Decomposed Convolutional Filters

Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated residual networks. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

Yanzhao Zhou, Qixiang Ye, Qiang Qiu, and Jianbin Jiao. Oriented response networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
519–528, 2017.

45

	Introduction
	Related Work
	ST-Equivariant CNN And Filter Decomposition
	ST-Equivariant CNNs
	Separable Basis Decomposition

	Representation Stability of ScDCFNet to Input Deformation
	Implementation
	Scale Channel Truncation And Feature Map Discretization
	Basis And Filter Generation
	Discrete Scale-Space Joint Convolution
	Batch-Normalization

	Numerical Experiments
	Data Sets And Models
	Verification of ST-Equivariance
	Multiscale Image Classification
	SMNIST And SFashion
	STL-10

	Image Reconstruction

	Conclusion
	Proofs
	Proof of Theorem 1
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 2
	Proof of Theorem 3

	Experimental Details in Section 6
	Verification of ST-equivariance
	Image Reconstruction

