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Abstract

Developing techniques to infer the behavior of networked social systems has attracted a
lot of attention in the literature. Using a discrete dynamical system to model a networked
social system, the problem of inferring the behavior of the system can be formulated as the
problem of learning the local functions of the dynamical system. We investigate the problem
assuming an active form of interaction with the system through queries. We consider two
classes of local functions (namely, symmetric and threshold functions) and two interaction
modes, namely batch (where all the queries must be submitted together) and adaptive
(where the set of queries submitted at a stage may rely on the answers to previous queries).
We establish bounds on the number of queries under both batch and adaptive query modes
using vertex coloring and probabilistic methods. Our results show that a small number of
appropriately chosen queries are provably sufficient to correctly learn all the local functions.
We develop complexity results which suggest that, in general, the problem of generating
query sets of minimum size is computationally intractable. We present efficient heuristics
that produce query sets under both batch and adaptive query modes. Also, we present a
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query compaction algorithm that identifies and removes redundant queries from a given
query set. Our algorithms were evaluated through experiments on over 20 well-known
networks.

Keywords: Graph dynamical systems, threshold and symmetric functions, active queries,
lower and upper bounds, complexity

1. Introduction

1.1 Discrete dynamical systems and their significance

Discrete dynamical systems are used in a host of settings to understand population-level
social contagion dynamics in terms of individual (human) agent behavior. Examples include
the spread of health behaviors (Valente, 2010) such as needle sharing in drug use (Latkin,
1998; Valente, 2012) and overdose prevention (Sherman et al., 2009); segregation (Schelling,
1971); financial contagions (Gai and Kapadia, 2010); starting to use online communication
tools (Karsai et al., 2014); and coordination (Rosenthal et al., 2015). The frameworks in
these papers and our paper are network representations of populations, where nodes and
edges represent entities (such as humans) and pairwise interactions, respectively. Our focus
is on a particular class of discrete dynamical systems, called Synchronous Dynamical
Systems (SyDSs). A formal definition of this model is given in Section 2.

Each of the works cited above can be viewed as capturing influence through threshold
models (Granovetter, 1978; Schelling, 1978), where a node vi contracts a contagion if at
least a particular number of its neighbors have already contracted it. This number for node
vi is called its threshold τi. We are interested in complex contagions (Centola and
Macy, 2007) that are characteristic of social contagions. In this case, some agents may need
multiple reinforcing interactions to adopt a contagion; that is, some nodes have thresholds
of 2 or more. These models are used to study many problems, such as those defined above,
and other social phenomena (e.g., Granovetter (1978); Schelling (1978); Centola and Macy
(2007); Valente (1995); Easley and Kleinberg (2010)). Furthermore, Watts (2002) argues
that threshold models are used in a host of settings where incomplete information exists or
when there is insufficient time to make more deliberate decisions. Thus, threshold models
are used widely in the social sciences for understanding social contagions.

1.2 Motivation for local function inference

Our work is focused on inferring threshold (or more generally, symmetric) functions of nodes
in dynamical systems. It is known that small changes in the thresholds of agents can make
a large difference in population dynamics. An example is provided in (Granovetter, 1978),
where a change in one agent’s threshold, by a value of 1, changes population-level collective
action from non-existent to full. Several papers have used mined data to infer thresholds
for applications ranging from protests, to Twitter messaging, to joining social media (e.g.,
González-Bailón et al. (2011); Romero et al. (2011b); Ugander et al. (2012); Easley and
Kleinberg (2010)). Importantly, in all of these cases, heterogeneous (i.e., non-uniform)
thresholds among agents were inferred. Also, researchers have identified different types of
influence based on agent attributes. For example, there are gender-based differences in
contracting obesity and depression from peers (Christakis and Fowler, 2007; Stevens and
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Prinstein, 2005). Thus, agent thresholds must be determined based on an agent’s (local)
neighborhood, behavior (and states) of agents in this neighborhood, and individual behavior.
Symmetric functions, which generalize threshold functions, also serve as natural models
in game theoretic settings (Papadimitriou and Roughgarden, 2003).

1.3 Active querying and its significance

In general, an inference algorithm may receive observed data about the dynamical system or
submit queries to the system and obtain responses from the system. The former approach,
which has been studied by many researchers (e.g., González-Bailón et al. (2011); Adiga
et al. (2017); Romero et al. (2011a)), will be discussed briefly in Section 1.5. In this paper,
we pursue the latter approach. We study inference by active querying, where the user has
some control over what information is extracted from the dynamical system by querying it.
Several behavioral studies have been conducted in a network setting in the context of public
goods games, collective identity, and team-building exercises (Broere et al., 2019; Cedeno-
Mieles et al., 2020; Charness et al., 2014). In all these works, human subjects (agents) are
allowed or required to coordinate with one another (thus forming a network) to achieve their
goals. The principal who conducts these games designs situations by providing incentives
for agents to act in a certain manner. The individual and collective behaviors resulting
from these experiments are then analyzed. Such settings have been effectively modeled
as network dynamical systems (Santos et al., 2008; Cedeno-Mieles et al., 2020). Active
querying of a dynamical system is akin to such controlled experimentation in the real-world
experiments to understand agent behavior in a network setting. Since every experiment has
a cost associated with it, a natural objective is to minimize the number of queries used to
infer a system.

Here, we focus on a model where each query is a system configuration C, with each
configuration being an ordered tuple of states of the nodes of a dynamical system at a
particular time t. The response from the system is the successor C′ of C, that is, the
configuration of the system at time t + 1. The goal is to infer the node functions of the
system from the responses. Our query model is motivated by the following two lines of
research.

1. First, learning Boolean functions is an important area of learning theory (e.g., Abasi et al.
(2014); Angluin and Slonim (1994); Sloan et al. (2013); Angluin et al. (1992, 1993)). In
this setting, each query (usually referred to as a membership query) specifies an input
α to an unknown function f and an oracle returns the value f(α). Our query model
is an extension of membership queries to a network setting. In our case, since multiple
Boolean functions (one for each node of the dynamical system) must be inferred, each
query (i.e., a configuration) provides inputs to all the functions, and the output is another
configuration which provides the values of all the functions for the specified inputs. Our
work is similar in form to the teacher model (e.g., Goldman and Kearns (1995); Dasgupta
et al. (2019)) in the context of concept learning, where a teacher selects instances so that
a student can learn the target concept from a concept class. In all these cases (including
ours), the objective is to find a minimum set of queries that is sufficient to learn the
object.
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2. Second, our query model can also be thought of as an idealized version of hypothetical
queries (i.e., alternate scenarios) that are useful in inferring local behaviors of individuals
in the context of social contagions such as opinions or health issues (e.g., Sloan et al.
(2013); Centola (2010, 2011)). For concreteness, we consider opinion propagation over a
network, where the values 0 and 1 represent respectively positive and negative opinions
on a certain topic. To understand when an individual (corresponding to a node in a
social network) will change her opinion, a principal (e.g., a social scientist or a health-
care professional) may pose a query of the form “If the opinions of your neighbors are
represented by this Boolean vector v, what will be your opinion?”. Such queries do not
set the opinions of the nodes in the social network to true (or actual) values. Instead, the
principal tries to determine the situations that cause changes in an individual’s behavior
by analyzing the responses of the individual to a set of queries where the opinions of the
neighbors of the individual are hypothetical values. While this can be done by issuing
such queries to each node separately (Centola (2010, 2011)), the underlying network
provides a way to combine these individual queries into a single configuration so that the
number of queries can be further reduced. Thus, our query model exploits the network
structure in constructing a small set of queries to learn the local functions.

Our work is similar in spirit—but quite different in problem domain and results—to
some of the recent works on inference (e.g., Kleinberg et al. (2017)) or the popular and
well-studied area of active learning (Settles, 2009; Dasgupta and Langford, 2009). We will
discuss this in more detail in Section 1.5. To the best of our knowledge, this is the first work
which approaches the inference problem for dynamical systems from a combinatorial and
algorithmic perspective. In doing so, we relate it to well-studied graph theoretic approaches
such as node coloring and probabilistic methods. The formulation also enables us to quantify
rigorously the complexity of inferring such systems.

1.4 Summary of Results

Our focus is on the following problem: given the underlying graph of a dynamical system,
construct queries to identify all the local functions. We study two query modes, namely
batch and adaptive modes, that differ in their degrees of control. Under the batch mode,
all the queries must be submitted together. In the adaptive mode, queries can be submitted
in several stages, and queries at a stage can depend on the answers to previous queries; this
strategy is similar to the one used in games such as “Twenty Questions”1. The optimization
goal is to minimize the number of queries. We present both theoretical and experimental
results as summarized below. In the following, we use G to denote the underlying network
of the SyDS with n nodes and ∆ to denote the maximum node degree of G.

(a) Generating concise query sets for symmetric node functions under the batch
mode. We develop an algorithm for generating query sets under the batch mode to cor-
rectly identify all the symmetric local functions of the dynamical system. Such a set is
called a complete query set. The main idea used in this algorithm is distance-two ver-
tex coloring of the network G. We show that the size of a complete query set is at
most χ(G2) + 1 ≤ min{∆2 + 2, n + 1}, where χ(G2) is the minimum number of colors

1. See the Wikipedia entry on this game.
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required for distance-two coloring of G (Theorem 10). We also establish a lower bound
of ∆ + 2 on the size of any complete query set (Proposition 3).

(b) Complexity of generating optimal query sets. The query set generated by the
method in (a) satisfies a monotonicity property (defined in Section 4.1). We show that the
problem of finding an optimal monotone complete query set is NP-complete (Theorem 17).
This provides an indication of the difficulty of efficiently generating optimal query sets.

(c) Sharper bounds based on probabilistic methods. We show that a query set of
size O(∆1.5 log n) which is complete with probability at least 1 − 1

n can be obtained using
a sampling technique (Theorem 12). Using more sophisticated techniques based on Lovász
Local Lemma (Mitzenmacher and Upfal, 2005), we show that there exists a complete query
set of size O(∆(log ∆)2.5) (Theorem 13). We note that this bound is asymptotically better
than the ∆2 + 2 bound based on distance-two coloring mentioned above.

(d) Query set compaction. We formulate the problem of query set compaction, i.e.,
minimizing the size of a query set by deleting redundant queries. We show that the problem
is, in general, NP-complete. We present an approximation algorithm for the problem and
prove that it achieves the best performance guarantee to within constant factors, under the
common assumption that P 6= NP (Theorems 23 and 26).

(e) Inferring threshold functions under the adaptive query mode. As can be
expected, adaptive query mode, when applicable, can produce significantly smaller query
sets compared to the batch mode. Our results for adaptive querying are based on binary
search. This enables us to find the threshold of a node whose local function has k inputs
using O(log k) queries. Using an extension of this technique, we show that the thresholds
of all the nodes in a scale-free (i.e., power law) graph with exponent γ ≥ 1 can be found

using O
(
[n log n]

2
γ+1
)

queries (Theorem 22). In addition, we show that for a dynamical
system where the underlying network is a clique and each node is associated with a threshold
function, n + 1 queries are necessary even under the adaptive query mode (Theorem 5).
For general graphs, we develop a greedy heuristic based on binary search and distance-two
coloring to construct query sets.

(f) Extensive experimentation on synthetic and real-world networks. We eval-
uated the various query generation algorithms under the batch mode on more than 20
real-world and synthetic networks. For most real-world networks, our algorithm based on
distance-two coloring generates query sets of minimum size. We present experimental re-
sults to show that the combination of randomized query generation followed by query set
compaction produces small query sets under the batch mode for many well known social net-
works. We evaluated the greedy heuristic under the adaptive mode (mentioned in Item (e)
above) for various settings of networks and threshold assignments. Our results (Section 7)
show that for most cases, it significantly outperforms the batch mode algorithms. We also
study the effect of network structure and threshold assignments on the size of query sets.

1.5 Related Work

The problem of inferring unknown components of systems has received attention in the
literature. There are several works on the passive mode of inference. For instance, many
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researchers have studied the problem of learning automata (e.g., Murphy (1996)). Kearns
and Vazirani (1994) study the problem of learning normal forms and Boolean functions.
Works such as (González-Bailón et al., 2011; Romero et al., 2011b) infer thresholds from
social media data. Abrahao et al. (2013), Gomez-Rodriguez et al. (2010) and Soundarajan
and Hopcroft (2010) consider the problem of inferring the network structure given the con-
tagion propagation model. Learning the source nodes of infection for contagion spreading is
addressed in (Zhu et al., 2017). Many of these problems are formally hard even for simple lo-
cal functions. The work of (Adiga et al., 2017) provides several problems aimed at inferring
thresholds in threshold-based discrete dynamical systems. Recently, there have been several
works on learnability of dynamical system properties under the Probably Approximately
Correct (PAC) learning framework. Lokhov (2016) uses a dynamic message-passing algo-
rithm to reconstruct parameters of a spreading model given infection cascades. Narasimhan
et al. (2015) and He et al. (2016) have studied the learnability of the influence function of
popular stochastic propagation models, and Adiga et al. (2019) consider the problem of
learning node thresholds. Inference problems for a class of local functions, motivated by
user behavior in Facebook like networks, are studied in Adiga et al. (2020). Several works
show the sensitivity of results to other dynamical systems features, such as network struc-
ture (Allen and Gale, 2000; Ganesh et al., 2005; Chakrabarti et al., 2008; Prakash et al.,
2012).

Active querying is studied in (Kleinberg et al., 2017) in the context of determining user
choices from a finite set of ranked options—the choice set problem. The goal is to minimize
the number of queries of arbitrary subsets S of size k, of a universal set U , to learn a
user’s choice from among the elements of each set S. With these results, the algorithm can
then predict the user’s choice for any subset S ⊆ U of size k. They show that this can
be accomplished with O(n log n) queries where n = |U |. The independent cascade model
under the active query model has also been studied (Adiga et al., 2018a).

We note that our work is different from the area of active learning (e.g., Dasgupta and
Langford (2009); Settles (2009)). An active learning algorithm has access to a limited num-
ber of labeled instances and a large number of unlabeled instances initially. The algorithm
submits appropriately chosen unlabeled instances as queries to an oracle which returns the
labels of those instances. This process allows an algorithm to learn more effectively using
fewer labeled instances since the algorithm is allowed to select the instances used in the
learning process. The main difference in our setting is that there are no labels; instead, our
inference algorithms use queries, with each query specifying a configuration C and requiring
the oracle to return the successor configuration C′. Like active learning, our algorithms also
choose queries appropriately so that the local functions can be inferred with a small number
of queries.

There are several challenges in determining individual node thresholds in realistic set-
tings: (i) data are collected at discrete time intervals (not continuously), (ii) there may be
time delay effects in agents observing their neighborhoods, and (iii) inherent stochastic-
ity (Valente, 1996; Berry and Cameron, 2017). Practical guidelines and issues for threshold
measurement are discussed in (Berry and Cameron, 2017). Here, we investigate problems of
inferring local functions using rigorous formulations, supplementing them with experimental
results from heuristics.
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1.6 Organization

The remainder of this paper is organized as follows. Section 2 presents the formal definition
of a synchronous dynamical system and also explains our query model. Section 3 presents
lower bounds on the sizes of query sets under both batch and adaptive modes. Sections 4
and 5 present upper bounds on the query set sizes under the batch and adaptive query
models respectively. Section 6 presents results for the query set compaction problem where
the goal is to remove redundant queries. Section 7 presents experimental results using both
synthetic and real-world social networks. Conclusions and some directions for future work
appear in Section 8.

2. Synchronous Dynamical Systems (SyDSs) and Query Model

2.1 Formal Definitions

Let B denote the Boolean domain {0,1}. A Synchronous Dynamical System (SyDS)
S over B is specified as a pair S = (G,F), where (a) G(V,E), an undirected graph with
|V | = n, represents the underlying graph of the SyDS, with node set V and edge set E,
and (b) F = {f1, f2, . . . , fn} is a collection of functions in the system, with fi denoting the
local function associated with node vi, 1 ≤ i ≤ n.

Each node of G has a state value from B. Each function fi specifies the local interaction
between node vi and its neighbors in G. The inputs to function fi are the state of vi and
those of the neighbors of vi in G; function fi maps each combination of inputs to a value
in B. This value becomes the next state of node vi.

At any time t, the configuration C of a SyDS is the n-vector (st1, s
t
2, . . . , s

t
n), where

sti ∈ B is the state of node vi at time t (1 ≤ i ≤ n). In a SyDS, all nodes compute and
update their next state synchronously.

2.2 Classes of Local Functions

We consider two classes of local functions, namely threshold and symmetric functions.
They are defined below.

(i) Threshold functions: The local function fv associated with node v of a SyDS S is a
τv-threshold function for some integer τv ≥ 0 if the following condition holds: the value
of fv is 1 if the number of ones in the input to fv is at least τv; otherwise, the value of the
function is 0. Let dv denote the degree of node v, and let τv denote the threshold of node v.
The number of inputs to the function fv is dv + 1. Thus, we assume that 0 ≤ τv ≤ dv + 2.
(The threshold values 0 and dv + 2 allow us to realize local functions that always output 1
and 0 respectively.)

(ii) Symmetric functions: A local function fv at node v is symmetric if the value of
the function depends only on the number of ones in the input. Thus, a symmetric function
fv with k inputs can be specified using a table with k + 1 rows, with row i specifying
the value of the function when the number of ones in the input to the function is exactly
i, 0 ≤ i ≤ k. Note that each threshold function is also a symmetric function; however,
symmetric functions are more general than threshold functions. For example, consider the
following symmetric function f with five inputs: let the value of f be 1 when the number
of ones in its input is (exactly) 1; otherwise, the value of f is 0. This is not a threshold
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function since the value of the function is 1 when the number of ones in the input is 1 but
changes to 0 when the number of ones in the input is larger than 1.

We will use the term “symmetric SyDS” (“threshold SyDS”) to refer to a SyDS whose
local functions are all symmetric (threshold).

Example: Consider the graph of a threshold SyDS shown in Figure 1(a). The thresholds
are assigned in Figure 1(b). Also, we show an example trajectory (i.e., time sequence of
configurations) of the system given that initially nodes 4, 6 and 7 are in state 1 and the
rest are in state 0. Once the system reaches the configuration C = (1, 1, 1, 0, 0, 1, 0) at time
step 3, it remains in that configuration forever; that is, C is a fixed point for this system.
�

1

2

3 4

5

6

7

(a) Underlying network G

Node 1 2 3 4 5 6 7
Threshold 1 0 2 3 4 1 3

(b) Threshold assignments

t0 t1 t2 t3

1 0 0 1 1
2 0 1 1 1
3 0 0 0 1
4 1 0 0 0
5 0 0 0 0
6 1 1 1 1
7 1 1 0 0

(c) Example trajectory

Figure 1: An example of a threshold SyDS.

Additional Terminology: If a given SyDS can transition in one step from a configuration
C to a configuration C′, then C′ is a successor of C and C is a predecessor of C′. Since
our local functions are deterministic, each configuration has a unique successor; however,
a configuration may have zero or more predecessors. Given a graph G(V,E) and a node
vi ∈ V , the closed neighborhood of vi, denoted by N [vi], is defined by N [vi] = {vi}∪{vj :
{vi, vj} ∈ E}. Thus, the inputs to the function fi at vi are the states of the nodes in N [vi].

2.3 Query Model

The general problem addressed in this paper is that of correctly identifying the local func-
tions of a SyDS by querying the system. We assume that the underlying network is known.
Each query specifies a configuration C and the response from the system is the successor C′
of C. Since the state of each node is either 0 or 1, each query q and the response to q are
bit vectors. We consider two query modes. In the batch query mode, a user must submit
all the queries at the same time as a single batch. In the adaptive query mode, a user
may submit the queries in several batches; the queries chosen in a batch may rely on the
responses received from the system for the previous batches. As will be seen, for threshold
SyDSs, the adaptive query mode can significantly decrease the number of queries. Figure 2
summarizes our active query framework.
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0
1
1
...
0
1

User defined
query q

Propagation
model over a

network

Unknown
SyDS 1

1
0
...
1
1

Successor
q′

Inference
algorithm

Inferred
propagation
model

Adaptive querying

Figure 2: Active querying framework. The dashed line corresponds to active querying where
the inference algorithm constructs the current query based on the response re-
ceived from the system for the past queries. In batch querying, there is no such
feedback.

The following additional definitions regarding queries will be used throughout this paper.
Given a query q and a node vi, the score of q with respect to vi, denoted by score(q,vi), is
the number of nodes in the closed neighborhood N [vi] of vi that are set to 1 by q. Thus,
score(q,vi) gives the number of ones in the input provided by q to the function fi at vi.

Definition 1 Let S be a symmetric SyDS. For any node vi, let di denote the degree of vi.
(a) A query set Q covers a node vi if for each j, 0 ≤ j ≤ di + 1, there is a query q ∈ Q
such that score(q,vi) = j.
(b) A query set Q covers a set B of nodes if Q covers every node vi ∈ B.
(c) A query set Q is complete if it covers the node set V .

When a query set Q covers a node v, the local symmetric function fv can be correctly
inferred from the responses to the queries in Q. Thus, complete query sets have the following
property.

Observation 2 Let S be a symmetric SyDS. If Q is a complete query set for S, then each
local function of S can be determined given the successor of each query in Q.

3. Lower Bounds on Sizes of Query Sets

Here, we present lower bounds under batch and adaptive query modes. We begin with a
result that provides a lower bound for any symmetric SyDS under the batch mode.

Proposition 3 Let S be a symmetric SyDS where the underlying graph G(V,E) has a
maximum node degree ∆. Under the batch query model, every complete query set must
contain at least ∆ + 2 queries.

Proof: Under the batch mode, suppose a complete query set Q has fewer than ∆+2 queries.
Since G has a node v of degree ∆, the number of ones in the input to the symmetric function
fv at v varies from 0 to ∆ + 1, a total of ∆ + 2 values. Thus, there is at least one value

9



Adiga, Kuhlman, Marathe, Ravi, Rosenkrantz, Stearns

k such that none of the queries in Q has a score of k with respect to v. Hence, the query
set cannot correctly determine the value of the function fv when the number of ones in the
input to fv is exactly k. This contradicts the assumption that Q is a complete query set.
The proposition follows.

As a simple consequence of the above proposition, the following result points out that
there are SyDSs with n nodes for which every complete query set must have n+ 1 queries.
This lower bound matches the upper bound of n + 1 given by Theorem 10 (Section 4) for
all graphs.

Corollary 4 For symmetric SyDSs whose underlying graph is a clique on n nodes, every
complete query set under the batch mode must have at least n+ 1 queries.

We now establish a lower bound under the adaptive query model to show that there are
threshold SyDSs for which a large number of queries are needed even under the adaptive
query mode. However, this result does not rule out the possibility of smaller query sets for
special graph classes.

Theorem 5 For every n ≥ 1, there is a threshold SyDS whose underlying graph is a clique
on n nodes such that at least n+ 1 queries are necessary under the adaptive query mode to
correctly identify all the threshold values.

Proof: Consider a threshold SyDS S whose underlying graph G(V,E) is a clique on n
nodes. Let V = {v1, v2, . . . , vn}. We will tentatively choose the threshold of node vi to
be i to answer queries under the adaptive model, We will show that if the total number
of queries is less than n + 1, the answers to the queries cannot distinguish between this
tentative assignment and a slightly different assignment of threshold values.

Suppose Q is a sequence of queries under the adaptive model, with |Q| ≤ n. We generate
the responses to the queries using the chosen tentative assignment of threshold values to
nodes. The threshold of any node of S is in the range 0 through n+ 1 (where the threshold
value n + 1 indicates the function which is zero for every input). Since G is a clique, the
the closed neighborhood of each node is the node set V . Thus, each query q ∈ Q provides
the same score to each node of G. There are n + 1 scores in the range 0 through n. Since
Q has at most n queries, there is at least one value k, 0 ≤ k ≤ n, such that none of the
queries in Q provides the score k. We have three cases depending on the value of k.

Case 1: k = 0. In this case, from the responses to the queries in Q, one cannot distinguish
between the case where the threshold of node v1 is 0 and the case where the threshold of
v1 is 1. (In both cases, the new state of v1 is 1 in the response to each query in Q.)

Case 2: k = n. In this case, from the responses to the queries in Q, one cannot distinguish
between the case where the threshold of node vn is n and the case where the threshold of
vn is n+ 1. (In both cases, the new state of vn is 0 in the response to each query in Q.)

Case 3: 1 ≤ k ≤ n − 1. In this case, from the responses to the queries in Q, one cannot
distinguish between the case where the threshold of node vk is k and the case where the
threshold of vk is k + 1. (In both cases, the responses have the following property. For any
query q ∈ Q where score(q,vk) ≤ k − 1, the new state of vk is 0 in the response. For any
query q ∈ Q where score(q,vk) ≤ k + 1, the new state of vk is 1 in the response.)
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Thus, under the adaptive model, a query set with n or fewer queries cannot correctly
identify all the thresholds for the chosen SyDS. This completes the proof of Theorem 5.

4. Querying Under the Batch Mode: Results for Symmetric Node
Functions

In this section, we first present an algorithm for generating query sets under the batch mode
for symmetric SyDSs and derive an upper bound on the optimal query set size. We then
derive an asymptotically better bound using probabilistic methods. Finally, we present
complexity results that suggest that in general, generating complete query sets of minimum
size is computationally intractable.

4.1 Generating Query Sets Based on Node Coloring

4.1.1 Obtaining a Query Sequence From Node Coloring

Overview: We begin by defining the notion of a monotone query sequence. The
sequence of queries constructed can be submitted as a batch to learn all the local functions
of a symmetric SyDS. Using the notion of “sequence” allows us to point out an interesting
connection between the problem of identifying symmetric local functions and a variant of
the node coloring problem for the underlying graph. We remind the reader that each query
is a bit vector.

Definition 6 (a) Given two queries q1 and q2, we use the notation q1 ≤ q2 to mean that
every bit which is 1 in q1 is also 1 in q2.
(b) A query sequence 〈q1, q2, . . . , qr〉 is monotone if for each i, 1 ≤ i ≤ r − 1, qi ≤ qi+1.
(c) Let S be a symmetric SyDS and let M be a monotone query sequence. If M is also a
complete query set for S (i.e., each node v of S is covered by M), then M is a complete
monotone query sequence.

The following lemma points out a property of complete monotone query sequences.

Lemma 7 Let S be a symmetric SyDS and let M = 〈q1, q2, . . . qr〉 be a complete monotone
query sequence with 2 or more queries for S. Then q1 is the vector of all zeros and qr is
the vector with all ones.

Proof: Suppose q1 is not the vector with all zeros. Let vi be a node such that the value
assigned by q1 to vi is 1. Thus, score(q1,vi) ≥ 1. Since M is a monotone query sequence,
score(qj ,vi) ≥ 1 for 2 ≤ j ≤ r. In other words, there is no query qj ∈ M for which
score(qj , vi) = 0, contradicting the assumption that M covers vi. Likewise, if qr is not the
vector with all ones, there is a node vk such that the value assigned to vk by qr is 0. Thus,
there is no query qj in M such that score(qj ,vk) = degree(vk)+1. In other words, M does
not cover vk.

We now present an algorithm to show that if the underlying graph G has n nodes, then
there is a monotone complete query sequence M for S with at most min{∆2 + 2, n + 1}
queries, where ∆ is the maximum node degree of G. This sequence of queries can be
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submitted as a batch to learn all the symmetric local functions. To establish this result, we
recall the following definitions.

Definition 8

(a) Given an undirected graph H(VH , EH) and an integer k ≥ 1, a k-coloring of H assigns
a color from {1, 2, . . . , k} to each node of H such that for each edge {u, v} ∈ EH , the colors
assigned to u and v are different.

(b) Given an undirected graph G(V,E), the square of G, denoted by G2(V,E′), is an
undirected graph on the same vertex set V . The edge set E′ is defined as follows: {u, v} ∈ E′
iff there is a path with at most 2 edges between u and v in G.

We will also use the following result called Brooks’ Theorem (West, 2001, Theorem 5.1.22).

Lemma 9 Let H(VH , EH) be a graph with maximum node degree ∆H . Then, H can be
colored efficiently using at most ∆H + 1 colors.

Algorithm 1: Steps of Algorithm Alg-Monotone-Seq

Input: Graph G(V,E) of a symmetric SyDS S.
Output: A monotone complete query sequence M for S.

1 Construct the graph G2(V,E′).
2 Use the algorithm of Lemma 9 to obtain a k-coloring of G2, where

k ≤ min{∆2 + 1, n}.
3 Let C1, C2, . . ., Ck denote the color classes created in the above coloring step.

(Color class Cj consists of all nodes assigned color j, 1 ≤ j ≤ k.)
4 Create the query sequence M = 〈q0, q1, . . . , qk〉 with k + 1 queries as follows: query

q0 is a bit vector where every element is 0.
5 for j = 1, 2, . . . , k do
6 Create query qj by choosing the value 1 for all the nodes in C1 ∪ . . . ∪ Cj

and 0 for the other nodes.

7 end
8 Output the query sequence M .

Our algorithm Alg-Monotone-Seq for generating a monotone complete query se-
quence M for the given SyDS S is shown in Algorithm 1. It is easy to see that the algorithm
runs in polynomial time. The following theorem shows its correctness and estimates the
number of queries generated.

Theorem 10 Let S be a symmetric SyDS whose graph G(V,E) has n nodes and maxi-
mum node degree ∆. Algorithm Alg-Monotone-Seq (Algorithm 1) produces a monotone
complete query sequence M with at most min{∆2 + 2, n+ 1} queries.

Proof: We first show that Step 2 of the algorithm can indeed color G2 using at most
min{∆2 + 1, n} colors. Since the maximum node degree in G is ∆, each node v of G has
at most ∆ neighbors and at most ∆(∆ − 1) nodes at a distance of 2 from v. Thus, the
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maximum node degree in G2 is at most ∆(∆− 1) + ∆ = ∆2. Hence, by Lemma 9, G2 can
be colored using at most ∆2 +1 colors. Since G2 has n nodes, n colors are always sufficient.
Thus, G2 can be colored with at most k = min{∆2 + 1, n} colors. Hence, the number of
queries in M = k + 1 is at most min{∆2 + 2, n+ 1}.

We now argue that the query sequence M = 〈q0, q1, . . . , qk〉 is monotone. Query q0 is
the bit vector with all zeros. For any j ≥ 1, query qj sets all the nodes in color classes C1

through Cj to 1 and the remaining nodes to 0. Thus, each node that is set to 1 in query
qj remains 1 in all the subsequent queries qj+1, . . ., qk. In other words, the sequence is
monotone.

Thus, we are left with the proof that M is complete; that is, for each node v with degree
α in G and each value `, 0 ≤ ` ≤ α + 1, there is a query q in M such that score(q,v) =
`. Query q0 ensures that score(q,v) = 0. For the other values of `, consider the closed
neighborhood N [v] of v in G. Note that |N [v]| = α + 1. For each pair of nodes vx and
vy in N [v], there is a path consisting of at most two edges in G. Thus, the nodes in N [v]
form a clique in G2. In other words, each node in N [v] must be in a different color class
of G2. Let Cj1 , Cj2 , . . ., Cjα+1 denote the color classes of G2 in which the nodes in N [v]
appear, and assume without loss of generality that j1 < j2 < . . . < jα+1. It is easy to see
that for 1 ≤ ` ≤ α+ 1, query qj` ensures that score(qj` ,v) = `. This completes the proof of
Theorem 10.

4.1.2 Generating Coloring from a Monotone Complete Query Sequence

The above algorithm and Theorem 10 show that a monotone complete query sequence can
be constructed from the coloring of the graph G2. Theorem 11 shows that this relationship is
not accidental; indeed, a valid coloring of G2 can be generated from any monotone complete
query sequence. This result is useful in proving that it is NP-hard to generate complete
monotone query sequences of minimum length.

Theorem 11 Let G(V,E) be the underlying graph of a symmetric SyDS S. Suppose there
is a monotone complete query sequence M with ` queries for S. Then, G2 can be colored
using `− 1 colors.

Proof: Let M = 〈q1, q2, . . . , q`〉 denote the given monotone complete query sequence for
S. Let Ci denote the set of nodes of G which have the value 0 in qi and the value 1 in qi+1,
1 ≤ i ≤ `− 1. Assign color i to all the nodes in Ci, 1 ≤ i ≤ `− 1. We now prove that this
scheme assigns a color to each node and that this is a valid coloring of G2.

First, we prove that each node is assigned a color. To see this, note that since M is a
monotone complete query sequence, by Lemma 7, query q1 has all its bits set to 0 and q`
has all its bits set to 1. Therefore, for each node v, there is an index r such that the value
assigned to v in qr is 0 and that in qr+1 is 1. Thus, v appears in set Cr and receives color
r. The monotonicity of M ensures that v remains 1 in queries qr+1 through q`.

We now prove by contradiction that the above method produces a valid coloring of G2.
So, suppose that vi and vj are two nodes that receive the same color, say k, but G2 has the
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edge {vi, vj}. By our coloring scheme, both vi and vj had the value 0 in qk and the value 1
in qk+1. There are two cases to consider.

Case 1: The edge {vi, vj} is in G.

Note that both vi and vj have color k. Let score(qk,vi) = α. Since both vi and vj
changed from 0 in qk to 1 in qk+1 and {vi, vj} is an edge in G, score(qk+1,vi) ≥ α + 2.
Because M is monotone, none of the other queries in M provides a score of α + 1 to vi.
This contradicts the assumption that M is complete.

Case 2: The edge {vi, vj} is not in G but in G2.

In this case, there is a node vx such that the edges {vi, vx} and {vj , vx} are in G. Let
score(qk,vx) = β. Since both vi and vj changed from 0 to 1 in qk+1 and both {vi, vx} and
{vj , vx} are edges in G, score(qk+1,vx) ≥ β + 2. Because M is monotone, none of the other
queries in M provides a score of β + 1 to vx. Again, this contradicts the assumption that
M is complete, and Theorem 11 follows.

Figure 3 gives an example of a batch query set generated using the distance-2 coloring
method discussed above. The figure also includes a query set generated using an adaptive
query algorithm discussed in Section 7.

1

2

3 4

5

6

7

(a) Underlying network G

Node 1 2 3 4 5 6 7
Threshold 1 0 2 3 4 1 3
Color a b c d a b c

(b) Threshold assignments and G2 coloring
assignments

Color → a b c d
1 0 1 1 1 1
2 0 0 1 1 1
3 0 0 0 1 1
4 0 0 0 0 1
5 0 1 1 1 1
6 0 0 0 1 1
7 0 0 1 1 1

(c) Batch mode query set

1 2 3 4 5
1 0,4 0 0,2 0 0,1 0 0,1 0 1,1 0 1,1
2 0,4 1 0,2 0 0,1 0 0,1 0 0,0 0 0,0
3 0,5 1 0,2 1 2,2 1 2,2 0 2,2 1 2,2
4 0,5 0 2,5 1 3,5 1 4,5 0 4,5 1 4,4
5 0,5 0 2,5 1 3,4 1 4,4 1 4,4 1 4,4
6 0,4 1 0,2 0 1,1 0 1,1 1 1,1 0 1,1
7 0,5 1 2,5 0 3,4 1 3,4 1 3,3 1 3,3

(d) Adaptive querying

Figure 3: Query sets for the threshold SyDS of in Figure 1. In (c), the shaded rows cor-
respond to nodes which have been assigned the color indicated by the column
heading. In (d), the queries were generated adaptively using Algorithm 3 de-
scribed in Section 7. There are five iterations and therefore, five queries. For
each iteration, the corresponding query as well as the uncertainty (range) in the
thresholds of the vertices are shown.
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4.2 Generating query sets based on probabilistic methods

In Section 4.1, we showed that for any symmetric SyDS whose underlying graph has n
nodes and maximum node degree ∆, one can obtain a complete query set with at most
min{∆2 + 2, n + 1} queries. For some graphs with maximum node degree ∆, this method
may generate a query set with Ω(∆2) queries. Here, using probabilistic methods, we provide
better bounds. First, using a simple sampling technique, we will show that there exists a
query set of size at most O(∆1.5 log n) that is complete with high probability. This is
asymptotically better than the previously established bounds for graphs where ∆ ≥ (log n)2.
Moreover, such a query set can be generated efficiently. Next, using more sophisticated
techniques from Füredi and Kahn (1986) based on the Lovász Local Lemma, we show an
upper bound of O(∆(log ∆)2.5) on the size of complete query sets.

Theorem 12 Let S be a symmetric SyDS with graph G(V,E) where |V | = n and maximum
node degree = ∆. A query set Q of size O(∆1.5 log (n)) which is complete with probability
at least

(
1− 1

n

)
can be constructed for S.

The proof of the above theorem appears in Appendix A. Here, we provide the general
idea for the query set construction method used in proving the above theorem. Let D(p)
be a probability distribution defined on the set of configurations of a SyDS such that the
state of each vertex is set to 1 independently with probability p. For a query q, we use
the notation q ∼ D(p) to mean that query q is drawn from the distribution D(p). We will
generate a query set Q =

{
qij ∼ D

(
i

∆+1

)
| 1 ≤ i ≤ ∆, 1 ≤ j ≤ r

}
for some number

of repetitions r. This construction enables us to prove that for any vertex v and positive
integer k ≤ ∆+1, with high probability, there is a query qik ∈ Q for which score(qik, v) = k.
The reader is referred to Appendix A for details.

Now, we show an upper bound of O(∆(log ∆)2.5) on the size of complete query sets
under the batch mode for SyDSs with symmetric local functions.

Theorem 13 Let G(V,E) be the underlying graph of a symmetric SyDS S. Let ∆ denote
the maximum node degree in G. Under the batch mode, for any ∆ ≥ 2, there is a complete
query set Q for S with |Q| = O

(
∆(log ∆)2.5

)
.

The following lemma is a key ingredient for the proof of Theorem 13. Suppose G(V,E) is
a graph and V ′ ⊆ V . We use N [v, V ′] to denote the closed neighborhood of v restricted to
V ′; that is, N [v, V ′] = N [v]∩ V ′. The following notation is used in our proof of the lemma.
Given a positive real number x, we let 〈x〉 to denote the integer obtained by rounding x to
the nearest integer; that is, 〈x〉 = bxc if the fractional part of x is less than 0.5; otherwise,
〈x〉 = dxe.

Lemma 14 Let G(V,E) be the underlying graph of a symmetric SyDS. Let V ′ ⊆ V such
that ∀v ∈ V , |N [v, V ′]| ≤ `. Then, there exists a set Q with at most 22 `3/2 log |V ′| +
2 queries such that (i) ∀v ∈ V \ V ′ and q ∈ Q, q(v) = 0 and (ii) ∀v ∈ V and ev-
ery i ∈ {0, 1, . . . , |N [v, V ′]|}, there exists q ∈ Q such that score(v, q) = i.

Proof: The all zeros query 0 is such that ∀v ∈ V , score(v,0) = 0. The configuration q
with all vertices of V ′ in state 1 yields ∀v ∈ V , score(v, q) = |N [v, V ′]|. These two queries
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account for the additive term of 2. Let D(p, V ′) be the distribution where each q ∼ D(p, V ′)
is constructed as follows: ∀v ∈ V ′, Pr(q(v) = 1) = p and ∀v ∈ V \ V ′, q(v) = 0. Let Q ={
qij ∼ D

(
i
` , V

′) | 1 ≤ i < `, 1 ≤ j ≤ 22 `
√
`+ 1 log |V ′|

}
. Let d′[v] = |N [v, V ′]|. For

any b ∈ {1, . . . , d′[v]} and q ∼ D
(
z, V ′

)
, where z =

〈
b`
d′[v]

〉
,

Pr
(
score(v, q) = b

)
≥
(
d′[v]

b

)(
z

`

)b(
1− z

`

)d′[v]−b
≥ 1

11
√
d′[v] + 1

≥ 1

11
√
`+ 1

, (1)

where the second inequality follows from Lemma 27 which is given in Appendix A.

Pr
(
score(v, q) 6= b for any q ∈ Q

)
≤ Pr

(
score(v, qzj) 6= b, 1 ≤ j ≤ 22 `

√
`+ 1 log |V ′|

)

≤
(

1− 1

11
√
`+ 1

)22 `
√
`+1 log |V ′|

< e−2` log |V ′| .

Since for every v, |N [v, V ′]| ≤ `, the number of distinct closed neighborhoods restricted

to V ′ is at most
∑`

i=1

(|V ′|
i

)
≤
( e|V ′|

`

)`
. Note that if ∃v ∈ V and b ∈ {1, . . . , `} such

that score(v, q) 6= b for any q ∈ Q, then there is a subset of V ′ of size ≤ ` for which in no
query, b vertices are in state 1. Therefore, using union bound,

Pr
(
∃v ∈ V, b ∈ {1, . . . , `} such that score(v, q) 6= b, ∀q ∈ Q

)
≤
(
e|V ′|
`

)`
e−2` log |V ′| < 1 .

Hence, there exists a query set of size at most |Q| = (` − 1) × 22
√
`+ 1 log |V ′| + 2 <

22 `3/2 log |V ′|+ 2 that satisfies the conditions in the statement of the lemma.

We also use the following two lemmas of Füredi and Kahn (Füredi and Kahn, 1986)
that are based on the Lovász Local Lemma (Mitzenmacher and Upfal, 2005).

Lemma 15 Let H(V,EH) be a hypergraph on a set of n elements V such that each hyperedge
has at most b elements and each element belongs to at most b hyperedges, where b ≥ 500.

Then, V can be partitioned into α =
⌈

b
log b

⌉
sets X1, X2, . . . , Xα of V such that |H ∩Xi| ≤

d4.7 log be for all H ∈ EH.

Lemma 16 Let G(V,E) be a graph with maximum node degree ∆. Let V ′ ⊆ V such
that ∀v ∈ V , |N [v, V ′]| ≤ `. Then, V ′ can be partitioned into k ≤ (`−1)∆+1 sets V ′1 , . . . , V

′
k

such that ∀v, |N [v, V ′] ∩ V ′j | ≤ 1 for every block V ′j .

Proof of Theorem 13: We will prove that for any ∆ ≥ 2, the query set size is at
most 2500∆(log ∆)2.5. We first note that Lemma 15 has a technical requirement that b be
at least 500. In order to apply that result, we require ∆ ≥ 500. Hence, we first consider
the case ∆ ≤ 500 separately. From Theorem 10, we have |Q| ≤ ∆2 + 2. For any constant
c ≥ 42, it can be verified that |Q| ≤ ∆2 +2 ≤ c∆(log ∆)2.5 for the entire range 2 ≤ ∆ ≤ 500.
Therefore, the bound holds trivially for this case. So, we will assume for the remainder of
this proof that ∆ > 500.

For any graph G, let H be the hypergraph where each hyperedge Hv corresponds to the
closed neighborhood of vertex v. Since the maximum degree is ∆, for all v, |Hv| ≤ ∆ + 1
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and v belongs to at most ∆ + 1 hyperedges. By Lemma 15, for any ∆ ≥ 500, the vertices of

G can be partitioned into α ≤
⌈

∆+1
log(∆+1)

⌉
subsets X1, X2, . . . , Xα, such that every vertex is

adjacent to at most ` = d4.7 log(∆ + 1)e vertices in any Xi. For 1 ≤ i ≤ α, let n≤i(v) denote
the number of neighbors of v in

⋃
j≤iXj . The query set Q is structured in the following

manner. It is partitioned into α subsets Q1, Q2, . . . , Qα such that Qi determines fv(b), b =
n≤i−1(v) + 1, . . . , n≤i(v) for each v, where n≤0(v) = 0 by definition. In the remaining part,
we will show that this can be achieved with |Qi| ≤ 22

√
∆ log2 ∆ + 2 for each i.

We will partition each Xi into subsets Xi1, Xi2, . . . , Xik such that every vertex in V
is adjacent to at most one vertex in Xij for any j. Since ∀v ∈ V , |N [v,Xi]| ≤ `, by
setting V ′ = Xi in Lemma 16, this can be achieved for k ≤ (`−1)∆ + 1. Now, we construct
an auxiliary graph Ĝ with vertex set V̂ = V ∪{xij | j = 1, . . . , k} where each xij corresponds

to Xij . The edge set Ê contains edges from V to {xij | 1 ≤ j ≤ k} where a vertex v is
adjacent to xij if and only if it has a neighbor in Xij in G. The vertex functions fv(·) remain

the same ∀v ∈ V . Applying Lemma 14 to Ĝ with V ′ = {xij | 1 ≤ j ≤ k}, since ∀v ∈ V ,
|N [v,Xi]| ≤ `, we note that there exist at most 22`2

√
` log k+ 2 ≤ 23`2

√
` log(`∆) queries q̂

such that ∀v ∈ V , q̂(v) = 0 and for each b = 0, 1, ..., |N [v,Xi]|, there exists a query q̂ such
that v is adjacent to exactly b vertices in {xij | 1 ≤ j ≤ k}. Let this set of configurations

be denoted by Q̂i.
For each q̂ ∈ Q̂i, we construct a query q ∈ Qi as follows: ∀v ∈ Xj , j < i, we set q(v) = 1,

and ∀v ∈ Xj , j > i, we set q(v) = 0. For v ∈ Xi, q(v) = q̂(Xij), where Xij is the set to
which v belongs. Suppose in a configuration q̂, v ∈ V has b neighbors in state 1. We will now
show that score(v, q) = n≤i−1(v)+b. By definition of q, for any u ∈ Xi, q(u) = 1 if and only
if q̂(Xij) = 1. Since v is adjacent to at most one vertex in Xij for any j, there are exactly b
vertices of N [v,Xi] with state 1 in q. Further, recalling that every vertex with color < i is in
state 1 in q, score(v, q) = n≤i−1(v)+ b. Finally, since for every b = n≤i−1(v)+ 1, . . . , n≤i(v),

there exists a query q̂ ∈ Q̂ with b neighbors of v in state 1, the proof follows.
Thus, |Q| ≤ α|Qi| ≤ 2∆

log ∆23`2
√
` log(`∆) < 2500∆(log ∆)2.5, where the last inequality

is due to the fact that ` = 4.7 dlog(∆ + 1)e. Theorem 13 follows.

4.3 Complexity of Generating Small Monotone Complete Query Sequences

Here, we present a result that provides an indication of the difficulty of efficiently generating
small query sets. In particular, we will show the NP-completeness of the following problem.

Short Monotone Complete Query Sequence (SMCQS)

Given: The underlying graph G(V,E) of a symmetric SyDS S and a positive integer k.

Question: Is there a monotone complete query sequence Q with at most k queries for S?

Theorem 17 Problem SMCQS is NP-complete.

Proof: It is easy to see that SMCQS is in NP. To prove NP-hardness, we use a reduction
from the Distance-2 Coloring (D2C) problem defined as follows: given an undirected
graph G(V,E) and an integer r, is G2 r-colorable? It is known that D2C is NP-complete
(McCormick, 1983) even for planar graphs (Lloyd and Ramanathan, 1992).

The reduction is straightforward. Given an instance of the D2C problem consisting of
graph G and integer r, we obtain an instance of the SMCQS problem where the graph
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is G itself and the length k of the query sequence is r + 1. It was shown in the proof of
Theorem 10 that when G2 is r-colorable, there is a monotone complete query sequence with
k = r + 1 queries. Also, from Theorem 11, from any monotone complete query sequence of
length r + 1, one can obtain a valid coloring of G2 with r colors. Thus, there is a solution
to the SMCQS problem iff there is a solution to the D2C problem, and this completes the
proof.

4.4 Generating Concise Query Sets: A Generalized Version

We now consider the complexity of a more general version of the problem of generating
concise complete query sets under the batch model. Recall that for a symmetric SyDS, for
each node v and each integer ` in {0, 1, . . ., degree(v)+1}, a complete query set Q must
have a query q such that score(q,v) = `. In the version of the problem considered below,
we will only require the query set to provide a small subset of score values. This problem
can be formulated as follows.

Concise Query Set for Specified Scores (CQS-SS)

Instance: The underlying graph G(V,E) of a SyDS S where each local function is symmetric,
a set L of score values and a positive integer k.

Question: Is there a query set Q with at most k queries for S such that for each node v
and each score value s ∈ L, there is a query q ∈ Q for which score(q,v) = s?

We now show the CQS-SS problem is NP-complete even when the set L of scores con-
tains only one value and the underlying graph is highly restricted (e.g., graphs of maximum
node degree 4, planar graphs). To prove this result, we use a reduction from the One-
In-Three 3SAT (OIT-3SAT) problem which is defined as follows: given a set of Boolean
variables X = {x1, x2, . . . , xn} and a collection C = {C1, C2, . . . , Cm} of clauses where each
clause Cj is a disjunction of exactly three variables from X, is there a truth assignment to
the variables such that exactly one variable is set to true in each clause? In the definition
of OIT-3SAT, note that none of the clauses contains negated literals. It is well known that
OIT-3SAT is NP-complete (Garey and Johnson, 1979). The NP-completeness holds even
under some restrictions as indicated in the following theorem.

Theorem 18 OIT-3SAT is NP-complete even when either of the following conditions hold.

(a) Each variable occurs in exactly three clauses (Schmidt, 2010).

(b) Consider the following graph H(VH , EH) constructed from an OIT-3SAT instance. VH
contains one node for each variable in X and one node for each clause in C. For
a variable xi and clause Cj, there is an edge between the corresponding nodes if xi
appears in Cj. OIT-3SAT is NP-hard even when graph H is planar (Hunt III et al.,
1998; Mulzer and Rote, 2008).

Theorem 19 Problem CQS-SS is NP-complete even when set of scores has only one
value. The problem remains NP-complete even when the underlying graph is constrained
to belong to one of the following classes: (a) graphs with maximum node degree 4 or (b)
planar graphs.
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Proof: It is easy to see that CQS-SS is in NP. To prove NP-hardness, we use a reduction
from OIT-3SAT defined above. Consider an instance of OIT-3SAT consisting of the variable
set X and the clause set C. We construct an instance of the CQS-SS problem as follows.
We first describe the construction of the underlying graph G(V,E).

1. For each variable xi, V has a node vi, 1 ≤ i ≤ n. For each clause Cj , V has a node
wj , 1 ≤ j ≤ m.

2. For each variable xi and clause Cj , if xi occurs in Cj , then E contains the edge
{vi, wj}, 1 ≤ i ≤ n and 1 ≤ j ≤ m.

3. For each node vi, G has another node zi and the edge {vi, zi}.

4. For each node wj , G has 4 additional nodes, denoted by y1
j , y

2
j , y

3
j and y4

j , and the

following four edges: {wj , y1
j }, {y1

j , y
2
j }, {y1

j , y
4
j }, {y2

j , y
3
j }.

An example of this graph construction is shown in Figure 4.

Variable set X = {x1, x2, x3, x4, x5}
Clause set C = {C1, C2}, where C1 = {x1, x2, x3} and C2 = {x3, x4, x5}.

y22

v5v4v3v2v1

z1 z2 z3 z4 z5

w1 w2

y11

y31

y42y21y41

y12

y32

Figure 4: Example to illustrate the reduction from OIT-3SAT to CQS-SS.

The local function at each node is symmetric. The set L of scores contains just one
value, namely 1. The number of queries k is set to 1. This completes the construction of
the CQS-SS instance, and it can be seen that the construction can be done in polynomial
time. We now prove that the resulting CQS-SS instance has a solution iff the OIT-3SAT
instance has a solution.
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Suppose the OIT-3SAT instance has a solution. We construct the query q which provides
a score of 1 to each node of G as follows. Note that G has a total of N = 2n+ 5m nodes.
For each node v of G, we will use the notation q(v) to denote the value of v in q.

(a) Consider each variable xi, 1 ≤ i ≤ n. If it is set to true in the solution to OIT-3SAT,
set q(vi) to 1 and q(zi) to 0; otherwise, set q(vi) to 0 and q(zi) to 1.

(b) For each clause Cj , 1 ≤ j ≤ m, set q(wj) to 0.

(c) For each clause Cj , 1 ≤ j ≤ m, the values in q for the nodes y1
j through y4

j are chosen

as follows: q(y1
j ) = q(y2

j ) = 0 and q(y3
j ) = q(y4

j ) = 1.

It is easy to verify that for each v ∈ V , score(q,v) = 1. In other words, we have a solution
to the CQS-SS instance.

Now suppose the CQS-SS instance has a solution. Let q be the corresponding query.
We have the following claim.

Claim 1: (a) For 1 ≤ j ≤ m, q(wj) = 0. (b) For 1 ≤ j ≤ m, q(y1
j ) = 0.

Proof of Claim 1:

Part (a): Suppose q(wj) = 1 for some j, 1 ≤ j ≤ m. Then since {wj , y1
j } is an edge in E

and q provides a score of 1 to each node, we must have q(y1
j ) = 0. Now, since y1

j is the only

neighbor of y4
j and score(q,y4

j ) = 1, we must have q(y4
j ) = 1. Now, however, score(q,y1

j ) > 2

(since q(wj) = 1 and q(y4
j ) = 1). This contradicts the validity of q and establishes Part (a)

of Claim 1.

Part (b): Suppose q(y1
j ) = 1 for some j, 1 ≤ j ≤ m. Then since {y1

j , y
2
j } is an edge in E

and q provides a score of 1 to each node, we must have q(y2
j ) = 0. Now, since y2

j is the only

neighbor of y3
j and score(q,y3

j ) = 1, we must have q(y3
j ) = 1. Now, however, score(q,y2

j ) = 2

(since q(y1
j ) = 1 and q(y3

j ) = 1). This contradicts the validity of q and establishes Part (b)
of Claim 1.

We now continue with the main proof. We choose an assignment to the variables of X as
follows. Consider each variable xi, 1 ≤ i ≤ n. If q(vi) = 1, set xi to true; otherwise, set xi to
false. To prove that this is a solution to the OIT-3SAT instance, we need to prove that each
clause has exactly one variable set to true. Consider any clause Cj and the corresponding
node wj of G. We know that score(q,wj) = 1. Since q(wj) = 0 and q(y1

j ) = 0 (Claim 1),
the q provides a score of 1 to wj , there is exactly one node vr such that q(vr) = 1 and the
variable xr appears in clause Cj . Since we set xr to true, exactly one of the variables in Cj
is set to true. In other words, we have a solution to the OIT-3SAT instance. This completes
the proof of NP-hardness of CQS-SS for general graphs.

To obtain the NP-hardness of CQS-SS for graphs with maximum node degree of 4, we
carry out the above reduction from the version of OIT-3SAT in which each variable occurs in
exactly three clauses (Part (a) of Theorem 18). To obtain the NP-hardness of CQS-SS for
planar graphs, we use the a reduction from the version of OIT-3SAT mentioned in Part (b)
of Theorem 18 and note that the additional vertices and edges used in the construction do
not affect planarity.
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5. Query Sets Under the Adaptive Mode: Results for Threshold
Functions

We now consider the adaptive mode of queries. We show that for threshold SyDSs, the
adaptive query mode can reduce the number of queries significantly. To illustrate this,
consider a SyDS whose underlying graph is a star graph with n nodes; that is, there is
one node v1 with degree n − 1 which is the root of the tree and each of the other nodes
v2 through vn is child of the root. Under the adaptive mode, using the following method,
O(log n) queries are sufficient.

The idea is simple: use binary search to identify the threshold of node v1 whose degree
is n − 1 using O(log n) queries. Note that the threshold of v1 can vary from 0 to n + 1.
We first try a query q for which score(q,v1) = dn/2e. Depending on the response to the
query, the range of possible threshold values for v1 changes to either 0 through dn/2e− 1 or
dn/2e+ 1 through n+ 1. When this is repeated, after O(log n) queries under the adaptive
model, we can identify the threshold of v1. After this, the following 3 additional queries are
sufficient to identify the thresholds of the remaining n− 1 nodes: a query with all zeros, a
second query with all ones and a third one in which v1 has the value 1 and all the remaining
nodes have the value 0. Thus, all the thresholds can be identified using O(log n) queries
under the adaptive mode. The following proposition summarizes the above discussion.

Proposition 20 For a SyDS where the underlying graph is the star graph with n nodes and
each local function is a threshold function, O(log n) queries are sufficient under the adaptive
query mode to determine all the local functions.

Since the center node of a star graph with n nodes has a degree of n− 1, its threshold
can be any one of the n+ 1 values in {0, 1, . . . , n+ 1}. Thus, a simple information theoretic
argument points out that Ω(log n) is a lower bound on the number of adaptive queries
needed to infer the threshold values of all the nodes of a star graph. Thus, the upper bound
given by Proposition 20 is tight to within a constant factor.

As was shown in Section 3, in the batch mode, n + 1 queries are sometimes necessary
to identify all the thresholds. Thus, the adaptive query mode can reduce the number of
queries significantly.

The above idea can be applied to a more general class of graphs. Let α and β be
nonnegative integers. We say that a graph is (α, β)-simple, if α nodes have degree > β and
the remaining n − α nodes have a degree of at most β. For example, any star graph on n
nodes is a (1, 1)-simple graph. Trivially, every graph is a (0, n− 1)-simple graph. However,
when α and β are required to be constants independent of n, a clique on n nodes is not an
(α, β)-simple graph. Under the adaptive query model, we can obtain small query sets for
(α, β)-simple graphs when α and β are small. In what follows, we show that the number
of adaptive queries required for an (α, β)-simple graph is at most α(dlog ne + 1) + β2 + 2.
When α and β are constants, this bound is O(log n).

Theorem 21 For any threshold SyDS whose underlying graph G belongs to the class of
(α, β)-simple graphs, α(dlog ne+ 1) + β2 + 2 queries are sufficient in the adaptive mode to
identify all the threshold values. In particular, if α and β are constants independent of n,
the number of queries used in this approach is O(log n).
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Proof: We present an approach that uses at most α(dlog ne + 1) + β2 + 2 queries under
the adaptive query mode. To discuss this approach, let V0 denote the subset of nodes of G
such that each node in V0 has a degree larger than β. Thus, |V0| = α. Let V1 denote the
set of remaining n − α nodes (each of which has a degree of at most β). The steps of our
method are as follows.

1. We first construct a set Q1 of queries which are submitted in a single batch to identify
the thresholds of all the nodes in V1 as follows.

(a) Let G1 be the subgraph of G induced on V1. Construct G2
1, the square of G1.

(b) Construct a (node) coloring of G2
1. Since the degree of each node in G1 is at

most β, the maximum node degree in G2
1 is at most β2. Hence, by Lemma 9, G2

1

can be efficiently colored using at most k = β2 + 1 colors. Let C1, C2, . . . , Ck
denote the color classes generated in this step.

(c) Choose an arbitrary order, say vi1 , vi1 , . . ., viα , for the nodes in V0. The first
α+ 1 queries of Q1, denoted by Qj1, 0 ≤ j ≤ α, are chosen as follows. In Q0

1, all

the nodes have the value 0. In Qj1, 1 ≤ j ≤ α, nodes vi1 through vij have the
value 1 and all other nodes have the value 0.

(d) The remaining k queries of Q1, denoted by Qj1, α + 1 ≤ j ≤ α + k, are chosen
as follows. For all these queries, the values for all the α nodes of V0 are 1. The
values for the nodes in V1 are chosen as follows. In Qj1, all the nodes in color
classes C1 through Cj have the value 1 and all the remaining nodes of V1 have
the value 0, 1 ≤ j ≤ k.

(e) The total number of queries in Q1 generated in Steps 1(c) and 1(d) is ≤ α+ 1 +
β2 + 1 = α+ β2 + 2.

2. Recall that |V0| = α. We use the adaptive mode for the nodes in V0; that is, we use
a separate binary search for each of the α nodes in V0. For each node v ∈ V0 with
degree dv, the batch queries in Q1 include a query with scores 0 and dv+1. Therefore,
the binary search needs to consider only scores 1 through dv for v. This uses at most
dlog (dv + 1)e queries for v; this number is at most dlog ne since dv < n. Thus, for all
the α nodes in V0, the number of adaptive queries is at most α dlog ne. Q0 denote the
set of queries used in this step.

As argued above, the queries in Q0 identify the thresholds of all the nodes in V0. We
now argue that the resulting query set Q1 covers all the nodes of V1. To see this, consider
any node v ∈ V1, and let dv be the degree of V in G. Thus, we need to show that for every
value γ ∈ {0, 1, . . . , dv + 1}, there is a query q ∈ Q1 such that score(q,v) = γ. Let r0 and
r1 denote the number of neighbors of v in V0 and V1 respectively. Thus, dv = r0 + r1. For
0 ≤ j ≤ α, in query Qj1, exactly j nodes from V0 are 1 and all the other nodes are 0. Thus,
for each value γ, where 0 ≤ γ ≤ r0, there is a query q ∈ Q1 such that score(q,v) = γ. Now
consider any value γ in the range r0 + 1 through dv = r0 + r1. Let N1[v] denote the closed
neighborhood of v in G1. Note that |N1[v]| = r1 + 1. Because of the coloring of G2

1, no two
nodes in N1[v] may appear in the same color class. Let Cp1 < Cp2 < . . . < Cpr1+1 denote

the color classes in which nodes of N1[v] appear. It can be seen that for 1 ≤ ` ≤ r0 + r1 + 1,
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query Q`1 is such that score(Q`1,v) = `. Thus, Q1 covers all the nodes in V1, and this
completes the proof.

From the above discussion, |Q0| ≤ αdlog ne and |Q1| ≤ α + β2 + 2. Thus, the total
number of queries used by the above method is at most α(dlog ne + 1) + β2 + 2. This
completes the proof of Theorem 21.

The above result can be used to establish an upper bound on the number of queries
under the adaptive mode for scale-free graphs. Following Easley and Kleinberg (2010), we
say that a graph with n nodes and maximum degree ∆ is scale-free with exponent γ if
there are constants c′ > 0 and γ > 1 such that for any integer d, 0 ≤ d ≤ ∆, the fraction of
nodes with degree d in G is given by c′/dγ . Our upper bound for the number of queries for
scale-free graphs is stated below.

Theorem 22 For a threshold SyDS whose underlying graph G(V,E) is scale-free with ex-

ponent γ > 1, the thresholds can be found using O
(

[n log n]
2

γ+1

)
queries under the adaptive

query mode.

Proof:
For a positive integer β (to be chosen), let V0 ⊆ V denote the set of nodes of G with

degree > β and let V1 ⊆ V denote the remaining nodes (each of which has degree at most
β). By Theorem 21, the number of queries g(β) required satisfies g(β) ≤ |V0|(dlog ne +
1) + β2 + 2. Since |V0| is the number of nodes with degree ≥ β + 1, we have

|V0| ≤
∆∑

x=β+1

c′
n

xγ
≤ c′′

∫ ∞

β

n

xγ
dx = c

n

βγ−1
,

for some constants c, c′ and c′′. Therefore, g(β) = c n
βγ−1 log n + β2 + 2. For β > 0, g(β)

is a convex function. Equating its first derivative to 0 and rearranging, we note that g(β)

attains a minimum value for β satisfying βγ+1 = Θ(n log n) or β = Θ
(

[n log n]
1

γ+1

)
. For

this value, g(β) = O
(
[n log n]

2
γ+1
)
, and this completes our proof of Theorem 22.

6. Query Set Compaction

Overview: Some methods for generating queries in the batch mode (e.g., the randomized
query generation method discussed in Section 4.2) may a generate complete query set Q with
redundant queries. Since our goal is to construct query sets of minimum size, it is of interest
to consider the problem of eliminating such redundant queries while preserving the property
of completeness (i.e., the query set can correctly identify all the local functions). We call
this the query set compaction problem; a precise formulation appears below. We show
that it is NP-hard to obtain a performance guarantee of o(log n) for this problem, where n
is the number of nodes of a given SyDS. We also present an approximation algorithm that
provides a performance guarantee of O(log n) for the problem.

6.1 Problem Definition

A precise formulation of the query set compaction problem is as follows.
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Query Set Compaction (QSC)

Given: The underlying graph G(V,E) of a symmetric SyDS S, a complete query set Q for
S and an integer k ≤ |Q|.
Question: Is there a subset Q′ ⊆ Q such that (i) |Q′| ≤ k and (ii) Q′ is also a complete
query set for S?

Our hardness results for QSC rely on known results for the Minimum Set Cover
(MSC) problem which is defined as follows: given a base set X = {x1, x2, . . . , xn}, a col-
lection Y = {Y1, Y2, . . . , Ym}, where each Yj is a subset of X, 1 ≤ j ≤ m, and an integer
α ≤ m, is there a subcollection Y ′ ⊆ Y such that (i) |Y ′| ≤ α and (ii) the union of all the
sets in Y ′ is equal to X? It is well known that MSC is NP-complete (Garey and Johnson,
1979) and that unless P = NP, it cannot be approximated to within the factor (1−ε) ln (n),
for any ε, 0 < ε < 1, where n is the size of the base set (Vazirani, 2001).

6.2 Complexity Results for QSC

Theorem 23 (a) The problem QSC is NP-complete even when the underlying graph has
no edges. (b) Unless P = NP, QSC cannot be approximated to within the factor o(log n) in
polynomial time, where n is the number of nodes in the underlying graph of the SyDS.

Proof:

Part (a): It is easy to see that QSC is in NP. We prove NP-hardness through a reduction
from MSC. Let the given instance of MSC consist of base set X = {x1, x2, . . . , xn}, collection
Y = {Y1, Y2, . . . , Ym} of nonempty subsets of X and integer α ≤ m. Without loss of
generality, we may assume that each element of X appears in some subset in Y ; otherwise,
there is no solution to the MSC instance. We will construct the underlying graph G(V,E)
of a SyDS S and a complete query set Q for S as follows.

1. The node set V of G is given by V = V1 ∪V2, where V1 = {v1, v2, . . . , vn} is in one-to-
one correspondence with the base set X = {x1, x2, . . . , xn} of the MSC instance and
V2 = {vn+1} consists of just one node. (Thus, V has a total of n+ 1 nodes.)

2. The edge set E of G is empty; that is, the degree of each node is 0. Thus, for each
node v ∈ V , the number of ones in the input to the local function fv at v can only be
either 0 or 1.

3. The query set Q consists of m+ 1 queries (where m = |Y |) constructed as discussed
below. Note that each query is an (n + 1)-bit vector, where the ith bit specifies the
value of node vi, 1 ≤ i ≤ n+ 1.

(a) For each Yj ∈ Y , 1 ≤ j ≤ m, Q contains a query qj constructed as follows. Let
Yj = {xj1 , xj2 , . . . , xjr}. Then, in query qj , the bits corresponding to the nodes
vj1 , vj2 , . . . , vjr are all 1 and the other bits are 0.

(b) We add one more query qm+1 to Q; in query qm+1, bits 1 through n are set to
0 and bit n+ 1 is set to 1.

4. The upper bound on the size of the required subset Q′ of queries is set to α+ 1.
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This completes the construction of the QSC instance. It can be seen that the construction
can be carried out in polynomial time. We now show that Q is a complete query set for S.

Claim 1: The query set Q constructed above is a complete query set for S.

Proof of Claim 1: We must show that for each node vi ∈ V , Q contains two queries, say
qi0 and qi1 , such that score(qi0 ,vi) = 0 and that score(qi1 ,vi) = 1. First, consider any node
vi, where 1 ≤ i ≤ n. Query qm+1 sets the value of vi to 0; thus score(qm+1,vi) = 0. Suppose
the element xi (corresponding to node vi) appears in subset Yj . By our construction, query
qj sets the value of vi to 1; thus, score(qj ,vi) = 1. For node vn+1, each query qj created
from Yj sets the value of vn+1 to 0; that is, score(qj ,vn+1) = 0; Also, query qm+1 sets the
value of vn+1 to 1; thus, score(qm+1,vn+1) = 1. The claim follows. �

We now prove that there is a solution to the QSC instance if and only if there is a
solution to the MSC instance.

Part 1: Suppose there is a solution Y ′ to the MSC instance consisting of sets Yj1 , Yj2 , . . .,
Yj` , for some ` ≤ α. Consider the query set Q′ = {qj1 , qj2 , . . . , qj` , qm+1}, which includes
the queries corresponding to the sets in Y ′ along with query qm+1. Note that Q′ ⊆ Q.
Also, since ` ≤ α, |Q′| ≤ α + 1. Thus, we only need to show that Q′ is a complete query
set. Consider any node vi, where 1 ≤ i ≤ n. Query qm+1 sets the value of vi to 0; thus,
score(qm+1,vi) = 0. Further, Since Y ′ is a set cover, the element xi (corresponding to node
vi) appears in some subset Yjz ∈ Y ′. By our construction, in query qjz , the value of vi is
1; thus, score(qjz ,vi) = 1. For node vn+1, each query q ∈ Q′ − {qm+1} sets the value of
vn+1 to 0; thus, score(q,vn+1) = 0. Further, query qm+1 sets the value of vn+1 to 1; thus,
score(qm+1,vn+1) = 1. Hence, Q′ is a complete query set.

Part 2: Let Q′ be a solution to the QSC instance with |Q′| ≤ α + 1. We claim that
qm+1 ∈ Q′. This is because qm+1 is the only query for which score(qm+1, vn+1) is 1. Define
Q′′ = Q′ − {qm+1}. Let |Q′′| = ` and note that ` ≤ α. Further, let Q′′ = {qj1 , qj2 , . . . , qj`}.
Consider the following subcollection Y ′ of Y given by Y ′ = {Yj1 , Yj2 , . . . , Yj`}. We now
show that Y ′ is a solution to the MSC instance. To see this, consider any element xi ∈ X,
where 1 ≤ i ≤ n. Query qm+1 ∈ Q′ sets node vi to 0. Since Q′ is a complete query set, some
query qjz ∈ Q′′ must set vi to 1. By our construction, the subset Yjz contains xi. Thus, Y ′

is a set cover. Since |Y ′| ≤ α, Y ′ is a solution to the MSC instance, and this completes the
NP-hardness proof.

We use the same reduction to prove the non-approximability result. Suppose A is an
approximation algorithm that provides a performance guarantee of ρ = o(log n) for the
QSC problem, where n is the number of nodes in the underlying graph of the SyDS. We
will show that A can be used to construct a 2ρ = o(log n) approximation algorithm for the
MSC problem, contradicting the known non-approximability result for MSC. Towards this
proof, consider any instance of the MSC optimization problem. Let OPT(MSC) denote the
value of an optimal solution (i.e., the minimum size of a set cover) for the MSC instance
and let OPT(QSC) denote the value of an optimal solution (i.e., the minimum size of a
complete query subset) for the QSC instance constructed from the MSC instance. In the
NP-hardness proof, we showed that

OPT(QSC) ≤ OPT(MSC) + 1. (2)
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Suppose we run Algorithm A on the resulting QSC instance. Since A provides a ρ approx-
imation, the solution produced by A has at most ρOPT(QSC) queries. From this query
set, it was shown in the NP-hardness proof that a solution to the MSC instance with
ρOPT(QSC)−1 subsets can be constructed. Letting APPROX(MSC) denote the resulting
number of subsets, we have

APPROX(MSC) ≤ ρOPT(QSC)− 1
≤ ρ [OPT(MSC) + 1]− 1 (using Equation (2))
≤ 2ρOPT(MSC) (since OPT(MSC) ≥ 1).

Thus, if A provides a performance guarantee of ρ = o(log n) for the QSC problem, then
there is a 2ρ = o(log n) approximation algorithm for the MSC problem. This completes the
proof of Theorem 23.

6.3 An Approximation Algorithm for QSC

To complement the non-approximability result of the previous section, we will present an
efficient approximation algorithm with a performance guarantee of O(log n) for the QSC
problem. The basic idea is to use a reduction from the QSC problem to the MSC problem
and then to use a known (greedy) approximation algorithm (Vazirani, 2001) for the MSC
problem.

Algorithm 2: Steps of Algorithm Approx-QSC

Input: The underlying graph G(V,E) of a symmetric SyDS S and a complete
query set Q.

Output: A subset Q′ ⊆ Q such that Q′ is also a complete query set and |Q′| is a
good approximation for a complete query set of minimum size.

1 To construct the base set X of the MSC instance, consider each node vi; let di
denote the degree of vi. Create a set Ai of di + 1 elements, given by
Ai = {aik : 0 ≤ k ≤ di}, for vi. The set X is given by X = ∪ni=1Ai.

2 From each query qj ∈ Q, construct a subset Yj of X as follows. Initially, Yj is
empty. For each vi ∈ V , 1 ≤ i ≤ n, if score(qj , vi) = k, then add the element aik to
Yj .

3 Use the greedy algorithm (Vazirani, 2001) to get an approximate solution Y ′ to the
resulting MSC instance.

4 Construct the query set Q′ by choosing the query corresponding to each subset in
Y ′ and output Q′.

The steps of our approximation algorithm Approx-QSC for QSC are shown in Algo-
rithm 2. We assume that an instance of the QSC problem is specified by an underlying graph
G(V,E) and a complete query set Q. Let V = {v1, v2, . . . , vn} and Q = {q1, q2, . . . , qm}.
Note that each query qj ∈ Q is an n-bit vector, with bit i specifying the value of node vi,
1 ≤ i ≤ n. Let di denote the degree of node vi in G, 1 ≤ i ≤ n. Steps 1 and 2 of the
algorithm construct an instance of the MSC problem consisting of the base set X and a
collection Y = {Y1, Y2, . . . , Ym} of subsets of X. Each subset Yj in Y is constructed from
query qj ∈ Q, 1 ≤ j ≤ m. Step 3 applies a well known greedy algorithm (which, in each
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iteration adds a subset Yj from Y such that Yj contains the maximum number of elements
of X which have not yet been covered) to construct an approximate solution Y ′ to the MSC
problem. The final step chooses a query corresponding to each subset in Y ′ and outputs
the resulting query subset Q′. It can be seen that the approximation algorithm runs in
polynomial time. To establish the performance guarantee provided by Approx-QSC, we
need the following lemma.

Lemma 24 The reduction from QSC to MSC used in Steps 1 and 2 of Approx-QSC (Al-
gorithm 2) produces an instance of MSC such that any solution with r subsets to the MSC
instance is a solution with r queries to the QSC instance and vice versa.

Proof: First, consider any solution Y ′ = {Yj1 , Yj2 , . . . Yjr} with r subsets to the MSC
instance. Let Q′ = {qj1 , qj2 , . . . , qjr} be the corresponding query set with r queries. We
need to show that Q′ is a complete query set; that is, for any node vi (1 ≤ i ≤ n) and any
integer k, 0 ≤ k ≤ di, there is a query q ∈ Q′ such that score(q, vi) = k. To see this, note
that Y ′ is a set cover. Thus, there is a set Yjz ∈ Y ′ such that the element aik ∈ X appears
in Yjz . By our construction, aik was added to Yjz because score(qjz , vi) = k.

To prove the converse, let Q′ = {qj1 , qj2 , . . . , qjr} be a solution with r queries to the
QSC instance. Consider the collection Y ′ of sets given by Y ′ = {Yj1 , Yj2 , . . . Yjr}. We claim
that Y ′ is a solution to the MSC instance. To see this, consider any element aik ∈ X. Since
Q′ is a complete query set, there is some query qjz ∈ Q′ such that score(qjz , vi) = k. By
our construction, set Yjz contains the element aik. In other words, Y ′ is a solution to the
MSC instance with r sets.

The following is an immediate consequence of the above lemma.

Observation 25 Let OPT(QSC) denote the size of an optimal query set for a given QSC
instance and let OPT(MSC) denote the size of an optimal solution to the MSC instance
obtained at the end of Step 2 of Approx-QSC. Then, OPT(QSC) = OPT(MSC).

We can now establish the performance guarantee provided by Approx-QSC.

Theorem 26 Algorithm Approx-QSC provides a performance guarantee of O(log n) for the
QSC problem, where n is the number of nodes in the underlying graph of the SyDS.

Proof: Let OPT(QSC) denote the size of an optimal query set for the QSC instance and
let OPT(MSC) denote the size of an optimal solution to the MSC instance. We observe
that the size of the base set X is 2|E|+n. To see this, note that for each node vi ∈ V with
degree di, the the number of elements added to X in Step 1 of the algorithm in Algorithm 2
is di + 1. Therefore, |X| =

∑n
i=1(di + 1) = (

∑n
i=1 di) + n = 2|E| + n since the sum of

all the node degrees is 2|E|. Since |E| < n2, |X| < 3n2. The greedy algorithm for MSC
provides a performance guarantee of O(log |X|), which is O(log n) since |X| < 3n2. Thus,
the approximation algorithm for MSC produces a solution with at most O(log n) OPT(MSC)
sets. By Lemma 24, any solution to MSC with r subsets leads to a solution with r queries
for QSC. Thus, the size of the resulting query set is at most O(log n) OPT(MSC) which
is equal to O(log n) OPT(QSC) by Observation 25. Thus, Approx-QSC has a performance
guarantee of O(log n).
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7. Experimental Results

7.1 Overview

The theoretical results of the previous sections establish that finding a smallest set of queries
to infer the local functions of threshold or symmetric SyDSs is non-trivial. In this section,
through extensive experimentation2 on more than 20 real-world and synthetic networks, we
seek to answer the following questions.

1. We study the performance of the proposed algorithms for batch mode. How do the the
resulting query sets compare with the lower bounds and thus the optimal query set
sizes for these networks? We studied an approach based on coloring G2 for inferring
threshold and symmetric SyDS.

2. While we were able to develop algorithms for batch mode with provable performance
guarantees, coming up with a technique for adaptive mode for general graphs turns
out to be hard. We propose a greedy heuristic inspired by distance-two coloring to
infer thresholds of a SyDS (namely, Algorithm 3 presented in Section 7.4). How does
this heuristic perform relative to the developed lower bounds? We experimentally
analyze this question.

3. The bounds established above are in terms of maximum degree or the size of the graph.
However, many real-world networks are scale-free, having a low average degree, but a
very high maximum degree. How do our algorithms perform on these networks? Does
network density (number of edges) have any role in determining the query set size?

4. We note that the query set size depends not only on the network structure, but also on
threshold assignments. How does the uncertainty in the range of values the threshold
can take influence the query set size? Our experiments also study this question.

Networks and threshold assignment. The diverse real-world and synthetic networks
considered in this work are listed in Table 1 along with some of their properties. As
indicated in that table, all the mined networks used in our experiments are from the SNAP
library (Leskovec and Krevl, 2014). We present representative results for selected networks,
with other networks exhibiting the same behavior unless stated otherwise. We assigned
thresholds in the following manner. Let 0 ≤ θ ≤ 1 be a real number. For a fixed value of θ,
each node v was assigned a threshold value uniformly at random from the interval

[
(d(v) +

2)(1− θ)/2, (d(v) + 2)(1 + θ)/2
]
. Note that for θ = 0, the interval corresponds to the fixed

threshold of (d(v) + 2)/2 and for θ = 1, any value from 0 to d(v) + 2 is possible.

Our theoretical results indicate that both network structure and the threshold assign-
ments influence the number of queries required to infer the system. The experiments con-
ducted were designed to further explore these aspects. Details regarding the computing
environment used for our experiments are presented in Appendix B which also includes
plots showing wall clock times for generating queries.

2. The code is available in https://github.com/NSSAC/active_queries_threshold_gds_published_

code.git.
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7.2 Method 1: Approach Based on Coloring G2

We studied the performance of Alg-Monotone-Seq (Algorithm 1). For most real world
networks considered in this paper, this algorithm gives the best possible performance of
∆ + 2 (Proposition 3). This is due to the fact that in all these cases, nc(G

2), the number
of colors used to color G2 is equal to ∆ + 1, the lower bound on the number of required
colors. Compare the values in Table 1 for columns “max. deg. ∆” and “Results: Query
set size, Method 1.” For synthetic networks (random regular and Erdős-Rény graphs)
though, nc(G

2) is significantly higher than ∆ + 2, yet much lower than ∆2 + 2, the upper
bound (Theorem 10). The reader should note that the observed performance is due to a
combination of the structure of G2 and the nature of the greedy coloring scheme. We observe
that unlike the synthetic networks considered, most of the real-world networks are scale-
free with maximum degree being much larger than average degree davg. This is a possible
reason for the superior performance of this approach. We also compared the results to the
spectral radius bound, that is, the number of colors needed to color G2 is at most 1 + λ2

max

(Miao and Fan, 2014), where λmax is the largest eigenvalue of the adjacency matrix of G.
Again, see Table 1 and “λmax.” It is a well-known fact that

√
∆ ≤ λmax ≤ ∆, and for the

real-world networks considered, λmax is indeed much less than ∆. However, despite this
fact, we observe that λ2

max + 1 is much larger than nc(G
2) + 1 in these cases.

Compaction. We note that the query set generated by this approach is already compact,
i.e., no proper subset of queries can be complete. To see this, suppose this set is not
compact. Then, there exists at least one query which is not required. We recall that by
construction, the query set can be arranged as a monotone increasing sequence q0, q1, . . . ,
such that in query qi all nodes of color i are set to state 1. Suppose query qk is not required
for the set to be complete. Then, using the arguments in the proof of Theorem 11, it can
be seen that if all vertices of color k were assigned color k + 1, the coloring would still be
valid. This means that in the greedy strategy, all nodes colored k + 1 could actually have
been assigned color k. Since the greedy strategy always gives the minimum color available
to nodes, this is a contradiction.

7.3 Experiments on Query Compaction

Here, we present some experimental results obtained by first generating query sets using the
probabilistic method discussed in Section 4.2 and then applying the query set compaction
heuristic presented in Section 6.3. To generate the complete query sets, we used the method
of Theorem 12. Recall that the query set contains the configurations of all zeros, of all ones
and `∆ random queries where ` queries are sampled from distributions D(i/∆) for 1 ≤ i ≤ ∆.
The query set generation process may have to be repeated a number of times to obtain a
complete set. The resulting set, even though large, can be compressed using the compaction
algorithm.

We constructed 50 such query sets for three values of ` (2, 5 and 10) and checked whether
each of them is a complete set. For ` = 2, out of the 50 sets constructed, none of them
was complete. However, for ` = 10, from 5 to 50 query sets turned out to be complete
sets depending on the network. We applied the compaction algorithm on the complete
sets generated by the randomized algorithm. The results for ` = 10 are in Table 2. The
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Table 2: Results of randomized query generation with compaction.

Network
Query set

size

% Com-
paction

FB 407 81

p2p-gnutella04 159 84

Enron 2306 83

Wikipedia 1420 86

ca-astroph 899 82

ca-condmat 393 85

ca-grqc 153 81

ca-hepph 1201 75

ca-hepth 140 78

cit-hepph 1240 85

Rand. reg. A ≈ 5∆ 40

compaction ratio depends on the size of complete set which was given as input. We note
that compaction of query sets generated by this method yields around 80% reduction in
the size of the query set in most cases (Table 2). On the average, the combination of
randomized algorithm and compaction gives query sets of size around 1.5 to 2 times that
of the monotone query sequence method discussed in Section 4.1. However, the method
of random query set generation followed by compaction is comparatively much easier to
implement.

7.4 Method 2: An Adaptive Algorithm

While the previous methods are for the batch mode, here we develop an adaptive algorithm
to infer the thresholds. We give an outline of the approach. The steps of the algorithm are
shown in Algorithm 3. In this algorithm, we use the notation N [v,G2] to denote the set of
nodes of v that are at distance of at most 2 in G (including v). We note that N [v,G2] can
be computed by a two-step breadth-first search of G starting at v.

For every node, let tL(v) and tH(v) be the minimum and maximum possible values of
threshold that v can be assigned. These values quantify the uncertainty about the threshold.
The threshold is said to have been inferred when tH(v) = tL(v). In a query q, if score(q, v)
falls in the range [tL(v), tH(v)−1], the uncertainty reduces to either [score(q, v)+1, tH(v)−1]
or [tL(v), score(q, v)] depending on the state observed in the successor configuration. In this
heuristic, we use a greedy adaptive approach where the current query is constructed itera-
tively in the following way. Initially, all the nodes are in state 0. We first choose a vertex,
say vmax, for which the threshold range is maximum. We set exactly b(tL(v) + tH(v))/2c
of nodes in its closed neighborhood to state 1. This guarantees a reduction in the range by
half. In the next iteration, we ignore all nodes in G within distance-2 of vmax and repeat
this process. The query is fully constructed when there are no more vertices to consider.
After each query, the range [tL(v), tH(v)−1] for every v is updated based on its state in the
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Algorithm 3: Greedy heuristic to infer the thresholds.

Data: Network G(V,E); true thresholds tv for every node v. (These thresholds are
not available to the inference algorithm; they are used only to compute the
successor for a query.)

Result: Infer the thresholds of all the nodes of G. (For data analysis purposes, the
algorithm also returns the set Q of all the queries used in the inference
procedure.)

1 for v in V do
2 Let tL(v) = 0 and tH(v) = d(v) + 2;
3 end
4 Let Vt = V denote the set of nodes for which threshold needs to be inferred;
5 Let Q = ∅ be the query set;
6 while Vt 6= ∅ do
7 Let i = 1;
8 Let qi be the current query. Let qi[v] = 0, ∀v ∈ V ;
9 Let Vrem = Vt;

10 while Vrem 6= ∅ do
11 Let vmax = arg maxv∈Vrem tH(v)− tL(v);
12 Set exactly b(tH(vmax) + tL(vmax))/2c neighbors of vmax to state 1 in qi;
13 Vrem ← Vrem \ {N [vmax, G

2]};
14 end
15 Compute the successor s of qi;
16 //Update tL(v) and tH(v) for all v ∈ Vt
17 for v ∈ Vt do
18 if s[v]=0 and tL(v) ≤ score(qi, v) then
19 tL(v)← score(qi, v) + 1;
20 end
21 else if s[v]=1 and tH(v) > score(qi, v) then
22 tH(v)← score(qi, v);
23 end

24 end
25 Remove all nodes v from Vt such that tL(v) = tH(v);
26 Q← Q ∪ {qi};
27 end

32



Inferring Symmetric Node Functions of Graph Dynamical Systems

0

200

400

600

800

1000

1200

1400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

av
er
ag
e
#
qu

er
ie
s

k/n

0.0
0.2
0.4
0.6
0.8
1.0

0
20
40
60
80

100
120
140
160
180

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

av
er
ag
e
#
qu

er
ie
s

k/n

0
0.2∆
0.4∆
0.6∆
0.8∆
∆

Figure 5: Experiments with 1000 node random k-regular graphs. (a) The threshold
of a node is randomly assigned an integer in the interval

[
(k + 2)(1 − θ)/2, (k +

2)(1 + θ)/2
]
. The legend shows values of θ. (b) All nodes are assigned a fixed

threshold τ relative to k. The legend shows values of τ .

successor. We terminate this process when for all v, tL(v) = tH(v). Results are summarized
in the last column of Table 1. The analysis of our experimental results follows.

Influence of threshold values and ranges. In general, the number of queries required is
highly dependent on the possible threshold values the nodes can be assigned. We conducted
experiments in the following manner. Recall the threshold assignment procedure described
in Section 7.1. The results are in Figures 5(a) and 6(a) for random k-regular and real-world
networks respectively. For the random-regular graphs, the number of queries (averaged
over 10 instances of graphs for each k) increases from an order of log k to as high as n, the
size of the graph. We note that for k = n−1, this is in accordance with Theorem 5. For the
real-world graphs, we see that increasing the range of threshold has the effect of gradually
increasing the number of queries, but the number is less than 1.5∆. In Figure 5(b), we
investigate the influence of the threshold value on query set size. Again, we considered
random k-regular graphs with varying k. Every node was assigned the same threshold. We
see that the number of queries used is a maximum when the threshold is around ∆/2, and
it decreases as the threshold approaches either 0 or ∆.

Influence of network structure. The theoretical results developed in the previous sec-
tions provide bounds with respect to size of the graph and maximum degree. Here, our
objectives are two-fold. Firstly, we compare our adaptive approaches to the non-adaptive
bounds, particularly the number of queries required relative to ∆. Secondly, we investigate
the effect of graph density and degree distribution on the performance of the heuristic.

We note that graph density plays an important role in the performance of the algorithm.
First, we consider synthetic networks. In Figure 5(b), we see that for low values of k the
number of queries required is very small, but it increases rapidly (for higher values of
thresholds). When the graph is sparse, for every node, the number of nodes within distance
two (i.e., k2 + 1) is small. Therefore, for every query constructed by the heuristic, the
uncertainty range of around n/k2 nodes (the “vmax” vertices) is halved. However, as k
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increases, this number decreases drastically. Hence we see that the number of queries used
increases. However, as the graph density increases, the intersection of neighborhoods of
any two nodes is large which has the effect of reducing the variation in the scores of nodes.
Therefore, particularly when the range of threshold values is limited, the thresholds can be
inferred with fewer queries than for sparser networks.

Progress towards inferring thresholds. In Figure 6(b), we plot the accumulated
threshold ranges for all vertices as the algorithm moves from one query to the next. We
note that for most of the networks considered, within one-tenth of the total query size, the
total accumulated threshold range decreases to 5% of its original value for all the studied
networks. Thus, the uncertainty in the threshold range can be decreased significantly using
a small number of adaptive queries.

In Appendix B, we have provided plots (Figure 7) for the wall clock time taken by
Method 2 to generate queries.
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Figure 6: Inferring thresholds for real-world networks. (a) Adaptive heuristic
for varying threshold ranges. (b) Progress made by the adaptive algorithm
(Method 2) in each query.

8. Directions for Future Work

In this work, we studied the problem of inferring the behavior of a networked dynamical
system through active querying. We now discuss several avenues for future work. We first
mention an open problem that arises directly from our results. Theorem 13 shows the
existence of a small complete query set for SyDSs with symmetric functions. Developing an
efficient algorithm that can construct such a query set is an interesting research question.
In our framework, the user has complete knowledge of the network, and queries and the
responses from the system are assumed to specify the states of all the nodes in the system.
In a typical real-world scenario, only partial knowledge of the system is available. Besides,
the user might only require partial information from the system. For example, it may be
sufficient for a user to know whether the threshold of every node is at most some chosen
integer α. Methods that can accomplish threshold inference with a small number of queries
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in such contexts are of practical interest. Another useful direction to explore is to develop
inference methods when the system response consists of successors for k ≥ 2 time steps
(instead of a single time step). It is also of interest to explore the use of queries to infer
other components of a dynamical system (e.g., the network topology).
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Appendix A. Generating query sets based on probabilistic methods

We first recall the following definition. Given a positive real number x, we use 〈x〉 to denote
the integer obtained by rounding x to the nearest integer; that is, 〈x〉 = bxc if the fractional
part of x is less than 0.5; otherwise, 〈x〉 = dxe.
Statement of Theorem 12. Let S be a symmetric SyDS with underlying graph G(V,E),
where |V | = n and maximum node degree = ∆. A query set Q of size O(∆1.5 log (n)) which
is complete with probability at least

(
1− 1

n

)
can be constructed for S.

Proof. In proving this theorem, we will use the following notation. For any node v, let
fv denote the symmetric function at v and let d(v) denote the degree of v. Note that each
input to fv is an integer that gives the number of ones assigned to the closed neighborhood
of v.

Our method, produces a query set with size at most 22∆
√

∆ + 2 log(n∆). We first
note that the all zeros and the all ones configurations can be used to query the response
for fv(0) and fv(d(v) + 1), respectively for all v ∈ V . This contributes just an additive
term 2. Let Q =

{
qij ∼ D

(
i

∆+1

)
| 1 ≤ i ≤ ∆, 1 ≤ j ≤ 22

√
∆ + 2 log(n∆)

}
be the query

set. For any v ∈ V , b ∈ {1, . . . , d(v)} and q ∼ D
(

z
∆+1

)
, where z =

〈
b(∆+1)
d(v)+1

〉
, we have

Pr
(
fv(b) is queried in q

)
≥
(
d(v) + 1

b

)(
z

∆ + 1

)b(
1− z

∆ + 1

)d(v)+1−b

≥ 1

11
√
d(v) + 2

≥ 1

11
√

∆ + 2
,
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where the inequality in the second of the three lines above follows from Lemma 27 (below).
Now,

Pr
(
fv(b) is not queried by Q

)
≤ Pr

(
fv(b) is not queried by qzj ,

1 ≤ j ≤ 22
√

∆ + 2 log(n∆)
)
.

The quantity on the right hand side of the above inequality is at most

(
1− 1

11
√

∆+2

)22
√

∆+2 log(n∆)

< 1
(n∆)2

.

Note that

Pr
(
Q is not a complete set

)
= Pr

(
∃v, b such that fv(b) is not queried by Q

)
.

By the union bound, the quantity on the right hand side of the above equation is at most
∑

v∈V
∑∆

b=1 Pr
(
fv(b) is not queried by Q

)
< 1

n∆ .

This completes the proof of Theorem 12.

Lemma 27 Let b, d and D be positive integers such that b ≤ d ≤ D and let z =
〈
bD
d

〉
.

Then,
(
d
b

)(
z
D

)b(
1− z

D

)d−b ≥ 1
11
√
d+1

.

We will first prove the following claims.

Claim 28
(
1 + 1

b

)b
is monotone increasing in b for positive integers.

Proof: Consider the collection of (b + 1) numbers
(
1, b+1

b , . . . ,
b+1
b

)
. Using the fact that

their arithmetic mean is ≥ their geometric mean,

1 + b
(
b+1
b

)

b+ 1
≥
(

11
(b+ 1

b

)b) 1
b+1

(b+ 1) + 1

b+ 1
≥
(b+ 1

b

) b
b+1

.

Claim 29
(
d
b

)(
b
d

)b(
1− b

d

)d−b ≥ 1√
2(d+1)

.

Proof: Let h(b, d) =
(
d
b

)(
b
d

)b(
1 − b

d

)d−b
. We will first show that for b < d

2 , h(b + 1, d) ≤
h(b, d) and for b ≥ d

2 , h(b + 1, d) > h(b, d), and hence, h(·) attains a minimum value

at b =
⌊
d
2

⌋
.

h(b+ 1, d)

h(b, d)
=

(
d
b+1

)
(
d
b

)
(
b+1
d

)b+1

(
b
d

)b

(
1− b+1

d

)d−b−1

(
1− b

d

)d−b

=
d− b
b+ 1

(b+ 1

b

)b b+ 1

d

(d− b− 1

d− b
)d−b d

d− b− 1

=
(b+ 1

b

)b(d− b− 1

d− b
)d−b−1

=
(b+ 1

b

)b( b′

b′ + 1

)b′
,
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where, b′ = d− b− 1. When b < d
2 , b′ ≥ b and when b ≥ d

2 , b′ < b. Applying Claim 28, we

have for b < d
2 , h(b+ 1, d) ≤ h(b, d) and for b ≥ d

2 , h(b+ 1, d) > h(b, d).

When b is even, h
(
d
2 , d
)
≥ 1√

2d
. Now we will show that when b is odd, h

(
d−1

2 , d
)
≥

1√
2(d+1)

. Let b = 2k + 1.

h
(
k, 2k + 1

)

h
(
k, 2k + 2

) =

(
2k+1
k

)
(

2k+2
k

)
(

k
2k+1

)k
(

k
2k+2

)k

(
1− k

2k+1

)k+1

(
1− k

2k+2

)k+2

=
k + 2

2k + 2

(2k + 2

2k + 1

)k(k + 1

k + 2

)k+1(2k + 2

2k + 1

)k+1 2k + 2

k + 2

=
(

1 +
1

2k + 1

)2k+1(
1 +

1

k + 1

)−(k+1)
> 1 .

The inequality follows from Claim 28. Therefore, when d is odd, h
(
d−1

2 , d
)
> h

(
d−1

2 , d+1
)
≥

h
(
d+1

2 , d+ 1
)
≥ 1√

2(d+1)
.

Claim 30 For any positive x ≤ 1
2 , 1− x ≥ e−2x.

Proof: e2x(1− x) > (1 + 2x)(1− x) = 1 + x(1− 2x) ≥ 1.

Proof of Lemma 27. We have two cases to consider: (a) z ≤ bD
d and (b) z > bD

d . But

first we note that by definition,
∣∣z − bD

d

∣∣ ≤ 1
2 .

Case (a). bD
d − 1

2 ≤ z ≤ bD
d .

(
d

b

)( z
D

)b(
1− z

D

)d−b
≥
(
d

b

)( z
D

)b(
1− b

d

)d−b

≥
(
d

b

)( b
d
− 1

2D

)b(
1− b

d

)d−b

≥
(
d

b

)( b
d

)b(
1− b

d

)d−b(
1− d

2bD

)b

≥ 1

2
√
d

(
1− d

2bD

)b
≥ 1

e2
√

2(d+ 1)
≥ 1

11
√
d+ 1

.

The last but one inequality follows from Claim 30.

Case (b). bD
d ≤ z ≤ bD

d + 1
2 .

(
d

b

)( z
D

)b(
1− z

D

)d−b
≥
(
d

b

)( b
d

)b(
1− z

D

)d−b

≥
(
d

b

)( b
d

)b(
1− b

d
− 1

2D

)d−b

≥
(
d

b

)( b
d

)b(
1− b

d

)d−b(
1−

1
2D

1− b
d

)d−b

≥ 1√
2(d+ 1)

(
1− d

2(d− b)D
)d−b

>
1

11
√
d+ 1

.
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Figure 7: Plots of wall-clock time to generate queries using Method 2 for ER graphs. The
first row corresponds to increasing number of nodes while the second row corre-
sponds to increasing threshold interval θ. The first column corresponds to total
time taken, the second column corresponds to average time per query, and third
column corresponds to the number of queries for reference. For each combination
of (n, p, θ), the values shown are averages over 10 instances.

This completes the proof of Lemma 27.

Appendix B. Implementation, computing environment and time

Implementations were done in Python 2.7 and 3.8. Compute nodes with 2 x Intel(R)
Xeon(R) Gold 6248 CPU @ 2.50GHz processors with 20 cores per CPU and 386GB memory
were used. In Figure 7, we have provided plots for (i) total time taken and (ii) average
time per query as a function of graph size (nodes and edges) and threshold interval θ for
ER graphs. Also, for reference, we have provided the number of queries generated for each
case. We observe that both total time as well as average time per query are super-linear in
the number of nodes even though the number of queries generated is close to being linear in
the number of nodes. This is because, the time taken depends on the total number of queries
as well as the number of operations required to generate a query. Also, as θ increases, the
time taken decreases for a fixed network. This can be mainly attributed to the decrease in
the number of queries (last row).
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S. González-Bailón, J. Borge-Holthoefer, A. Rivero, and Y. Moreno. The dynamics of
protest recruitment through an online network. Scientific Reports, 1:7 pages, 2011.

M. Granovetter. Threshold models of collective behavior. American Journal of Sociology,
pages 1420–1443, 1978.

X. He, K. Xu, D. Kempe, and Y. Liu. Learning influence functions from incomplete ob-
servations. In Advances in Neural Information Processing Systems, pages 2073–2081,
2016.

H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, and R. E. Stearns. The complexity of
planar counting problems. SIAM J. Comput., 27(4):1142–1167, 1998.

M. Karsai, G. Iniguez, K. Kaski, and J. Kertesz. Complex contagion process in spreading
of online innovation. Journal of the Royal Society Interface, 11:20140694–1–20140694–8,
2014.

M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learning Theory. MIT
Press, Cambridge, MA, 1994.

J. Kleinberg, S. Mullainathan, and J. Ugander. Comparison-based choices.
arXiv:1705.05735v1 [cs.DS], May 2017.

C. A. Latkin. Outreach in natural settings: The use of peer leaders for HIV prevention
among injecting drug users’ networks (supplement). Public Health Reports, 113:151–159,
1998.

J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

E. L. Lloyd and S. Ramanathan. On the complexity of distance-2 coloring. In Computing and
Information - ICCI’92, Fourth International Conference on Computing and Information,
Toronto, Ontario, Canada, May 28-30, 1992, Proceedings, pages 71–74, 1992.

A. Lokhov. Reconstructing parameters of spreading models from partial observations. In
Advances in Neural Information Processing Systems, pages 3467–3475, 2016.

S. T. McCormick. Optimal approximation of sparse Hessians and its equivalence to a graph
coloring problem. Math. Programming, 26(2):153–171, 1983.

L. Miao and Y. Fan. The distance coloring of graphs. Acta Mathematica Sinica, 30(9):
1579–1587, 2014.

M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, New York, NY, 2005.

W. Mulzer and G. Rote. Minimum-weight triangulation is NP-hard. J. ACM, 55(2):11:1–
11:29, 2008.

K. P. Murphy. Passively learning finite automata. Technical Report 96-04-017, Santa Fe
Institute, Santa Fe, NM, 1996.

41

http://snap.stanford.edu/data


Adiga, Kuhlman, Marathe, Ravi, Rosenkrantz, Stearns

H. Narasimhan, D. C. Parkes, and Y. Singer. Learnability of influence in networks. In
Advances in Neural Information Processing Systems, pages 3186–3194, 2015.

C. H. Papadimitriou and T. Roughgarden. Equilibria in symmetric games. Report, Stanford
University, 2003.

B. A. Prakash, D. Chakrabarti, N. Valler, M. Faloutsos, and C. Faloutsos. Threshold con-
ditions for arbitrary cascade models on arbitrary networks. Knowledge and Information
Systems, 33(3):549–575, 2012.

D. M. Romero, B. Meeder, and J. Kleinberg. Differences in the mechanics of information
diffusion across topics: Idioms, political hashtags, and complex contagion on Twitter. In
Proceedings of the 20th International Conference on World Wide Web, pages 695–704.
ACM, 2011a.

D. M. Romero, B. Meeder, and J. Kleinberg. Differences in the mechanics of information
diffusion across topics: Idioms, political hashtags, and complex contagion on twitter.
In Proceedings of the 20th international conference on World wide web, pages 695–704.
ACM, 2011b.

S. B. Rosenthal, C. R. Twomey, A. T. Hartnett, H. S. Wu, and I. D. Couzin. Revealing
the hidden networks of interaction in mobile animal groups allows prediction of complex
behavioral contagion. Proceedings of the National Academy of Sciences, 112(15):4690–
4695, 2015.

F. C. Santos, M. D. Santos, and J. M. Pacheco. Social diversity promotes the emergence of
cooperation in public goods games. Nature, 454(7201):213–216, 2008.

T. C. Schelling. Dynamic models of segregation. Journal of Mathematical Sociology, 1:
143–186, 1971.

T. C. Schelling. Micromotives and Macrobehavior. Norton, New York, NY, 1978.

T. Schmidt. Computational complexity of SAT, XSAT and NAE-SAT for linear and mixed
Horn CNF formulas. Ph.D. Thesis, Department of Mathematics, University of Koln,
2010.

B. Settles. Active learning literature survey. Technical report, University of Wisconsin-
Madison Department of Computer Sciences, 2009.

S. G. Sherman, D. S. Ganna, K. E. Tobin, C. A. Latkin, C. Welsh, and P. Bielenson. The
life they save may be mine: Diffusion of overdose prevention information from a city
sponsored programme. International Journal of Drug Policy, 20:137–142, 2009.

R. H. Sloan, B. Szorenyi, and G. Turan. Learning boolean functions with queries. In Boolean
Models and Methods in Mathematics, Computer Science and Engineering, chapter 7,
pages 221–256. Oxford University Press, New York, NY, 2013.

S. Soundarajan and J. E. Hopcroft. Recovering social networks from contagion information.
In Proceedings of the 7th Annual Conference on Theory and Models of Computation, pages
419–430. Springer, 2010.

42



Inferring Symmetric Node Functions of Graph Dynamical Systems

E. A. Stevens and M. J. Prinstein. Peer contagion of depressogenic attributional styles
among adolescents: A longitudinal study. Journal of Abnormal Child Psychology, 33(1):
25–37, 2005.

J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg. Structural diversity in social
contagion. Proceedings of the National Academy of Sciences, 109(16):5962–5966, 2012.

T. W. Valente. Network Models of the Diffusion of Innovations. Hampton Press, 1995.

T. W. Valente. Social network thresholds in the diffusion of innovations. Social Networks,
18:69–89, 1996.

T. W. Valente. Social Networks and Health: Models, Methods, and Applications. Oxford
University Press, New York, NY, 2010.

T. W. Valente. Network interventions. Science, 337:49–53, 2012.

V. V. Vazirani. Approximation Algorithms. Springer, New York, NY, 2001.

D. J. Watts. A simple model of global cascades on random networks. Proceedings of the
National Academy of Sciences, 99:5766–5771, 2002.

D. B. West. Introduction to Graph Theory. Prentice-Hall, Englewood Cliffs, NJ, 2001.

K. Zhu, C. Chen, and L. Ying. Catch’em all: Locating multiple diffusion sources in net-
works with partial observations. In Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, pages 1676–1683, 2017.

43


	Introduction
	Discrete dynamical systems and their significance
	Motivation for local function inference
	Active querying and its significance
	Summary of Results
	Related Work
	Organization

	Synchronous Dynamical Systems (SyDSs) and Query Model
	Formal Definitions
	Classes of Local Functions
	Query Model

	Lower Bounds on Sizes of Query Sets
	Querying Under the Batch Mode: Results for Symmetric Node Functions
	Generating Query Sets Based on Node Coloring
	Obtaining a Query Sequence From Node Coloring
	Generating Coloring from a Monotone Complete Query Sequence

	Generating query sets based on probabilistic methods
	Complexity of Generating Small Monotone Complete Query Sequences
	Generating Concise Query Sets: A Generalized Version

	Query Sets Under the Adaptive Mode: Results for Threshold Functions
	Query Set Compaction
	Problem Definition
	Complexity Results for QSC
	An Approximation Algorithm for QSC

	Experimental Results
	Overview
	Method 1: Approach Based on Coloring 
	Experiments on Query Compaction
	Method 2: An Adaptive Algorithm

	Directions for Future Work
	Generating query sets based on probabilistic methods
	Implementation, computing environment and time

