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Abstract

Understanding metabolic heterogeneity is critical for optimizing microbial production of valuable
chemicals, but requires tools that can quantify metabolites at the single-cell level over time. Here,
we develop longitudinal hyperspectral stimulated Raman scattering (SRS) chemical imaging to
directly visualize free fatty acids in engineered Escherichia coli over many cell cycles. We also
develop compositional analysis to determine the chain length and unsaturation of the fatty acids in
living cells. Our method reveals substantial heterogeneity in fatty acid production among and
within colonies that emerges over the course of many generations. Interestingly, the strains display
distinct types of production heterogeneity in an enzyme-dependent manner. By pairing time-lapse
and SRS imaging, we examine the relationship between growth and production at the single-cell
level. Single-cell quantification does not show a significant growth-production tradeoff in a strain
that exhibits high production heterogeneity. Our results demonstrate that cell-to-cell production
heterogeneity is pervasive and provide a means to link single-cell and population-level production.

Introduction

Microbial production of chemicals has the potential to provide a sustainable source of products
ranging from fuels to specialty materials (1-4). A major difficulty holding back the replacement
of industrial chemicals with bio-based alternatives is that bioproduction often falls short in terms
of conversion metrics that dictate economic feasibility, such as titer, rate, and yield. Over the past
two decades, researchers have made great strides in identifying metabolic pathways capable of
producing a diverse array of useful chemicals (5). However, the reality is that extensive
engineering and optimization are required for any given chemical to compete as an alternative to
those sourced from petroleum.

Producing chemicals in cells offers many advantages, but presents unique industrial challenges.
For example, cell-to-cell variation and genetic mutations can result in production heterogeneity
during fermentation that limits overall process efficiency. Single-cell variation can stem from a
variety of causes, such as stochasticity in the underlying biological processes (6, 7), variations in
media environments within cultures (8), or selection pressures against high producing cells causing
mutational escape variants (9, 10). However, the frequency and impact of production variation and
how it changes over time are largely unknown. Methods that enable quantification of heterogeneity
and its emergence are a prerequisite to understanding the root cause and implementing designs that
mitigate its effect on overall efficiency.

Here, we focus on fatty acid synthesis, which is an attractive pathway for metabolic engineering
because it offers a biological means to synthesize linear hydrocarbons. Fatty acids and their
derivatives are high demand chemicals that can be used as fuels, commodities, and specialty
chemicals. Numerous studies have aimed at increasing the efficiency of fatty acid synthesis
pathways as well as controlling the species of fatty acid produced (11-14). Termination enzymes
that interface with this pathway can be used to produce a wide variety of high-value fatty acid
derivatives such as alkanes, olefins, and alcohols (15).

Current methods to measure production strain performance include mass spectrometry, fluorescent
biosensors, and dyes. Mass spectrometry-based techniques provide exquisite chemical specificity
but are limited in their ability to quantify single cells, which means they can overlook valuable
information about population heterogeneity that is key to predicting population stability during
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71  scale-up (16-18). Further, because the measurement process is destructive, it is not possible to
72 follow production changes within the same cells over time. Biosensor-based fluorescent assays, in
73  contrast, can capture dynamic, single-cell information. These systems are amenable to high
74  throughput screens and are non-destructive (19). However, well-characterized biosensors are
75  scarce in comparison to the number of chemicals metabolic engineers can produce. Additionally,
76  significant optimization is often necessary to fine tune the concentration responsive range of a
77  Dbiosensor (20-22). In the case of fatty acid production, lipophilic dyes such as Nile red have been
78 used to measure production (23), however these stains lack lipid specificity. Further, both
79  biosensor and dye-based measurements are indirect readouts of chemical production.
80
81  Given the drawbacks of current screening methods, we sought to develop an alternative approach
82  that can capture production and composition information in single cells over time. Stimulated
83 Raman scattering (SRS) is an ideal candidate, as it is a non-destructive, label-free vibrational
84  spectroscopic imaging method that directly detects chemical compounds based on intrinsic
85  molecular vibrations (24, 25). The ability of SRS to probe metabolic activities in live cells has
86 been demonstrated on microalgae (26) and mammalian cells (27) for short periods of time.
87  Although SRS imaging of industrially relevant microbes such as E. coli has been reported (28, 29),
88 itsuse has been limited to conditions where cells were either fixed or where only a single timepoint
89  was required. Performing longitudinal SRS for compositional chemical imaging on live microbes
90 remains challenging. This is mainly attributed to their small size (e.g. E. coli are 1-2 pm in length),
91  which shortens the axial signal integration length, and thus yields weaker SRS signals compared
92  to larger cells. In the context of metabolic engineering, where compositional information on
93  products is critical, one needs to perform hyperspectral SRS to generate pixel-wise Raman spectra
94  for molecular fingerprinting. However, due to significant spectral overlaps between metabolites,
95 especially in the carbon-hydrogen (C-H) region, existing hyperspectral SRS image processing
96 methods only provide unsaturation levels of fatty acids (30). They also fail to deliver information
97  on chain length, which is equally important for free fatty acid synthesis.
98
99  Here, we introduce a longitudinal hyperspectral SRS method to study metabolically engineered E.
100  coli, monitoring free fatty acid production and composition in live cells. We perform SRS in the
101  C-H region which maximizes SRS signals. To overcome spectral cross-talk in the region, we
102  develop a hyperspectral image analysis technique that generates chain length and unsaturation
103  level predictions, allowing for chemical readouts that are analogous to GC-MS. First, we
104  demonstrate that we can clearly distinguish fatty acid production strains from wild type E. coli by
105  deconstructing images into maps of their chemical components. With the ability to measure
106  production at the single-cell level, we examine heterogeneity in fatty acid production strains and
107  observe both colony-level heterogeneity and substantial cell-to-cell differences in production. We
108  optimize imaging parameters to enable longitudinal hyperspectral SRS imaging to capture fatty
109 acid production over time in growing cells. Next, we use longitudinal measurements to
110  demonstrate dynamic differences in fatty acid production and composition within the same strain.
111  To the best of our knowledge, this is the first demonstration of longitudinal hyperspectral SRS
112 imaging of live cells over many cell cycles. Lastly, we pair SRS microscopy with time-lapse phase
113  contrast microscopy and automated segmentation analysis to examine relationships between
114  production and growth.
115
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116  Overall, our study presents two important advances of SRS microscopy, namely fatty acid chain
117  length extraction and longitudinal imaging of proliferating cells. Upon these advances, we report
118  discoveries of metabolic heterogeneity among different cells in a colony and temporal
119  heterogeneity throughout colony formation.

120

121 Results

122

123 Hyperspectral SRS imaging of fatty acid production strains

124  Spectral signals from Raman scattering correspond to vibrational energies of covalent bonds. This
125  allows for direct imaging of chemicals without the need for labels such as fluorescent reporters or
126  dyes. Here, we deploy hyperspectral SRS (31-33) to obtain chemical maps of protein and fatty
127  acids. To achieve this, we chirp two broadband femtosecond laser beams (pump and Stokes) using
128  high-dispersion glass rods, producing linear temporal separation of the frequency components (Fig.
129  la, Fig. S1). The beating frequency of the two beams is linearly correlated with the temporal delay
130  between the two laser pulses. Using a two-dimensional galvo scanner, the combined laser beam is
131 moved across the x and y dimensions of the sample to generate an image. This process is then
132 repeated for a range of temporal delays, each of which produces a different wavenumber,
133 ultimately producing a hyperspectral SRS image generated in a frame-by-frame manner. The
134  spectral region surrounding the 2900 cm™ wavenumber is typically referred to as the ‘C-H region’
135 and has a strong SRS signal. Biomolecules such as proteins and fatty acids, which contain many
136  C-H bonds, show high Raman signal in this region. Importantly, SRS intensity scales linearly with
137  molecular concentrations. The strong signal in the C-H region enables high fidelity SRS imaging
138  with low optical powers that are compatible with live-cell imaging. Thus, this configuration can
139  be used to acquire longitudinal images of live cells, resulting in data across four dimensions: space
140  (x and y), wavenumber, and time. We set out to utilize SRS chemical imaging in the C-H region
141  to measure fatty acid production in metabolically engineered strains of E. coli.

142

143 Previous metabolic engineering efforts have focused on producing free fatty acids in E. coli using
144  the native type II fatty acid synthesis pathway (14, 20, 34). Introducing a heterologously expressed
145  acyl-acyl carrier protein (ACP) thioesterase can catalyze the formation and pooling of free fatty
146  acids from elongating acyl hydrocarbon chains that would otherwise be incorporated into
147  membrane phospholipids (35, 36) (Fig. 1b). We reasoned that SRS imaging could effectively
148  capture fatty acid in production strains due to the C-H-rich carbon chains present in fatty acids. To
149  test this hypothesis, we studied several production strains that were previously engineered to
150  produce high quantities of free fatty acids (Tables 1 and 2). We first focused on the strain AbTE*,
151  which expresses an acyl-ACP thioesterase from Acinetobacter baylyi, carrying G17R/A165R
152  mutations that improve enzymatic activity in E. coli (37). SRS images of AbTE* show increased
153  fatty acid production relative to the wild type strain, as evidenced by differences in both the
154  chemical spectra and visible fatty acid droplets around the cells (Fig. 1¢). Using spectral standards,
155 SRS images can be decomposed into their major chemical components to produce chemical maps
156  (Fig. 1d). We used standard spectra from pure protein (Bovine serum albumin, BSA), saturated
157  fatty acids (C10:0 and C16:0), and unsaturated fatty acids (C16:1) to decompose the hyperspectral
158 image (Fig. S2). To achieve this, we used a least absolute shrinkage and selection operator
159 (LASSO) linear unmixing analysis to separate the hyperspectral image into its chemical
160  components (Methods). This results in two dimensional chemical maps for protein and fatty acid
161  components. Protein levels were comparable between wild type and AbTE* strains, with slightly
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162  elevated levels in the engineered strain. In contrast, the fatty acid signal in the AbTE* strain was
163  significantly stronger than in wild type. Wild type cells contain membrane phospholipids, however
164  these signals are much weaker than those recorded in the ADTE* strain (Fig. S3). It should be noted
165  that these strains were sampled from liquid culture, where free fatty acids are secreted and can
166  aggregate in the media. As a consequence, the large fatty acid drops are not necessarily produced
167 Dby the cells within the field of view, but could be an aggregate of fatty acid produced from many
168  cells in the liquid culture. In subsequent studies we address this by growing cells on agarose pads
169  to allow for affiliation of cells and the fatty acids they produce, however snapshots from liquid
170  culture provide a view into the aggregate production.

171

172 Characterization of enzymatic specificity, chain length distribution, and degree of
173  unsaturation

174  Analytical chemistry methods such as GC-MS are typically employed to measure chemical
175 production because they offer precise chemical specificity information. For fatty acid
176  quantification, gas chromatography effectively separates fatty acid esters based on chain length
177  and, along with mass/charge spectra, can specifically read out fatty acid ester chain length and
178  unsaturated bonds. From a metabolic engineering perspective, quantification of a fatty acid
179  production strain’s chain length distribution and level of unsaturation are critical. For biofuel
180  purposes, chain length and termination chemistry can be tuned to mimic characteristics of fuel
181  sources such as gasoline, diesel, or jet fuel (38). Alternatively, medium chain fatty acids (C8-C12)
182  and their derivatives can be sources of many specialty chemicals (39). With these end point
183  applications in mind, we sought to extend SRS imaging capabilities to capture the specific profiles
184  of free fatty acid production strains.

185

186  Although pure fatty acids of different chain lengths have different spectra in the C-H region, they
187  are too similar to accurately decompose using spectral unmixing with LASSO linear regression
188 analysis. However, we expanded our analysis methodology to take advantage of spectral windows
189  that correspond to CH, or CH3 bonds, which are present in the 2832-2888 cm™! and 2909-2967 cm
190 ! wavenumber regions, respectively (40). Since a saturated fatty acid has an increasing number of
191 CH: bonds as the chain length increases, but the terminal CHs; bond number is constant, we
192  reasoned that the ratio of the CH2/CH3 spectral windows would scale with chain length (Fig. 2a).
193  Using pure saturated fatty acid standards of variable chain length, we observed a nearly linear (R?
194  =0.97) relationship between chain length and the ratio of CH2/CH3 area under the curve (Fig. 2b).
195  We next tested whether we could use this relationship to estimate chain length production profiles.
196

197 In E. coli, fatty acid biosynthesis is carried out through a multistep, enzymatic Claisen reduction
198  (41). The enzymatic components of type II fatty acid synthesis in E. coli are encoded as separate
199  proteins, creating a pathway in which two carbons are added to an elongating acyl-ACP chain with
200 each cycle (Fig. 2c¢). The number of cycles around this pathway before the elongating acyl chain
201  is cleaved by an acyl-ACP thioesterase determines the resulting fatty acid chain length. The
202  primary factor driving chain length is thought to be the enzymatic specificity of the heterologously
203  expressed thioesterase (11, 42). Researchers have carried out numerous efforts to engineer
204  specificity of acyl-ACP thioesterases in order to create desired chain length profiles (14, 37, 43—
205  45). Several thioesterases have been shown previously to produce a range of free fatty acid chain
206  length profiles. Three examples are CpFatB1*, AbTE*, and ‘TesA. The CpFatB1* and AbTE*
207  thioesterases originate from Cuphea palustris and A. baylyi, respectively, and the “ * ” denotes
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208 mutants that were engineered to increase activity in E. coli (37, 46). ‘TesA is E. coli’s native
209 thioesterase, where the “ © ” denotes deletion of the leader sequence (35). Endogenously, TesA
210 contains a leader sequence that localizes the enzyme to the periplasm; deleting the leader peptide
211 sequence allows for interaction with cytosolic acyl-ACPs, enabling the production of free fatty
212 acids (35) (Fig. S4).

213

214  To test our ability to estimate chain length distributions using imaging, we examined strains
215  CpFatB1*, AbTE*-FV50, and ‘TesA-FV50, which each express a different thioesterase (Table 1,
216  Table 2). Strains AbTE*-FV50 and ‘TesA-FV50 additionally express heterologous fadR and
217  vhb50, which have been shown to increase free fatty acid production (12, 47). FadR is a
218  transcription factor that regulates many genes in the fatty acid synthesis pathway for increased free
219  fatty acid titer when expressed alongside ‘TesA. Vhb50 is a Vitreoscilla hemoglobin that further
220 increases fatty acid production by increasing oxygen uptake. We conducted an experiment in
221  which each of the three strains were grown in liquid culture and thioesterase expression was
222 induced for 24 hours to produce free fatty acids. Samples from each production culture were taken
223 inparallel for GC-MS quantification and SRS hyperspectral imaging. As expected, GC-MS results
224 show highly variable chain length distributions depending on the thioesterase expressed (Fig. 2d).
225  CpFatB1* primarily produces octanoic acid (C8:0). AbTE*-FV50 produces a mix of medium- and
226  long-chain saturated fatty acids with myristic acid (C14:0) as the largest component. Lastly,
227  ‘TesA-FV50 produces long-chain fatty acids with large contributions from both myristic (C14:0)
228  and palmitic acid (C16:0). Since each production strain has a unique chain length profile, they
229  serve as an ideal group of strains to test our ability to predict chain length distributions with SRS
230 imaging.

231

232 To implement chain length prediction, we first decomposed the spectra at each pixel into protein
233 and representative fatty acid chemical maps (C10:0, C16:0, C16:1). The protein and unsaturated
234 fatty acid maps were then subtracted from the raw SRS image to produce a hyperspectral SRS
235  image of saturated fatty acids (Fig. S5), which can be used to estimate the average chain length at
236  each pixel. We introduced a concentration weighting factor using the SRS spectral ensemble
237  intensity at the same pixel. The SRS predicted chain length distributions closely matches the
238  qualitative features of the GC-MS distributions (Fig. 2e). Importantly, the prediction captures
239  whether the strain produces primarily medium- or long-chain fatty acids, or a mixture of both. In
240  the case of ‘TesA-FV50, which produces primarily a mixture of C14 and C16, the SRS prediction
241  results in either chain length largely dominating. This may stem from the binning needed during
242 analysis to make a digital, even length prediction. For example, if a mixture of chain lengths is not
243 spatially separated, a pixel prediction of 14.9 will result in a binary chain length prediction of all
244  C14 (Methods). However, using several samples can correct for this type of issue, as seen in the
245  average chain length prediction for ‘TesA-FVS50.

246

247  To gauge unsaturation levels, we utilized the presence of the Raman peak at ~3000 cm™!, which is
248  unique to the C=CH> bonds in unsaturated fatty acids (Fig. 2f). This peak serves as an identifier of
249  unsaturation level and components from this fatty acid source can be unmixed with LASSO
250 regression. To demonstrate our ability to predict unsaturation level from production strains, we
251  tested the same three strains, which have different ratios of unsaturation to saturation (Fig. S4).
252 The ratio of unsaturation from GC-MS data scales linearly with predicted unsaturated ratios from
253 SRS images (Fig. 2g), giving an indication of the ability of this approach to predict the ratio of
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254  unsaturation. With the ability to calculate unsaturation level in addition to chain length
255  distributions from SRS images, we cover many aspects of free fatty acid production that are
256  important for metabolic engineers, bringing SRS hyperspectral imaging closer to a form of optical
257  mass spectrometry.

258

259  We next applied our compositional analysis to AbTE*-FV50 seeded and grown on agarose pads
260  (Fig. 2h). Highly productive strains will secrete end-products, making it difficult to track the source
261  of produced chemicals back to the cells that generated them. Therefore, sampling from liquid
262  culture for imaging does not accurately provide production heterogeneity information. To ensure
263 that free fatty acid production is tracked to the cells responsible for production, we first grew cells
264  on agarose pads such that production could be localized to the region containing the cells. We
265  observed a large aggregate of fatty acid outside the cells that is primarily composed of saturated,
266  long chain fatty acids. This differs from interpretations of GC-MS quantification where it is
267  assumed that long chain fatty acids remain within the cell (37). Additionally, single-cell chain
268  length maps display a relatively homogenous makeup of chain lengths between individual cells,
269  which is consistent with current understanding of the fatty acid synthesis pathway and thioesterase
270  specificity (15). However, without single-cell resolution it would not be possible to distinguish
271  between this scenario and one where chain length mixtures produced from bulk culture originate
272 from distinct subpopulations that produce primarily one chain length each.

273

274 Quantification of heterogeneity in fatty acid production strains

275  Given our ability to image production at the single-cell level, we asked whether our strains
276  displayed production heterogeneity in the overall levels of fatty acid produced. Previous studies
277  have reported sub-populations within production cultures that are less productive and lead to
278  decreased overall performance of the population in a scaled up bioprocess (23, 48). Single-cell
279  chemical imaging with SRS is uniquely suited to quantifying this phenomenon. We focused on
280  strains APTE*-FV50 and ‘TesA-FV50 for agarose pad experiments because CpFatB1* displayed
281  poor growth in the agarose pad conditions.

282

283  We first quantified fatty acid production from E. coli microcolonies of the wild type and ‘TesA-
284  FV50 production strain (Fig. 3a). Interestingly, ‘TesA-FV50 microcolonies exhibit a high level of
285  colony-to-colony production variation. This intercolony heterogeneity is visible in the fatty acid
286  chemical maps, with strains from the same original source exhibiting high and low producing
287  microcolonies. One possible explanation for these differences in production is variable
288  transcriptional regulation of key enzymes that are maintained through replication, leading to
289  metabolic bottlenecks (7, 49). Alternatively, the ability to manage toxicity associated with
290 production in the time frame following thioesterase induction may lead to divergent production
291  outcomes (50).

292

293  We also examined production heterogeneity in the fatty acid production strain, AbTE*-FV50.
294  Strikingly, we observed a very different type of production variation in this strain (Fig. 3b). Unlike
295  the intercolony heterogeneity in ‘TesA-FVS50, the AbTE*-FV50 strain has high heterogeneity
296  between cells in a single microcolony. We used the protein channel to segment the image into
297  single cells for analysis (Fig. S6) and quantified single-cell production (Fig. 3¢). Our quantification
298 indicates that in this strain a small percentage of cells produce the vast majority of fatty acids. This
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299  result is consistent across many fields of view within the microscopy images, suggesting that it is
300 a general feature of this production strain (Fig. S7).

301

302 Longitudinal SRS imaging of fatty acid production during growth of colonies

303  Understanding the dynamics of chemical production with single-cell resolution can provide key
304 insights into the emergence of heterogeneity, production bottlenecks, and can guide engineering
305 strategies to maximize metabolic flux. To that end, we sought to adapt the SRS system for
306 longitudinal imaging. While SRS imaging of living cells has been reported (26, 51, 52), its
307 application to chemical production over long periods of growth has not been demonstrated.
308 Previous work from Wakisaka, et al. achieved video rate SRS for short periods of time by reducing
309  spectral acquisitions to four points in the C-H region (26). For metabolic engineering applications,
310  however, spectral fidelity and time scales on the order of bioprocesses would provide a more useful
311 form of longitudinal imaging. Therefore, we sought to develop parameters amenable to
312 longitudinal imaging without loss of spectral information. We installed an incubator on the
313  microscope stage and grew live cells on agarose pads for at least 16 hours at 31°C. First, we tested
314  whether the routine laser powers we used for endpoint SRS imaging were damaging to live cells
315 (75 mW for 1040 nm Stokes and 15 mW for 800 nm pump at the sample). At the beginning of
316  longitudinal imaging, we captured a bright field transmission image and measured a hyperspectral
317 SRS image in one field of view (Fig. S8a-b). After 16 hours of incubation, cells that were
318 previously exposed to SRS imaging did not duplicate, nor did they produce significant levels of
319 fatty acids. In contrast, cells in a region in the immediate vicinity that had not been exposed to
320 imaging grew into a dense microcolony and produced fatty acid droplets (Fig. S8c-d). Although
321  the laser exposure did not induce visible cell damage, the photodamage altered cell growth,
322  indicating that these laser powers were too high.

323

324  To optimize the imaging conditions to reduce phototoxicity, we performed the same live-cell
325  experiment with lower laser powers. We obtained normal cell growth when we reduced the Stokes
326  power from 75 to 25 mW, while the pump laser at 800 nm was kept as 15 mW (Fig. S9). To
327  illustrate growth and fatty acid production, we measured transmission and SRS images for the
328  same field of view after 3 and 5 hours of incubation, seeing clear evidence of replication even after
329 SRS imaging. We took a final wide-field image at 6 hours, which showed that cells continued to
330 replicate normally, demonstrating that these laser power parameters permit growth. To further
331 probe how these imaging conditions impact cells, we utilized a stress-responsive promoter, Pivpas,
332  to drive expression of mRFP1 (Fig. S10a). Pipas is driven by the heat shock o-factor (6°2) and is
333  upregulated in response to stress (53). We first exposed cells to the 25 mW / 15 mW laser
334  intensities describe above and compared promoter activity to cells that received no SRS exposure
335  (Fig. S10b). Although these cells were able to grow, RFP expression indicates that intracellular
336  stress was significantly upregulated in response to SRS exposure. To lower laser exposure further,
337  weincreased the step size of each laser scan from 150 nm to 230 nm, corresponding to fewer pixels
338 per image. With the increased step size, RFP expression showed no significant difference relative
339  to the cells that received no laser exposure (Fig. S10b). Therefore, we concluded that using both
340 reduced laser powers and increased step size can allow for longitudinal SRS imaging.

341

342  With these optimized imaging conditions, we first tracked fatty acid production within the strain
343  ‘TesA-FV50. In line with heterogeneity patterns we originally observed in this strain (Fig. 3a), the
344  production trajectories varied across microcolonies (Fig. 4a-b). In one example, fatty acid signals
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345 increased in cells starting ~12 hours after thioesterase induction (Fig. 4a). After the microcolony
346  reached a high cell density on the agarose pad, we observed significant accumulation of fatty acids.
347  In contrast, a second microcolony of the same strain produced only low levels of fatty acid (Fig.
348  4b). For comparison, we also tracked the growth and fatty acid production of wild type cells under
349  the same conditions, observing only low levels of fatty acid production (Fig. S11). Time-lapse
350 wide-field transmission images for the wild type strain show that cells under SRS laser exposure
351 grew well during the entire experiment period and at levels comparable to those regions not
352  exposed to imaging, reaffirming that these conditions are non-toxic (Movie S1). We quantified
353  fatty acid and protein levels of each microcolony and the wild type strain. Protein levels in each
354  strain increased at comparable rates (Fig. 4¢). Fatty acid levels in the wild type colony increased
355 modestly while the high-producing ‘TesA-FV50 microcolony fatty acid levels increased
356  dramatically (Fig. 4d). The low-producing ‘TesA-FV50 microcolony produced fatty acids at levels
357  comparable to wild type.

358

359  The activity in the high-producing ‘TesA-FV50 microcolony is in line with known regulation
360 patterns in E. coli fatty acid synthesis. When high cell density is reached in wild type E. coli, the
361 pathway is inhibited by a buildup of acyl-ACPs. This mechanism is reported to act through direct
362 inhibitory interactions with key enzymes within the pathway, such as acetyl-CoA carboxylase,
363 FabH, and Fabl (54, 55). Additionally, acyl-ACP or acyl-CoA responsive transcription factors,
364 FadR and FabR, respectively, act to regulate transcriptional responses that control fatty acid
365  synthesis (56, 57). In the presence of a cytosolic thioesterase, as in the ‘TesA-FV50 strain, this
366 inhibition is released through the conversion of accumulated acyl-ACPs to free fatty acids.
367 However, thioesterase expression is induced starting at t = 0 hr, and significant accumulation of
368 fatty acid does not happen until the microcolony is well established. Even with the ‘TesA
369 thioesterase highly expressed, phospholipid metabolism may dominate metabolic flux through the
370 fatty acid synthesis pathway until sufficient density is reached to suppress incorporation of acyl-
371  ACPs into phospholipids. A recent study from Noga et al. uncovered a post-translational
372  mechanism that modulates phospholipid biosynthesis through PlsB acyltransferase and ppGpp,
373 which may explain the delay in free fatty acid accumulation (58).

374

375  Additionally, we measured the dynamics of the ADTE*-FVS50 fatty acid production strain at the
376  microcolony level, which produces a variety of medium- and long-chain fatty acids (Fig. S4), with
377  significant heterogeneity in production among cells (Fig. 3b-c). We again observed fatty acid
378  production over time, with similar delays in fatty acid accumulation despite thioesterase induction
379 att=0 hr (Fig. S12a). In this strain, a few cells within the microcolony produce large amounts of
380 fatty acid. The production dynamics for these few cells are similar to fatty acid production within
381 the ‘TesA-FV50 strain, but the remainder of cells exhibit at low levels of production for the
382  duration of imaging.

383

384 To further understand the dynamics of fatty acid production, we tracked the composition of
385 individual droplets from the high producing ‘TesA-FV50 microcolony and high producing cells
386 from the APTE*-FV50 microcolony. Both saturated and unsaturated fatty acid levels increase
387  similarly within the droplets of the ‘TesA-FV50 strain (Fig. 4e-f). Interestingly, the high producing
388  cells from the ADTE*-FV50 strain initially produce saturated fatty acids, but saturated fatty acid
389 levels plateau in a subset of cells as the incubation continues (Fig. S12b). Alternatively,
390 unsaturated fatty acid production continues to increase for the duration of the experiment (Fig.
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391  S12c). Additionally, we analyzed the chain length composition for both strains longitudinally (Fig.
392  S13a-b). Droplets from ‘TesA-FV50 ranged from C14-C16 in length, which is in line with bulk
393  culture production. Chain lengths for AbTE*-FV50 high producer cells displayed high fluctuations
394  over time and range from C7-C14, which is shorter than expected in comparison with bulk culture
395 data. We believe the fluctuations and low chain length predictions stem from a decreased signal-
396 to-noise ratio using our low power parameters for longitudinal imaging. When the signal-to-noise
397 ratio is increased for stronger SRS signals, such as for the large extracellular droplet within the
398 AbLTE*-FV50 microcolony, the chain length prediction increases to a range between C12-C14,
399  which more closely matches bulk culture data (Fig. S12a, Fig. S13b).

400

401  Single cell growth-production relationship

402  Next, we asked whether cell-to-cell differences in fatty acid production correlate with differences
403 in growth rates between cells. Production of a heterologous product is often associated with
404  changes in cell physiology due to the consumption of resources and intermediate or end-product
405  associated toxicities (59—61). Consequently, we asked whether growth rate is inversely correlated
406  with fatty acid production. For this analysis, we focused on the AbTE*-FV50 strain because it
407  exhibits significant intracolony heterogeneity. At the bulk culture level, we do not observe a
408  decrease in growth when production is induced through AbATE* expression (Fig. S14a-b).
409 However, bulk culture measurements do not rule out slow growth of a high-producing
410  subpopulation. To understand whether there exists a growth tradeoff in the high producer
411  subpopulation, we measured growth at the single-cell level. Although we can resolve single cells
412  using the longitudinal SRS conditions, the lowered resolution needed to avoid phototoxicity
413  hinders single-cell segmentation to quantitatively probe growth at many time points. To avoid
414  these limitations, we used a combination of time-lapse, phase contrast microscopy followed by
415 endpoint SRS imaging (Fig. 5a). Using the high-resolution phase contrast images, we then
416  segmented and quantified single-cell growth rates using an automated segmentation pipeline for
417  microcolonies (62). Pairing growth quantification with endpoint SRS, we tracked the growth
418 trajectories and lineages of single cells within the microcolony to their fatty acid production.
419  Spectral decomposition of the endpoint SRS image allows the high fatty acid cells to be identified,
420  along with other chemical composition information (Fig. 5b). Growth of the high producer cells
421  in the microcolony, measured as cell length over time, did not correlate with lower growth rates
422  (Fig. 5c, Fig. S15, Movies S2-4). We binned cells into two groups, low and high fatty acid
423  producers, where we defined high producers as those with production in the top 15% of single
424  cells in the distribution (Fig. S16). Examining the growth rates of each cell near the endpoint (16
425  hr) and earlier in the time course (8 hr) shows that growth rate is not significantly different between
426  the high and low producers.

427

428  Given our ability to decompose the fatty acid signal into unsaturated and chain length components,
429  we also analyzed the top 10 producer cells’ composition to gain further insight into the high fatty
430 acid phenotype in this strain. In contrast with GC-MS measurements sampled from bulk culture,
431  each cell is enriched with lauric acid (C12:0) relative to other saturated fatty acid chain lengths
432  (Fig. 5e). Additionally, the unsaturation ratio of the top producers is significantly increased in high
433  producer cells relative to bulk culture sampling (Fig. 5f, Fig. 2g). The decreased levels of myristic
434  acid (C14:0) and palmitic acid (C16:0) present in the high fatty acid cells relative to bulk culture
435  may be related to unsaturated fatty acid biosynthesis. In E. coli fatty acid synthesis, double bonds
436 in the carbon tail of elongating fatty acids are formed specifically when the carbon chain has

10


https://doi.org/10.1101/2021.07.26.453865

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.26.453865; this version posted September 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

437  reached decanoyl-ACP (C10), followed by further elongation to C12:1, C14:1, or C16:1 (63). It is
438  possible that chain lengths that would have otherwise reached C14:0 and C16:0 are instead
439  unsaturated.

440

441

442  Discussion

443  Chemical imaging can play a key role in the strain engineering process. Current quantification
444  techniques rely either on methods like GC-MS, which are chemically-specific but where
445  information about individual cells and their dynamics are lost, or on fluorescent reporters or dyes,
446  which are indirect readouts and can be difficult to engineer or limited in their specificity. SRS
447  imaging has the potential to dramatically improve this process by providing key insights into
448  chemical production at the single-cell level. Thus, methods that were previously only accessible
449  with single-cell readouts, such as directed evolution or cell-sorting approaches are in principle
450  possible with SRS imaging. Further, the ability to track production changes over time can provide
451  insight into the emergence of production heterogeneity and, ultimately, guide strategies to avoid
452  low producers in the population. The landscape for strain engineering is expanding rapidly, with
453  systems biology approaches to enzyme engineering and novel technologies for quantifying
454  production offering great promise for improving designs. In this study we focus on fatty acid
455  synthesis, which is an important pathway that can be engineered to produce a diversity of valuable
456  chemicals. Development of this pathway towards near theoretical yields will be important to
457  replace many industrial chemicals with sustainable bio-based alternatives (5).

458

459  Here, we examined free fatty acid production strains of E. coli using SRS and demonstrated that
460  hyperspectral imaging allows for image decomposition into major chemical components, with the
461  ability to distinguish cells from their chemical product. By incorporating additional analysis, we
462  also introduce an approach that can estimate chain length distribution and unsaturation degree,
463  increasing the amount of information that can be extracted from SRS hyperspectral images. These
464  advances can enable a metabolic engineer to examine fatty acid production strains using SRS
465 imaging while maintaining important chemical specificity data. The ability to gauge enzyme
466  specificity through imaging opens the possibility of screening mutant enzyme libraries in a high
467  throughput fashion to select for optimal free fatty acid profiles.

468

469  Visualizing chemical production at the single-cell level reveals important information that would
470  otherwise be obscured by bulk culture quantification methods. We demonstrate this by examining
471  production heterogeneity among different engineered strains, observing both intra- and inter-
472  colony differences in production within microcolonies. These results provoke fundamental
473  questions about the mechanisms leading to cellular heterogeneity, and also suggest that
474  engineering strategies that eliminate low-producers could improve yields. For example, it may be
475  possible to gradually enhance the overall production levels of a strain of engineered E. coli through
476  multiple cycles of growth and dilution, with a step that removes low-producers at the end of each
477  cycle.

478

479  Furthermore, we established parameters that allow us to extend SRS imaging for longitudinal
480 studies in live cells. Unlike previous phototoxicity studies focusing on acute responses like
481 membrane blebbing (64, 65), we directly observe long-term cell functions including cell
482  replication, free fatty acid synthesis, and the absence of induction of stress response. SRS imaging
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483  has been used to probe metabolic heterogeneity in live cells previously in an elegant study by
484  Wakisaka et al. (26), and we extend these results in several critical ways. In our experiments we
485  track the same cells over multiple hours, rather than sampling new cells from liquid culture at each
486  timepoint. In addition, we use E. coli for our study while Wakisaka et al. use the alga Euglena
487  gracilis. E. coli are highly amenable to metabolic engineering, but their small size makes both
488  imaging and analysis more challenging (E. coli are 1-2 um in length while E. gracillis are 35-50
489  um (66)). Thus, our results significantly extend prior findings, offering longitudinal imaging of a
490  highly relevant engineered species. We envision production tracking at the single-cell level will
491 be valuable for metabolic engineering studies by establishing how and when heterogeneity
492  emerges. To quantify single-cell properties such as growth rate, however, higher resolution
493  longitudinal imaging is needed to achieve time lapse data that can be processed with segmentation
494  algorithms. Further development focused on mitigating phototoxicity without decreasing
495  resolution may be able to overcome this challenge in the future.

496

497  Aswe demonstrate, a hybrid approach using phase contrast imaging and endpoint SRS microscopy
498 allows for fundamental questions to be examined, such as the growth-production tradeoff.
499 Interestingly, in the ADTE*-FV50 strain that we studied using this hybrid approach, we observed
500 no tradeoff between growth and production. This information, along with insights into the
501 composition of the high fatty acid cells, can lead to novel hypotheses of the underlying cause of
502 intracolony heterogeneity in this strain. These results underpin the utility of examining single-cell
503 characteristics to increase performance of a given strain. For example, recent approaches to
504 increase bioproduction involving dynamic regulation, either through transcriptional feedback
505 circuits or optogenetic regulation, show promise to increase strain efficiency (67, 68). Imaging
506  single-cell production dynamics in these strains could increase our understanding of how feedback
507 systems can be used in the context of metabolic engineering. Together with synthetic biology
508 methods, our system has the potential to answer fundamental questions relating to the production
509 of biosynthetic targets at the single-cell level. Further, because SRS imaging does not require
510 engineered biosensors, it has the potential to serve as a widely useful platform to boost the pace of
511  strain engineering for a broad range of metabolites.

512

513  Moving forward, it will be important to understanding the connection between production at the
514  single-cell level and bulk culture output. Imaging fields of view sampled from bulk culture can
515 potentially lead to biased overall titer prediction, especially if the product is not soluble in water.
516  Alternatively, studying microcolonies grown on agarose pads is ideal for imaging but not
517  necessarily predictive of bulk culture behaviors. For example, nutrient mixing, population
518  selection, and secretion may differ between the two-dimensional growth conditions and a well-
519  stirred liquid culture. Additionally, SRS has sensitivity limits significantly higher than mass
520  spectrometry (69) and thus requires a product to be produced at sufficient quantities before SRS
521 can be used to guide further engineering. Given these limitations, we envision that SRS studies
522  will be most useful for strain optimization rather than enzyme or pathway discovery.

523

524 SRS imaging in different spectral regions, such as the fingerprint region (400-1800 cm™), can be
525 adapted to study strains producing non-fatty acid derived chemicals of interest, such as terpenes,
526  to expand the scope of SRS imaging in metabolic engineering (29). In addition, because the
527  approach is label-free it does not require biosensors with fluorescent reporter readouts, making it
528 amenable to quantification of production in organisms that are recalcitrant to genetic modification.
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529  Moreover, instrumentation advancements can enable SRS guided single-cell screening, such as
530 SRS-based cell sorting, which has been demonstrated recently for cell phenotyping (70). The
531 throughput we achieve in this study is limited by spectral tuning of the motorized delay stage and
532  time spent manually focusing on samples. In future work, applying the ultrafast spectral tuning
533 SRS system from Lin et al. (29), along with integrated autofocusing could drastically increase
534  throughput. Much like the utility of fluorescence activated cell sorting in synthetic biology
535 applications, we envision that SRS-based cell sorting could increase the throughput of strain
536  screening and enable directed evolution based on chemical production. This work acts as a jumping
537  off point for SRS imaging in metabolic engineering to aid in the development of more efficient
538  strains for renewable chemical production.

539

540

541

542

543 Methods

544

545  Bacterial strains and plasmids

546  Plasmid and strain information are listed in Tables 1 and 2. The pBbAS5c-‘tesA-vhb50-8fadR
547  plasmid was a gift from Dr. Fuzhong Zhang. The BW25113 AfadE strain is from the Keio
548  collection (71), and we used the FLP recombination protocol from Datsenko and Wanner to cure
549  the kan® cassette from the genome (72). We used golden gate cloning (73) to create the pBbAS5c-
550  vhb50-8fadR plasmid by deleting the coding sequence of ‘fesA4 from pBbA5c-‘tesA-vhb50-8fadR.
551  The pBbAS5Sc-CpFatB1.2-M4-287 plasmid was also constructed using golden gate cloning, with
552  the pBbA5c backbone amplified from the BglBrick plasmid library (74) and the coding sequence
553  of CpFatB1.2-M4-287 derived from Herndndez Lozada et al. (46) and synthetized by Twist
554  Biosciences (South San Francisco, CA). pSS200 was a gift from Dr. Pamela Peralta-Yahya. pBbE-
555  ibpAB-mRFPI1 was constructed using the pBbESk BglBrick backbone (74) with the promoter
556  region of the genomic ibpAB operon as in Ceroni et a/ (53). We constructed pBbAS5c-‘tesA-stfGFP-
557  vhb50-8fadR and pSS200-sfGFP using golden gate cloning with pPBbAS5c-‘tesA-vhb50-8fadR and
558  pSS200 as backbones, respectively, along with an sfGFP coding sequence containing a flexible
559  GS linker to insert in frame with each thioesterase.

560

561  Growth and induction of fatty acid production strains

562  For fatty acid production experiments, pre-cultures were grown overnight in LB media and used
563  to inoculate 3 mL M9 minimal media (M9 salts, 2mM MgSO4, 100 uM CaCl,) with 2% glucose
564  and grown at 37°C with 200 rpm shaking. Antibiotics were added to the media where necessary
565  for plasmid maintenance according to resistances in Table 1 (100 pg/ml for carbenicillin and 25
566  pg/ml for chloramphenicol). The cultures were allowed to grow until approximately ODgoo= 0.6
567  before thioesterase expression was induced with IPTG. Induction levels were 500 uM for ‘TesA-
568 FV50and 50 uM for ADTE*, APTE*-FV50, and CpFatB1*. For imaging from liquid cultures, cells
569  were grown for 24 hours after IPTG induction and then 3 pL of sample was taken for imaging.
570  Samples from liquid culture were placed on 3% agarose pads (Promega) containing M9 minimal
571 media and sandwiched between glass coverslips to immobilize the cells for imaging. Samples from
572 liquid culture were allowed to dry on the agarose pads for ~15 minutes prior to imaging. For
573  longitudinal imaging, production heterogeneity experiments, and phase contrast imaging, once
574  cells reached ODgoo = 0.6 in liquid culture, the sample was placed on a 3% low melting point
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575 agarose pad containing M9 minimal media with 2% glucose, IPTG as specified above, and
576  appropriate antibiotics for plasmid maintenance, as detailed in Table 1. Microcolonies were
577  imaged after 18 hours of growth on the agarose pads at 31°C.

578

579  For the chain length distribution prediction, cultures were induced with IPTG in liquid cultures for
580 24 hours. At the 24 hour timepoint, we took 3 pL of sample for imaging and another sample of the
581  culture was taken for GC-MS analysis to allow direct comparison of the same culture. Five fields
582  of view were imaged for each culture.

583

584  Fatty acid derivatization and quantification with GC-MS

585  Samples for GC-MS quantification were taken at 24 hours post IPTG induction. 400 pL of
586  vortexed culture was taken for fatty acid extraction and derivatization into fatty acid methyl esters
587  as described by Sarria et al. (37) with the following minor modifications: Internal standards of
588 nonanoic acid (C9) and pentadecanoic acid (C15) were added to the 400 uL. sample at final
589  concentrations of 88.8 mg/L each and vortexed for 5 sec. The following was then added to the
590 sample for fatty acid extraction and vortexed for 30 sec: 50 uL. 10% NaCl, 50 pL glacial acetic
591 acid, and 200 pL ethyl acetate. The sample was then centrifuged at 12,000 g for 10 mins. After
592  centrifugation, 100 pL of the ethyl acetate layer was mixed with 900 pL of a 30:1 mixture of
593  methanol:HCI (12N) in a 2 mL microcentrifuge tube. The solution was vortexed for 30 sec
594  followed by an incubation at 50°C for 60 mins for methyl ester derivatization. Once cooled to
595 room temperature, 500 uL hexanes and 500 puL water were added to the 2 mL microcentrifuge
596 tube, vortexed for 10 sec, and allowed to settle. 250 pL of the hexane layer was mixed with 250
597  uL ethyl acetate in a GC-MS vial for quantification.

598

599  The samples were analyzed with an Agilent 6890N/Agilent 5973 MS detector using a DB-5MS
600 column. The inlet temperature was set to 300°C with flow at 4 mL/min. The oven heating program
601  was initially set to 70°C for 1 min, followed by a ramp to 290°C at 30°C/min, and a final hold at
602  290°C for 1 min. GLC-20 and GLC-30 FAME standard mixes (Sigma) were tested using this
603  protocol to ensure proper capture of all chain lengths and to gauge retention times. Internal
604  standards were used for quantification, with chain lengths C8-C12 quantified with the nonanoic
605 acid internal standard and C14-C18 quantified with the pentadecanoic internal standard.

606

607  Optical setup

608 The SRS setup was driven by an 80 MHz femtosecond laser (Insight Deepsee+, Spectra Physics,
609  USA) with two synchronized outputs. One output was fixed at 1040 nm with a pulse duration of
610 ~150 fs, while the other was tunable from 680 - 1300 nm with ~120 fs pulse width. We used the
611 1040 nm beam as the Stokes and was modulated by an acousto-optical modulator (522¢, Isomet,
612 USA) at 2.5 MHz. We set the tunable output to 798 nm to excite the C-H region and spatially
613  combined it with the Stokes by a dichroic mirror. Six 15 cm SF-57 glass rods were used to linearly
614  chirp the femtosecond pulses to ~ 2 ps. Five of the rods were placed on the common path while
615 one was placed on the Stokes path to parallelize the degree of chirping considering its longer
616  wavelength. A motorized delay stage was used to scan the temporal delay between two pulses to
617  tune the excitation frequency. The combined beams were sent to a pair of two-dimensional galvo
618  scanners (GVSMO002, Thorlabs, USA) to perform laser scanning imaging. We used a 40X oil-
619  immersion objective (RMS40X-PFO, Olympus, Japan) to focus the laser onto the sample. Powers
620  on the sample were 15 mW for pump and 75 mW (or 25 mW for longitudinal imaging) for Stokes.
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621 A home-built resonant amplifier photodiode collects and amplifies the stimulated Raman loss
622  signal at the modulation frequency. We used a lock-in amplifier (UHFLI, Zurich Instruments,
623  Switzerland) to extract the signal and send it to a data collection card (PCle-6363, National
624  Instruments, USA). We note that all elements described here are commercially available with the
625  exception of the photodiode, which has been previously reported (75). Custom LabView (National
626  Instruments, USA) software was used to synchronize the galvo scan with the delay line scan to
627  obtain a hyperspectral SRS image stack in a frame-by-frame manner.
628
629  Chemical map processing with LASSO
630 To obtain concentration maps for chemicals, we perform linear unmixing on the raw hyperspectral
631 image stack. Assuming the number of pure components as K and the dimensions of a hyperspectral
k332 image as Ny, Ny, N, the unmixing model can be written as:
D=CS+E, (1)

ﬁ33 where D € R¥xNy*N2 g the raw data reshaped as a two dimensional matrix in raster order, C €

34 RN<Ny*X 5 the collection of concentration maps, S € RE*N2 contains SRS spectra of all the
635 components, while E is the residual term with error and noise. Given the prior knowledge of
636  spectra for all the pure components, the task is reduced to generating chemical maps C via least
637  square fitting. To avoid crosstalk between spectrally overlapped components, we add a L1 norm
638  sparsity constraint by observing that at each spatial position, a few components dominate the
639  contribution. The solution for C is found in a pixel-by-pixel manner by solving for the following
640  optimization problem known as the least absolute shrinkage and selection operator (LASSO):

A 1 ) 2)
Ci = argl‘]}l.n{z ||D(l,:) - CLS” + ﬁ”Cl”l} )

41  where i represents a specific pixel in the hyperspectral image, C; stands for the estimated
642  concentrations for all components at pixel i, and £ is a hyperparameter controlling the level of L1
643  norm regularization at each pixel.

644

645  For each imaging experiment, we measured spectra of pure chemical standards for analysis.
646  Specifically, we input the spectra from the following pure components to perform linear unmixing:
647 We use BSA as the protein standard, palmitic acid (C16:0) and capric acid (C10:0) as
648  representative saturated fatty acids, and palmitoleic acid (C16:1) as an unsaturated fatty acid
649  standard. All standards were sourced from Sigma Aldrich, USA.

650

651  Chain length and unsaturation prediction

652  To predict chain length distribution, we first processed images with linear unmixing as described
653 above. However, this analysis outputs two-dimensional chemical maps whereas a three-
654  dimensional hyperspectral image is needed for chain length prediction. We created a hyperspectral,
655  saturated fatty acid map by subtracting the protein and unsaturated fatty acid components from the
656  original background-subtracted hyperspectral image (Fig. S5). We then calculated the area under
657  the curve ratio of CHz to CH3 for each pixel, using 2832 to 2888 nm for CH> and 2909 to 2967 nm
658  for CHs.

659

660  We used the linear relationship of ratio to chain length produced from standards (C6-C20, Sigma
661  Aldrich, USA) to calculate a predicted chain length for each pixel. This prediction was then
662  multiplied by a concentration weighting factor that corresponds to the SRS spectral summation at
663  the same pixel. Thus, if the raw SRS signal from a region is low then its weight in the overall
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664  prediction is also low relative to pixels with strong SRS signal. All pixels’ in a field of view
665  concentration-weighted chain lengths were compiled to create the fatty acid chain length
666  distribution. To calculate the unsaturation ratio, the sum of the C16:1 chemical map generated
667  through linear unmixing was divided by the sum of the hyperspectral saturated chemical map. For
668 the tracking of fatty acids production and composition dynamics (Fig. 4e-f, Fig. S12, Fig. S13),
669  we manually segmented significant fatty acid droplets using the fatty acid concentration map in
670  the last time stamp. Each droplet was manually traced and segmented frame-by-frame in all earlier
671  time stamps until no fatty acid was found (Movies S5-6).
672
673  Single cell segmentation
674  Segmentation of single cells within SRS images was implemented in two steps. The protein
675  segmentation map was first sent to CellProfiler to generate an initial segmentation (76). A
676  customized pipeline was used for the analysis, including illumination correction, background
677  subtraction, and edge enhancements based on the Laplacian of the Gaussian. Then a custom Matlab
678  program was used to manually correct errors in the automated segmentation analysis using the raw
679 SRS and protein chemical maps as a guide. When SRS images are segmented, we normalize the
680 fatty acid channel by cell area instead of the protein channel. This normalization more accurately
681  represents the single cell production, whereas the protein channel normalization at the microcolony
682  level accounts for cells growing on top of each other. Since the primary source of heterogeneity in
683  the AbTE*-FV50 is at the single-cell level, we utilize the fatty acid intensity normalized to cell
684  area metric. Alternatively, heterogeneity seen in the ‘TesA-FV50 strain is at the microcolony level
685 and we use the fatty acid intensity normalized to protein intensity to represent microcolony level
686  production.
687
688  Segmentation and tracking of phase contrast images was performed using the DeL TA 2.0 pipeline
689  (62). Segmentation errors were corrected manually prior to downstream analysis. We calculated
690  growth rate of single cells using the logarithmic derivative of cell length with the following
691  formula:

1 Ly
)692 Mie = o Li_q
693  Where p is growth rate, k is the current frame, At is the time between frames, and L is cell length.
694
695 Phase contrast imaging
696  Cells were imaged with a Nikon Ti-E microscope using a 100x objective with phase contrast
697 imaging. Images were collected every 20 minutes with the microscopy chamber held at 31°C.
698  Production strains were grown on agarose pads containing M9 minimal media as described above
699  for SRS imaging. After 18 hours of growth, the position of the tracked microcolony was recorded
700 and the slide was moved to the SRS microscope for endpoint hyperspectral imaging.
701
702  Stress responsive reporter strain
703  Cells containing the stress reporter plasmid pBbE-ibpAB-mRFP1 were grown on agarose pads.
704  The cells were allowed to recover on the agarose pads for 3 hours at 31°C prior to SRS exposure.
705  After recovery, a field of view on the pad containing several microcolonies was subject to SRS
706  scanning at various step sizes (150 nm or 230 nm) with power held at 25mW for the Stokes laser
707  and 15mW for the pump laser. Red fluorescent protein (RFP) images were taken of the scanned
708 field of view and a nearby, un-scanned field of view every 30 minutes. Since the RFP is
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709  photobleached from the SRS scan, the change in RFP of each microcolony was calculated for each
710  condition. To account for focus differences between fluorescent images at different time points,
711  the scanned field of view was normalized to the RFP of the nearby, un-scanned microcolonies.
712
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747  Figure 1. SRS imaging of E. coli production strains shows single-cell free fatty acid levels. (a)
748  Schematic of the optical setup for SRS imaging to produce hyperspectral images using a Stokes
749  and pump laser focused on a live sample. Hyperspectral SRS images contain three-dimensional
750 data: x and y coordinates and wavenumber, which provides spectral information. Longitudinal
751 SRS imaging adds a fourth dimension, time. (b) Schematic of free fatty acid production in E. coli.
752  Expression of a cytosolic thioesterase results in free fatty acid accumulation through the type II
753  fatty acid synthesis (FAS) pathway. Free fatty acids can vary in chain length and unsaturation,
754  largely dictated by thioesterase specificity. (¢) Representative raw SRS data from wild type E. coli
755  and a strain overexpressing a cytosolic thioesterase (AbTE*). The summation of Raman spectra at
756  each pixel is shown. Representative regions are outlined in red with the corresponding Raman
757  spectra shown below the image. Fatty acids and proteins emit strong Raman signals in the C-H
758  region (~2900 cm). Note that the y-axis scales are different; Fig. S3 shows them on the same
759  scale. Scale bar, 10 um. (d) Spectra at each pixel of the SRS image can be decomposed to generate
760  chemical maps. Protein and fatty acid components are decomposed using spectral standards to
761  produce chemical maps. Spectral standards shown in schematic are Bovine serum albumin (cyan),
762  palmitoleic acid (C16:1, orange), capric acid (C10:0, red), and palmitic acid (C16:0, yellow).
763  Protein and fatty acid chemical maps for both strains are shown. Scale bar, 10 um.
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767  Figure 2. Chain length distribution prediction from different thioesterase enzymes. (a) The
768  ratio of internal CH> and terminal CH; bonds within a fatty acid is a function of chain length.
769  Raman spectra of pure fatty acid standards are shown for different chain lengths. Specific spectral
770  windows correspond to each bond. (b) The ratio of area under the curve (AUC) of CH>/CH3 bonds
771  scales approximately linearly with chain length. Error bars show standard deviation of n = 6
772 replicates. (¢) Schematic of the type II fatty acid synthesis pathway in E. coli. Introduction of an
773  acyl-ACP thioesterase pulls out elongating acyl-ACPs to form free fatty acids. Enzymatic
774  specificity of the thioesterase largely determines the distribution of the fatty acid chain length
775  profile. (d) Chain length distribution prediction with GC-MS compared to (e) SRS using CH>/CHj3
776  ratio analysis (n = 2 biological replicates using 5 fields of view for each replicate, errors bars show
777  standard error). Strains shown are: CpFatB1*, AbTE*-FV50, and ‘TesA-FV50 (Table 2). (f) SRS
778  spectra of saturated and unsaturated fatty acid standards (C16:0, C16:1). The unique peak at ~3000
779 cm’! allows for spectral decomposition of unsaturation content. (g) Comparing GC-MS
780  unsaturation ratio of produced free fatty acids to SRS production based on spectral analysis. Error
781  bars show standard deviation from n = 5 fields of view for each strain. (h) Spectral decomposition
782  and chain length prediction of AbTE*-FV50 grown on an agarose pad. Scale bars, 10 um.
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786  Figure 3. Inter- and intra-colony heterogeneity profiles of production strains. (a) Production
787  from replicate ‘TesA-FV50 microcolonies (n = 105) are compared to wild type microcolonies (n
788 = 56), revealing inter-colony production heterogeneity. Each data point represents fatty acid
789  production from a single microcolony. Protein and fatty acid chemical maps are shown for
790  representative high and low producing microcolonies. Scale bar, 10 um. (b) Representative protein
791  and fatty acid chemical maps are shown for a microcolony of the production strain ADTE*-FV50.
792  (c) Intra-colony production is quantified for single cells within the microcolony (n = 213) (Fig.
793  S6). Each data point represents a single cells’ production. Scale bar, 10 pm. Box plot overlays
794  contain median (white circle), first and third quartiles (gray box) and 1.5x interquartile range (thin
795  gray line) for each distribution.
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800 Figure 4. Longitudinal SRS imaging of production dynamics. Time-lapse images of (a) a
801 ‘TesA-FVS50 high producing microcolony and (b) a ‘TesA-FV50 low producing microcolony
802  under the same conditions, shown with the raw SRS images (spectral summation of the SRS image
803  stack) and chemical maps corresponding to protein and fatty acid content. Scale bars, 10 um.
804  Quantification of (c) protein and (d) fatty acid over time from the microcolonies in (a-b and Fig.
805  S11). (e) Saturated and (f) unsaturation content of individual droplets from the ‘TesA-FV50 high
806 microcolony shown in (a). Droplets are numbered in order of their final fatty acid levels and
807 numbers are consistent between (¢) and (f).
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810
811  Figure 5. Single cell growth-production relationship. (a) Time-lapse phase contrast imaging of

812  an APTE*-FV50 microcolony followed by (b) endpoint SRS imaging and spectral decomposition.
813  (c) Single-cell lengths as a function of time within the microcolony shown in (a-b), with high
814  producer trajectories highlighted in red (n = 68 cells). Sharp decreases in length mark a cell
815  division. High producers are defined as the top 15% of producer cells (Fig. S16). (d) Growth rate
816  comparisons of high and low producer trajectories at 8§ and 16 hours (p = 0.0507 and p = 0.714,
817  respectively; two tailed unpaired t-test). Growth rate is calculated from cell length data in (c) (see
818 methods). (e) Saturated chain length prediction of high producer cells. (f) Unsaturation ratio
819  (unsaturated/saturated) of high producer cells.
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Tables

Table 1. List of plasmids used in this study.

Plasmid Origin Overexpressed operon Resistance Reference

pSS200 pMB1 Puc-Abte:G17R/A165R AmpR Sarria et al
(37)

pBbAS5c-‘tesA- pl5a Piacuvs-‘tesA-vhb50, Pgap- Cm® Liu et al. (47)

vhb50-8fadR fadR

pBbAS5c-vhb50- pl5a Piacuvs-vhb50, Ppap-fadR~ CmR This study

8fadR

pBbAS5c- pl5a Piacuvs-CpfatB1.2-M4-287  Cm® This  study,

CpFatB1.2-M4- mutant enzyme

287 from
Hernandez
Lozada et al.
(46)

pBbAS5c-‘tesA- pl5a Piacuvs-‘tesA-sfGFP- CmR This study

sfGFP-vhb50- vhb50, Pap-fadR

8fadR

pSS200-sfGFP  pMBI1 Puc-Abte:G17R/A165R- AmpR This study

sfGFP

pBbE-ibpAB-k- ColEl Pibpas-mRFP1 Kan® This  study,

mRFP1 based on
promoter from
Ceroni et al.
(53)

Table 2. List of E. coli strains used in this study.
Strain Relevant genotype Reference

BW25113 (wild
type)

BW25113 AfadE

MG1655
AbTE*
‘TesA-FV50

AbBTE*-FV50
CpFatB1*
‘TesA-FV50-
sfGFP
AbBTE*-sfGFP-
FV50

F~ A(araD-araB)567 AlacZ4787(::rrnB-3) A" rph-
1 A(rhaD-rhaB)568 hsdR514

E. coli BW25113 AfadE, cured from Keio
collection

F-, A", rph-1

E. coli MG1655; pSS200

E. coli BW25113 AfadE; pBbAS5c-‘tesA-vhb50-
8fadR

E. coliMG1655; pBbAS5c-vhb50-8fadR, pSS200
E. coli MG1655; pBbAS5c-CpfatB1.2-M4-287
E. coli BW25113 AfadE; pBbAS5c-‘tesA-sfGFP-
vhb50-8fadR

E. coli MGI1655;
pSS200-sfGFP

pBbAS5c-vhb50-8fadR,

Baba et al. (71)
Baba et al. (71)
Blattner et al. (77)
Sarria et al. (37)
Liu et al. (47)
This study

This study

This study

This study
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SUPPLEMENTARY INFORMATION

Supplementary Figures
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Figure S1. Hyperspectral SRS setup. (a) Concept of hyperspectral SRS using spectral focusing.
The pump and Stokes lasers are linearly chirped by high dispersion glass rods to temporally
separate the spectral components. Each temporal delay between the two pulses corresponds to a
Raman vibrational mode. (b) Optical setup. AOM, acousto-optic modulator; MS, motorized stage;
DM, dichroic mirror; GM, galvo mirrors; O, objective; C, condenser; F, filter; PD, photodiode;
LIA, lock-in amplifier.
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1033  Figure S2. SRS spectra of pure standards used to analyze hyperspectral images to produce
1034  chemical maps. (BSA: bovine serum albumin, C10:0: decanoic acid, C16:0: palmitic acid, C16:1:
1035  palmitoleic acid).
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1045  Figure S3. Raw SRS images shown in Fig. 1¢ of wild type and a strain overexpressing a cytosolic
1046 thioesterase (AbTE*), but with both images scaled with the same color axis for direct comparison.
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1051  Figure S4. Fatty acid production quantification for strains in this study. GC-MS quantified fatty
1052  acid production data for each strain. Cells were grown 24 hours post thioesterase induction in
1053  liquid culture. For chain length prediction, these exact cultures were taken for SRS imaging at the
1054  same timepoint.
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Figure S5. Analysis workflow for chain length prediction from hyperspectral SRS images. (a)
Raw SRS images are first background subtracted. (b) Background subtracted images are unmixed
using chemical standards. Protein, BSA; unsaturated fatty acid, C16:1; medium chain fatty acid,
C10; and long chain fatty acid, C16. C10 and C16 maps are used to represent a mixture of saturated
fatty acids. (¢) Protein and unsaturated fatty acid maps are multiplied by their respective standard
spectra and subtracted from the background-subtracted hyperspectral image to produce a three-
dimensional saturated fatty acid map. (d) Ratio analysis is performed on each pixel to calculate
chain length and weighted by raw intensity to predict chain length distribution of the field of view.
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1069  Figure S6. Single cell segmentation of a microcolony. (a) Raw SRS images are used to segment
1070  microcolonies to perform single cell analysis shown in Fig. 3c. (b) Segmentation of microcolony
1071  in (a). (¢) Segmentation of the top 25 highest producing cells overlaid on the fatty acid map of the
1072  microcolony.
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1078  Figure S7. Intra-colony heterogeneity of the AbTE* strain. (a) Three additional fields of view
1079  (FOV) of the APTE*-FV50 strain shown in Fig. 3b. Raw SRS, protein, and fatty acid chemical
1080  maps are shown for all. Scale bars, 10 pm.
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1087  Figure S8. Testing photodamage of live E. coli cells. (a) Wide-field transmission image of E. coli
1088  cells at the start of the cell incubation (t = 0 hr). (b) Hyperspectral SRS image of the region
1089  highlighted with a yellow rectangle in (a). (¢) Wide-field transmission image of the same field of
1090  view after incubation (t = 16 hr). (d) Hyperspectral SRS images of the previously scanned region
1091  (yellow rectangle in (c)) and an adjacent region without previous SRS laser exposure (blue
1092  rectangle in (c)). Scale bars, 10 um.
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1097  Figure S9. Optimized SRS laser powers enable live cell imaging of E. coli. Wide-field
1098  transmission image of E. coli, with raw hyperspectral SRS images of the same region for the t =3
1099  and 5 hr timepoints. Spectral summation is shown. Scale bars, 10 pm.
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Figure S10. Stress response of longitudinal SRS imaging conditions. (a) Schematic of stress
reporter, Pippas, driving expression of mRFP1. (b) Fluorescent response of cells containing the
reporter after SRS exposure. Low power SRS (15mW pump and 25 mW Stokes) was tested using
steps sizes of 150nm and 230nm. P-values compare 150nm step size to no laser exposure (n = 9;
two tailed unpaired t-test). Error bars show standard error of the mean.
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Figure S11. Time-lapse images of a wild type control strain, shown with the raw SRS images
(spectral summation of the SRS image stack) and chemical maps corresponding to protein and
fatty acid content.
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1118  Figure S12. Time-lapse images of fatty acid production in the AbTE*-FV50 strain. (a) Raw SRS
1119  images, protein, and fatty acid chemical maps are shown. Time values represent time grown on
1120  the agarose pad after IPTG induction. Scale bars, 10 pm. (b) Saturated and (c) unsaturated content
1121  of high producer single cells from the time-lapse images in (a).
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1125  Figure S13. (a) Longitudinal chain length predictions of droplets from the ‘TesA-FV50 high
1126  microcolony from Fig. 4a. (b) Longitudinal chain length predictions of the large droplet (ribbon

1127  #1) and high producing cells (ribbons #2-21) in the AbTE*-FV50 microcolony from Fig. S12.
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1130  Figure S14. (a) GC-MS quantification of fatty acid production and (b) growth of AbTE*-FV50
1131  at varying IPTG induction levels (n = 3). Error bars, standard deviation.

38


https://doi.org/10.1101/2021.07.26.453865

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.26.453865; this version posted September 25, 2022. The copyright holder for this preprint

1132
1133

1134
1135

1136
1137
1138
1139

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

N
(&
]
n
w
n
©

Fatty acid Protein

| === High producer

('n'e) Ausuay|
S

('n'e) Ausuay|

(‘n"e) Ausuaiu|
5

M oo
- ©
1

Unsaturated Saturated

Length (um)

0
2.8
3 =) o
[0}
g > 14 4
z 2 S
:i i 12§ 2
() [
= c 105 o it S
— ~ s 0 2 4 6 8 10 12 14 16 18
0 0 Time (hr)

4

(&l
n
©

Fatty acid Protein
N

A ST

l.-‘- \\

v

== High producer

(‘n"e) Ausuaiu|
(‘'n'e) Ausuaul 5

-~

[
©  ('n'e) Ausuayu|
=

- ©
S

N
nN
@

Saturated

=
(o}

Unsaturated

Length (um)

(‘'n"e) Ausua|

('ne) Ausuayy| !
5 =

yibus)| ureyo

é 1I0 1é 1I4 16 1I8
Time (hr)
Figure S15. (a-b) Endpoint SRS imaging and spectral decomposition of AbTE*-FV50
microcolonies tracked with time-lapse phase contrast imaging. (c-d) Single-cell lengths of
individual cells in (a-b), with high producer trajectories (top 15%) highlighted in red.
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1141  Figure S16. Endpoint fatty acid distribution of the APTE*-FV50 microcolony in Fig. 5. The red
1142  line indicates the threshold set to define high producer cells.

40


https://doi.org/10.1101/2021.07.26.453865

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.26.453865; this version posted September 25, 2022. The copyright holder for this preprint

1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Supplementary Movies

Movie S1. Time-lapse wide-field transmission images of the wild type strain during the live cell
SRS imaging shown in Fig. 3c. The white box indicates the SRS imaging region.

Movie S2. Time-lapse phase contrast images of the ADTE*-FV50 microcolony from Fig. 5.
Movie S3. Time-lapse phase contrast images of the APTE*-FV50 microcolony from Fig. S15a.
Movie S4. Time-lapse phase contrast images of the ADTE*-FV50 microcolony from Fig. S15b.

Movie S5. Manually segmented droplets of the ‘TesA-FV50 strain used for compositional tracking
in Fig. 4e-f and Fig. S13a.

Movie S6. Manually segmented droplets of the AbTE*-FV50 strain used for compositional
tracking in Fig. S12b-c and Fig. S13b.

41


https://doi.org/10.1101/2021.07.26.453865

