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Abstract—This paper considers the effective power in downlink
a multi-antenna, multi-user single-cell network enabled with
simultaneous wireless information and power transfer (SWIPT).
The proposed power efficiency problem aims to maximize the
harvested energy and minimize transmission power consumption
simultaneously. Specifically, the beamforming and antenna selec-
tion procedures at the receivers are optimized under minimum
data rate requirements. The underlying optimization problem is
shown to be an intractable non-linear programming problem. As
a result, a joint beamforming design and antenna selection is per-
formed based on the scheduling chosen for information decoding
and energy harvesting. The main problem is decomposed into two
subproblems: antenna selection and beamforming, which yields a
locally optimal solution. The first subproblem is solved based on
the maximum channel gain across all antennas. While the second
subproblem is solved via a two-layer iterative structure based on
the sum of ratio programming. Simulation results show that the
proposed scheme not only improves power efficiency but also
enhances energy efficiency. The results also unveil an interesting
tradeoff between power and energy efficiency.

I. INTRODUCTION

Simultaneous wireless information and power transfer
(SWIPT) has recently emerged as a promising solution to
enhance wireless devices’ energy efficiency (EE) and battery
lifetime jointly [1]. Some current research works focus on
maximizing harvested energy or throughput [2], [3]. However,
solely maximizing throughput can increase network power
consumption, whereas maximizing harvested energy using
SWIPT can adversely affect the information transfer, result-
ing in the degradation of system quality-of-service (QoS).
To this end, EE is an introduced metric that can efficiently
handle the tradeoff between power consumption and achiev-
able throughput.

The problem of energy-efficient resource allocation in a
SWIPT network is addressed in several research works [4]–
[10]. For instance, to maximize the harvested energy, the
authors in [4] explore the beamforming design in a multi-
cell multi-user SWIPT network. Moreover, the authors in [5]
maximize EE via beamforming design for a network based
on OFDMA [4]. In [6], a SWIPT network based on non-
orthogonal multiple access (NOMA) is considered in which
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joint power allocation and time switching (TS) control are
performed in a TS-based SWIPT system. The authors in [7]
assume a SWIPT heterogeneous NOMA network and propose
a solution for an EE maximization problem based on the
matching concept and using Lagrangian duality. In [8], the
authors propose an EE optimization scheme via subcarrier
allocation that achieves green communication performance in
the wireless sensor networks using the SWIPT technology.
A multiple-input single-output (MISO)-SWIPT network is
considered in [9] with a non-linear energy harvesting model,
where a global EE maximization problem is formulated by
jointly optimizing power-splitting ratios and beamforming
design. The work in [10] introduces an energy efficiency
indicator (EEI) in order to balance between data rate and
harvested energy. Remarkably, none of the previous works
considered the antenna switching (AS) technique at the re-
ceivers balance the tradeoff between information decoding
(ID) and energy harvesting (EH) [4]–[10]. Intuitively, mul-
tiple receive antennas could improve harvested energy and
information transfer. Also, antenna selection can provide an
efficient tradeoff between cost, complexity, and performance.
The receiver antenna selection process is a generalization of
the AS scheme in a co-located SWIPT-based network. Each
user antenna could potentially be assigned for ID or EH
according to the channel state information (CSI). We refer to
this methodology as “generalized AS technique” in SWIPT-
based networks because, here, the AS acts as a “switch”: It
selects the antennas’ operation modes, although each antenna
is capable of both EH and ID, as shown in Fig 1.

A limited number of prior works focused on AS SWIPT
systems, where each antenna switches performance between
ID and EH [11]–[14]. In [13], the authors consider a pair
of multi-antenna receiver and transmitter and propose a novel
antenna-clustering method based on the hybrid deep reinforce-
ment learning (DRL) to maximize the average data rate. The
authors in [14] consider an AS strategy for a multi-antenna
secondary receiver in the cognitive-based network using a
thresholding-based method. However, [3], [11], [13], and [14]
did not consider the EE perspective of the network, whereas
[12] evaluates the EE in a point-to-point multiple-input and
multiple-output (MIMO) SWIPT system. Motivated by the
practical scenarios, reducing the power consumption while
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Fig. 1. Generalized AS approach to realize SWIPT architecture.

increasing the harvested power is more beneficial to satisfying

the network quality conditions. To our best knowledge, power

efficiency maximization with generalized AS and beamform-

ing in a multi-user SWIPT network has not yet been studied.

The main contribution of this paper is the use of generalized

AS and beamforming design for a multi-user SWIPT system

to optimize the network power efficiency. In particular, we

consider the system’s power efficiency, defined as the ratio of

the total harvested energy to the total power dissipated [15].

Consequently, we aim to optimize the effective power of the

network by considering beamforming design for the informa-

tion and energy signal in a MIMO generalized AS SWIPT

system. We also guarantee each user’s minimum QoS in the

studied scenario in order to balance the tradeoff between

ID and EH. We maximize the effective power throughput

subject to minimum data rate and maximum power transfer

constraints. This is achieved by selecting the receiver antennas

and optimizing the beamforming according to the network

features. The considered problem is shown to be intractable

and non-linear. To tackle this, we decompose the original

problem into two subproblems and provide a locally optimal

solution for the main problem. In particular, the first sub-

problem is solved via searching for the best channel gain

across all antennas. The objective function in the second

sub-problem follows the sum of objective ratio functions

that will be transformed into an equivalent subtractive form.

Additionally, we employ the semi-definite programming (SDP)

relaxation technique and the one-dimensional search method

to obtain an optimal solution iteratively. Simulation results

demonstrate the efficacy of the proposed algorithm in terms

of effective power efficiency and EE for a different number

of antennas and sensor users. Additionally, simulations reveal

the tradeoff between EE and effective power efficiency.
II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a downlink (DL) OFDM network in which

an access point (AP) covers multiple sensor user equipment

(UE)s. The AP and sensor users are equipped with NT and

M antennas. The set of k sensor users in the coverage area is

represented by K = {1, 2, ...,K}. We assume that the perfect

CSI is available at the central resource allocator to design the

resource allocation policy1.

1It is assumed that the AP has perfect CSI through a feedback channel. In
particular, the AP sends some orthogonal preambles in the downlink to the
sensor users and obtains the CSI by listening to the sounding reference
signals transmitted by the sensor users.

Table I. Summary of our main notations.

Symbol Definition

hm,k ∈ CNt×1 The DL channel gain vector for the information
transfer from the AP to the mth antenna of user k.

Gk ∈ CNt×M The DL channel matrix for the wireless power trans-
fer from the AP to the user k.

bm,k ∈ {0, 1} Binary indicator that selects the mth antenna from
the AP to the kth user for data transmission.

wk ∈ CNt×1 The transmit information beamforming of the AP for
the kth user.

we ∈ CNt×1 The transmit energy signal of the AP broadcasted to
all sensor users.

With multiple antennas available at each user, the best

antenna can be selected for either ID or EH based on the

resource allocation policy. This means ID and EH can be

performed by the same user simultaneously, but not over the

same antenna. In particular, the best antenna (from the set M)

would be selected for ID while the remaining antennas will be

assigned for EH purposes. For the readability, we summarized

some of the essential variables used to describe the system

model in Table I. We further assume that the AP transmits

both the information and energy signals simultaneously. Thus,

the discrete-time AP transmitted signal will be:

x =
∑
k∈K

wksk +we, (1)

where sk ∈ C is a unit-energy information carrying symbol.

We also note that the energy signal is known to all users,

as it is generated at the AP by a deterministic pseudo-

random sequence with a predefined seed of zero mean and

the covariance matrix of We i.e., we ∼ CN (0,We).

For simplicity, we consider a narrow-band block-fading

propagation channel as in [16], [17], which yields the fol-

lowing received ID and EH signals:

yID
k =

∑
j∈K

hH
m,k(bm,kwjsj +we) + nID

k , (2)

yEH
k = (IM − diag(bk))

∑
j∈K

GH
k (wjsj +we) + nEH

k , (3)

where nID
k and nEH

k are additive white Gaussian noise (AWGN)

terms with a circularly symmetric Gaussian distribution, i.e.,

nID
k ∼ CN (0, σID2

k ) and nEH
k ∼ CN (0, σEH2

k IM ), respectively.

It is assumed that the generalized AS technique can distinguish

between the information and power transfer signals. Through

this methodology, one group of the receiver antennas can

be used for harvesting energy, whereas the other group are

responsible for the wireless information processing [18]. The

data rate of user k through the received antenna m will be:

Rm,k(bm,k,wk) = log2

(
1 +

bm,k|hH
m,kwk|2

σID2

k + Im,k

)
, (4)

where the AWGN is considered at the kth user with zero mean

and variance σID2

k and Im,k =
∑

k′ �=k,k′∈K bm,k|hH
m,kwk′ |2,

indicates the multi-user interference. We should note that the

EH beams may cause interference in the data rate function

in (4). However, since the energy signals are known to the sen-

sor users, the users can remove these undesired signals (even

before decoding the information-bearing signals) based on



successive interference cancellation [19]. For facilitating the
presentation, we define bk = [b1,k, ..., bM,k]

T ∈ Z1×M as the
vector of the antenna selection optimization problem. Conse-
quently, the achievable data rate of user k can be written as:

Rk(bk,wk) =
∑

m∈M
Rm,k(bm,k,wk). (5)

We now define a new performance metric, Peff(bk,wk,We),
for the wireless power transfer efficiency which is given
by [10], [15]:

Peff(bk,wk,We) =

∑
k∈K P

EH
NLk

(bk,wk,We)

PT(wk,We)
. (6)

The denominator of (6), PT(wk,We), is the total power
dissipated in the system in [Joule/Second] given by:

PT(wk,We) =

∑
k∈K ||wk||2+Tr(We)

β
+NTPant+Pc, (7)

where Pant and Pc are the dissipated power in each transmit
antenna and fixed consumed power for baseband signal pro-
cessing, respectively [20]. We note the first term in (7) is the
so-called radio frequency (RF)’s transmit power consumption
that is divided by 0 < β ≤ 1, the constant AP power amplifier
efficiency. The numerator in (6), P EH

NLk
(bk,wk,We) is the

total harvested energy in the network topology. The harvesting
is realized using the active EH antennas for each user. The total
harvested energy is then given by [15], [19]:

P EH
NLk

(bk,wk,We)=
[Θk−Ωk∆k]

1−∆k
, ∆k=

1

1+exp(αkζk)
, (8)

Θk =
Ωk

1 + exp
(
− αk(P EH

Lk
(bk,wk,We)− ζk)

) . (9)

The constant ∆k is introduced to guarantee a zero-input/zero-
output response for EH [19]. In the traditional logistic func-
tion (9), the linear factor is given by

P EH
Lk

(bk,wk,We)= ϵkTr
(∑
j∈K

G̃H
k (wjw

H
j +We)G̃k

)
, (10)

where G̃k =
(
I − diag(bk)

)
Gk. In the total linear received

RF power formula (10), 0 < ϵk < 1 is the power conversion
efficiency for the mth active EH antenna of the kth receiver.
Ωk is a constant parameter defined as the maximum harvested
power at user k when the EH circuit becomes saturated. αk

and ζk are constant parameters that can be obtained by a curve
fitting tool. We should note that the contribution of the noise
power to the P EH

NLk
(bk,wk,We) formula can be neglected, as

it is very small compared to the main term.
Now, we formulate the main optimization problem of beam-

forming design with the antenna selection for the new perfor-
mance metric with a generalized AS-based SWIPT framework
in a single-cell multi-user network. The optimization problem
can be written as follows:

P1 : max
bk,wk,We

Peff(bk,wk,We) (11)

s.t. :
∑
k∈K

||wk||2 + Tr(We) ≤ pmax, (11a)

Rk(bk,wk) ≥ Rmin, ∀k ∈ K, (11b)∑
m∈M

bm,k = 1, ∀k ∈ K, (11c)

bm,k ∈ {0, 1}, ∀k ∈ K,∀m ∈ M. (11d)

In the optimization problem P1, constraint (11a) limits the
total transmit power of the AP that should not exceed its
maximum threshold (pmax). Constraint (11b) guarantees a
minimum data rate requirement, Rmin, for each user k.
Constraint (11c) determines that each user utilizes only one
antenna for ID. (11d) shows the antenna selection variable
takes only binary values. Since the antenna selection variable
is binary, the optimization problem P1 is a mixed-integer non-
linear programming (MINLP) problem, which is generally
intractable [21]. We aim to propose a solution design for this
proposed problem and scenario.

III. A TWO-LAYER OPTIMAL SOLUTION DESIGN

To solve this problem, we decompose the original problem
into two sub-problems — antenna selection and beamforming
subproblems. The first subproblem is solved based on the
maximum channel gain across all antennas. The second sub-
problem is optimally solved via a two-layer iterative structure
based on the sum of ratio programming. In particular, we
first select the best antenna for ID to satisfy the data rate
requirement and assign the rest of the antennas for EH. Then,
we design the beamforming policy, respecting the objective
function. Please note that the Dinkelbach method or the
Charnes-Cooper transformation cannot be exploited to handle
sum-of-ratios objective function. In what follows, we explain
each step in detail.

A. Antenna Selection

We now first carry out the antenna selection for the fixed
beamforming. It can be seen that from the optimization
problem only one antenna should be selected for the ID while
the rest would be used for EH. The main dilemma in the
optimization problem P1 is the data rate QoS requirement for
each user. One can conclude that in order to meet the data
rate requirement for each user, the highest channel gain over
all the antenna needs to be selected for ID as follows:

bm,k =

1, argmax
m∈M

hm,k,∀k ∈ K,

0, otherwise.
(12)

In essence, we examine the channel quality between the AP
and all user’s antennas via (12), and subsequently select the
best channel quality for ID purposes2. The rest of the antennas
are then assigned for EH. By assigning the best channel gain
to the ID antenna (not EH antennas), we are prioritizing infor-
mation signals over the energy signal to ensure the practicality
of our design policy. Please note that the complexity of the
antenna selection algorithm will not be exponential. This is
because the number of antennas is usually insignificant in a
typical mobile receiver.

B. Beamfroming Design

Next, we design the information and energy beamforming
to maximize the power efficiency. Let us define matrices
Wk = wkw

H
k , Wk ∈ HNT×NT and Hk = hm,kh

H
m,k.

2Here, we assume that the users are sensor nodes. These nodes do not need
to transmit with a high data rate and are more interested in EH.



For simplicity, we ignore the constant terms in the total
power consumption model in (7). Thus, using the semi-definite
programming (SDP), the original optimization problem in P1

can be reformulated as follows:

P2 : max
Wk,We

∑
k∈K P

EH
NLk

(Wk,We)∑
k∈K Tr(Wk)+Tr(We)

(13)

s.t. :
∑
k∈K

Tr(Wk)+Tr(We) ≤ pmax,∀k ∈ K, (13a)

Rk(Wk) ≥ Rmin, ∀k ∈ K, (13b)
Rank(Wk) ≤ 1, ∀k ∈ K, (13c)
We ⪰ 0. (13d)

We employ SDP relaxation by dropping the rank one con-
straint. Next, we handle the constraint (13b). In doing so, we
restate this constraint as follows:

Tr(HkWk)

γreq
≥

∑
k′ ̸=k

Tr(HkWk′) + σ2
k, (14)

where γreq = 2Rmin − 1. Furthermore, the non-linear objective
function is non-convex, but it is possible to set it compatible
to the class of sum of ratio objective functions. To this end, we
introduce a new slack variable ϱ that changes the optimization
problem as follows:

P3 : max
Wk,We

∑
k∈K P

EH
NLk

(Wk,We)

ϱ
, (15)

s.t. :
∑
k∈K

Tr(Wk) + Tr(We) = ϱ, (15a)

(13a), (13d), and (14).
In order to solve this optimization problem, we consider an
iterative algorithm in which the first subproblem determines
Wk and We for a preset ϱ and the second subproblem
updates ϱ based on new obtained beamforming vectors. In
the first subproblem, the optimization problem in (15) follows
the sum of objective ratio functions that Dinkelbach cannot
be adopted to obtain a solution method. So, we first find an
equivalent form in subtractive form which yields the same
optimal solution based on the following lemma from [21].

Lemma 1 [21]: For (15), there exist two vectors ψ∗ =
[ψ∗, ..., ψ∗

K ]T and β∗ = [β∗
1 , ..., β

∗
K ]T in which W∗

k and
We

∗ are the optimal solutions to the following optimization
problem

max
{W∗

k,We
∗}∈S

1

ϱ

∑
k∈K

ψ∗
k

[
Ωk

(
1−∆kΓk

)
−β∗

k

(
Γk(1−∆k)

)]
, (16)

where S is the set belonging to the feasible solution of P3. In
(16), Γk = 1 + exp

(
− αk(P

EH
L (Wk,We)− ζk)

)
. Note that

{W∗
k,We

∗} should satisfy the following equations

Ωk

(
1−∆kΓk

)
− β∗

k

(
Γk(1−∆k)

)
= 0, (17)

ψ∗
k

(
Γk(1−∆k)

)
− 1 = 0. (18)

Subproblem (16) can be solved with two-layer iterative struc-
ture including an inner and an outer layer. In the following,
we describe these layers’ functionality.

1) Inner Layer Solution: In the inner layer, assuming the
given ψ and β, the optimization problem P4 which is convex

Algorithm 1 Resource Allocation Algorithm for Beamforming
Design

1: Initialize
iteration index of resource allocation policy i = 1,
limitation over two layer iteration of Imax

define feasible set vector ϱ, and constant set
{α, ζ,Ω, ϵk, τ, κ}.

2: repeat
3: Set {Wi

k,We
i} = {Ws∗

k ,We
s∗}.

4: Solve the inner-layer of (16) to update {Wi+1
k ,We

i+1}.
5: Solve the outer-layer of (16) to update {βi+1,Ψ i+1}

regarding (22) and (22).
6: until i = Imax
7: Update ϱ for the obtained {Wi+1

k ,We
i+1} via one di-

mensional search method.
8: return {ϱ,Wi+1

k ,We
i+1}

and can be solved efficiently.

P4 : max
Wk,We,λk

1

ϱ

∑
k∈K

ψk

[
Ωk−βk(1+exp

(
−αk(λk−ζk)

)]
, (19)

s.t. : λk ≤ ϵkTr
(∑

j∈K
G̃H

k (wjw
H
j +We)G̃k

)
, (19a)

(13a), (13d), (14), and (15a),
where λk is the auxiliary optimization variable.

2) Outer-Layer Solution: For the outer layer, an iterative
algorithm based on the damped Newton method is employed
to obtain ψ and β. In this regard, we define

ϕk(βk) = Ωk

(
1−∆kΓk

)
− β∗

k

(
Γk(1−∆k)

)
, (20)

ϕK+k(ψk) = ψk

(
Γk(1−∆k)

)
− 1, (21)

where k ∈ {1, 2, ...,K}. It has been shown in [19] that
the optimal solution {β∗, ψ∗} can be found if and only if
ϕ(β, ψ) = [ϕ1, ..., ϕ2K ]T = 0. As a result the update rule for
ψk and βk at i-th iteration are given by

βi+1 = βi + τ iηi
1:K , (22)

ψi+1 = ψi + τ iηi
K+1:2K , (23)

where η = [ϕ′(β, ψ)]−1ϕ(β, ψ), and ϕ′(β, ψ) is the
Jacobian matrix of ϕ(β, ψ). Furthermore, τ i is the largest
value of εl that should satisfy the following criterion
∥ϕ(ψi+εlηl

K+1:2K ,β
i+εlηi

1:K)∥ ≤ (1−κεl)∥ϕ(β,ψ)∥, (24)
where l ∈ {1, 2, ...}, εl ∈ (0, 1), and κ ∈ (0, 1). Since the
optimization problem (16) is convex, it can be solved in an
efficient manner based on the pseudo-code in Algorithm 1.
It should be noted that one-dimensional search needs to be
adopted on ϱ, where the problem P4 should be solved for
each value of ϱ3. It is worth mentioning that the considered
problem is a convex SDP problem and can be solved by
standard numerical algorithms for convex programs such as the
interior point method. Now, we discuss the rank-one solution.
Fortunately, it has been proven that the rank-one solution for
beamforming exists [19].

3The upper bound for ϱ is pmax which restricts the search problem.
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Fig. 2. Power efficiency versus maximum allowed transmit power.

IV. SIMULATION RESULTS

This section presents simulation results to demonstrate
the system performance of power-efficient antenna switching
and beamforming design for a multi-user SWIPT system. In
evaluating the achievable power-efficiency of the proposed
scheme, eight sensor users, K = 8, are uniformly located in
one cell, where maximum coverage of the cell is dmax = 20
meters. The AP and sensor users are each equipped with four
and three antennas, respectively (NT = 4, M = 3). The AP
antenna power consumption is, Pant = 30 dBm, and the static
circuit power consumption is Pc = 40 dBm. The background
noise on all antennas of each receiver is |σID

k |2 = σ2
k =

σ2 = −120dBm. We consider a frequency-selective fading
channel, and since the users are close to the transmitter, line-
of-sight communication channels are expected, and a small-
scale fading channel is modeled as Rician fading with Rician
factor ρ = 3 dB. The Rician flat fading channel gains include
a distance-dependent path loss component and a log-normal
shadowing component with 8 dB standard deviation, where
the path loss exponent is equal to α = 2.8 [18]. The power
conversion efficiency of all active EH antennas is ϵk = ϵ = 0.3.
The power amplifier efficiency of the AP is β = 0.2. The target
transmission rate for each user is γreq = 10 dB. Furthermore,
we conduct Monte Carlo simulations by generating random
realizations of the channel gains to obtain the average EE [18].

Fig. 2 demonstrates that increasing the maximum allowable
power budget increases the power efficiency of the network
non-linearly. This incremental process is entirely significant
for the higher values of available pmax. Clearly, there is no
sensible change in the power efficiency between 5 dBm and
20 dBm of the pmax. For a power budget from 20 dBm
to 35 dBm, the power efficiency increases moderately for a
small number of antennas whereas sharply for a large number
of antennas. However, between approximately 35 dBm and
45 dBm values of pmax, the power efficiency is saturated
by increasing the power budget. This is because the power
efficiency is dominated by the fixed circuit power consumption
when transmit power is small, which translates into a gradually
increasing power efficiency rate. As the transmit power budget
of the AP increases, the RF’s transmit power consumption
becomes significantly larger compared to the fixed circuit
power. Therefore, the power efficiency becomes more sensitive

Fig. 3. System performance tradeoff between power efficiency and EE for
pmax = 40 dBm.

to increases in transmit power budget once a threshold of
pmax is reached. This figure also investigates that increasing
the number of transmit antennas, NT , enhances the effective
power efficiency, which is predictable as power efficiency is a
quasi-linear function with respect to both transmit information
and energy beamforming vectors. For comparison, we consid-
ered the EH maximization, Max EH, as a baseline scheme in
which the numerator of power efficiency is maximized via the
same approach as power efficiency optimization. We can see
that our proposed algorithm outperforms the baseline scheme
since we also minimized the total power consumption in power
efficiency maximization. Also, the results show that for the
case we solely maximized EH, the power efficiency increases
for a small to moderate value of the maximum transmit power.
However, power efficiency declines significantly for the high
values of pmax. This is because once the maximum EH is
achieved, a further increase in the total transmitted power
increases the denominator of the power efficiency, which
likewise results in the degradation of the power efficiency.

There exists an inevitable tradeoff between power and EE.
Generally, a resource allocation policy maximizing power
efficiency cannot simultaneously maximize the EE in the
considered system since data rate and power consumption are
conflicting design objectives. To verify this statement, we first
define EE as the ratio of achievable data rate (5) to total
network’s power consumption (7) as follows

Eeff(bk,wk,We) =

∑
k∈KRk(bk,wk)

PT(wk,We)
. (25)

In Fig. 3, we observe a tradeoff region between power and
energy efficiencies by maximizing EE (25). As can be seen,
power efficiency (EE) is a monotonically decreasing function
with respect to EE (power efficiency). Fig. 3 shows that an
increase in the number of receiver antennas improves the
power efficiency as receiver antennas help harvest more energy
in a network. The number of sensor users also affects the
network’s throughput and power efficiency. Increasing the
number of sensor users not only enlarges the performance
tradeoff gap between the power and energy efficiencies it
also improves the power efficiency with a fixed value of
EE. This is because more sensor users mean more harvesting
antennas, i.e., more of the emitted power from the AP can be



Fig. 4. EE versus maximum allowed transmit power.

harvested when more receivers (more EH antennas) partake
in the energy harvesting. For comparison, we also plot the
tradeoff region for the case the energy signal (WE) is set to
zero, and maximum ratio transmission is adopted to optimize
the information beamforming as a benchmark algorithm.

Fig. 4 shows that increasing the power budget increases
the EE monotonically up to certain values of pmax. But the
EE reaches to its maximum value and then saturates for the
high value of transmit power at about pmax ≈ 30 dBm.
This reveals when maximum EE is reached via transmitting
a large power budget, any additional increase in pmax will
not further increase the EE since the interference power
level arising from the AP dramatically impacts received ID
signal quality and limits the data rate value. Finally, although
the number of transmit antennas improves power efficiency
significantly, it has a limited effect on EE. This is because the
data rate function in (25), is a logarithmic function of NT .
However, the EE gain associated with extra transmit antennas
is insufficient to compensate for the boosted energy cost since
the circuit power grows linearly with NT . Thus, embracing a
considerably large NT may not be viable for improving ID, as
is the case for EH. Fig. 4 also explores the superiority of our
proposed algorithm compared to the baseline Max EH scheme.

V. CONCLUSION
In this paper, we have proposed a new optimization problem

for the MIMO-OFDM network with generalized AS-based
receivers using SWIPT. Considering a practical non-linear
power model for EH, the proposed solution aims to maximize
a new wireless communication metric, the so-called power
efficiency. The optimization problem, which involves a joint
optimization of the antenna selection and beamforming, was
non-convex and non-linear with binary variables. This made
the optimization problem challenging to tackle. To obtain a
feasible solution, an optimization problem with a transformed
objective function was designed based on an iterative algo-
rithm which yields a locally optimal solution. In particular,
the antenna selection problem was solved based on maximum
channel gain across all antennas. The second sub-problem
was solved based on a two-layer method. Simulation results
revealed the superiority of the generalized AS scheme by
demonstrating a good balance of improvement in terms of
power and EE.
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