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Abstract. Cycles or loops in a network embed higher-order interactions
beyond pairwise relations. The cycles are essential for the parallel pro-
cessing of information and enable feedback loops. Despite the fundamen-
tal importance of cycles in understanding the higher-order connectivity,
identifying and extracting them are computationally prohibitive. This
paper proposes a novel persistent homology-based framework for extract-
ing and modelling cycles in brain networks using the Hodge Laplacian.
The method is applied in discriminating the functional brain networks
of males and females. The code for modeling cycles through the Hodge
Laplacian is provided in https://github.com/laplcebeltrami/hodge.

Keywords: Topological data analysis · Persistent homology · Hodge
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1 Introduction

The human brain network is a complex system that exhibits collective behaviors
at multiple spatial and temporal scales [25]. The mechanisms responsible for
these behaviors are often attributed to the higher-order interactions that occur
across multiple scales. Understanding the higher-order interactions of the brain
regions is crucial to modelling the dynamically evolving structural and functional
organization of the brain networks.

The brain networks are often analyzed using graph theory methods that pro-
vide quantitative measures ranging from local scales at the node level to global
scales at the large community level [4]. Despite the success of graph theory
approaches, they can only account for pairwise (dyadic) interactions [2]. The
representation of complex networks using high-dimensional objects such as tri-
angles to capture triadic interactions has recently gained traction [2,11,19,22].
The mathematical construct used for this purpose is the simplicial complex,
which contains basic building blocks referred to as simplices: nodes (0-simplices),
edges (1-simplices), triangles (2-simplices) and tetrahedrons (3-simplices). These
simplices systematically encode higher-order interactions [12]. The dynamics of
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these interactions across multiple scales are quantified by hierarchically gener-
ating a nested sequence of simplicial complexes called the filtration in persistent
homology [10]. In a simplicial complex representation of the brain network, some
regions are densely connected while others remain sparse leading to the formation
of cycles [21]. A cycle in a brain network is the most fundamental higher-order
interaction, which allows for the information flow in a closed path and enables
feedback [17,21]. However, it is not trivial to extract or explicitly model them
[5,9,10].

This paper aims to model the cyclic relationship in brain networks using
the Hodge Laplacian. Further, we develop a new topological inference procedure
to characterize cycles across subjects and determine the most discriminating
cycles between groups. The explicit cycle modelling framework we introduced
allows us to localize the connections contributing to this difference, a novelty not
attainable by existing persistent homology methods [7,10,16,20]. The method
is applied in determining the most discriminating cycles between the male and
female brain networks obtained from the resting-state functional magnetic reso-
nance images (fMRI).

2 Methods

2.1 Homology of a Simplicial Complex

A k-simplex σk = (v0, · · · , vk) is a k-dimensional convex hull (polytope) of nodes
v0, · · · , vk. A simplicial complex K is a set of simplices such that for any τi, τj ∈
K, τi ∩ τj is a face of both simplices; and a face of any simplex τi ∈ K is also a
simplex in K [10]. A 0-skeleton is a simplicial complex consisting of only nodes.
A 1-skeleton is a simplicial complex consisting of nodes and edges. Graphs are
1-skeletons. A k-chain is a finite sum

∑
aiτi, where the ai are either 0 or 1. The

set of k-chains forms a group and a sequence of these groups is called a chain
complex. To relate different chain groups, we use the boundary maps [24]. For two
successive chain groups Kk and Kk−1, the boundary operator ∂k : Kk −→ Kk−1

for each k-simplex σk is given by

∂k(σk) =
k∑

i=0

(−1)i(v0, · · · , v̂i, · · · , vk),

where (v0, · · · , v̂i, · · · , vk) gives the k-1 faces of σk obtained by deleting node v̂i.
The matrix representation Bk = (Bij

k ) of the boundary operator is given by

B
ij
k =

⎧
⎪⎨

⎪⎩

1, if σi
k−1 ⊂ σj

k and σi
k−1 ∼ σj

k

−1, if σi
k−1 ⊂ σj

k and σi
k−1 � σj

k

0, if σi
k−1 �⊂ σj

k

, (1)

where ∼ and � denote similar and dissimilar orientations respectively.
The kernel of the boundary operator is denoted as Zk = ker(∂k) and its image

denoted as Bk = img(∂k+1). Zk and Bk are the subspaces of Kk. The elements
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of Zk and Bk are known as k-cycles and k-boundaries respectively [14]. Note
that Bk ⊆ Zk. The set quotient Hk = Zk/Bk is termed as the k-th homology
group [6,14,24]. The k-th Betti number βk = rank(Hk) counts the number of
algebraically independent k-cycles. The first homology group is H1 = ker(∂1)
since img(∂2) = ∅.

2.2 Spectral Representation of 1-cycles

Hodge Laplacian. The Hodge Laplacian Lk is a higher dimensional general-
ization of the graph Laplacian for k-simplices [16]. The k-th Hodge Laplacian
Lk is defined as

Lk = Bk+1B
�
k+1 + B

�
k Bk. (2)

The k-th homology group Hk is the kernel of Hodge Laplacian, i.e., Hk = kerLk

[16]. The kernel space of Lk is spanned by the eigenvectors corresponding to the
zero eigenvalues of Lk. The multiplicity of the zero eigenvalues is βk. The eigen
decomposition of Lk is given by

LkUk = UkΛk, (3)

where Λk is the diagonal matrix consisting of eigenvalues of Lk with correspond-
ing eigenvectors in the columns of Uk. Brain networks are usually represented
as connectivity matrices, from which the 1-skeleton can be obtained by thresh-
olding. For 1-skeletons, the boundary matrix B2 = 0 and the Hodge Laplacian
is reduced to L1 = B

�
1 B1 [16].

Fig. 1. Construction of 1-cycle basis. STEP 1: A graph is decomposed into MST (T )
and non-MST (K′). STEP 2: The subgraphs are formed by adding an edge in K′ to T
(dotted lines). kerL1 for each subgraph is computed to extract a 1-cycle.
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Basis Representation of Cycles. We partition the edges of a graph into the
maximum spanning tree (MST) (T ) and non-MST parts (K ′) (Fig. 1) [23]. If the
m-th edge σm

1 in K ′ is added to T , a subgraph

Xm = {T ∪ σm
1 : σm

1 ∈ K ′}

with exactly one 1-cycle is formed. The Hodge Laplacian on Xm will yield the
eigen decomposition identifying the 1-cycle. The entries of the corresponding
eigenvector will have non-zero values only for those edges that constitute the
cycle and the rest of entries are zero. The m-th 1-cycle is given by

Cm =
|K1|∑

j=1

cjm, where cjm =

{
uj
mσj

1, if σj
1 ∈ Xm

0, otherwise
. (4)

Here, uj
m is the j-th entry of the m-th eigenvector (a column of U1) correspond-

ing to zero eigenvalue. We can show that Cm forms a basis [1].

Theorem 1. 1-cycles C1, · · · , C|K′| spans kerL1 and forms a basis over the col-
lection of all possible 1-cycles.

Proof. Let Em be the edge set of the cycle Cm. Since Em and En differ at
least by two edges, they are algebraically independent. Hence, all the cycles
C1, · · · , C|K′| are linearly independent from each other. Since there should be
exactly β1 = |K ′| number of independent cycles in the 1-st Homology group
H1 = kerL1, {C1, · · · , C|K′|} spans kerL1.

Example 1. We illustrate how to compute the 1-cycle basis. Consider the sub-
graph T ∪ [1, 2] in Fig. 1. The boundary matrix B1 and the corresponding Hodge
Laplacian L1 is computed as

B1 =

[1, 2] [1, 4] [1, 5] [2, 4] [3, 4]
⎛

⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎠

[1] 1 1 1 0 0
[2] �1 0 0 1 0
[3] 0 0 0 0 1
[4] 0 �1 0 �1 �1
[5] 0 0 �1 0 0

L1 = B
T
1 B1 =

⎛

⎜
⎜
⎜
⎜
⎝

2 1 1 �1 0
1 2 1 1 1
1 1 2 0 0
�1 1 0 2 1
0 1 0 1 2

⎞

⎟
⎟
⎟
⎟
⎠

.

The eigen decomposition L1U1 = U1Λ1 is given by

U1 =

u1 u2 u3 u4 u5
⎛

⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎠

[1, 2] 0.58 �0.25 0.37 �0.60 0.33
[1, 4] �0.58 �0.49 0.00 0.00 0.65
[1, 5] 0.00 0.57 �0.60 �0.37 0.42
[2, 4] 0.58 �0.25 �0.37 0.60 0.22
[3, 4] 0.00 0.57 0.60 0.37 0.43

Λ1 =

⎛

⎜
⎜
⎜
⎜
⎝

0.00 0 0 0 0
0 0.70 0 0 0
0 0 1.38 0 0
0 0 0 3.62 0
0 0 0 0 4.30

⎞

⎟
⎟
⎟
⎟
⎠

.
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The 1-cycle is then represented as

C1 = 0.58σ1
1 − 0.58σ2

1 + 0.00σ3
1 + 0.00σ4

1 + 0.58σ5
1 + 0.00σ6

1 ,

where σ1
1 = [1, 2], σ2

1 = [1, 4], σ3
1 = [1, 5] , σ4

1 = [2, 3], σ5
1 = [2, 4], and σ6

1 = [3, 4].
Similarly, the cycle in the second subgraph T ∪ [2, 3] is represented as

C2 = 0.00σ1
1 + 0.00σ2

1 + 0.00σ3
1 + 0.58σ4

1 − 0.58σ5
1 + 0.58σ6

1 .

Any cycle in the graph X can be represented as a linear combination of basis
C1 and C2. For large graphs, the coefficients of basis expansion can be vectorized
and efficiently stored as a sparse matrix.

2.3 Common 1-Cycles Across Networks

Using the 1-cycle basis, we identify common 1-cycles across different networks.
We extend the idea of extracting 1-cycle basis for a single network (individual
level) to collection of networks (group level). Let S̄ = (S̄i,j) be the average of
all the individual connectivity matrices. S̄ is used to construct a graph X̄ where
we assume any two nodes (i, j) in X̄ is incident by an edge if S̄i,j > 0, i.e.,
positive correlations [3,18,30]. The cycles extracted from X̄ will represent the
common cycle basis. To reflect the individual network variability, we model the
vectorized individual network connectivity M as a linear combination of the
common 1-cycle basis. This gives the minimization problem

arg min
α

‖M − ψα‖22, (5)

where the basis matrix ψ =
[
C1, · · · , C|K′|

]
, and Cm’s are the 1-cycle basis from

X̄ . The coefficients vector α = [α1, · · · , α|K′|]� is estimated in the least squares
fashion as α̂ = (ψ�ψ)−1ψ�M.

Let ᾱ1
m and ᾱ2

m be the mean coefficients corresponding to the m-th 1-cycle
basis of networks in group N1 and N2 respectively. We propose the following
statistic for testing the group difference [1]:

T (N1,N2) = max
1≤m≤|K′|

|ᾱ1
m − ᾱ2

m|. (6)

The statistical significance is determined using the permutation test [8].

3 Validation

The proposed methodology is validated on network simulations with different
number of cycles. The simulation is done using deltoid, limaçon trisectrix and tri-
folium [29]. Groups 1 and 2 have three 1-cycles each and are topologically equiv-
alent. Groups 3 and 4 have five 1-cycles each and are topologically equivalent. 50
points were sampled along these curves and perturbed with noise N(0, 0.0252).
10 networks were generated in each group. All the networks consist of identical
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number of nodes. For networks with different number of nodes, data augmenta-
tion can be done [23]. The simulation code is provided in https://github.com/
laplcebeltrami/hodge (Fig. 2).

We validated whether the test statistic (6) can discriminate networks with
different topology. 10, 000 permutations were used to compute the p-values. Since
there are no established methods for modeling cycles, we validated our method
against geometric distances L1, L2, L∞ and the Gromov-Hausdorff (GH) dis-
tance [8]. The simulations were performed 50 times and the results are given
in Table 1, where the average p-values are reported. Also, we reported the false
positive rates computed as the fraction of 50 simulations with p-values below
0.05 and the false negative rates computed as the fraction of 50 simulations with
p-values above 0.05 [23].

Fig. 2. Random networks used in Validation. Groups 1 and 2 have three 1-cycles and
topologically equivalent. Groups 3 and 4 have five 1-cycles and topologically equivalent.

We tested if the proposed method can detect topological equivalence by com-
paring Groups 1 vs. 1, 2 vs. 2, 1 vs. 2, 3 vs. 3, 4 vs. 4 and 3 vs. 4 (first 6 rows).
The test procedures should not detect signals and higher p-values and smaller
false positive rates are preferred. The proposed method T performed well com-
pared to the other distances. We also tested if the proposed method can detect
topological difference by comparing Groups 1 vs. 3, 1 vs. 4, 2 vs. 3 and 2 vs. 4.
The test procedures should detect signals and smaller p-values and smaller false
negative rates are preferred. T consistently outperformed the other distances.

This study shows that existing methods will likely produce significant topo-
logical false negatives while reasonably good at not producing large false posi-
tives. However, the proposed method will not produce large amount of topolog-
ical false positives and negatives at the same time.

4 Application

Dataset. We used a subset of the resting-state fMRI (rs-fMRI) data in the
Human Connectome Project [27,28]. rs-fMRI are collected at 2 mm isotropic

https://github.com/laplcebeltrami/hodge
https://github.com/laplcebeltrami/hodge
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Table 1. The performance results showing average p-values, false positive rates (first
6 rows) and false negative rates (last 4 rows). Group 1 and 2 have three 1-cycles and
topologically equivalent. Group 3 and 4 have five 1-cycles and topologically equivalent.
Smaller false positive and false negative rates are preferred.

Groups L1 L2 L∞ GH T
1 vs. 1 0.26 ± 0.15 0.27 ± 0.14 0.24 ± 0.13 0.45 ± 0.31 0.60 ± 0.26

(0.04) (0.04) (0.00) (0.12) (0.00)

2 vs. 2 0.29 ± 0.14 0.31 ± 0.15 0.26 ± 0.14 0.56 ± 0.25 0.53 ± 0.29

(0.04) (0.00) (0.12) (0.04) (0.04)

1 vs. 2 0.27 ± 0.15 0.25 ± 0.15 0.20 ± 0.12 0.43 ± 0.24 0.38 ± 0.28

(0.08) (0.08) (0.12) (0.04) (0.16)

3 vs. 3 0.28 ± 0.16 0.27 ± 0.15 0.23 ± 0.15 0.45 ± 0.25 0.52 ± 0.31

(0.08) (0.04) (0.04) (0.00) (0.08)

3 vs. 4 0.23 ± 0.14 0.23 ± 0.14 0.26 ± 0.13 0.52 ± 0.27 0.52 ± 0.30

(0.18) (0.12) (0.18) (0.04) (0.03)

4 vs. 4 0.32 ± 0.15 0.30 ± 0.15 0.24 ± 0.14 0.49 ± 0.28 0.41 ± 0.28

(0.04) (0.04) (0.16) (0.10) (0.04)

1 vs. 3 0.26 ± 0.14 0.25 ± 0.14 0.27 ± 0.13 0.00 ± 0.00 0.00 ± 0.00

(0.92) (0.88) (0.88) (0.00) (0.00)

1 vs. 4 0.29 ± 0.14 0.28 ± 0.16 0.27 ± 0.16 0.00 ± 0.00 0.00 ± 0.00

(0.72) (0.80) (0.72) (0.00) (0.00)

2 vs. 3 0.25 ± 0.17 0.24 ± 0.17 0.25 ± 0.15 0.00 ± 0.00 0.00 ± 0.00

(0.76) (0.76) (0.88) (0.00) (0.00)

2 vs. 4 0.27 ± 0.15 0.23 ± 0.15 0.22 ± 0.14 0.00 ± 0.00 0.00 ± 0.00

(0.88) (0.80) (0.96) (0.00) (0.00)

voxels and 1200 time points [27]. Data that went through the standard mini-
mal preprocessing pipelines [13] was used. Volumes with framewise displacement
larger than 0.5mm and their neighbors were scrubbed [27,28]. Twelve subjects
having excessive head movement were excluded from the dataset. Subsequently,
the Automated Anatomical Labeling (AAL) template is used to parcellate and
average rs-fMRI spatially into 116 non-overlapping anatomical regions [26]. The
details on image processing are given in [15]. The final data is comprised of the
fMRI of 400 subjects of which 168 are males and 232 are females.

Sexual Dimorphism in 1-Cycles. We constructed the network template
by averaging 400 subjects connectivity matrices. The 1-cycle basis was then
extracted from this network template. The average network template contains
p = 116 nodes, hence we expect q = p(p − 1)/2 = 6555 linearly independent
1-cycles [23]. Each individual connectivity matrix is then expanded and the test
carried out using the estimated expansion coefficients resulting in the observed
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Fig. 3. Top: The four most discriminating cycles corresponding to maximum test statis-
tic values. The edge colors correspond to the edge weight differences (female - male).
Bottom: The four most discriminating connected components. The size of nodes cor-
respond to the weighted node degree differences (female - male).

test statistic of 0.41. 0.1 million permutations were used to obtain the p-value of
0.03. We compared the discriminating power of our method against geometric
distances L1, L2, L∞ and GH distance, which respectively give the p-values of
0.014, 0.004, 0.013, 0.54. All the baseline methods performed well except for
the GH distance. Nonetheless, only the statistic T can localize the connections
contributing to the difference. Figure 3-top shows the four most discriminating
cycles. The edge color represents the average correlation difference between the
groups.

Sexual Dimorphism in 0-Cycles. Our method for 1-cycles is also applica-
ble to 0-cycles (connected components) by replacing Hodge Laplacian L1 with
graph Laplacian L0. The basis will be defined along nodes. The j-th basis vector
will have value 1 at node j and 0 in other places. Including the test statistic,
the same pipeline can be used. Since no data is defined on nodes, we used the
weighted degree (sum of correlations of all the edges connecting at each node).
The observed test statistic is 27.41, which gives the p-value of 0.006. Figure 3-
bottom shows the four most discriminating 0-cycles. The node size corresponds
to the difference (female - male) in the weighted degree between the groups.

5 Conclusion

We proposed a novel Hodge Laplacian framework for explicitly identifying and
modelling cycles in brain networks. We were able to show that cycles, both 0- and
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1-cycles are topologically significant features in discriminating between males
and females. The four most discriminating 1-cycles include the inferior pari-
etal lobule (Parietal-Inf-L), the rolandic operculum (Rolandic-Oper-L, Rolandic-
Oper-R), and the amygdala (Amygdala-R, Amygdala-L) (Fig. 3-top). The sym-
metric connections between the left and right rolandic operculum, superior pari-
etal lobule as well as the middle cingulate are consistently showing up in at least
2 most dominating cycles. The most discriminating 0-cycles (Fig. 3-bottom) also
contain most of these brain regions. The method can be extended to higher order
connectivity such as 2-cycles using higher order Hodge Laplacians. This is left
as a future study.
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