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Abstract—There are myriad real-life examples of contagion
processes on human social networks, e.g., spread of viruses,
information, and social unrest. Also, there are many methods
to control or block contagion spread. In this work, we introduce
a novel method of blocking contagions that uses nodes from
dominating sets (DSs). To our knowledge, this is the first use
of DS nodes to block contagions. Finding minimum dominating
sets of graphs is an NP-Complete problem, so we generalize a
well-known heuristic, enabling us to customize its execution. Our
method produces a prioritized list of dominating nodes, which
is, in turn, a prioritized list of blocking nodes. Thus, for a given
network, we compute this list of blocking nodes and we use it to
block contagions for all blocking node budgets, contagion seed
sets, and parameter values of the contagion model. We report
on computational experiments of the blocking efficacy of our
approach using two mined networks. We also demonstrate the
effectiveness of our approach by comparing blocking results with
those from the high degree heuristic, which is a common standard
in blocking studies.

Index Terms—contagion blocking, dominating sets, threshold
models, social networks, simulation, high degree heuristic

I. INTRODUCTION

A. Background

A dominating set (DS) of a graph is a subset of nodes
such that every node is in the subset, or has at least one
distance-1 neighbor in the subset. Dominating sets (DSs) of a
graph are used to control and monitor networks in a variety
of situations [1], [2].

B. Motivation, Novelty, and Overview of Work

Many techniques have been devised to block the spread of
contagions on social networks. Applications include block-
ing the spread of disinformation, thwarting public calls for
protests, and intimidating individuals from taking action. See
Section II.

In this work, we evaluate the ability of subsets of DSs to
block contagions spreading on (social) networks. Although
there has been much work on controlling and impeding the
spread of contagions, a novelty of this work is that nodes of
DSs have never been used for blocking contagions.

Our approach determines a DS and a prioritized list of
blocking nodes for a specified network and a set of inputs
to the DS heuristic. Thus, one set of blocking nodes is used
for all contagion seed sets (i.e., nodes that are activated at

time t = 0) and all contagion model parameter values, for a
graph. This is attractive because the blocking nodes need only
be computed once since in practice there are costs associated
with convincing individuals (represented by nodes of social
networks) to block a contagion.

An overview of our procedures is as follows. Given a
social network G(V,E), where V is the node set and E is
the edge set of G, a near-minimum dominating set (MDS),
denoted SMD, for G is computed by generalizing a well-
known heuristic [3] for computing DSs. (No formally efficient
algorithm for computing minimum dominating sets can exist
unless P = NP.) The nodes of the MDS are ranked, in
decreasing order, based on the number of nodes in the network
that each node vi ∈ SMD dominates. Given a budget b on the
number of blocking nodes for a computation (including b = 0
for a baseline), the top b nodes of the ranked list are used
as blocking nodes. These nodes are removed from G. Then,
agent-based simulations (ABS) are run using a Granovetter-
based threshold model [4]–[7] to determine the spread fraction
(i.e., the fraction of nodes that are activated by contagion
transmission) emanating from the seeded nodes.

C. Contributions

1. Use of dominating sets to block contagion spreading.
DSs have not been used to block contagion propagation on
social networks. In this work, we quantify the ability of DSs
to reduce the spread of contagions. We generalize a heuris-
tic [3] for computing approximate MDSs for any specified
dominating distance k and coverage requirement h. (These
terms are defined, with examples, in Section III.) We call this
heuristic DSHkh and it is presented in Section IV-A. It outputs
the number of nodes that each node dominates so that nodes
can be ranked in decreasing order of the number of dominated
nodes. This ranked list is then used to identify the top b nodes
in a graph to specify as blocking nodes.
2. Quantification of blocking performance of DSHkh. We
study the blocking performance of DSHkh by running conta-
gion simulations on two networks, ten values of threshold (i.e.,
for simple and complex contagions), an aggressive contagion
seeding method with six values of minimum numbers ns,min

of seed nodes (for each ns,min, 100 seed sets per graph are
generated), six values of DSHkh’s coverage requirement h and



two values of its domination distance k, and roughly 12 values
of the blocking budget b.
3. Comparisons of effectiveness of DSHkh against HDH.
A common standard in blocking contagions is the high degree
heuristic HDH [8]–[13]. A key finding of our work is
that a performance comparison between DSHkh and HDH is
nuanced. In some cases, DSHkh performs better than HDH,
and in other cases, the opposite is true.

II. RELATED WORK

Approaches for blocking contagions that propagate on so-
cial networks can be broken down into the following five
classes. (i) Node removal to delete nodes that can contract
a contagion and pass it on (e.g., [13]); (ii) edge removal to
eliminate transmission pathways, e.g., [14]; (iii) community
segregation: these remove nodes or edges on the boundaries
of communities to stop the spread between communities
(e.g., [15]); (iv) alterations of dynamics models, i.e., changing
node/edge properties for how the contagion spreads (e.g.,
[16]); and (v) introducing a competing contagion to stifle the
undesirable contagion, e.g., [17]). References specific to the
HDH are given in Section I-C.

III. PRELIMINARIES

A dominating set (DS) of a graph G is a set SD of nodes
of G such that each node is either in SD or has at least one
distance-1 neighbor in SD. This definition can be generalized
to include the domination distance k—the maximum distance
over which a node dominates other nodes—and the coverage
requirement h—the minimum number of times a node must
be dominated. In the definition above, k = 1 and h = 1. The
typical goal with DSs is to find a SD of G that has a minimum
number of nodes, referred to as a minimum dominating set
(MDS) and denoted SMD. Figure 1 contains a graph and
several MDSs, for different values of k and h. The cases
[k, h] = [2, 1], [1, 2], and [2, 2] each demonstrate that an MDS
need not be unique.

!1 !2

!3 !4 !5

k h Min. Dominating Set
1 1 {4}
2 1 {1}, {2}, {3}, {4}, {5}
1 2 {1, 2, 4}, {1, 4, 5}, {2, 3, 4},

{2, 3, 5}, {3, 4, 5}
2 2 < every pair of nodes>

Fig. 1: A five-node connected graph and MDSs for different
domination distances k and coverage requirements h. The table shows
the subscript i for node vi of the graph that is in a MDS.

In the high degree heuristic (HDH), nodes are ranked for
blocking in decreasing order of their degrees, breaking ties
arbitrarily.

IV. MODELS

A. Dominating Set Algorithm

Our algorithm for computing approximate MDSs is based
on an extension of the heuristic in [3] for the k = 1, h = 1

case. Here, we generalize that heuristic for any k ≥ 1 and
h ≥ 1. The algorithm has the following key steps. First, for
each node vi ∈ V , determine the set of all of its neighbors
within distance k, including vi itself. Second, specify a counter
for each node that stores the number of times it has been
dominated; initialize this counter for each node to zero. Also,
initialize the node set SMD to the empty set. The third step is a
while loop on the condition that at least one node’s coverage
requirement is not met and at least one node can be added
to SMD. In this loop, identify the node vj with the greatest
number cj of neighbors within distance k of vj whose counters
are less than h, and where vj /∈ SMD (break ties among
multiple vj arbitrarily). Write this pair (vj , cj) to the output
file of prioritized dominating nodes and add vj to SMD. For
each of the cj nodes, increment their counters by 1 and remove
from further consideration all neighbors of all nodes (from
step 1) whose counter equals h.

B. Graph Dynamical System (GDS)

We model the propagation of social contagions over a social
network using discrete dynamical systems. We begin with the
necessary definitions from [18], [19]. Let B denote the Boolean
domain {0, 1}. A Synchronous Dynamical System (SyDS) S
over B is specified as a pair S = (G,F), where (i) G(V,E)
is an undirected graph with n = |V | nodes, representing the
underlying social network over which the contagion propa-
gates through the node-pairs of interactions represented by
the edge set E, and (ii) F = {f1, f2, . . . , fn} is a collection
of functions, with fi denoting the local transition function
associated with node vi, 1 ≤ i ≤ n. Each function fi specifies
the local interaction between node vi and its neighbors in G.
Regarding these functions, we note that each vi ∈ V has a
state value from B. Nodes in state 0 (respectively, 1) are said to
be unactivated (respectively, activated). Thus, in the case of
information flow, for example, an activated node has received
the information and will pass it on. It is assumed that once a
node reaches state 1, it cannot return to state 0. We refer to a
SyDS with this property as a “progressive system” [20].

We formally describe the local transition functions, fi.
The inputs to fi are the state of vi and those of the neighbors
of vi ∈ V . Function fi maps each combination of inputs
to a value in B, which is the next state si ∈ B for vi. For
the propagation of contagions in social networks, it is natural
to model each function fi, (1 ≤ i ≤ n) as a θi-threshold
function [4], [5] for an appropriate nonnegative integer θi.
Such a threshold function (taking into account the progressive
nature of the dynamical system) is defined as follows:
(a) If the state of vi is 1, then the value of fi is 1, regardless

of the values of the other inputs to fi.
(b) If the state of vi is 0, then the value of fi is 1 if at least

θi of the inputs are 1; otherwise, the value of fi is 0.
In a SyDS, at each time step, all the nodes compute and
update their states synchronously. A configuration s(t) of a
SyDS at any time t is an n-vector (s1, s2, . . . , sn). A series
of configurations, from t = 0 to some integer tmax ≥ 0 is
called a forward trajectory. In the simulations of the next



section, forward trajectories are computed on social networks,
with and without blocking nodes.

V. COMPUTATIONAL EXPERIMENTS AND RESULTS

A. Networks Used in Simulations

Networks evaluated in this work are listed in Table I. The
networks are from the SNAP data set [21].

B. Agent-Based Simulation (ABS) and Blocking Processes

Figure 2 summarizes the procedures in evaluating the
DSHkh blocking method, and comparing it against the HDH.
The pipeline in Figure 2 is executed per network, and each
box represents a (multi-nested) loop structure to evaluate
multiple parameters and/or parameter values. For each pair
[k, h], DSHkh is executed on a particular network. From the
output, nodes are ranked in decreasing order of the number of
nodes they cover. One hundred seed sets, for a given ns,min,
are generated using a modified Centola [23] seeding method.
In the standard seeding method, a node is selected uniformly at
random and it and all of its distance-1 neighbors (e.g., inducing
a star subgraph) are selected as seed (i.e., activated) nodes at
t = 0 in a simulation instance. Here, we extend the method
such that if this number of nodes is less than the specified
ns,min, then one of the leaf nodes of the star is selected
uniformly at random and all of its distance-1 neighbors are
added to the seed node set. This continues until the number of
seed nodes ns ≥ ns,min. This makes the seeding process more
onerous to block because the seed nodes induce a connected
subgraph, which more readily spread a complex contagion [23]
than does dispersing the seed nodes, e.g., by choosing them
uniformly at random, particularly for smaller ns,min. For each
set of seed nodes in a simulation, for each [k, h] pair, and for
each blocking budget b, the blocking nodes are selected as the
b nodes with the greatest coverage for DSHkh (and with the
greatest degrees for HDH) subject to the constraint that no
blocking node is a seed node. We are now ready to discuss
agent-based simulations (ABS).

Run simulations
(including case 
where b=0)

Rank nodes by 
coverage for each 
(k, h) pair from 
MDS heuristic

Determine 100 
sets of seed 

nodes for each 
seed set size ns

For each set of 
seed nodes, for 
each (k, h) pair, 
and for each 

blocking budget 
b, compute the 
blocking nodes 

Specify (k, h) 
input pairs and 
compute MDS 
using heuristic

Post-process 
results

Fig. 2: Steps in numerical experiments. Each box represents
(multiple) loops over parameters. This pipeline is for one
network and for the DSHkh method. A similar set of steps
is executed for the HDH.

A simulation is composed of 100 runs. A run is one con-
tagion spread instance, from time t = 0 through tmax = 100
days. Synonyms for run are iteration and simulation instance.
The following applies to one run. Each node vi is assigned a
threshold θi. The seed nodes are set to the activated state 1; all
other nodes are set to state 0. The blocking nodes are removed
from the network G (in actuality, their thresholds are set very
high, e.g., θi = n so all blocking nodes remain in state 0).

Time is incremented and state changes for nodes are computed
and recorded.

C. Agent-Based Simulation Blocking Results

The computations and results are such that the lower the
curves are on plots, the better or more effective is the blocking
method: i.e., lesser is better.

Baseline data. Figure 3 provides time-history results for the
Enron graph. Each curve shows the fraction of activated nodes
(“Frac. Spread”) as a function of time. There are four pairs
of curves, corresponding to four values of threshold θ; see
legend. For each pair, one curve is for the case with no
blocking nodes (i.e., b = 0) while the other is for the case
with b = 1000. The blocking (solid) curve is below the non-
blocking (dashed) curve. Other parameters are given in the
figure caption. Because the threshold model is progressive,
each curve is non-decreasing in time. Curves are higher for
lesser thresholds, denoting that it is easier to propagate low-
threshold contagions.
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Fig. 3: Time-histories of cumulative fraction of activated nodes in
ABSs for the Enron network. The minimum number of seed nodes
is ns,min = 1000. The blocking results (b = 1000, solid curves) are
for the DSHkh algorithm with k = 1, h = 8, for comparisons with
no-blocking baselines (dashed curves) of the same color.

In the plots below, we show the final (i.e., cumulative)
fraction of activated nodes at t = tmax; i.e., each curve in
Figure 3 gets represented as a single data point.

Effect of thresholds. Figure 4 shows the effect of node
threshold on the final fraction of nodes in state 1 for the Enron
network with ns,min = 10 seed nodes. In Figure 4a, all of
the curves lie on top of each other because b = 10 blocking
nodes is too small to affect the contagion. Consistent with
observations of social networks, threshold increases generally
decrease contagion spread sizes. These data also serve as a
baseline contagion spread size for the results in Figure 4b
where the number of blocking nodes increases markedly to
b = 5000. The same qualitative effect of threshold is observed,
but now the effects of [k, h] values in the DSHkh algorithm are
apparent. First, the upper two curves (i.e., the least effective
blocking) in Figure 4b occur for k = 3, compared to the lower
three curves for k = 1. Second, for a given k, curves are lesser
for increasing h.

Performance comparisons between DSHkh and HDH and
comparisons of blocking budget b. We examine the perfor-
mance of both blocking methods as a function of the number b
of blocking nodes. For the DSHkh method, data are for k = 1



TABLE I: Mined networks and selected properties; properties determined with [22].

Network Type Num.
Nodes

Num.
Edges

Ave.
Deg.

Max.
Deg.

Max
Kcore.

Ave.
Clust.
Coeff.

Diameter

AstroPh collaboration 17903 196972 22.00 504 56 0.63 14
Enron Email 33696 180811 10.73 1383 43 0.51 13
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Fig. 4: Effect of node threshold θi on the final fraction of nodes in
state 1. Enron plot for ns,min = 10 and (a) b = 10, and (b) b = 5000.
Lower curves mean more effective blocking.

and 5 ≤ h ≤ 8. All curves in Figure 5 show a general decrease
in the final fraction of nodes that reach state 1 as b increases.
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Fig. 5: Blocking performance of both methods as a function of
blocking budget b. The DSHkh method uses k = 1 and h = 5 to 8.
(a) AstroPh, ns,min = 1000, θ = 2. (b) Enron, ns,min = 10, θ = 1.

Figure 5 also shows comparisons between DSHkh and HDH
for both networks. We choose particular plots to illustrate that
each method can be superior (i.e., produce a lower curve) over
ranges of parameters (here, over ranges in b). DSHkh in these
plots is more effective for smaller b, but less so for larger b.

VI. SUMMARY

This is the first study to quantify the ability of dominating
sets (DSs) to block contagions in social networks. We evaluate
our DSHkh method for a range of parameters including
different networks, threshold values, blocking budgets, and
parameters in the DSHkh algorithm. We compare DSHkh
to the common standard high degree heuristic (HDH) for
blocking. Our contributions are given in Section I-C. Future
work includes evaluating other DS algorithms (e.g., those
designed to run faster).
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