Diversity-Guided Multi-Objective Bayesian
Optimization With Batch Evaluations

Mina Konakovi¢ Lukovié¢* Yunsheng Tian* Wojciech Matusik
MIT CSAIL MIT CSAIL MIT CSAIL
minakl@mit.edu yunsheng@csail.mit.edu wojciech@csail.mit.edu
Abstract

Many science, engineering, and design optimization problems require balancing
the trade-offs between several conflicting objectives. The objectives are often black-
box functions whose evaluations are time-consuming and costly. Multi-objective
Bayesian optimization can be used to automate the process of discovering the
set of optimal solutions, called Pareto-optimal, while minimizing the number of
performed evaluations. To further reduce the evaluation time in the optimization
process, testing of several samples in parallel can be deployed. We propose a
novel multi-objective Bayesian optimization algorithm that iteratively selects the
best batch of samples to be evaluated in parallel. Our algorithm approximates
and analyzes a piecewise-continuous Pareto set representation. This represen-
tation allows us to introduce a batch selection strategy that optimizes for both
hypervolume improvement and diversity of selected samples in order to efficiently
advance promising regions of the Pareto front. Experiments on both synthetic test
functions and real-world benchmark problems show that our algorithm predom-
inantly outperforms relevant state-of-the-art methods. The code is available at
https://github.com/yunshengtian/DGEMO.

1 Introduction

Various experimental design problems in science and engineering seek optimal solutions that require
simultaneous optimization of a number of conflicting objectives. Typically the objectives are black-
box functions that are expensive to evaluate. Hence the number of evaluated experiments is severely
limited and designing experiments by hand does not provide optimal performance. Recently, there has
been an increasing interest in effective data-driven algorithms to efficiently guide the experimental
design process and lead to the best performing designs. Some use cases include material design [53],
battery optimization [1], clinical drug trials [50, 47], and chemical design [16]. An approach that
has proven to be powerful in optimizing the expensive-to-evaluate black-box functions is Bayesian
optimization (BO) [20, 41]. A fundamental concept behind the BO is two-fold: first, a inexpensive
surrogate model is used to model the black-box objective function based on the evaluated experiments;
second, an acquisition function is employed to adaptively sample the design space and efficiently
improve the set of optimal solutions. Both single- and multi-objective Bayesian optimization (MOBO)
have been studied.

In a variety of physical experimental setups, evaluating several experiments in parallel, e.g., in
batches, reduces the time and cost of the optimization process. Experiments can take days, weeks,
even months to complete; hence taking advantage of batching is important. Furthermore, in design
problems with multiple conflicting objectives, in most cases, there is no single optimal solution, but
rather a set of optimal designs with different trade-offs. These designs often tend to group in different
regions based on their properties and performance. In this paper, we develop a novel MOBO approach

*Equal contribution.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/yunshengtian/DGEMO

with a batch selection strategy that combines the knowledge from both design and performance space.
Our selection strategy enforces the exploration of diverse identified regions in approximated optimal
space. In addition, it measures which regions are the most beneficial for optimization to explore by
taking into consideration the hypervolume improvement[37]. A relatively limited amount of literature
can be found on the batch selection for MOBO that applies to the problem setup we are trying to
address [6, 52]. To the best of our knowledge, no previous published work has considered diversity
in both design and performance space in the batch selection strategy.

In summary, the key contributions of this paper are the following:

e We propose a novel approach, referred to as DGEMO (Diversity-Guided Efficient Multi-
objective Optimization), for solving multi-objective optimization problems of black-box
functions, while minimizing the number of function evaluations. Our algorithm is based on
multi-objective Bayesian optimization that operates on batches of evaluated samples in each
iteration and can handle an arbitrary batch size.

e Our batch selection strategy is guided by diversity in both design and performance space
of selected samples. The selection strategy divides the space into diversity regions that
provide additional information in terms of shared properties and performance of optimal
solutions. This information can be valuable for further physical experiments and problem
understanding.

e We conduct comprehensive experiments on both synthetic test functions and real-world
benchmark problems. Our algorithm exhibits consistent high-quality performance and
outperforms the relevant existing works in the field.

2 Related work

Bayesian optimization (BO) BO originated from [24, 33], and was popularized by the Efficient
Global Optimization (EGO) algorithm [20]. BO achieves a minimal number of function evaluations
by utilizing the surrogate model and sampling guided by carefully designed selection criteria. There
are two types of selection criteria: sequential selection that proposes only a single optimal sample to
evaluate, and batch selection proposing a set of samples to evaluate in each iteration. The sequential
selection has long been investigated in the literature [24, 20, 43, 17], which usually achieves better
performance w.r.t. the number of evaluations, at the cost of more algorithm iterations and slower
convergence. On the other hand, batch selection sacrifices some performance, yet can benefit from a
parallel evaluation, which is more common and time-efficient in modern engineering experiments
[11, 8, 21, 15]. In this paper, we focus on the time-efficient batch selection scheme.

Multi-objective optimization (MOQO) MOQO is applied to problems involving several conflicting
objectives and optimizes for a set of Pareto-optimal solutions [32]. To this end, many population-based
multi-objective evolutionary algorithms (MOEA) are proposed, e.g., NSGA-II [9] and MOEA/D
[51], which are widely used in various multi-objective problems, including financial portfolio design
[45], manufacturing design [39], and optimal control [13]. However, MOEA algorithms typically
require a substantial number of evaluations due to the nature of evolutionary computation. This
requirement prevents them from being applied to many real-world problems, where the evaluation can
be computationally expensive and becomes the main bottleneck of the whole optimization process.

Multi-objective Bayesian optimization (MOBO) Taking the best of both worlds from Bayesian
optimization and multi-objective optimization, MOBO is designed to solve multi-objective problems
that are expensive to evaluate. Among MOBO algorithms there are also two streams of work focusing
on sequential selection and batch selection; we call them the single-point method and batch method.
One of the first single-point methods is ParEGO [22], which randomly scalarizes the multi-objective
problem to a single-objective problem and selects a sample with maximum expected improvement (EI).
Similarly, EHI [12] and SUR [35] extend ParEGO by using different acquisition functions. Another
line of work, such as PAL [56], focuses on uncertainty reduction on the surrogate model for better
performance. PESMO [38] and MESMO [3] rely on entropy-based acquisition functions and select a
sample that maximizes the information gain about the optimal Pareto set. A very recent approach
USeMO [2] uses maximum uncertainty as a selection criterion based on the Pareto set generated by
NSGA-II. USeMO achieves state-of-the-art performance and generalizes to any acquisition function.

Even though these algorithms fall into the category of the single-point method, some of them could
have a straight-forward extension to the batch selection scheme, which we demonstrate in Section 5.

For batch MOBO methods, MOEA/D-EGO [52] can be considered as the earliest attempt, which
generalizes ParEGO by multiple scalarization weights and performs parallel optimization with
MOEA/D. A subsequent work MOBO/D is proposed as an extension to MOEA/D-EGO by changing
the acquisition function [25]. A recent work TSEMO [6] suggests using Thompson Sampling (TS)
on the GP posterior as an acquisition function, optimizing multiple objectives with NSGA-II, and
selecting the next batch of samples by maximizing the hypervolume improvement. BS-MOBO [26]
applies MOBO on a different setting with large scale datasets using neural network as surrogate
model. However, to the best of our knowledge, none of the previous methods consider diversity in
both design and performance space in the batch selection, which can be crucial for many real-world
problems where the Pareto-optimal solutions are distributed in diverse regions of the design space.

3 Preliminaries

3.1 Multi-objective optimization

We consider a multi-objective optimization problem over a set of continuous input variables X C R¢,
called design space. The goal is to simultaneously minimize m > 2 objective functions f1, ..., fi, :
X — R. We denote the vector of all objectives as f(x) = (f1(x),..., fm(x)), where x € X is a
vector of input variables. The performance space is then an m-dimensional image £(X) C R™.

Objectives are often conflicting, resulting in a set of optimal solutions, rather than a single best
solution. These optimal solutions are referred to as Pareto set P; C X in the design space, and the
corresponding images in performance space are Pareto front Py = £(Ps) C R™. More formally, a
point x* € Py is considered Pareto-optimal if there is no other point x € X such that f;(x*) > f;(x)
for all ¢ and f;(x*) > f;(x) for at least one 1.

To measure the quality of an approximated Pareto front, hypervolume indicator [55] is the most
commonly used metric in MOO [37]. Let P be a Pareto front approximation in an m-dimensional
performance space and given a reference point € R™, the hypervolume #(Py) is defined as

WP = [tue, ()i m

where H(Py) = {z € Z | 31 < i < [Pf| : r = z <X Py(i)}. Py(4) is the i-th solution in Py,
= is the relation operator of objective dominance, and 1z (p,) is a Dirac delta function that equals
1if z € H(Py) and 0 otherwise. The higher the hypervolume, the better P, approximates the
true Pareto front. To determine how much the hypervolume would increase if a set of new points

P = {p1,...,pn} C R™ is added to the current Pareto front approximation P, we can use the
hypervolume improvement that is defined as
HVI(P, Pf) = H(Pf U P) - H(Pf) 2)

3.2 Bayesian optimization

A variety of optimization problems search to find a global optimal solution of a black-box function
f: X c RY — R that is expensive to evaluate. Neither analytical form nor derivatives of f
are known, and a limited number of function evaluations are available. In this scenario, Bayesian
optimization (BO) has proven to be a powerful tool. The key advantage of BO lies in the selection
strategy of the next points to evaluate that balances the trade-off between exploration of unknown
regions vs. exploitation of the best-performing ones. A good selection strategy allows BO to achieve
great results in a small number of algorithm iterations and function evaluations. In each iteration of
the BO algorithm, the first step is to train a statistical model on all available evaluated points, called
surrogate model. Typically a Gaussian process is used to model the unknown objective function f and
provide the model’s prediction and uncertainty. The second step of the algorithm is the optimization of
an acquisition function on the surrogate model that selects a point to evaluate next. The most popular
acquisition functions for single-objective optimization problems include expected improvement (EI)
[33, 20], probability of improvement (P) [24], and upper confidence bound (UCB) [43]. In the case
of multi-objective optimization, a surrogate model is usually trained for each objective independently,

and an acquisition function is adapted to overlook multiple models. Examples of such acquisition
function are expected hypervolume improvement (EHI) [12] and predictive entropy search (PES) [17].

4 Proposed method

In this section, we present our multi-objective Bayesian optimization approach that proposes batches
of samples to evaluate in each iteration.

Let f : X — R™ be a vector of m black-box objectives of form f; : X — R, where X' C R<. The
input to our method is a small set of initial samples Xy, C X, usually drawn by Latin Hypercube
Sampling (LHS) [31], and the corresponding evaluations Yy = {f(x;),Vx; € Xo} C R™. Our
approach consists of three main components: building a surrogate model G'; for each objective f;
(Section 4.1), approximation of the Pareto set P, and Pareto front Py (Section 4.2), and finally a
selection of next set of samples to evaluate (Section 4.3). We iterate over these three components to
efficiently improve the Pareto-optimal solution. The approach is summarized in Algorithm 1.

Algorithm 1 DGEMO

Inputs: Design space X'; black-box objectives f(x) = (f1(x), ..., fm(x)); number of iterations n;
number of initial samples k; batch size b.
Output: Pareto set P, and Pareto front Py.

Xo + {x1,..., x5}, Yo < {f(x1),...,f(xx)} // initial samples drawn from LHS
for i + 0 ton do .
Train surrogate models G;L) on X;, Y; for each objective f;, j € {1,...,m}
Define acquisition function fj@ from each G;i), £ (x) (fl(l) (x),..., A0 (x))
Approximate Pareto set P." and Pareto front P}i) over £(9)
Split points from ’Ps(i) into diversity regions Dgi), ey Dgi)
Select points xgl), o ng) to evaluate from DY), ...,DW

Evaluate and update Vi, + Y; U {f®(x{"), ... £® (xl(f))}, X X u{xl? x\y
Compute Pareto front P from points in Y;, and corresponding Pareto set P,

4.1 Surrogate model

We use Gaussian process (GP) as a surrogate model to model each objective independently. First,
the prior of GP model is characterized by the mean function m : X — R and the kernel function
k : X x X — R. For a given input variable x, the prior distribution of GP can be stated as
f(x) ~ N (m(x), k(x,x)). GP prior can be used to incorporate any prior beliefs about the objective
functions if available, without depending on the input data, by choosing different mean function and
kernel function. Without the loss of generality, we use mean function m(x) = 0 and experiment with
Matern kernel functions [36] that can capture a large variety of function properties. Secondly, we train
a GP posterior to refine the prior model by maximizing the log marginal likelihood log p(y|x, &) on the
available dataset { X, Y}, where 0 denotes the parameters of the kernel function (e.g. § = [for Matern
kernel). Finally, the posterior distribution of GP is given in the form f(x) ~ A (u(x), 2(x)), where
the mean function is p(x) = m(x)+ kK ~'Y, and covariance function ¥(x) = k(x,x) —kK 1k’
with k = k(x,X) and K = k(X, X). To better explore the Pareto front based on this surrogate
model, our Pareto front approximation algorithm (Section 4.2) makes use of the Jacobian and Hessian
of the GP prediction p(x), 3 (x) w.r.t. x. We provide the corresponding derivations in Appendix A.

4.2 Pareto front approximation

After obtaining a surrogate model G; for each objective function f;, we simply use the mean function
of GP posterior as an acquisition function f; = ;. The next step of our algorithm then is to compute

the Pareto front over all f;. A core contribution to the efficacy of our algorithm comes from the Pareto
front approximation approach, based on the method proposed in [39]. In typical MOO methods,
discovering an individual point that minimizes the set of functions { f1(x),..., fm(X)},st. x € X
can be challenging. However, once a single solution is discovered, locally searching around this point
is easier. By solving a dual problem based on KKT conditions [19], the approach of [39] leverages
this fact and derives a first-order approximation of the Pareto front. They efficiently discover large

MOEA/D-EGO N NSGA-II . ParEGO

P

B3
)]
_J Co"
s
@}_rh- e Y A
' L

T T T T T T T T
0.6 08 1 0 02 04 0.6 08] 08

I\‘J 02 04 06
USeMO-EI N TSEMO . DGEMO (Ours)

05 0.5 %

T T T T I T T T T T T T T
0 02 04 0.6 08 1 0 02 04 0.6 08 1 0 02 04 06 0.8

® Evaluated points ©® Evaluated Pareto front True Pareto front

Figure 1: Comparison of evaluated points (blue and orange) performed by different algorithms on
standard ZDT3 problem. Note that DGEMO quickly discovers all regions of interest and focuses
most evaluations in these regions, covering almost the entire ground truth Pareto front (gray) in only
20 iterations of the algorithm with batch size 10.

piecewise continuous regions of the Pareto front, rather than a sparse set of points obtained by random
mutations from popular evolutionary algorithms. For more details, we refer the reader to [39].

In summary, the Pareto front approximation implements an iterative procedure consisting of three
main steps. First, a stochastic sampling scheme is used to generate a set of random samples x; € X
perturbed from the best samples found so far, to avoid local minima and balance between exploration
and exploitation of the design space neighborhoods. The second step implements a local optimization
procedure that drives each sample x; towards a local Pareto-optimal solution x; with L-BFGS solver
[27]. Different optimization directions are explored to cover diverse regions of the Pareto front.
Finally, a first-order approximation of the Pareto front is extracted around x}, resulting in a dense set
of solutions located on a (m — 1)-dimensional manifold that approximates a continuous region on the
Pareto front. The last step delivers the key advantage of this approach: once a single point in a Pareto
set is found, it can be used to efficiently discover large Pareto-optimal regions in its neighborhood.
In our experiments, we found that only 10 iterations of this procedure are enough to produce a
high-quality approximation. One example that presents the resulting Pareto front approximation of a
benchmark problem is shown in Figure 1. Note that due to the limited budget of evaluations, other
algorithms waste most of the samples trying to expand a single region and struggle to escape the local
minima, while ours manages to quickly discover all regions of the true Pareto front.

4.3 Batch selection strategy

The last part of our algorithm proposes a novel strategy for selecting a batch of samples to evaluate in
the next iteration. We first present the approach for defining diversity regions; we then describe the
selection strategy and corresponding algorithm.

Diversity regions Starting from the Pareto front approximation, the goal is to group the optimal
points based on their design properties and performance, resulting in several diversity regions. Stan-
dard MOO methods, such as NSGA-II, tend to output a Pareto front as a sparse set of points uniformly
scattered around performance space, without considering the design space diversity. On the contrary,
in our method, the Pareto front representation obtained from Section 4.2 has compact regions and
better space coverage. From this representation, we can easily trace the neighboring points and their

correlation in both design and performance space. To solve the grouping problem, we rely on a data
structure called performance buffer, implemented by [39]. The performance buffer sorts out the best
performing points from the Pareto front approximation by storing them into an (m — 1)-dimensional
array discretized with hyperspherical coordinates. Assuming that all objectives are positive, any
point that lies on the Pareto front will intersect a positive ray traced from the origin (see inset).
The best performing points are selected as the points closest to the origin

and sorted based on their hyperspherical coordinates. The buffer stores the TRm

performance and design space locations of each selected point, as well as
the corresponding linear subspace of the design space extracted with the
first-order approximation step. This way, the buffer keeps both the optimality
information from the performance space and the closeness information from
the design space. This data structure is compatible with a graph-cut method,
which then extracts a sparse subset of optimal points grouped into k linear
subspaces Dy, ... Dy. The points are grouped based on the quality of their
performance and their neighborhoods in the design space. We use these linear subspaces as our
diversity regions.

Selection strategy Our strategy involves two crite-

ria: diversity measure and hypervolume improvement. TRd R™

Our diversity measure incorporates the knowledge D

from both design and performance space, and aims o f £(X
to evenly distribute selected samples among diversity X - | ()
regions (see inset). This measure then enforces the | (J - [P0
exploration of different regions of the Pareto front, / LN " £(Dy)

while also considering diversity in the design space.
It is especially important in the initial iterations when
the uncertainty in the model is high and hypervolume improvement is often inaccurate. It further
prevents the optimization from falling into local minima and overly exploiting one high-performing
area, while neglecting other potentially promising regions.

Our selection strategy aims to maximize the hypervolume improvement while enforcing the samples
to be taken from all diverse regions as uniformly as possible. These requirements can be written in
the following form:

argmax HVI(Yp, Py) st max 6;(Xp)— min §;(Xp) <1 3)
X5 1<i<|D| 1<i<|D|

where X5 = {x1,...,%,} is a set of b samples in a batch, Yz = {f(x;),...,f(x3)}, Pj is the
current Pareto front, functions d;(.) are defined for each region D; € D as a number of elements x;
from X p that belong to the region D;.

Selection algorithm The optimization problem defined in Equation 3 can be solved combinatorially.
Nevertheless, it would be extremely computationally expensive. Instead, we implement a greedy
approach. We select a point x; with the largest hypervolume improvement, add x; to the batch,
and add f(x;) to the current Pareto front Ps. We then search for the next point with the largest
hypervolume improvement, which does not belong to the same region as x;. We repeat this process
while avoiding all the regions from which the points were already selected until all regions are covered.
If more points are still needed for the batch, we reset the counter of covered regions and repeat the
same process. This way we obtain evenly distributed points around regions, while also aiming to
maximize the hypervolume improvement. The complete algorithm is presented in Algorithm 2.

5 Experiments and results

We now compare our algorithm to the relevant state-of-the-art methods on both synthetic test functions
and real-world benchmark problems.

Benchmark problems First, we conduct experiments on 13 synthetic multi-objective test functions
including ZDT1-3 [54], DTLZ1-6 [10], OKA1-2 [34], VLMOP2-3 [48], which are widely used in
previous literature. The experiments include problems with 2 and 3 objectives, and the number of
design variables varying from 2 to 7. Second, we adopt 7 real-world engineering design problems

Algorithm 2 Batch Selection Algorithm
Inputs: Current Pareto front Py; batch size b; candidate points split into regions Dy, ..., D;;
surrogate objectives £(x) = (f1(x), ..., fin(X)).
Output: Batch of selected samples X 5.

S+ {1,2,...,1} /1 set of available regions to choose
for: < 1tobdo
Rimaz ¢ —09, Smaz < 0, Xmaz < null /I record the sample with maximal HVI

for each s € S do
for eachx € D, do
h < HVI(f(x),Py)
if h > hias then hyor < Ry Smar < S, Ximaz ¢ X

Xp < XpU{Xmaz},Ps < Py U {f'(xmax)} /I aggregate solutions
Dsmal — DSnLam - {XnLax}a S — S - {Sm,ax}
if S=0thenS + {1,2,...,r} // reset the counter of visited regions

presented in RE problem suite [46], which are: four bar truss design, reinforced concrete beam design,
hatch cover design, welded beam design, disc brake design, gear train design, and rocket injector
design. We use names RE1-7 to refer to these problems in plots and further text. More detailed
description of the problems can be found in Appendix B.

Algorithms and implementation We compare our algorithm to several baseline algorithms de-
scribed in Section 2: NSGA-II [9], ParEGO [22], MOEA/D-EGO [52], TSEMO [6], and USeMO-EI
[2]. We extend ParEGO and USeMO-EI from their original sequential selection to batch selection for
batch evaluation scenario; see Appendix B for details of the extension. We implement and compare
all algorithms in our Python codebase, built upon pymoo [5], a state-of-the-art Python framework for
multi-objective optimization. Our code will be released open-source with reproducibility guarantee.
The performance of our implementation is of high-quality and even surpasses the original authors’
implementation on some baseline algorithms, see Appendix B for comparison.

Comparison metric To compare the performance of different algorithms, we mainly use hypervol-
ume indicator — the most popular comparison metric for multi-objective optimization problems [37].
This indicator measures the quality of the set of discovered solutions. We monitor the increase of the
hypervolume indicator (Eq. 1) over the number of evaluations performed. For comparison fairness,
we use the same reference point and initial set of samples for every algorithm. See Appendix B
for more details on initial samples and reference points used for each problem. Results using other
comparison metrics are available in Appendix D.

5.1 Results and discussion

The selected test problems serve to validate the quality of the method when dealing with functions
that are concave, convex, disconnected, multimodal, and of diverse design and performance space
complexity. Our approach shows consistent top performance, compared to other algorithms that
oscillate on different types of problems. DGEMO also proves to be particularly good on the synthetic
functions mimicking the real-world data (OKA, VLMOP) and the actual real-world problems (RE).
Figure 2 presents the comparison of the hypervolume indicator w.r.t. evaluation number. For every
algorithm, we run every experiment with 10 different random seeds and the same 50 initial samples.
In these experiments, we use a batch of 10 samples in each iteration and ran 20 iterations in total. All
hyperparameters used are presented in Appendix B. The analysis on computational complexity can
be found in Appendix C. We also conduct experiments using different batch sizes, including 1, 2, 4, 5
and 20, and our algorithm still consistently outperforms others. See Appendix E for more results.
The Pareto front approximation approach presented in Section 4.2 enables our method to work well
even with the small batch size (including a sequential case with batch size 1). However, while other
methods are unstable and can vary the performance quality when the batch size increases, our method
always exhibits superior and stable results thanks to the diversity-guided selection strategy.

In experimental design problems, aside from searching for an optimal set of solutions, it is often
desirable to obtain a reliable prediction of the performance of untested samples. Hence, the quality of
the surrogate model and the Pareto front approximation can be an important criterion in choosing

the algorithm to work with. In Table 1 we show the average prediction error of all evaluated
points produced with our approach and other MOBO baseline algorithms (NSGA-II does not have a
surrogate model so comparison is infeasible). The prediction error is calculated by ||f (x) — f(x)|| as
the Euclidean distance between the surrogate prediction and the actual performance. It turns out that
besides the superior performance of the hypervolume metric, DGEMO also has the lowest prediction
error among the majority of the problems.

ZDTI ZDT2 e DTLZI
6.0 7 65
gss rﬁﬂfﬁ_ﬂ 60 120 —
E] 6
S 50 55
= 115 1
50 15
§4.5 5
45
T a0 110
4 40
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
DTLZ2 les DTLZ3 DTLZ4 DTLZ5
21 52 0.70 2
° = ==
E 2.0 5.0 2.0
=2 . — 0.65 ——
E0) S ¥ 19 —
(9]
S 46 0.60 18
et [e —
1.7 4.4 1.7
T T T T T T T T T T 0.55 T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
DTLZ6 OKA1 OKA2 VLMOP2
2
30 03
g 20
525
) 18 02
20
g [
s 01
= P 14 o
=
10 12 0.0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
VLMOP3 et RE3
3 314
90 —_—
o1
=] JJ 30 L
=8 312 JJI_/HJJ
S u| P
28
E 80 1
S J 26 3.10
=75
2
70 T T T T T T T T T T T T T T T 308 T T T T T
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

lel0 RE4 1e2 RES 1e2 RE6

1.0

1.795 0.45

1790 08 0.40
1785 035

0.6
1.780 0.30 |

Hypervolume
L
\\]
a
g

0.4
1.775 025

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 50 100 150 200
Evaluations Evaluations Evaluations Evaluations

—— NSGA-II —— ParEGO —— MOEA/D-EGO TSEMO USeMO-EI —— DGEMO (Ours)

Figure 2: Comparison of different algorithms including our DGEMO on synthetic test functions and
real-world problems. The hypervolume indicator is shown w.r.t. the number of function evaluations.
Every experiment has batch size 10 and 20 algorithm iterations in total. The curve is averaged over
10 different random seeds and the variance is shown as a shaded region.

Given a trained surrogate model, unlike the others, our approach makes use of the Jacobian and
Hessian information of this model in Pareto front approximation. We observe that DGEMO needs
fewer iterations to stabilize the prediction, and greatly improves the hypervolume quality already
in the first few iterations. Experiments that have a budget of less than 20 iterations would highly
benefit from this property of our approach. In addition, DGEMO explores and provides additional
information on diverse regions of Pareto-optimal solutions based on their properties and performance.
Examining these regions individually may offer more comprehensive understanding of the problem
and a wider range of solutions. One such example is presented in Appendix F, where we analyze and
discuss the discovered regions on the rocket injector design problem (RE7).

Table 1: Averaged surrogate prediction error of points proposed by different algorithms, including
DGEMO, on all benchmark problems. The scale of the error varies across different problems due to
the problem definition, as some objectives have extremely high but valid values.

Method | ZDT1 ZDT2 ZDT3 DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 OKAlI
ParEGO 7.87 229 349 1.76e+04 6.95 3.83e+04 30.1 6.93 304 679
MOEA/D-EGO 76 8.11 106 2.09e+04 5.75 4.09e+04 124 5.75 6.37e+03 3.63e+03
TSEMO 65.9 5.48 331 1.78e+05 41.6 4.12e+05 607 41.6 1.43e+03 544
USeMO-EI 352 1.39 420 2.25e+04 223 5.54e+04 922 22.3 3.08e+04 1.55e+03
DGEMO (Ours) 5.25 0.933 11.6 8.24e+03 1.59 1.5e+04 71.6 1.59 275 233
Method | OKA2 VLMOP2 VLMOP3 REI RE2 RE3 RE4 RES RE6 RE7
ParEGO 58.8 54 61.6 593 2.86e+16 98.6 1.95e+08 575 292 0.597
MOEA/D-EGO 297 9.22 69.4 10.2 1.23e+15 264 1.19e+09 284 1.64e+03 1.26
TSEMO 641 31.9 284 153 1.19e+17 1.32e+03 1.47e+10 229 1.33e+03 0.734
USeMO-EI 1.21e+03 17.5 115 16.4 7.74e+15 386 6.72e+09 114 976 1.14
DGEMO (Ours) 140 6.26 21 3.09 3.25e+11 92.7 2.13e+08 1.22e+03 288 0.343

6 Conclusion and future work

We introduced a novel multi-objective Bayesian optimization method that allows evaluation of batches
of samples in each iteration. The selection of batch samples takes into consideration the diversity
of samples in both design and performance space, making it suitable for physical experiments and
many real-world problems. The key advantage of our approach lies in the Pareto front approximation
algorithm and the batch selection strategy that are, to the best of our knowledge, different from
any previously published work. We performed extensive tests on both synthetic test functions and
real-world problems. We found that our approach significantly outperforms other methods in most of
the test problems, and in others performs equally well as the best-scoring state-of-the-art algorithm.

While Gaussian processes are good at handling a certain amount of noise in the data, examining the
effects of noise on the system in more detail is an interesting avenue for future research. Currently, our
method works with continuous design variables. Extending the method to support discrete variables
would be a valuable addition for some real-world applications. Integrating DGEMO to an automated
experimental lab setup to control the development and discovery of best performing experiments is
an exciting new research direction.

Broader Impact

Bayesian optimization has successfully been used for a wide range of applications, including pa-
rameter tuning [4, 42], recommender systems and advertising [23, 40, 7], robotics [28, 30], resource
allocation [18, 49], environmental monitoring [29], clinical drug trials [47, 50], experimental de-
sign [44, 14]. This list is not exhaustive; many more examples can be found and new problems could
exploit Bayesian optimization methods. We present a novel approach for multi-objective Bayesian
optimization that aims to enable parallelized evaluations and increased time efficiency of the opti-
mization process. Our approach is not limited to specific applications. In general, any problem that
requires sample-efficient optimization of multiple black-box functions that are expensive to evaluate
could benefit from using our approach. The proposed method exhibits improved performance over the
current state-of-the-art methods and offers a new perspective on the diversity of explored solutions.
In particular, the extracted diversity regions of Pareto-optimal solutions may provide important
material for further investigation of the problem. Examining the shared properties among samples in
each region could deliver a better understanding of the interaction between design variables (base
ingredients) and their contribution to optimal performance. Our method may be especially useful for
applications in areas such as materials science, chemistry, and pharmaceutical industry, where the
experiments are long (e.g., days or weeks), but can easily be carried out in parallel.

An important benefit of our work may be found in sustainability. The method specifically cares about
preserving the resources used in experiments, such as energy consumption, chemical ingredients, and
time. The reduced number of evaluations may significantly lower the testing waste. We hope that our
approach will initiate more research in this direction and attract more attention to saving resources as
much as possible alongside with rapid technological advances.

We plan to release an open-source codebase with a user interface for users with limited prior exposure
to machine learning or multi-objective optimization algorithms. We hope that this codebase will
perpetuate research in various scientific disciplines and enable the growth of interdisciplinary work.

On the negative side, we cannot guarantee that our approach will be used solely for a good cause
with no negative use cases. Our contribution is mainly improving the efficiency of the experiments
and saving more resources; however, we cannot prevent the abuse of this technology.

The failure in our system would mean an inability to improve the set of Pareto-optimal solutions
received from the initial set of samples. This inability may be caused by inadequate input data, such
as too limited design space, or evaluations with intractable oscillations in noise. The failure can be
detected after only a few iterations and experiments could be terminated. At this point, we cannot
think of any further disadvantages of using our approach.

We see further opportunities in the development of automated experimental design systems in research
and technology. Our approach can be integrated as a “brain” of an autonomous production and
testing system, to drive the design of experiments and evaluations without human supervision and
hand-picking of the design samples to evaluate. The automation process may cause some job loss of
repetitive tasks. However, it may also result in increased productivity of researchers and accelerate the
development of important products, such as drugs, chemicals, and new materials. It may provide new
job opportunities for algorithm engineers and data scientists to build more intelligent optimization
workflows according to the specific needs of different problems.

Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers for their helpful comments in revising the paper. This work
is supported by National Science Foundation (grant No. 1815372). M. K. Lukovi¢ would like to
acknowledge support from the Schmidt Science Fellowship.

References

[1] Peter M Attia, Aditya Grover, Norman Jin, Kristen A Severson, Todor M Markov, Yang-Hung
Liao, Michael H Chen, Bryan Cheong, Nicholas Perkins, Zi Yang, et al. Closed-loop optimiza-
tion of fast-charging protocols for batteries with machine learning. Nature, 578(7795):397-402,
2020.

[2] Syrine Belakaria and Aryan Deshwal. Uncertainty-aware search framework for multi-objective
bayesian optimization. In AAAI Conference on Artificial Intelligence (AAAI), 2020.

[3] Syrine Belakaria, Aryan Deshwal, and Janardhan Rao Doppa. Max-value entropy search for
multi-objective bayesian optimization. In Advances in Neural Information Processing Systems,

pages 7823-7833, 2019.

[4] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl. Algorithms for hyper-
parameter optimization. In Proceedings of the 24th International Conference on Neural Infor-
mation Processing Systems, NIPS’11, page 2546-2554, Red Hook, NY, USA, 2011. Curran
Associates Inc.

[5] J. Blank and K. Deb. pymoo: Multi-objective optimization in python. IEEE Access, pages 1-1,
2020.

[6] Eric Bradford, Artur M Schweidtmann, and Alexei Lapkin. Efficient multiobjective optimization
employing gaussian processes, spectral sampling and a genetic algorithm. Journal of global
optimization, 71(2):407-438, 2018.

[7] Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In J. Shawe-
Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 24, pages 2249-2257. Curran Associates, Inc., 2011.

[8] Emile Contal, David Buffoni, Alexandre Robicquet, and Nicolas Vayatis. Parallel gaussian
process optimization with upper confidence bound and pure exploration. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pages 225-240.
Springer, 2013.

10

[9] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist
multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation,
6(2):182-197, 2002.

[10] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. Scalable test problems
for evolutionary multiobjective optimization. In Evolutionary multiobjective optimization, pages
105-145. Springer, 2005.

[11] Thomas Desautels, Andreas Krause, and Joel W Burdick. Parallelizing exploration-exploitation

tradeoffs in gaussian process bandit optimization. Journal of Machine Learning Research,
15:3873-3923, 2014.

[12] Michael Emmerich. The computation of the expected improvement in dominated hypervolume
of pareto front approximations.

[13] Adrian Gambier and Essameddin Badreddin. Multi-objective optimal control: An overview. In
2007 IEEE International Conference on Control Applications, pages 170-175. IEEE, 2007.

[14] R. Garnett, M. A. Osborne, and S. J. Roberts. Bayesian optimization for sensor set selection.
In Proceedings of the 9th ACM/IEEE International Conference on Information Processing
in Sensor Networks, IPSN °10, page 209-219, New York, NY, USA, 2010. Association for
Computing Machinery.

[15] Javier Gonzdlez, Zhenwen Dai, Philipp Hennig, and Neil Lawrence. Batch bayesian optimization
via local penalization. In Artificial intelligence and statistics, pages 648—657, 2016.

[16] Ryan-Rhys Griffiths and José Miguel Hernandez-Lobato. Constrained bayesian optimization
for automatic chemical design. arXiv preprint arXiv:1709.05501, 2017.

[17] José Miguel Herndndez-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive
entropy search for efficient global optimization of black-box functions. In Advances in neural
information processing systems, pages 918-926, 2014.

[18] R. Hickish, D.I. Fletcher, and R.F. Harrison. Investigating bayesian optimization for rail
network optimization. International Journal of Rail Transportation, October 2019. (©) 2019
The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an
Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

[19] Claus Hillermeier. Generalized homotopy approach to multiobjective optimization. Journal of
Optimization Theory and Applications, 110:557-583, 2001.

[20] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of
expensive black-box functions. Journal of Global optimization, 13(4):455-492, 1998.

[21] Tarun Kathuria, Amit Deshpande, and Pushmeet Kohli. Batched gaussian process bandit
optimization via determinantal point processes. In Advances in Neural Information Processing
Systems, pages 42064214, 2016.

[22] Joshua Knowles. Parego: a hybrid algorithm with on-line landscape approximation for expen-
sive multiobjective optimization problems. IEEE Transactions on Evolutionary Computation,
10(1):50-66, 2006.

[23] Ron Kohavi, Roger Longbotham, Dan Sommerfield, and Randal M. Henne. Controlled exper-
iments on the web: Survey and practical guide. Data Min. Knowl. Discov., 18(1):140-181,
February 2009.

[24] Harold J Kushner. A new method of locating the maximum point of an arbitrary multipeak
curve in the presence of noise. 1964.

[25] Xi Lin, Qingfu Zhang, and Sam Kwong. An efficient batch expensive multi-objective evolution-
ary algorithm based on decomposition. In 2017 IEEE Congress on Evolutionary Computation
(CEC), pages 1343-1349. IEEE, 2017.

11

[26] Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qingfu Zhang, and Sam Kwong. A batched scalable
multi-objective bayesian optimization algorithm. arXiv preprint arXiv:1811.01323, 2018.

[27] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1-3):503-528, 1989.

[28] Daniel Lizotte, Tao Wang, Michael Bowling, and Dale Schuurmans. Automatic gait optimization
with gaussian process regression. In Proceedings of the 20th International Joint Conference
on Artifical Intelligence, IJICAI’07, page 944-949, San Francisco, CA, USA, 2007. Morgan
Kaufmann Publishers Inc.

[29] Roman Marchant and Fabio Ramos. Bayesian optimisation for intelligent environmental
monitoring. pages 2242-2249, 10 2012.

[30] Ruben Martinez-Cantin, Nando Freitas, Eric Brochu, Jose Castellanos, and Arnaud Doucet.
A bayesian exploration-exploitation approach for optimal online sensing and planning with a
visually guided mobile robot. Auton. Robots, 27:93-103, 08 2009.

[31] Michael D McKay, Richard J Beckman, and William J Conover. Comparison of three meth-
ods for selecting values of input variables in the analysis of output from a computer code.
Technometrics, 21(2):239-245, 1979.

[32] Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12. Springer Science &
Business Media, 2012.

[33] Jonas Mockus. On bayesian methods for seeking the extremum. In Optimization techniques
IFIP technical conference, pages 400—404. Springer, 1975.

[34] Tatsuya Okabe, Yaochu Jin, Markus Olhofer, and Bernhard Sendhoff. On test functions for
evolutionary multi-objective optimization. In International Conference on Parallel Problem
Solving from Nature, pages 792—-802. Springer, 2004.

[35] Victor Picheny. Multiobjective optimization using gaussian process emulators via stepwise
uncertainty reduction. Statistics and Computing, 25(6):1265-1280, 2015.

[36] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005.

[37] Nery Riquelme, Christian Von Liicken, and Benjamin Baran. Performance metrics in multi-
objective optimization. In 2015 Latin American Computing Conference (CLEI), pages 1-11.
IEEE, 2015.

[38] Daniel Russo and Benjamin Van Roy. Learning to optimize via information-directed sampling.
In Advances in Neural Information Processing Systems, pages 1583—-1591, 2014.

[39] Adriana Schulz, Harrison Wang, Eitan Grinspun, Justin Solomon, and Wojciech Matusik.
Interactive exploration of design trade-offs. ACM Transactions on Graphics (TOG), 37(4):1-14,
2018.

[40] Steven L. Scott. A modern bayesian look at the multi-armed bandit. Appl. Stoch. Model. Bus.
Ind., 26(6):639-658, November 2010.

[41] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the human out of
the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148-175, 2016.

[42] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in neural information processing systems, pages 2951-2959,
2012.

[43] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process
optimization in the bandit setting: no regret and experimental design. In Proceedings of the 27th
International Conference on International Conference on Machine Learning, pages 1015-1022,
2010.

12

[44] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process
optimization in the bandit setting: No regret and experimental design. In Proceedings of the
27th International Conference on International Conference on Machine Learning, ICML’ 10,
page 1015-1022, Madison, WI, USA, 2010. Omnipress.

[45] Raj Subbu, Piero P Bonissone, Neil Eklund, Srinivas Bollapragada, and Kete Chalermkraivuth.
Multiobjective financial portfolio design: A hybrid evolutionary approach. In 2005 IEEE
Congress on Evolutionary Computation, volume 2, pages 1722—1729. IEEE, 2005.

[46] Ryoji Tanabe and Hisao Ishibuchi. An easy-to-use real-world multi-objective optimization
problem suite. Applied Soft Computing, page 106078, 2020.

[47] William R Thompson. On the Likelihood That one Unknown Probability Exceeds Another in
View of the Evidence of two Samples. Biometrika, 25(3-4):285-294, 12 1933.

[48] David A Van Veldhuizen and Gary B Lamont. Multiobjective evolutionary algorithm test suites.
In Proceedings of the 1999 ACM symposium on Applied computing, pages 351-357, 1999.

[49] J. Wu, W.Y. Zhang, S. Zhang, Y.N. Liu, and X.H. Meng. A matrix-based bayesian approach for
manufacturing resource allocation planning in supply chain management. International Journal
of Production Research, 51(5):1451-1463, 2013.

[50] Zhenning Yu, Viswanathan Ramakrishnan, and Caitlyn Meinzer. Simulation optimization for
bayesian multi-arm multi-stage clinical trial with binary endpoints. Journal of Biopharmaceuti-
cal Statistics, 29:1-12, 02 2019.

[51] Q. Zhang and H. Li. Moea/d: A multiobjective evolutionary algorithm based on decomposition.
IEEFE Transactions on Evolutionary Computation, 11(6):712-731, 2007.

[52] Qingfu Zhang, Wudong Liu, Edward Tsang, and Botond Virginas. Expensive multiobjective
optimization by moea/d with gaussian process model. IEEE Transactions on Evolutionary
Computation, 14(3):456—474, 2009.

[53] Yichi Zhang, Daniel W Apley, and Wei Chen. Bayesian optimization for materials design with
mixed quantitative and qualitative variables. Scientific Reports, 10(1):1-13, 2020.

[54] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of multiobjective evolutionary
algorithms: Empirical results. Evolutionary computation, 8(2):173-195, 2000.

[55] Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE transactions on Evolutionary Computation,
3(4):257-271, 1999.

[56] Marcela Zuluaga, Guillaume Sergent, Andreas Krause, and Markus Piischel. Active learning
for multi-objective optimization. In International Conference on Machine Learning, pages
462-470, 2013.

13

	Introduction
	Related work
	Preliminaries
	Multi-objective optimization
	Bayesian optimization

	Proposed method
	Surrogate model
	Pareto front approximation
	Batch selection strategy

	Experiments and results
	Results and discussion

	Conclusion and future work
	Gaussian process derivatives
	Experiment setup details
	Problem description
	Synthetic functions
	Real-world problems

	Hyperparameters
	Surrogate model
	Multi-objective evolutionary algorithm
	ParEGO
	MOEA/D-EGO
	TSEMO
	USeMO-EI
	DGEMO

	Implementation comparison

	Computational complexity
	Other comparison metrics
	Ablation studies
	Batch size
	Computation time
	Pareto front approximation

	Pareto set analysis

