
To appear at the 2022 Workshop on the Algorithmic Foundations of Robotics (WAFR). Preprint version.

Automatic cross-domain task plan transfer
by caching abstract skills

Khen Elimelech, Lydia E. Kavraki, and Moshe Y. Vardi

Department of Computer Science,
Rice University,

Houston, TX 77005, USA.
{elimelech,kavraki,vardi}@rice.edu

Abstract. Solving realistic robotic task planning problems is compu-
tationally demanding. To better exploit the planning effort, and reduce
the future planning cost, it is important to increase the reusability of
successful plans. To this end, we suggest a systematic and automatable
approach for plan transfer, by rethinking the plan caching procedure.
Specifically, instead of caching successful plans in their original domain,
we suggest transferring them upon discovery to a dynamically-defined
abstract domain, and cache them as “abstract skills” there. This tech-
nique allows us to maintain a unified, standardized, and compact skill
database, to avoid skill redundancy, and to support lifelong operation.
Cached skills can later be reconstructed into new domains on demand,
and be applied to new tasks, with no human intervention. This is made
possible thanks to the novel concept of “abstraction keys”. An abstrac-
tion key, when coupled with a skill, provides all the necessary information
to cache it, reconstruct it, and transfer it across all domains in which it
is applicable — even domains we have yet to encounter. We practically
demonstrate the approach by providing two examples of such keys, and
explain how they can be used in a manipulation planning domain.

1 Introduction

1.1 Background

Task planning [1], often mentioned in the context of task and motion planning [2],
is the problem of finding discrete plans or policies of symbolic actions, to instruct
an agent to achieve a certain goal. This formulation is useful for solving various
robot tasks, such as manipulation, rearrangement, and navigation, which can
be specified in corresponding planning domains. The solution to such tasks is
often computationally demanding, especially when considering high-dimensional
robots, obstructed spaces, or complicated task specification. Hence, to best ex-
ploit the intensive computational effort typically invested in such planning, it is
important to develop techniques to maximize the reusability of successful plans.

Work on this paper was supported in part by NSF-IIS-1830549.

To appear at the 2022 Workshop on the Algorithmic Foundations of Robotics (WAFR). Preprint version.

2 K. Elimelech et al.

Potentially, such techniques can allow us to avoid redundant calculations while
planning, and, by such, improve future planning efficiency.

Assume we found a successful solution to a certain task in a certain planning
domain; if we expect to face this task again, a simple way to increase the solution
reusability is by memorizing or caching it for future usage. However, such caching
is extremely limited, as the plan is tightly coupled with the initial state, task,
and domain specifications; even a slight change in one of those aspects might
render the plan invalid. Hence, to increase the computational benefits achieved
from each cached solution, we must to be able to generalize its applicability
to other contexts, such as across similar domains and across similar tasks in
the domain. Broadly, this problem is known as skill transfer. We note that the
term “skill” can have various interpretations in the literature, conveying different
information that can be inferred and transferred from past planning experience;
e.g., sampling distributions for sampling-based planning [3], and motion plan
segments [4,5]. In the context of this paper, we use the term “skill” to convey a
successful discrete task plan in a given domain.

1.2 Motivation

Many times, and especially when considering lifelong operation of an embodied
AI system, task specifications and planning domains can overlap, and show topo-
logical similarities. Further, the spatial locality that often characterizes actions
in robotic domains implies that such similarities can even be found within the
domain. Intuitively, we can expect these similarities to be exploitable for skill
transfer. For example, we can consider a simple manipulation domain, which
contains six objects — three boxes and three cans — and a robotic arm capable
of picking and placing these objects in requested locations (either on the table,
or on top of each other). In this domain, which is visualized in Figure 1, we
care to solve two tasks: first, “stack the boxes in a certain formation”, and then
“stack the cans in the same formation”.

Fig. 1: Skill transfer: from a box stacking plan, to a can stacking plan.

To appear at the 2022 Workshop on the Algorithmic Foundations of Robotics (WAFR). Preprint version.

Automatic cross-domain task plan transfer by caching abstract skills 3

It is reasonable to think that a successful plan to stack the boxes can be
generalized into a successful plan to stack the cans. Needless to say, by doing,
we can dramatically reduce the computational cost of solving the second task.
Yet, although this generalization might seem trivial to a human observer, it is
not as straightforward for the machine. For example, to adapt the stacking plan
from boxes to cans, we need to: shift the object placement locations to the other
side of the table; replace each operation on a box with operation on a respective
can; and replace each box pick/place action with a can pick/place action, as
these can convey, e.g., different gripping tactics.

1.3 Contribution

As implied, caching skills — the process of encoding skills and saving them in
memory — is essential for the ability to reuse and transfer them in the future.
Accordingly, this paper introduces two interwoven contributions to increase skill
reusability: (i) a novel skill caching technique, which we use as a basis to develop
(ii) a novel skill transfer technique. Specifically, we suggest caching successful
plans as skills in an abstract domain, from which they can be automatically
generalized and transferred across new tasks and domains on demand. Both the
caching and the transfer can be performed with no human intervention and with
minimal additional computational effort.

Technically, the caching and transfer techniques are made possible by in-
troducing the novel concept of “abstraction keys”. According to the suggested
caching approach, alongside each cached abstract skill, we shall also cache its
“public abstraction key”, which, when coupled with an appropriate “private
key”, provides the necessary information to cache the skill, reconstruct it, and
transfer it to new domains (even domains we have yet to encounter). This way,
skills can inherently only be transferred to domains in which they are applicable,
as only those can yield a valid private key — similarly to “public key” encryption.
This allows us to automatically verify the applicability of skills to tasks, and
avoid futilely using them in domains in which their execution would be unsuc-
cessful. We provide examples of two practical and generic abstraction keys, and
explain how they can be used in our motivating example.

Although the two contributions are connected, they can, nonetheless, be ap-
plied separately. The suggested caching technique allows us to efficiently main-
tain a unified, standardized, and inherently compact database of successful plans
from the past. Thus, this technique can be used even without performing trans-
fer, to enjoy the compactness of the representation, to avoid skill redundancy,
and to support lifelong operation. Appropriately, we can also consider transfer-
ring plans through the abstract domain, without caching them.

The paper is organized as follows: we begin in Section 2 with a formal problem
definition. In Section 3, we provide additional motivation and an overview of
our approach. Then, in Section 4, we develop and demonstrate the technique for
abstract skill caching, using abstraction keys. Finally, we extend this idea, and
develop the transfer technique in Section 5. While all practical details are given
in the main text, we also provide summarized algorithms in Appendix A.

To appear at the 2022 Workshop on the Algorithmic Foundations of Robotics (WAFR). Preprint version.

4 K. Elimelech et al.

1.4 Related work

To the best of our knowledge, this is the first work to specifically address the
scalability and compactness of skill caching in the context of robotic planning.
On the other hand, the notions of skill transfer and domain abstraction have
been examined extensively by the robotics and AI planning communities.

The problem of skill transfer is most often considered in the context of skill
transfer learning, or the closely related concepts of imitation learning, and behav-
ior cloning [6,7,8]. In that problem, we try to learn a policy or plan components
from demonstrations of an expert, which operates according to a hidden policy.
This problem is essentially different than the one we consider here — we do
not construct skills from (multiple) observations, but from other known skills,
whether in our domain or another. That problem also inherently involves human
intervention, something we explicitly wish to avoid. Further, the learned transfer
functions in that case are coupled with the specific task and domain; this is in
contrast to our abstraction-based transfer technique, which can be used to trans-
fer each skill across multiple domains and tasks. As mentioned, utilization of past
planning experience is mostly prominent in continuous planning domains, which
are not the ones we consider here. Another related problem is domain adapta-
tion [9], in which one tries to generalize knowledge from one domain to another.
This adaptation, however, typically relates to machine learning problems, such
as classification and regression, and not planning.

Abstraction is a widely used tool for solving task and motion planning prob-
lems, especially when considering continuous or large domains [10,11,12]. By im-
posing abstraction on a planning domain, a planning problem can be efficiently
solved in a hierarchical fashion; i.e., by finding a high-level plan in the abstract
domain, and, based on this plan, infer a compliant low-level plan in the robot
domain. This way, we can exploit the abstract plan to induce additional con-
straints on the original planning domain, and, by such, restrict the search there,
and improve its efficiency. Yet, our usage of abstraction is different, as we do not
actively plan in the abstract domain; instead, we only use the abstract domain
to represent a given plan in a compact and generalizable way. Further, hierarchi-
cal planning usually requires predefining an abstraction of the entire planning
domain; in contrast, our plan abstractions are chosen dynamically based on the
skill at hand, operate locally in the domain, and are invertible. Some recent
works [13,14] propose finding transferable plans by planning in a “latent space”,
which conveys, essentially, a learned abstraction of the planning domain. Not
only our abstraction is symbolically defined, and requires no learning, but also,
as mentioned, we do not care to plan in the abstract domain. Similarly to us,
other works [15,16] also take advantage of dynamically chosen abstraction for
efficient policy synthesis. These approaches, however, consider specific planning
domains, and do not use the abstraction for transfer.

Finally, we should also mention that, in the context of reinforcement learning
and Markov decision process, abstraction selection is an integral part in improv-
ing the accuracy of skill learning (see, e.g., [17]); this is, of course, a vastly
different context than the classical planning scenario we consider here.

To appear at the 2022 Workshop on the Algorithmic Foundations of Robotics (WAFR). Preprint version.

Automatic cross-domain task plan transfer by caching abstract skills 5

2 Problem definition

Let us begin by formally defining task planning domains.

Definition 1. A task planning domain D
.
= (S,A, T) is comprised of a state

space S (continuous or discrete), an action space A, and a set T ⊆ S × A × S
of discrete transitions. Transitions in the domain are deterministic, meaning,
∀(S, a,S′) ∈ T , ∄S′′ ∈ S, such that (S, a,S′′) ∈ T . An execution E is a
sequence of alternating states and actions, i.e.,

E
.
= (S0, a1,S1, a2, . . . , an,Sn) . (1)

The execution E is feasible in the domain if ∀i ∈ {1, . . . , n}, (Si−1, ai,Si) ∈ T .
In that case, we say that E is induced by the action sequence (a1, . . . , an).

From now on, we will refer to a task planning domain simply as a “domain”.
A task can be thought of as a collection of constraints on states and/or actions
of a future execution. Such constraints can specify, e.g., to reach or globally
avoid certain regions, or convey temporal, or cost-related requirements. For a
given task, we care to find a plan (i.e., a sequence of actions), to be applied from
the current state, whose execution is feasible in the domain and satisfies the
task constraints. For the simplicity of presentation, we focus here on “classical
tasks”, which only require us to reach a specified goal state. We formally define
the “classical task planning” problem as follows:

Definition 2. A classical task planning problem P
.
= (D,Sstart,Sgoal) is

comprised of a domain D, a start state Sstart ∈ S, and a goal state Sgoal ∈ S.
To solve P , we seek a plan, i.e., a sequence of actions (a1, . . . , an) ∈ An, that,
when applied from Sstart, induces a feasible execution in D that terminates
at Sgoal. A successful plan that solves P is referred to here as a skill.

To be able to reuse a skill, e.g., if the task is expected to repeat in the future,
it surely must be cached in memory. Hence, assume we previously found and
cached a skill that solves a planning problem P , and now wish to solve another
problem P ′. The planning domains of the two problems may be equal, but, to not
impose any restrictions, we shall assume each task is defined in its own domain.
To avoid solving P ′ from scratch, and potentially reduce the computational cost
of its solution, we can attempt to perform skill transfer between the problems.

Definition 3. Consider a skill κ, which solves a planning problem
P

.
= (D, Sstart, Sgoal). Also consider another problem P ′ .

= (D′,S′
start,S

′
goal),

for which we seek a solution. A transfer function between domains D and D′ is
a function of the form

transfer-D-to-D’ : {plans in D} → {plans in D′}. (2)

We say that skill transfer between the problems can be performed successfully, if
we can find such a transfer function, such that

transfer-D-to-D’(κ) = κ′ (3)

is a solution of P ′.

To appear at the 2022 Workshop on the Algorithmic Foundations of Robotics (WAFR). Preprint version.

6 K. Elimelech et al.

The objective of this work is to develop a systematic, automatable, and scal-
able technique to perform such transfer. This technique should also be generic,
i.e., not coupled with any specific task or domain.

3 Scalable skill transfer through an abstract domain

We now wish to examine the scalability of the skill transfer problem; thus, assume
more generally that we care to transfer multiple skills across multiple planning
problems in multiple domains.

As mentioned, a necessary step to allow future skill transfer is caching skills
upon discovery. When considering planning problems across multiple domains,
we shall essentially maintain a separate skill cache for each domain, according
to the planning problems we previously solved in it. Hence, to take advantage
of transfer when solving a new task, we would have to access the skill cache of
every domain, query it for potentially relevant skills, and attempt to transfer
them, by finding and applying appropriate transfer functions. If a transfer of a
skill is successful, we shall cache a copy of it as a new skill in the destination
domain. Unfortunately, this naive approach not only scales poorly, and leads to
computational and memory redundancy, but also leads to an undesirable explicit
coupling between the domains. This scenario is demonstrated in Fig. 2a.

D1 D1 D1

D2 D2 D2

D3 D3 D3D3

DnewDnew Dnew

? ?
?

?

Dcntr Dabst

(a) (b) (c)

Fig. 2: Skill (plan) transfer across domains: (a) without a central domain; (b) with a
central domain; (c) with an abstract central domain. In green — known domains; in
gray — unseen domains; arrows represent skill transfer functions between the domains.

Addressing the previous concerns, we wish to offer a preferable approach for
skill transfer, by altering the basic skill caching procedure. Specifically, instead
of caching skills as plans in their original domain, we suggest to transfer them
upon discovery to a new and “central” domain, and cache them as skills there;
this way, we can maintain a unified and standardized skill cache, and avoid the
explicit coupling between domains. This idea is demonstrated in Figure 2b.

With this approach, skill transfer is performed in two independent stages:
(i) on each successful task planning, the discovered plan is mapped to a plan in
(i.e., transferred to) a central domain, and cached there as a skill, for future use;
(ii) on demand, we may access the skills previously cached in the central cache,

To appear at the 2022 Workshop on the Algorithmic Foundations of Robotics (WAFR). Preprint version.

Automatic cross-domain task plan transfer by caching abstract skills 7

examine and transfer them to new domains, to solve new planning problems.
Accordingly, the skill transfer process can be presented using two functions

transfer-D-to-Dcenter : {plans in D} → {plans in Dcenter}, (4)

transfer-Dcenter-to-D
′ : {plans in Dcenter} → {plans in D′}, (5)

such that

transfer-D-to-Dcenter(κ) = κcenter, (6)

transfer-Dcenter-to-D
′(κcenter) = κ′. (7)

Despite the clear advantages of decoupling the domains and avoiding skill
redundancy, reliance on this approach also introduces new challenges, as
(i) finding a central caching domain is not trivial, especially when considering
infinite domains; (ii) transfer through an arbitrary domain might compromise
the generalizability of skills, or jeopardize the potential feasibility of transferred
skills in new domains; (iii) we would still need to infer transfer functions between
every domain to the central domain.

As we shall demonstrate ahead, all these challenges can be mitigated with a
“smart” definition of the central caching domain. Specifically, there is no need to
predefine the central domain explicitly; instead, we can let each skill that we wish
to transfer to dynamically determine the domain it should be cached in (answer-
ing challenge (i)). Further, by choosing an abstract central domain, skills can be
cached compactly, while still allowing lossless reconstruction into their original
domain, and intuitive transfer into new domains (answering challenge (ii)). This
choice will also allow us to rely on a unified pair of transfer functions (4)-(5)
for each skill, instead of having to infer them for each new domain separately
(answering challenge (iii)). These benefits are demonstrated in Figure 2c.

In the following sections we formulate these ideas, and provide a structured
and automatable technique to define such a central abstract domain, and use it
for skill transfer.

4 Skill abstraction and caching

Let us now develop the first step in our transfer approach: transferring skills to an
abstract domain. Thus, assume we acquired a skill (i.e., found a successful plan)
κ

.
= (a1, . . . , an), which solves the planning problem P

.
= (D, S0, Sn), and let

E mark the execution induced by this skill in domain D, as defined in (1).

4.1 Representing transferable skills as traces of states

To transfer this skill to a new domain, a typical transfer approach might suggest
to translate the sequence of actions to the new context. Yet, we recognize that
while mapping between state spaces is often intuitive, mapping between action
spaces, without compromising the state connectivity, is nontrivial. In relation

To appear at the 2022 Workshop on the Algorithmic Foundations of Robotics (WAFR). Preprint version.

8 K. Elimelech et al.

to our specific technique, defining a (reconstructable) action abstraction is even
less trivial. This implies that, with a typical transfer approach, we would only
be able to transfer skills across domains which share the same (or a very similar)
action space. We surely do not want to limited by such a constraint. Also, even if
such action transfer can be performed successfully, this approach would make it
challenging to automatically determine skill applicability to new tasks, without
performing explicit action evaluation.

Thus, unlike standard caching and transfer approaches, we suggest here to
represent the skill using the trace of states from its execution, and focus on
transferring it into new domains. We mark this trace as S (E)

.
= (S0, . . . ,Sn).

As we learn ahead, this choice of state-based skill representation is essential to
allow automated and wide skill generalization and transfer to unseen contexts.
By doing so, for a transfer to be successful, we only care for the transferred states
to maintain their connectivity from the original domain, and do not need to care
for the semantics of actions in other domains. Each domain we transfer a skill to
may independently recover the sequence of actions that connect the transferred
state trace in it. Unless specified otherwise, from now on, when referring to the
“skill’s trace”, we refer to S (E).

4.2 Abstraction keys

As suggested before, we wish to transfer the skill’s trace to an abstract domain.
As a baseline, we demand from our abstraction mechanism to allow perfect
reconstruction of the skill’s original trace. We also want the abstract skill’s rep-
resentation to be at least as compact as the original trace, to maintain memory
efficiency. These objectives can be achieved by finding a pair of inverse functions

project : S → Ξ, (8)

reconst : Ξ → S, (9)

such that

dim (Ξ) ≤ dim (S) , (10)

reconst (project (S)) = S, ∀S ∈ S (E) . (11)

These functions represent state “projection” and “reconstruction”, respectively.
The first condition (in (10)) verifies that the selected projection function maps
each state to a more compact representation. The second condition (in (11))
verifies that the reconstruction from each projected state is lossless.

Such functions allow us to efficiently represent a skill’s trace (S0, . . . ,Sn)
using the compact state projections:

project (S0, . . . ,Sn)
.
= (project (S0) , . . . , project (Sn)) = (ξ0, . . . , ξn) .

(12)
Later, the original trace can be reconstructed on demand by applying the recon-
struction function:

reconst (ξ0, . . . , ξn)
.
= (reconst (ξ1) , . . . , reconst (ξn)) = (S0, . . . ,Sn) . (13)

To appear at the 2022 Workshop on the Algorithmic Foundations of Robotics (WAFR). Preprint version.

Automatic cross-domain task plan transfer by caching abstract skills 9

Since Ξ is a projection of the original domain’s state space, it can be consid-
ered an abstract state space. The projected trace can hence inherently represent a
skill in an abstract domain Dabstract

.
= (Ξ,Aabstract, Tabstract), where the action

and transition sets simply reflect abstract actions connecting the consecutive
states in the trace, i.e., Aabstract

.
= {αi}ni=1, and Tabstract

.
= {(ξi−1, αi, ξi)}ni=1.

We hence refer to such pair of functions as an abstraction key. A skill can poten-
tially be abstracted using different such keys, and the same key can be applied to
different skills. The choice of key implicitly determines the abstract domain the
skill’s trace is transferred to, while the “skill transfer function” (defined in (4))
is implied by the key’s projection function.

4.3 Parametric abstraction keys

Searching directly for compatible abstraction keys in order to perform the skill
transfer is not computationally practical. Hence, instead, we suggest to examine
a collection of predefined parametric abstraction keys

projectp : S → Ξ, (14)

reconstp : Ξ → S, (15)

and look for an appropriate parameter value to transfer our skill of interest.
Intuitively, we can consider every parametric key to operate on a property

of the input state (e.g., “location” or “type of object”), and the parameter p
to reference a specific value of this property (e.g., “on the table” or “box”).
This reference can be “removed” from the state with the projection function,
and “incorporated back” into it with the reconstruction function. Naturally,
the definition of the parametric key should also specify the valid values for p
(“the parameter space”) that these functions can handle. The parameter space
is generally defined in relation to the input state; we mark the parameter space,
for an input state S ∈ S, as PS .

To project and cache a skill’s trace with a certain parametric key, we need
to find a single parameter value p, which can be used to project all states in
the trace; together, the parametric functions and the valid choice of parameter,
convey an abstraction key for the skill. More specifically, since the paramet-
ric functions are known to all and predefined, we can say that they convey a
public abstraction key for traces from the state space.

Definition 4. Considering a state space S, a public abstraction key PubKey
.
=(

projectp, reconstp,PS

)
is comprised of a state projection function projectp,

as defined in (14); a state reconstruction function reconstp, as defined in (15);
and the state-dependent parameter space PS , such that p ∈ PS .

The parameter value, which is derived from and for the specific skill, represents
the skill’s private abstraction key.

Definition 5. Consider a skill with state trace S (E), and a public abstrac-
tion key PubKey

.
=

(
projectp, reconstp,PS

)
. A parameter choice p is a valid

private abstraction key for this skill, if

∀S ∈ S (E) , p ∈ PS and reconstp
(
projectp (S)

)
= S. (16)

To appear at the 2022 Workshop on the Algorithmic Foundations of Robotics (WAFR). Preprint version.

10 K. Elimelech et al.

4.4 Abstract skill caching

If a valid combination of a public and private key exists, we can use it to transfer
(i.e., project the trace of) the skill into the key-imposed abstract domain Dabstract,
where it can be cached. We refer to the skill represented by this abstract state
trace projectp (S (E)) in that abstract domain, alongside its abstraction key,
as an abstract skill. In fact, as we later show in Section 5, to allow future trans-
fer of the abstract skill into new domains, or reconstruction of the original
skill, it is sufficient to cache only its public key with the abstract state trace.
Nonetheless, we can always cache also the original action trace, and/or the pri-
vate key, to be used as reference. The caching approach is later summarized in
Algorithm 1 in Appendix A.

We note that, for a certain skill, there could be multiple valid key combi-
nations. In that case, the choice of keys might affect the compactness of the
cached abstract skill. Surely, we would always prefer the key that achieves the
most compact representation. As a rule of thumb, more information contained
in the private key reflects a more compact abstract trace (and, by such, a higher
generalization potential); this will be demonstrated in the exemplary abstraction
keys, to be given next.

4.5 Exemplary abstraction key: attention

This parametric abstraction key allows us to focus our attention only on a subset
of m state variables, while exporting the remainder to the parameter p. The
parameter space of a state vector S is hence defined as

PS
.
=

{
(m variable indexes, value of other variables)

}
≡

{
(I,S[¬I]) | I ⊆ {1, . . . , |S|}, |I| = m, ¬I .

= {1, . . . , |S|} \ I
}
, (17)

where x[y] marks the y-th element of x. Each parameter p ∈ PS is comprised of
two components: a set containing the indexes of the m state variables on which
we want to put attention (to be used by the projection function); and the value
of the remainder |S| −m state variables (to allow reconstruction).

 x,y2 x,y3 x,y4 x,y5 x,y6 x,y1
Original

plan

 y2 y3 y4 y5 y6 y1

 y2 y3 y4 y5 y6 y1 z z z z z z Transferred

plan

Cached

abstract skill

Projection

Reconstruction
 z z

 x
-p1 -p1 -p1 -p1 -p1 -p1

+p2 +p2 +p2 +p2+p2 +p2

-p1
p1

p2

Fig. 3: Transferring plans across domains using “attention”.

To appear at the 2022 Workshop on the Algorithmic Foundations of Robotics (WAFR). Preprint version.

Automatic cross-domain task plan transfer by caching abstract skills 11

Accordingly, the projection and reconstruction functions are defined as:

m-atten-projectp (S) = S[I], (18)

m-atten-reconstp (ξ) = S, such that S[I] ← ξ ∧ S[¬I] ← values, (19)

where I .
= p[1], values

.
= p[2].

We recall that to project a skill’s trace S (E) using a parametric key, we
should use the same parameter value for all states. Thus, a parameter choice
p = (I,S[¬I]) would be valid as a private key if and only if S[¬I] (the value of
the state variables with indexes ¬I) remains constant ∀S ∈ S (E). This means
that, practically, this parametric key is used to compactly cache a skill’s state
trace as a trace of “smaller” states, containing only the state variables which
are affected by the skill; the “constant variables”, which repeat in every state
without changing their values, can be exported to the skill’s private key.

This key is hence useful for abstraction and transfer of “local skills”, which are
comprised of actions that present spatial locality, and only affect a small subset
of the state variables. This is often the case in robotic domains, as evident, in
the manipulation domain provided in the introduction; there, re-positioning of
an object is a local skill, as it does not affect the positions of the other objects.
A visualization of this key is provided in Figure 3.

4.6 Exemplary abstraction key: symbol stripping

This parametric abstraction key allows us to focus on function over form, by
extracting the repeating symbols from states in the state trace. As far as this
paper is concerned, a symbol may be a certain (often categorical) value val,
assigned to a state variable si, or a sequence of m such values (val1, . . . , valm),
assigned respectively to a sequence of variables (si, . . . , si+m−1) in the state
vector. The parameter space of S is hence defined as

PS
.
= {symbols of length m that appear in S}

≡ {(S[i], . . . ,S[i+m− 1]) | i ∈ {1, . . . , |S| −m+ 1}}. (20)

Original

plan

Transferred

plan

Cached

abstract skill

Projection

Reconstruction

x xx
xxx

* **

z zz
zzz

x

z

-p1 -p1 -p1 -p1 -p1 -p1

+p2 +p2 +p2 +p2+p2 +p2

p1

p2

Fig. 4: Transferring plans across domains using “symbol stripping”.

To appear at the 2022 Workshop on the Algorithmic Foundations of Robotics (WAFR). Preprint version.

12 K. Elimelech et al.

On projection, we can “strip” a state from a chosen symbol p ∈ PS , by replacing
all of its appearances with “placeholders”. Later, on reconstruction, we shall
simply repopulate those placeholders with p.

Accordingly, the projection and reconstruction functions are defined as:

m-symb-projectp (S) = replace each instance of p in S with ∗, (21)

m-symb-reconstp (ξ) = replace each instance of ∗ in ξ with p. (22)

We again recall that to project a skill’s trace S (E), we require the same
parameter value for all states. Thus, a parameter choice p would be valid as a
private key if and only if p is a symbol that appears in all states inS (E). This key
is hence also relevant to the manipulation domain provided in the introduction;
there, it can be used to cache an object stacking plan, with no explicit reference
to the specific object type. A visualization of this key is provided in Figure 4.

We note that while both “symbol striping” and “attention” are useful ab-
straction keys when there are values that repeat in each state in the trace, each
of them is used for different scenarios. “Symbol stripping” requires the values
to appear in (the same) sequence, though this sequence may appear in a dif-
ferent index in each state; “attention” does not require the values to appear in
sequence, though their index in each state must be fixed.

5 Abstract skill reconstruction and transfer

After establishing the skill abstraction process, we are ready to explain the sec-
ond step in our approach: transferring a cached abstract skill to a new domain.

Thus, consider an abstract skill represented by the state trace (ξ0, . . . , ξn),
and cached using a public key

(
projectp, reconstp,Ps

)
, and a private key p̂.

We are now interested in transferring this abstract skill into a new domain D, in
order to solve a new (“classical”) task planning problem P

.
= (D, Sstart, Sgoal).

Our parametric abstraction approach provides us with a structured and
straightforward method to perform such transfer — by looking for a new private
key p that allows appropriate reconstruction of the abstract skill for P .

5.1 Abstract skill applicability

Of course, not always an appropriate private key p for such reconstruction exists.
If we can reconstruct the abstract skill’s trace into a trace in D that matches P ,
we say that the abstract skill is applicable to the problem.

Definition 6. Consider an abstract skill represented by a state trace (ξ0, . . . , ξn),
which was cached with a public key

(
projectp, reconstp,Ps

)
. The skill is

applicable to the “classical” task planning problem P
.
= (D, Sstart, Sgoal), if

exists a private key p ∈ PSstart
∩ PSgoal

such that

projectp (Sstart,Sgoal) = (ξ0, ξn) or reconstp (ξ0, ξn) = (Sstart,Sgoal). (23)

To appear at the 2022 Workshop on the Algorithmic Foundations of Robotics (WAFR). Preprint version.

Automatic cross-domain task plan transfer by caching abstract skills 13

Skill is applicable

(Reoncstruction possible)

Skill is inapplicable

("Type 1" fail)

Skill is inapplicable

("Type 2" fail)

...

Candidate problem

start/goal states

first/last states in an

abstract skill's trace

Applicability query

Fig. 5: Skill applicability test.

Meaning, to determine applicability with this type of tasks, we only need
to examine the mapping between the first and last states of the skill’s trace,
and the start and goal states of the planning problem. Accordingly, the skill
is inapplicable to the task if: (i) Sstart cannot be projected to ξ0, using any
choice of parameter, and/or Sgoal cannot be projected to ξn, using any choice of
parameter; or (ii) Sstart can be projected to ξ0, using a certain parameter, and
Sgoal can be projected to ξn, using a certain parameter, but not using the same
parameter. This is visualized in Figure 5. Note that for more complex tasks,
determining applicability may require examination of the entire trace.

Determining skill applicability As explained, to determine the applicability
of a cached abstract skill to the problem, we shall reason about the existence of an
appropriate private key p for skill reconstruction. Conveniently, if such p exists,
it can be automatically derived from the problem specification; in particular, we
can use Sstart and Sgoal as anchor states, constraining the parametric mapping.

As we recall, the definition of a public key must specify the parameter space
PS (of a state S) for a valid projection. Intuitively, forcing the projection of S to
return a specific value ξ imposes additional constraints on the parameter space;
for a certain public key, we can mark the set of valid parameters that transfer
between a state S and an abstract state ξ as Pξ

S (⊆ PS). For many such keys,

this subset Pξ
S can be symbolically defined and encoded in the public key as a

complementary component, with no additional effort. This claim is evident in
the two exemplary keys provided before, in which Pξ

S can be easily inferred by
imposing an additional constraint on PS . I.e., for “attention”:

Pξ
S

.
=

{
(I,S¬I) ∈ PS | SI = ξ

}
; (24)

for “symbol stripping”:

Pξ
S

.
= {p ∈ PS | p does not appear in ξ}. (25)

If the definition of Pξ
S is available for our public key, the applicability test

can be performed instantly, by examining if the intersection Pξ0

Sstart
∩ Pξn

Sgoal
is

not empty. Otherwise, we can test for applicability by actively searching for an
appropriate parameter p ∈ PSstart

∩ PSgoal
, which satisfies (23). These steps are

summarized in Algorithm 2 in Appendix A.

To appear at the 2022 Workshop on the Algorithmic Foundations of Robotics (WAFR). Preprint version.

14 K. Elimelech et al.

5.2 Skill feasibility

If an abstract skill is applicable, we can transfer its trace to the task do-
main, by reconstructing it using the private key p we derived from the anchors.
To complete the transfer, we need to infer a feasible plan of actions (a1, . . . , an)
in the task domain, which connect the states in the reconstructed state trace.
If all inter-state transitions are feasible, we say that the abstract skill is feasible.

Definition 7. Consider a classical planning problem in domain D
.
= (S,A, T),

and a state trace (S0, . . . ,Sn) in S, reconstructed from an abstract skill’s trace.
This abstract skill is feasible, if exists a sequence (a1, . . . , an) ⊆ An of actions,
such that (Si−1, ai,Si) ∈ T , ∀i ∈ {1, . . . , n}.

Again, for the simplicity of this paper, we assume every inter-state transition
is realized with a single action in D. Then, inferring the actions can be easily
done, by looking for an action whose preconditions are satisfied by Si and the
effect is expressed in Si+1, ∀i. More generally, a transition can be realized with a
sequence of multiple such actions (“sub-plan”), as to be explored in future work.

5.3 Skill transfer through an abstract domain: recap

We can summarize the suggested skill transfer technique with the following steps:
(i) transfer the skill’s state trace from its original domain to an abstract domain,
by selecting valid public and private keys, and cache it; (ii-a) on demand, transfer
the cached skill’s trace into any new domain, using the original public key and
an alternative private key, derived from the new task specification; (ii-b) infer
the actions in that domain to transition across the states in that trace. The steps
for transferring the cached skill are summarized in Algorithm 3 in Appendix A.

We can also now confirm the approach advantages, initially suggested in Sec-
tion 3 and Figure 3. Since we dynamically choose the abstraction keys according
to the skill itself, every skill is, in fact, transferred through its own central ab-
stract domain Dabstract; this domain, and the transfer function (4) that leads to
it, are implicitly determined by the projection function in the abstraction key.

Further, thanks to this parametric abstraction technique, every cached skill,
through its public key, inherently defines the single transfer function (5) that
allows to transfer it from the abstract domain to any domain in which it is
applicable (with a proper choice of private key). Hence, the approach allows us
to enjoy skill transfer even across domains we have yet to encounter — with
no generalization error, and with no additional effort. This technique inherently
verifies that skills can only be reconstructed from the cache by problems for
which they are applicable, in a similar way to a “public key” encryption. I.e., if
we try to provide the skill’s public key with inappropriate anchors, they will be
rejected, and we will not be able to to reconstruct the skill. This makes sure we
do not futilely consider using them where their execution would be unsuccessful.

To appear at the 2022 Workshop on the Algorithmic Foundations of Robotics (WAFR). Preprint version.

Automatic cross-domain task plan transfer by caching abstract skills 15

When is this approach useful? Nevertheless, with our suggested transfer
technique, we cannot transfer skills across completely arbitrary domains, as, in
that case, the anchors might not convey sufficient information for reconstruc-
tion. This technique only allows to transfer skills across domains and tasks that
demonstrate symmetry via some “property transform”, which we can account
for with a proper selection of a public key. Fortunately, this type of symmetry
covers many practical and intuitive symmetries, as demonstrated from our in-
troductory manipulation example, in which we cared to transfer a box stacking
plan to a can stacking plan. In that scenario, for example, we can practically use
the “attention key” to generalize the existing plan to the new objects of interest,
and the “symbol stripping” key, to generalize the plan to apply to new object
types (i.e., cans and not boxes).

6 Conclusion

In this paper we introduced a general and automatable technique for transferring
skills (i.e., successful plans) across similar tasks and domains, by transferring
them through a shared abstract domain. Such a domain can be dynamically
defined by the skill itself, and without human intervention, using parametric
abstraction keys. By separating the transfer into two stages, we can compactly
cache skills for future usage (as state traces) in an abstract domain, instead of
caching them in their original domain. This approach allows us to maintain a
unified skill cache, decouple the domains, increase transfer scalibility, and avoid
computational redundancy. We demonstrated the approach in the context of
robotic manipulation planning, and provided two practical abstraction keys that
can be used for skill transfer in that domain: “attention” and “symbol stripping”.
The underlying concept is surely applicable in even more complicated scenarios,
which we could not discuss due to the limited scope of this paper.

This paper intends to lay the foundations for various future extensions. For
example, since we examine a state-by-state abstraction, rather than a “full plan”
abstraction, our framework naturally allows to break skills into components; such
components can then be automatically recomposed in a hierarchical fashion into
new skills. The state-based transfer technique can also potentially allow us to
apply the transfer to continuous motion plans, or policies. Finally, when the state
is “complicated”, e.g., an image, we can potentially learn the abstraction keys
(i.e., state projections), say, using neural networks. Arguably, learning such state
projections would be easier and more versatile than direct transfer learning.

References

1. Erez Karpas and Daniele Magazzeni. Automated planning for robotics. Annual
Review of Control, Robotics, and Autonomous Systems, 3(1):417–439, 2020.

2. Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver,
Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Integrated task and motion plan-
ning. Annual Review of Control, Robotics, and Autonomous Systems, 4(1):265–293,
2021.

To appear at the 2022 Workshop on the Algorithmic Foundations of Robotics (WAFR). Preprint version.

16 K. Elimelech et al.

3. Constantinos Chamzas, Zachary Kingston, Carlos Quintero-Peña, Anshumali Shri-
vastava, and Lydia E. Kavraki. Learning Sampling Distributions Using Local 3D
Workspace Decompositions for Motion Planning in High Dimensions. In IEEE In-
ternational Conference on Robotics and Automation, pages 1283–1289, June 2021.

4. Èric Pairet, Constantinos Chamzas, Yvan R. Petillot, and Lydia E. Kavraki. Path
planning for manipulation using experience-driven random trees. IEEE Robotics
and Automation Letters, 6(2):3295–3302, April 2021.

5. Zachary Kingston, Constantinos Chamzas, and Lydia E. Kavraki. Using experi-
ence to improve constrained planning on foliations for multi-modal problems. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, September
2021.

6. Yueyue Liu, Zhijun Li, Huaping Liu, and Zhen Kan. Skill transfer learning for
autonomous robots and human–robot cooperation: A survey. Robotics and Au-
tonomous Systems, 128:103515, 2020.

7. Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from obser-
vation. In Proceedings of the 27th International Joint Conference on Artificial
Intelligence, IJCAI’18, page 4950–4957. AAAI Press, 2018.

8. Anahita Mohseni-Kabir, Changshuo Li, Victoria Wu, Daniel Miller, Benjamin Hy-
lak, Sonia Chernova, Dmitry Berenson, Candace Sidner, and Charles Rich. Si-
multaneous learning of hierarchy and primitives for complex robot tasks. Auton.
Robots, 43(4):859–874, apr 2019.

9. Sinno Jialin Pan, Ivor W. Tsang, James T. Kwok, and Qiang Yang. Domain adap-
tation via transfer component analysis. IEEE Transactions on Neural Networks,
22(2):199–210, 2011.

10. Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical task and motion
planning in the now. In 2011 IEEE International Conference on Robotics and
Automation, pages 1470–1477, 2011.

11. William Vega-Brown and Nicholas Roy. Admissible abstractions for near-optimal
task and motion planning. In Proceedings of the 27th International Joint Confer-
ence on Artificial Intelligence, IJCAI’18, page 4852–4859. AAAI Press, 2018.

12. Danny Driess, Ozgur Oguz, and Marc Toussaint. Hierarchical task and motion
planning using logic-geometric programming (hlgp). RSS Workshop on Robust
Task and Motion Planning, 2019.

13. Masataro Asai and Alex Fukunaga. Classical planning in deep latent space: Bridg-
ing the subsymbolic-symbolic boundary. Proceedings of the AAAI Conference on
Artificial Intelligence, 32(1), Apr. 2018.

14. Kevin Xie, Homanga Bharadhwaj, Danijar Hafner, Animesh Garg, and Florian
Shkurti. Latent skill planning for exploration and transfer. In International Con-
ference on Learning Representations, 2021.

15. Keliang He, Morteza Lahijanian, Lydia E. Kavraki, and Moshe Y. Vardi. Auto-
mated abstraction of manipulation domains for cost-based reactive synthesis. IEEE
Robotics and Automation Letters, 4(2):285–292, 2019.

16. Jonathan A. DeCastro, Vasumathi Raman, and Hadas Kress-Gazit. Dynamics-
driven adaptive abstraction for reactive high-level mission and motion planning. In
2015 IEEE International Conference on Robotics and Automation (ICRA), pages
369–376, 2015.

17. George Konidaris and Andrew Barto. Efficient skill learning using abstraction
selection. In Proceedings of the 21st International Joint Conference on Artificial
Intelligence, IJCAI’09, page 1107–1112, San Francisco, CA, USA, 2009. Morgan
Kaufmann Publishers Inc.

To appear at the 2022 Workshop on the Algorithmic Foundations of Robotics (WAFR). Preprint version.

Automatic cross-domain task plan transfer by caching abstract skills 17

A Algorithms

Algorithm 1: Caching a skill in an abstract domain.

1 Algorithm cachSkill

Inputs:
A state trace from the skill execution S (E)
A public abstraction key PubKey =

(
projectp, reconstp,Ps

)
Output:

Caching success flag

2 validPrivateKeys ←
⋂

S∈S(E) PS

3 if validPrivateKeys ̸= ∅ then
4 Select a key p from validPrivateKeys
5 abstractTrace← projectp (S (E))

6 DataBase.add(abstractTrace, PubKey)
7 return True // caching succeeded

8 end
9 return False // caching failed, try another public key

To appear at the 2022 Workshop on the Algorithmic Foundations of Robotics (WAFR). Preprint version.

18 K. Elimelech et al.

Algorithm 2: Get a private key for reconstruction (applicability test).

1 Algorithm getPrivateKey

Inputs:
An abstract skill’s state trace (ξ0, . . . , ξn)
A start state Sstart

A task goal state Sgoal

A public key PubKey =
(
projectp, reconstp,Ps

)
Output:

If the abstract skill is applicable, returns a private key for
reconstruction; otherwise, returns False

2 if
∣∣∣Pξ0

Sstart

∣∣∣ = 1 then

3 p ← Pξ0

Sstart

4 if projectp (Sgoal) = ξn or reconstp (ξn) = Sgoal then
5 return p // applicable

6 end

7 end

8 else if
∣∣∣Pξ0

Sstart

∣∣∣ > 1 then

9 intersection ← Pξn

Sgoal
∩ Pξ0

Sstart

10 if intersection ̸= ∅ then
11 Select a key p from intersection
12 return p // applicable

13 end

14 end
15 return False // skill inapplicable

To appear at the 2022 Workshop on the Algorithmic Foundations of Robotics (WAFR). Preprint version.

Automatic cross-domain task plan transfer by caching abstract skills 19

Algorithm 3: Reconstruction of a cached abstract skill.

1 Algorithm reconstructSkill

Inputs:
An abstract skill’s state trace (ξ0, . . . , ξn)
A public key PubKey =

(
projectp, reconstp,Ps

)
A “classical” task planning problem P

.
= (D, Sstart, Sgoal)

Output:
A plan that solves the given problem, if reconstruction
succeeded; otherwise, returns False

2 p ← getPrivateKey(ξ0, ξn,Sstart,Sgoal,PubKey)
3 if p ̸= False then // skill is applicable

4 states ← reconstp (ξ0, . . . , ξn) // reconstruct state trace

5 actions ← recoverActions(states,D) // recover actions

6 if actions ̸= False then
7 return actions
8 end

9 end
10 return False

1 Procedure recoverActions

Inputs:
A state trace (S0, . . . ,Sn)
A planning domain D

Output:
If feasible, returns a sequence of actions that follows the states in
the trace; otherwise, returns False

2 for i ∈ {1, . . . , n} do
3 if ∃ an action a ∈ A between Si−1 and Si then
4 ai ← a
5 end
6 else
7 return False // unfeasible

8 end

9 end
10 return (a1, . . . , an) // feasible

