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Abstract—Hardware accelerators are essential to the accom-
modation of computation and memory-intensive neural network
(NN) applications on resource-constrained edge devices. While
hardware accelerators facilitate fast and energy-efficient convo-
lution operations, their accuracy is threatened by various types of
faults in their on-chip and off-chip memories, where millions of
NN weights are held. To achieve fast and in-time fault detection,
a self-test process that periodically runs a small set of test
images in the accelerator can be adopted. This paper focuses
on developing and comparing multiple numerical score based
test image selection strategies. Various image selection criteria
are studied, including output probability distribution, gradient
sensitivity, and neuron coverage. Experimental studies show that
images selected based on the output probability distribution
offers high fault detection accuracy over a wide range of fault
rates as well as low computation complexity. The small set of test
images allows for real-time monitoring of the healthiness of DNN
accelerators as well as the subsequent recovery and self-healing
process.

Index Terms—DNN Accelerator Reliability, Fault Detection,
Self-testing.

I. INTRODUCTION

Deep Neural Network (DNN) has become the go-to solution
for many real-world applications, such as face recognition, ob-
ject detection, disease classification, and self-driving vehicles.
Most DNNs maintain a tremendous number of weights and
perform intensive convolutional operations during inference,
which are computation/memory intensive and energy-hungry.
To accommodate DNN applications on resource-constrained
edge devices, many DNN accelerators have been developed,
including both traditional ASIC and FPGA-based accelera-
tors [1] as well as emerging processing-in-memory (PIM)
accelerators [2].

When deployed on a hardware accelerator, the accuracy
of the DNN model is challenged by various types of faults
in the underlying on-chip and off-chip memories of the ac-
celerator. On one hand, traditional SRAM and DRAM are
facing elevated levels of transient and intermittent faults due
to their shrinking feature sizes which accentuate the impact
of process variation, voltage and temperature fluctuation, and
in-progress wear-out. On the other hand, emerging PIM accel-
erators tend to leverage non-volatile memories (NVM), such as
Phase Change Memory (PCM), Resistive RAM (RRAM), and
Spin-Transfer Torque RAM (STT-RAM), which also exhibits
high levels of faults due to immature fabrication, imprecise

programming, process variations, and aging. These faults
compromise the reliability of the accelerator memory, result
in temporary or persistent variations in the well-trained DNN
weights, and noticeably degrade the accuracy of the DNN
model if they are not detected and corrected in time.

To tackle the aforementioned fault-induced accuracy drop,
it is desirable to constantly monitor the healthiness of the
hardware accelerator after deploying the DNN model on it.
Unfortunately, this special need cannot be achieved by defect-
aware remapping or retraining techniques [3]-[5], which are
designed to tolerate permanent detects before deploying the
DNN model. Error correction codes (ECC) or checksums
which detect and correct errors at bit level are also not
preferable, as they add non-trivial overhead of hardware,
energy, and timing to the accelerator.

Given the sparsity and inherent robustness of neural net-
works, it is unlikely for a few faults to noticeably affect
accuracy. Therefore, there is no need to detect every single
fault in DNN accelerators. Instead, it is more meaningful to de-
tect fault-induced accuracy drop, which can be achieved with
image-based self-testing techniques [6]-[8]. These techniques
detect accuracy drop with a few test images whose inference
results are sensitive to the faults in the underlying accelerator.
As the set of test images is small, the computation and storage
overhead is trivial. Including more test images can potentially
increases test accuracy, but imposes more test overhead. In [8],
a comprehensive self-test framework is proposed. Targeting
different fault types, multiple sets of test images are down-
selected from the test dataset. However, the image selection
process has the down-side of being computation-intensive and
time-consuming since it relies on two sets of fault injection
studies, one to select the most sensitive images and one to
evaluate the selected images. The execution time of the image
selection process is also unpredictable as it depends on fault
types, fault rate, the DNN model, and the dataset. Hence, it
can only be executed off-line.

To speed up the image selection process, this paper presents
and evaluates a diverse set of image selection strategies that
rely on numerical standards rather than statistical information
collected from comprehensive fault injection experiments. As
a result, they can be integrated into any image-based self-
test framework, and is more suitable to large DNNs. Specifi-
cally, this work compares five image selection strategies that



combines different metrics such as output probability distribu-
tion, gradient sensitivity, and neuron coverage. Comprehensive
experimental studies show that images selected with a com-
bination of gradient and output probability offer the highest
fault detection accuracy over a wide range of fault rates, while
images selected with output probability distribution offer both
high detection accuracy and low computation complexity.

The rest of this paper is organized as follows: Section II
briefly reviews the related work on DNN accelerators, fo-
cusing on fault tolerance and testing. Section III describes
and compares the proposed test image selection approaches.
Section IV presents the evaluation setup and results, while
Section V concludes the paper.

II. BACKGROUND
A. Impact of Faults on DNN Inference Accuracy

DNN accelerators are susceptible to various types of faults
in their on-chip and off-chip memories where millions of DNN
weights are held. Traditional SRAM and DRAM suffer from
faults and defects caused by Electro-Migration (EM), Time-
Dependent Dielectric Breakdown (TDDB), Negative Bias
Temperature Instability (NBTI), Hot-Carrier Injection (HCI),
etc [9]. The emerging NVMs used by PIM accelerators also
suffer from high levels of faults [10]-[12] due to immature
fabrication, imprecise programming, process variations, and
aging. For instance, programming of an RRAM cell does not
set the conductance to the expected value, but rather on a
normal distribution within the objective range [13]. Moreover,
process variations make certain cells weaker than the other
cells initially, more sensitive to drifting and thermal noise, or
more limited by retention time or endurance [14]. These faults
can accumulate to a high level, leading to a noticeable drop
in DNN model accuracy [15], [16].

While traditionally neural networks are expected to show
graceful degradation in their accuracy in the presence of noisy
inputs or small variations/errors in the underlying hardware
[17], [18], this expectation no longer holds in the face of the
elevated fault rates in emerging NVMs. In fact, recent works
show that DNN accuracy can be significantly affected by the
accumulation of hardware faults [16], [19]-[21]. These faults
can alter intermediate computation results or corrupt weight
values. While faults in the intermediate results only affect the
inference of one input, the impact of faults in weight values
is persistent to all inputs.

B. Related Work

Recently researchers started to investigate errors in DNN ac-
celerators. One group of work identifies important weights and
relies on remapping and/or retraining process to prevent these
weights from being mapped to faulty cells [3]-[5]. A recent
work [22] exploits the flexibility in setting the fault-free bits
in weight memory to effectively approximate weight values.
These techniques are mostly designed to tolerate permanent
detects in the accelerator before deploying the DNN model on
it. They detect faults by writing a value to a cell and reading
it back [23], [24], which destroys the original weight value in

the cell and hence cannot be used for detecting transient or
intermittent errors when the accelerator is in use.

Another set of previous work generates a small set of testing
images that can be utilized for fast fault detection during
the inference phase. For example, [6] proposes adversarial
example testing that can detect soft errors using a set of
adversarial images, generated by adding perturbations to the
original image. The work in [7] selects from the original test
dataset a set of images with less-confident prediction (based on
the logit value of the confidence of output classes), denoted as
corner data. It also designs a gradient descent based optimiza-
tion algorithm to generate white noise-style test images from
scratch. While effective, these methods are dataset-specific and
impose extra overhead for generating adversarial images or
white noise images.

The self-test framework introduced in [8] presents three
test image selection approaches for the purposes of fault
detection, fault type identification, and fault rate estimation.
It also analyzes the sensitivity (i.e., detection capability) of
the selected test sets to different fault types and different
fault rates. However, the image selection process requires
intensive fault injection studies to down-select the most sen-
sitive images. As the computing overhead of fault injection
increases significantly as the model size increases, it can only
be executed off-line.

III. PROPOSED DETECTION BASED IMAGE SELECTING
FRAMEWORK

This work develops and compares a set of light-weight
image selection strategies, each exploiting a certain charac-
teristic of the dataset to form a minimal yet powerful test set
to detect fault-induced accuracy drop in DNN accelerators.
The main idea is to perform a one-time process to assign a
mathematically formulated score to each image candidate in
the test dataset, which is later used to select the final test
set. In the rest of this selection, we present and compare five
numerical scores which can be used to rank images to select
the desired test set.

A. Corner case based image selection

This strategy is inspired by [7]. Aiming to select images
with close top-1 and top-2 classification probabilities, it filters
out test images based on their output probability vectors from
the softmax layer. The score orner is calculated with Eq.(1),
where in is a test image, and pred() is the one dimensional
softmax output of the neural network.

SCOT€corner = mazy(pred(in)) — maxa(pred(in)) (1)

The value of scorecorner measures how close the proba-
bilities of top-1 and top-2 classification results of image in.
Images with smaller scorecorner are more likely to change
their classification results from the original label to the second
highest label under the influence of faults in the weights.

As observed in our previous work [8], a small distortion in
weight values typically causes an image to be misclassified to
a higher-ranked label. As the fault rate increases, however, the



image can be misclassified to a lower-ranked class. The higher
the fault rate, the more diverse the classification outcome. As a
result, images selected with this strategy are expected to show
high detection capability under lower fault rates.

B. Gradient based image selection

This strategy aims to select images that are sensitive to
faults most probabilistically. It is developed by combining two
factors: (1) the expected deviation of weight value under the
impact of a single bit-flip, and (2) the partial derivative of
the loss function with respect to the weight value, i.e., the
gradient. The first factor measures the expected impact of a
fault on a weight, while the second measures the impact of
weight values on the loss function. For each test image, the
product of these two probability values measures how easily
the image’s lost function changes under the impact of faults.

5COT€grad = Z[ReLU((—Qw —-1)/Q x g—i )
" <~

A B

For a @-bit quantized 2’s compliment value, flipping the bit
position k increases/decreases the weight value by 2F if the
bit value is 0/1 and 0 < k < @ — 1, while flipping the most
significant bit increases/decreases the weight value by 291 if
the bit value is 1/0. Assuming each bit has equal probability
to be flipped, the expected deviation of the weight value under
the impact of a single bit-flip is (—2w—1)/Q), with w denoting
the weight value and () the quantization level. Portion B of
Eq. (2) computes the gradient. For each image, Eq. (2) sums
up the product of these two probability values across all the
weights. Images with higher scoreg,qq4 are more likely to be
influenced by faults in the weights of the NN model.

C. Corner-case and gradient based image selection

This strategy combines the advantages of score.orner and
scoregrqq. The former measures how easily an image may
change its classification, while the latter measures the sensi-
tivity of the loss function to random faults. By combining these
two, this strategy aims to select images that are most likely
to change classification results under the impact of random
faults. Specifically, scorecorner/graq 18 calculated with Eq. (3).
Regularity 1 is added in the denominator to keep the value
of scorecorner/graa Within certain range. Images with highest
scores are selected as test images.

Scorecorner/grad = Scoregrad/(l + Scorecorner) (3)

D. Probability distribution based image selection

Unlike the corner case strategy that measures the difference
between top-1 and top-2 output probabilities, this strategy
measures the sum of remaining output probabilities other than
the top-1 class. It is based on the observation that as the fault
rate increases, the distribution of output class ranking moves
more towards the lower end, indicating more confusion in the
faulty NN [8]. In other words, images with more flatten output

probability distribution are more likely to be affected by faults.
The ranking score is defined in Eq. (4).

ScoTeprob_distriv = 1 — max(pred(in)) )

When applied to standard softmax output vectors, Eq. (1)
measures the sum of remaining output probabilities other than
the top-1 class. However, when the weights are quantized to Q-
bit integers, elements in the output probabilities do not always
add up to 1 and some elements may be negative. With this in
mind, we develop Eq. (§) which ignores negative elements in
the output vector with the ReLLU activation function (which
keeps positive values intact while forcing negative values to
zero). Images with larger scores have more flatten probability
distribution, and therefore are selected as test images.

max(pred(in))
R
SCOTEprob_distrib sum(ReLU (pred(in)) ©)

E. Coverage based image selection

This strategy is inspired by the work in [25]. The activation
function plays an important role in fault propagation. If a
neuron is not activated by the input image, faults in it are
masked. Since the activation status of neurons varies across
different inputs, the goal of this strategy is to select images
which activate most neurons as test vectors, as faults are less
likely to be masked and more likely to propagate to the output
layer and affect classification outcome.

To calculate the activation status of a given image in for a
specific layer with C' input channels and K output features,
we use a K-bit binary vector, with each bit ¢ indicating the
activation status of neuron ¢. H[z] is a step function (H[z] =0
if £ <0 and H[z] = 1 if otherwise).

c
activation(i,in) = H[Z ReLU (output;(in,c))]  (6)

c=1

After obtaining the activation status of each neuron for each
test image, the goal is to select a minimum set of test images
that cover all the neurons in all layers. This is a minimum set
cover problem, which can be solved with a greedy heuristic,
shown in Algorithm 1. In lines 3-5, the algorithm selects all
the images (i.e., rows) that uniquely activate certain neurons
(i.e., columns). Then, in lines 6-13, it uses a loop to select, at
every iteration, the image that covers the maximum number
of uncovered neurons. If multiple images cover the same
number of remaining neurons, it selects the image with highest
activation scores across all neurons and all layers (line 8).
SCOT€qctivation can be computed with Eq. (6), where NV refers
to the total number of neurons in the NN. It is not a binary
vector but a numerical number that measures how sensitive a
neuron is to the input image.

SCOT €qctivation — Z Z RGLU(OUtpUti(iTL, C)) (7)

i=1 c=1



Algorithm 1 Filter activation coverage based image selection
Algorithm

Input:
1t Mipput(X, N) < the binary activation vectors of all the
input images, X < number of images in the test dataset.
N <+ total number of neurons.
2: SCOTregctivation Of all input images.
Output: Selected image set Y
3: Choose all the images that uniquely activate certain neu-
rons and add them into Y;
4: Delete the rows in Mj,p.: (X, N) corresponding to these
images;
5. Delete the columns in M, (X, F) (corresponding to
the neurons) that are already covered;
6: while M, (X, N) has 1’s do
Calculate the sum of 1s on each row and choose the
row with the maximum sum;

8: if #ofcandidates > 1 then use their scoreqctivation
to break the tie;

9: end if

10: Add the image selected into Y;

11: Delete the corresponding row in Myt (X, N);

12: Delete the columns in M;y,p,: (X, N) covered by the
selected row;
13: end while

F. Image Selection Complexity

The image selection strategies described in this section are
model specific, as they require both the test data set and the
trained DNN model as inputs. However, the selection process
depends neither on the fault type nor on fault rate. Hence, the
scores of each test image only need to be calculated once, and
no fault injection studies are needed for test image selection.

Table I summarizes the image selection complexity of the
proposed strategies. Among them, the corner case and proba-
bility distribution based methods have the lowest complexity
as these scores are calculated purely based on the softmax
output of each image. The coverage based strategy has more
computation overhead, as it needs to pull out the activation val-
ues of each neuron and solves a minimum set cover problem.
The two methods that require gradient information also involve
more computation, as the gradient for each weight needs to
be calculated for each test image. Finally, the sensitivity score
used in [8] imposes the highest computation overhead, as it
requires intensive fault injection studies to evaluate every test
image under different fault rates and fault types.

IV. EXPERIMENTAL EVALUATION
A. Experimental Setup

The different test image selection strategies are evaluated
on the CIFAR-10 [26] dataset for two network structures, the
VGG-16 [27] and ResNet-20 [28]. CIFAR-10 is an object
recognition dataset containing 60K (50K training and 10K
testing) 32x32 color images, with a total of 10 classes and

TABLE I: Complexity of different image selection methods

Strategy Selection complexity
SCOT€grad medium
SCOT€corner low
S8COT€corner/grad medium
SCOT€prob istrib low
SCOT€qctivation medium
SCOT€sensitivity [8] hlgh

TABLE II: Properties of evaluated DNN models

DNN Layers Weights Accuracy
VGG-16 16 1.5 x 107 | 90.87%
ResNet-20 20 2.7 x 10° 91.49%

6K images per class. Table II lists the layer count, weight
count, and accuracy of the two network structures studied
in this work. VGG-16 is a typical DNN structure for image
recognition composed of 13 convolutional layers and 3 fully-
connected layers. It achieves the highest accuracy of 90.87%
after 50 epochs of training. ResNet-20 employs residual
blocks to avoid gradient exploring and vanishing, and achieves
91.49% accuracy after 80 epochs of training. Since most
NN accelerators utilize quantized weight values to reduce the
model size and eliminate expensive floating-point arithmetic
operations, we quantize the weights of both models to 8-bit
2’s compliment numbers.

The proposed image selection strategies are evaluated under
two representative fault models:

e Random: These faults model the impact of transient or
permanent faults on the NN accelerators, by randomly
flipping certain bits of weight values according to a
predefined fault rate. Each bit of each weight is given
an equal rate to be flipped.

o Worst-case: This fault model randomly selects weights
according to a predefined fault rate, and flips the most
significant bit (MSB) of the selected weights. It is specifi-
cally designed to model malicious reliability attacks [29],
[30] where the attacker intentionally triggers the biggest
impact by flipping the MSB of selected weight values.

All fault injection studies as well as the accuracy assessment
are performed in Pytorch [31]. We have evaluated a total of
400 fault maps (200 for random faults and 200 for worst-case
faults) for both VGG-16 and ResNet-20 under five fault rates
of 0.05%, 0.1%, 0.2%, 0.5% and 1%. Faults are injected in
all layers of the two models. The test sets are generated by
sorting images based on their scores (in the ascending order
of scorecorner and in the descending order of other scores).
Based on the study of image set size in [8], we select 20
images for each strategy except for the coverage based method,
which requires 18 images to cover all the neurons in VGG-16
and 12 images to cover all the neurons in ResNet-20.

B. Evaluation Results

This section compares the fault detection capability of the
different image selection strategies and provides an in-depth
analysis of their behavior in the face of different fault types.
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Fig. 1: Detect accuracy of the images selected with the proposed methods and sensitivity scores [8] on random faults
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Fig. 2: Detect accuracy of the images selected with the proposed methods and sensitivity scores [8] on MSB faults

1) Random faults: Fig. 1(a) and 1(b) compare the detection
capability of different image selection strategies on random
faults. For both VGG-16 and ResNet-20, the coverage based
image selection method has relatively low detection accuracy
across all fault rates compared with other approaches. The
reason for that is because this method focuses on the activation
status of the neurons and does not consider the relative
importance of each neuron. Since the optimization goal is
to achieve the maximum coverage, it may end up selecting
images that uniquely activate certain unimportant neurons.

The corner case based and gradient based image selec-
tion methods perform much better than the coverage based
method for VGG-16. The combination of these scores can
filter out more sensitive images that together achieve higher
detection accuracy. In Fig. 1(a), when fault rate is 0.05%,
SCOT€corner/graqa €an achieve at least 17.5% higher accuracy
than scoregrqq and scorecorner and as the fault rate increases,
its performance boosts dramatically and the gap between it
and scoregrqd OF SCOT€corner keeps increasing. The trend in
ResNet-20 is slightly different. While scorecorner offers high
detection accuracy across all tested fault rates, scoreg,.qq is not
quite sensitive to faults under low fault rates (0.1% — 0.2%).
This also affects the performance of scorecorner/graqd under
low fault rates. Regarding the probability distribution based
method, for VGG-16 it is noticeable that scorep,ob_distrib

has much better performance than scoreg,qq and scorecorner
but slightly worse than scorecorner/grad- For ResNet-20,
scoreprob_distriv outperforms all the other methods, as the
shallower and deeper network topology flattens the output
distribution. If we take the computing complexity into con-
sideration, scoreprob_distriv 15 the best choice since it only
needs to compute the output probability vector, whereas
SCOT€corner/grad NEEds intensive computation to calculate the
gradient of each weight for each image.

Finally, the set of images selected based on sensitivity scores
[8] do not perform well. This is because the fault injection
experiments performed for image selection in [8] were done in
Keras [32], which uses a different quantization approach from
Pytorch, the experimental platform used in this paper. This
also shows that the statistical based image selection method
is dedicated to a specific quantized model, and cannot be
generalized to different platforms or quantization processes.

Overall, these experiments show that the probability distri-
bution based method is the best strategy by offering both high
detection accuracy and low computing computation complex-
ity for image selection.

2) MSB faults: The detection accuracy of the selected
images for worst-case MSB faults are reported in Fig. 2(a)
and Fig. 2(b) for VGG-16 and ResNet-20, respectively. As
expected, all the sets of images offer much higher detection ac-



curacy on these worst-case faults. The different strategies still
follow the same trend. The scorecorners SCOT€corner/grad and
scoreprob_distriv are the best selection strategies. Among them,
the probability distribution based method (scoreprop_distrib)
offers highest detection accuracy under the lowest fault rate
0.05%. The coverage based method also offers much higher
detection accuracy under fault rates 0.5%-1% since MSB
faults cause more severe and noticeable accuracy drop than
random faults.

V. CONCLUSION

In this work, we presented five light-weight test image se-
lection strategies that can be employed by an image-based self-
test framework to monitor the healthiness of neural network
hardware accelerators. These strategies select images with nu-
merical scores, which are more general and less computation-
intensive compared to the previous fault injection-based image
selection work [8]. Experimental studies show that the score
combining corner-case and gradient (scorecorner/grad) Offers
the highest overall fault detection performance for both ran-
dom and MSB faults, while the probability distribution based
method (scoreprop_distriv) 1S a better choice by offering both
high detection accuracy and low computing complexity.
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