N)
)
Check for
updates

HBMax: Optimizing Memory Efficiency for Parallel Influence
Maximization on Multicore Architectures

Xinyu Chen
Washington State University
Pullman, WA, USA
xinyu.chenl@wsu.edu

Mahantesh Halappanavar
Pacific Northwest National Laboratory
Richland, WA, USA
mahantesh.halappanavar@pnnl.gov

ABSTRACT

Influence maximization aims to select k most-influential vertices
or seeds in a network, where influence is defined by a given dif-
fusion process. Although computing optimal seed set is NP-Hard,
efficient approximation algorithms exist. However, even state-of-
the-art parallel implementations are limited by a sampling step
that incurs large memory footprints. This in turn limits the prob-
lem size reach and approximation quality. In this work, we study
the memory footprint of the sampling process collecting reverse
reachability information in the IMM (Influence Maximization via
Martingales) algorithm over large real-world social networks. We
present a memory-efficient optimization approach (called HBMax)
based on Ripples, a state-of-the-art multi-threaded parallel influ-
ence maximization solution. Our approach, HBMax, uses a portion
of the reverse reachable (RR) sets collected by the algorithm to
learn the characteristics of the graph. Then, it compresses the inter-
mediate reverse reachability information with Huffman coding or
bitmap coding, and queries on the partially decoded data, or directly
on the compressed data to preserve the memory savings obtained
through compression. Considering a NUMA architecture, we scale
up our solution on 64 CPU cores and reduce the memory footprint
by up to 82.1% with average 6.3% speedup (encoding overhead is
offset by performance gain from memory reduction) without loss
of accuracy. For the largest tested graph Twitter7 (with 1.4 billion
edges), HBMax achieves 5.9x compression ratio and 2.2X speedup.

CCS CONCEPTS

« Computing methodologies — Shared memory algorithms;
« Theory of computation — Graph algorithms analysis.

KEYWORDS

Influence maximization, compression, multicore architectures

“Dingwen Tao is the corresponding author.
TDingwen Tao is also with Washington State University.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PACT ’22, October 10-12, 2022, Chicago, IL, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9868-8/22/10.

https://doi.org/10.1145/3559009.3569647

Marco Minutoli
Pacific Northwest National Laboratory
Richland, WA, USA
marco.minutoli@pnnl.gov

Ananth Kalyanaraman
Washington State University
Pullman, WA, USA
ananth@wsu.edu

412

Jiannan Tian
Indiana University
Bloomington, IN, USA
jtil@iu.edu

Dingwen Tao"
Indiana University
Bloomington, IN, USA
ditao@iu.edu

ACM Reference Format:

Xinyu Chen, Marco Minutoli, Jiannan Tian, Mahantesh Halappanavar,
Ananth Kalyanaraman, and Dingwen Tao. 2022. HBMax: Optimizing Mem-
ory Efficiency for Parallel Influence Maximization on Multicore Architec-
tures. In International Conference on Parallel Architectures and Compilation
Techniques (PACT °22), October 8-12, 2022, Chicago, IL, USA. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3559009.3569647

1 INTRODUCTION

A graph, G = (V,E), captures complex relationships between a
set of entities represented as nodes or vertices (V), through binary
relations expressed as edges or links (E). Graph analytics provides a
set of algorithms such as centrality measures, community detection,
shortest paths, and network flow to enable decision making on data
presented as graphs. The ubiquity of massive data from domains
such as social networks and life sciences has enabled application of
graph analytics on numerous domains with varying degrees of scale.
A fundamental limitation to the application of graph analytics is
the massive memory requirement of algorithms. Since many graph
algorithms have irregular accesses to memory and low (arithmetic)
computation, the performance of memory system becomes critical.

Given a directed graph G = (V, E,), where o represents edge
weights corresponding to the influence of node x on node y for
an edge (x,y); a diffusion model, and a budget k; the Influence
Maximization (IM) problem is an optimization problem to identify a
set of k vertices which when activated result in a maximal number
of expected activation in G, where activation is defined for a given
model of diffusion. The IM problem came from viral marketing,
where a company tried to create a cascade of product adoption
through the word-of-mouth effect by choosing a set of influential
individuals and giving them free samples of the product. Now It
has numerous applications [14, 16, 23] in domains such as politics,
public health, bioinformatics, and sensor networks.

Finding the top k influential vertices (i.e., seeds) in a graph can
be formulated as a discrete optimization problem that has been
shown to be NP-Hard [14]. Consequently, a few key efficient ap-
proximation solutions have been developed. For instance, Kempe et
al. [14] attempts to find an approximate solution by hill-climbing
on a large number of Monte Carlo (MC) diffusion processes (typi-
cally around 10%). Borgs et al. [6] greatly improves the efficiency of
MC simulations by exploiting the potential overlap in the vertex
space among multiple simulated paths of diffusion. Their approach
enumerates random reverse reachable (RRR) sets and using them
to select influential vertices that occur frequently in them. Tang et

https://doi.org/10.1145/3559009.3569647
https://doi.org/10.1145/3559009.3569647
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3559009.3569647&domain=pdf&date_stamp=2023-01-27

PACT °22, October 10-12, 2022, Chicago, IL, USA

a6 983 s0007 13T 1A} o

o 1004 425 0405% 96.24% q,sc% 98.95 " 99.01% | 16 =
& 87.45% P
] 50
g 801]
o F10° 2
e o
g 60 4 <E3
o L 10t 2
B 40 =
a °
s L 103 F
& 204 1077
c

£

0- - 102
DBLP YouTube Skitter Orkut Pokec LiveJournal

Figure 1: Memory usage breakdown of Ripples [22], where
the blue portions represent the computation of random re-
verse reachable (RRR) paths (87 to 99% of memory usage).

al. [34] further extend this work with a two-phase IMM algorithm
(including sample estimation and seed selection) to improve the
determination of the sampling effort through a martingale strategy
(will be discussed in detail in Section 2). The targeted quality is a
(1 - 1/e — e)-approximation. The error factor € plays an important
role in the overall performance of the IMM algorithm. Smaller e
will produce a more accurate approximation by making the algo-
rithm carry out more MC trials. With the growing size of social
networks and the goal of getting high-quality approximation, the
IMM algorithm is both computationally challenging and memory
demanding. To alleviate this challenge, parallel computing has been
introduced to reduce the execution time of the IMM algorithm. Rip-
ples, proposed by Minutoli et al. [22] is the state-of-the-art parallel
implementation of the IMM algorithm. It can solve the time-cost
challenge by parallelizing the computation and scaling up in both
the shared-memory and distributed-memory architectures.
However, few studies in the literature address the memory-
intensive challenge, which should have a standalone place in the
research on the IMM algorithm. More specifically, the reason to
address the memory challenge of the IMM algorithm is two-fold:
(1) Although the aggregated memory capacity of today’s high-
performance computing (HPC) systems is ever-increasing, such dis-
tributed computing resource is not readily available to most. Thus,
reducing the memory usage on shared-memory systems helps to
solve larger influence maximization problems with limited com-
putational resources. (2) There is a vast difference between the
input graph size and the memory footprint during the computa-
tion [12]. This memory inflation (by the algorithm) is particularly
pronounced for a stochastic graph application such as IMM. For
instance, for the six graphs studied in Figure 1, the ratio of the peak
memory usage to the input size varies from 30X to 165X—implying
a one to two orders of magnitude increase in memory requirement
during the course of computation to store the intermediate results.
To this end, we propose a memory-efficient parallel influence
maximization algorithm using Huffman coding and Bitmap coding
(called HBMax) and implement it based on the state-of-the-art im-
plementation Ripples [21]. Specifically, by profiling the memory
footprint of Ripples on large real-world graphs, we identify the
most demanding portion of the algorithm and different demands
with different types of graphs. With these characteristics, we pro-
pose a block-based workflow that leverages the Huffman coding or
bitmap coding to save the intermediate MC simulation results in

413

Xinyu Chen, Marco Minutoli, Jiannan Tian, Mahantesh Halappanavar, Ananth Kalyanaraman, and Dingwen Tao

a compressed format. The subsequent analysis can be performed
on partially decompressed Huffman encoded data or directly per-
formed on the bitmap encoded data: neither of the two schemes
needs to fully decompress the data to the original size, so as to
preserve the memory savings. To the best of our knowledge, this
work represents the most space-efficient parallel IMM on very large
graphs.! Our main contributions are summarized as follows.

(1) We conduct a comprehensive characterization and profiling of
different real-world graphs to understand the impact of their
features on the memory footprint based on the state-of-the-art
solution for the influence maximization problem.

(2) We identify the intermediate RRR sets sampled from MC simula-
tions vary from skewed-distributed to flat-head distributed. We
propose a scalable “compress-to-compute” based IMM method
(called HBMax) that leverages the Huffman coding or bitmap
coding to reduce the memory footprint of saving intermediate
RRR sets based on these characteristics.

(3) We propose two efficient seed selection approaches based on the
two encoding methods. Specifically, for Huffman-encoded inter-
mediate RRRs, we exploit data locality to query the compressed
RRRs without fully decoding them; for bitmap-encoded RRRs,
we directly query the compressed RRRs with bit operations.
Moreover, we propose a new parallel max-reduction method
for finding the vertex with the maximum frequency to improve
the scalability of seed selection.

(4) We evaluate our HBMax and compare it with the original Ripples
implementation on eight large graphs (Ripples cannot run the
largest two graphs on the tested machine with 376 GB RAM).
Experiments show that HBMax reduces the memory usage by
up to 82.1% with 6.3% speedup (the encoding overhead is off-
set by performance gain from memory reduction). Moreover,
HBMax can reduce the overall time by up to 79% with the same
memory footprint when compared to Ripples.

The rest of this paper is organized as follows. In Section 2, we
present background information about the IM problem, state-of-the-
art algorithms and implementations, Huffman coding, bitmap cod-
ing and related work. In Section 3, we profile the memory footprint
of Ripples with different graphs and characterize input graphs into
two main categories. In Section 4, we propose our three optimiza-
tions for memory footprint reduction and performance/scalability
enhancement. In Section 5, we evaluate our optimized IMM solution
and compare it with the state-of-the-art method on large graphs.
In Section 6, we conclude our work and discuss the future work.

2 BACKGROUND AND RELATED WORK

In this section, we introduce the influence maximization problem,
the RIS and IMM algorithms, Ripples software, Huffman/bitmap
compression, and compressed-based graph analytics.

2.1 Influence Maximization Problem

Let G = (V,E) be a graph with n vertices and m edges. Given
G and a stochastic diffusion process, the influence maximization
problem is one of identifying a set S of top k vertices in G (called

“seeds”) that maximizes the expected influence spread (E[I(S)]) in

G, measured by the number of activated vertices. Kempe et al. [14]

10ur code is available at https://github.com/hipdac-lab/hbmax-pact.

https://github.com/hipdac-lab/hbmax-pact.git

HBMax: Optimizing Memory Efficiency for Parallel Influence Maximization on Multicore Architectures

have shown that E[I(S)] is a submodular function of S for two
simple but powerful diffusion models: the independent cascade
model (IC) and the linear threshold model (LT). Submodular func-
tions have the property of diminishing marginal gains and leads to
efficient approximation algorithms [26]. Leveraging the submodu-
larity framework, they propose a greedy hill-climbing algorithm
that offers an approximation guarantee of 1 — 1/e — € [14].

The IC and LT diffusion models are broadly studied in the litera-
ture. The IC model comes from the physics of interacting particles.
In this model, each newly activated vertex has a single chance to
activate its neighbors. Assuming a directed graph G = (V,E, w)
as an example, each edge (u,v) € E is assigned with a probability
p(u,v) to trigger the activation of v from u. When the vertex u gets
activated at time ¢, then at time t + 1, the vertex v gets activated
with the probability p(u, v).

In contrast, the LT model captures mass behaviours. Each vertex
has a threshold modeling their resistance to adopting the mass
behavior and each edge (u,v) has a weight w representing the
capacity of u to influence v. At time ¢, a vertex v gets activated
if the sum of the weights on the incoming edges from its already
active neighbors exceeds its threshold. It is worth noticing that
the edge weights w are provided by input graphs, but they are not
corresponding to the probability of activation. Thus they only affect
the LT model instead of the IC model.

The LT diffusion model tends to produce very small RRR sets and
more than 99% of them end up with less than 10 vertices [21]. On
the contrary, the sizes of RRR sets from the IC model is less skewed
and tend to be of larger size. From a utility standpoint, the IC model
is more generally applicable to abstract a range of diffusion pro-
cesses. It can be viewed as a special case of the Susceptible-Infected-
Recovered (SIR) models [23] used in epidemics. However, its large
memory footprint (as shown in Figure 1) limits its scalability, so we
focus on the IC diffusion model in this paper.

2.2 RIS, IMM, and Ripples

Reverse Influence Sampling. Following the seminal work [14],
Borgs et al. [6] proposed an approximation algorithm based on the
idea of Reverse Influence Sampling (RIS). Their scheme attempts to
find which are the most likely causes of activation for each vertex in
the graph. The algorithm randomly samples vertices v and simulates
the diffusion model in reverse collecting sets of vertices which may
cause the activation of v. The seed sets S is later decided by solving
a maximum coverage problem over the sets collected through RIS.
This approach provides the same approximation guarantee as the
greedy hill-climbing algorithm [14].

The RIS approach is the fundamental building block of the IMM
algorithm from Tang et al. [34], and its state-of-the-art parallel
implementation Ripples [22] is the starting point for our work.
In the following, we give important definitions and a high-level
description of the fundamental building blocks of the IMM and
Ripples algorithm. We direct the reader to the original work for a
more exhaustive presentation.

Definition 2.1 (Reverse Reachable (RR) Set). Let G = (V,E) be
the transposed graph obtained from G = (V, E) by inverting the
orientation of all the edges in E. The reverse reachable set of a
vertex v is the set of vertices u € V that are reachable from v in G.

414

PACT ’22, October 10-12, 2022, Chicago, IL, USA

Definition 2.2 (Random Reverse Reachable (RRR) Set). Let g =
(V,E’) be a subgraph of G = (V, E) obtained by edge removal by
retaining only the active edges during a simulation of a diffusion
process M on G. A random reverse reachable set RR;(v) for a vertex
v is the set of vertices u € V that are reachable from v in g, where g
is the transposed graph obtained from g.

In the following discussion, we use RRR sets to refer to the col-
lection of random reverse reachable sets. We use rr or sample to
refer to one RRR. Since each RRR is a set of vertices, we refer the
cardinality of an RRR as the size of RRR.

IMM and Ripples. Although the reverse reachable scheme of Borgs
et al. greatly improves the efficiency of MC simulations, it could
overestimate the required number of MC simulations and waste
a lot of computation. The IMM algorithm proposed by Tang et al.
[34] adopts a two-phase design to algorithmically determine the
sampling effort by leveraging a martingale strategy?. This strat-
egy greatly improves the performance so that IMM algorithm can
analyze large graphs with millions of vertices.

Specifically, the two-phase design works as follows. In the Sam-
pling phase, the algorithm will produce 8 RRRs starting from ran-
dom vertices in the input graph and simulating the diffusion model
(IC or LT) in reverse. In the case of the IC and LT model, the task of
generating a RRR set resembles a randomized breadth-first search
(BFS) where only a subset of the neighbors of a vertex enter the
next frontier. To estimate the required sampling effort (6) to achieve
the approximation guarantee (controlled through the parameter €),
the algorithm uses two important results. Borgs et al. showed that
the fraction of RRR covered during the seed selection process is an
unbiased estimator of the influence function while Tang et al. were
able to prove a lower bound on the sampling effort using an esti-
mation of the influence function. In Equation (1), Tang et al. shows
the algorithm starts with a guess on 6 and doubles the sampling
effort at every iteration until the exit condition derived from the
lower lower bound is satisfied and the final value of 0 is computed.
Here n is the number of vertices, k is the number of seeds, € is the
error factor, and 0 is the required number of sampling. The larger
n and k are, the larger 6 will be. On the other hand, small error
factor € will increase 8 non-linearly. This process resembles to the
martingale betting strategy.

B (2+%E

o — €) - (log (i) - log(n) +loglog,(n)) - 21

oe? (1)

The Seed Selection algorithm is based on the greedy maximum
coverage algorithm [35]. The method iterates k times over the RRR
sets to select the vertex v appearing most frequently. At every
iteration i, the RRR sets covered by one of the i seeds already
selected are ignored. Minutoli et al. [21, 22] devise efficient parallel
schemes that perform the counting by either updating the state of
the previous iteration or recount from scratch when more profitable.

Ripples [29] is a state-of-the-art parallel software framework
that provides fast and scalable implementation for the IM prob-
lem. According to [21, 22], its CPU version provides a speedup

2The martingale strategy is a betting strategy in which a person doubles the bet every
time they lose knowing that they must win at some point. It first samples a small
number of RRR sets to calculate the achieved influence and then doubles the number
of samples until the influence reaches an estimated lower bound.

PACT °22, October 10-12, 2022, Chicago, IL, USA

of 580x over the best sequential baseline using 1024 nodes, and
its CPU+GPU version provides a speedup of 760x over the best
sequential baseline.

2.3 Huffman Coding and Bitmap Compression

Huffman coding is a classical data compression technique [13]. It
assigns variable-length codes to encode target characters based on
their relative frequency, which gets better reduction when the data
has skewed distribution [30]. The Huffman codes are prefix-free and
are typically created as a binary tree with the encoded characters
stored at the leaves. There are works that adopt Huffman coding to
reduce the memory footprint. For example, Suontausta and Tian
[32] applied Huffman coding for efficiently storing decision tree
parameters to minimize the memory footprint. Ficara et al. [10]
adopted Huffman coding to improve counting bloom filters in terms
of fast access and limited memory consumption.

Bitmap is a mapping from some domain (e.g., a range of integers)
to bits [11]. It not only reduces the data size but also allows effi-
cient direct operations such as binary logic operations [20]. Thus,
many efficient bitmap compression schemes have been extensively
studied in the database systems, such as BBC, WAH, EWAH, and
Roaring [36]. However, none of these work exploited data analytics
on the Huffman or bitmap encoded data directly.

2.4 Graph Compression and Data Analytics on
Compressed Data

Due to the growing sizes of graphs, researchers have been studying
compression techniques for graphs. For example, Randall et al. [28]
tried to compress the links of web graphs by leveraging the locality
of web graphs. Ligra [31] and SlimGraph [2] focused on providing
frameworks that can facilitate graph analytics with compression
scheme. The Ligra framework mainly utilizes the vertex degrees
and graph density to select a scheme to map vertices or edges to
integer-arrays or bit-vectors, while SlimGraph focuses more on
utilizing statistics of local parts in the input graph to map vertices
and edges to higher hierarchies. Thus, its compression kernels can
preserve some critical graph properties. However, the use of these
frameworks needs to re-program the graph applications with their
specific syntax and semantics. This is a non-trivial effort for most
of the graph algorithms and applications in the literature.
Moreover, there are a few works that investigate data analytics
directly on compressed data without decompression. For example,
Zhang et al. proposed an approach to perform document analytics
(word count, inverted index, and sequence count) directly on com-
pressed textual data on CPUs [42] and GPUs [18, 27, 40]. Moreover,
Zhang et al. developed a new storage engine, called CompressDB,
which can support data processing for databases without decom-
pression [41]. Furthermore, Macko et al. [19] proposed LLAMA
that performs graph storage and analysis on the compressed sparse
row (CSR) representation and achieves performance gain on graph
benchmarks (i.e., PageRank, BFS, and triangle counting) due to
in-memory execution. In addition, Mofrad et al. [25] proposed
a compression technique specifically designed for matrix-vector
operations based on the compressed sparse column (CSC) repre-
sentation and leverage this compression to accelerate distributed
graph benchmarks (e.g., PageRank, single source shortest path, and

415

Xinyu Chen, Marco Minutoli, Jiannan Tian, Mahantesh Halappanavar, Ananth Kalyanaraman, and Dingwen Tao

BFS). However, no work has been done on using compression to
improve memory efficiency and accelerate a real-world diffusion-
based graph application such as influence maximization.

3 MEMORY FOOTPRINT PROFILING AND
GRAPH CHARACTERIZATION

In this section, we characterize the memory usage of Ripples, the
state-of-the-art parallel IMM implementation and discuss the po-
tentials to reduce the memory footprint.

3.1 Memory Usage of RRR Sets

The key component of the Monte Carlo (MC) diffusion process
[22, 34] is a probabilistic Breadth First Search. The intermediate
collections of vertices that may cause activation of the BFS root are
saved in the form of RRR sets. We benchmark six real-world large
graphs used in the literature and study the memory usages for the
MC diffusion process and generating/saving the intermediate RRR
sets.

As shown in Figure 1, the space attributed to storing of the
intermediate RRR sets dominate, consuming between 87% to 99%
of the memory footprint.

DBLP 5K - YouTube
10K -
50K -
5K - 25K -
OK B 1 1 1 1 ()K - 1 1
0 25000 50000 75000 0 50000
100K - Skitter 2,000K - Orkut
50K - 1,000K -
OK - 1 1 1 1 OK - 1 1 1
0 20000 40000 60000 0 5000 10000
Pokec - LiveJournal
1, 000K - 3,000K
2,000K -
500K -
1,000K -
OK B 1 1 1 OK - 1 1 1 1
0 5000 10000 0 5000 10000 15000

Figure 2: Distributions of RRR set sizes on different graphs
(X-axis: the sorted RRR set ID; Y-axis: the number of vertices
contained in the RRR set).

To further understand the memory footprint usage patterns in
Figure 1, we studied the distribution of the RRR sets by their sizes.
Figure 2 shows the sizes of RRR sets, i.e., their vertex counts, for
different graphs. The figure illustrates the shapes of RRR sets’ distri-
bution based on their sizes: (1) In the top row, the two graphs (i.e.,
DBLP and YouTube) have long tails, and their shapes correspond to
a power-law distribution. (2) In the middle row, the shapes of the
two graphs (i.e., Skitters and Orkut) show close to a linear decay
without any long tails. (3) In the bottom row, the shapes of the two

HBMax: Optimizing Memory Efficiency for Parallel Influence Maximization on Multicore Architectures

Table 1: Skewness S and density of RRR sets distributions.

Graph Skewness S Density D

DBLP 11.46+0.15 0.261%+0.001%
Youtube 9.01+0.06 0.630% +0.001%
Skitter 5.38+0.01 2.030%=+0.001%
Orkut 0.75+0.03 27.73% + 0.03%
Pokec -143+0.01 66.01%+0.111%
LiveJournal —-0.99+£0.01 53.28% +0.273%

graphs (i.e., Pokec and LiveJournal) show a very uniform two-step
(flat-head) distribution. The overall memory footprint of the RRR
sets corresponds to the area under the curves in the respective
plots. This well explains why the last two graphs spends much
more memory in saving the RRR sets. Further, these observations
raise a critical question to the design of optimizations for memory
footprint reduction: What are the characteristics of the various RRR
sets of the above three different categories? (see Section 3.2)

3.2 Characterize The RRR Sets

The shapes in Figure 2 roughly categorize the RRR sets’ distributions
into two types: the first four graphs (i.e., DBLP, YouTube, Skitter and
Orkut) have skew-distributed distribution while the last two graphs
(i-e., Pokec and LiveJournal) have a uniform two-step distribution.
We use two quantities, i.e., skewness and density, to characterize
the shapes of RRR sets’ distributions.

The skewness score (S) measures how distributions are asym-
metric about their mean: When S < 0, the distribution has a longer
left tail; When S > 0, the distribution’s right tail is longer. Equation
(2) shows the calculation of skewness score for the size of RRR sets
X = (X1,, Xp), where each X; is a sample of the number of visited
vertices starting from a seed vertex in a MC simulation. Thus all
Xj’s are at least 1 because there will be no empty resultant RRR
set (it will at least contain the starting seed vertex); 6 is the total
number of sampled RRR sets; X is the average RRR size, and s is
their standard deviation.3 In Table 1, we show the skewness scores
of the first four graphs (i.e., DBLP, YouTube, Skitter and Orkut) are
all positive, which help to distinguish them from the last two graphs
(i.e., Pokec and LiveJournal) whose skewness scores are negative.

The density (D) measures the proportion of non-zero elements
that are required to represent the sampled RRR sets if they are
stored in matrix format. Although density is not correspond to the
shape of distributions, it can help to select the data structure to store
RRR sets. It is sufficient to use 32-bit unsigned integers to represent
each vertex in the sampled RRR sets in this study. Thus we can use
3.12% to be the threshold. When the density D < % = 3.12%, it
is more efficient to use a sparse representation of RRR sets, i.e., to
explicitly store each vertex. On the other hand, when the density
D > 3.12%, it is more efficient to use a dense bitmap coding to store
RRR sets. Equation (3) shows the calculation of density for the size
of RRR sets X (Similarly, 0 is the total number of RRR sets; X; is
the number of vertices in each RRR set; n is the number of vertices
in graph G). In Table 1, we show the last two graphs (Pokec and
LiveJournal) have much higher densities (> 50%) than the rest four

3The standard deviation s # 0 because X;’s are the sizes of RRR sets, which are not
all equal. Given the elements in Equation (2) are all non-zero, the skewness score and
density will not overflow by dividing zeros for real-world social networks.

416

PACT ’22, October 10-12, 2022, Chicago, IL, USA

graphs (DBLP, YouTube, Skitter, Orkut).
138 (6 -X)3

5= S ®)
9 x;
R ®)

3.3 Characterize The Influence of Vertices

The different shapes of RRR sets’ distribution also characterize the
influence of individual vertices which can help us to find data local-
ities. To verify this intuition, we compare the selected seeds of each
graph by varying the random starting vertex for MC samplings. Ta-
ble 2 shows the Rank-Biased Overlap (RBO) scores [37] (1.0 means
highly overlapping rank positions and 0.0 means no overlapping).
For the graphs with skew-distributions, the same top-1 influential
vertex is consistently selected from different random starting ver-
tices. However, for the graphs with flat-head distributions, many
vertices achieve the maximum influence, so the RBO score is zero.

Table 2: Influential seeds with a random start.

Graph Activated ("ll“t) I::)I) (TI:II:-CS) 0)
DBLP 0.499 1.0 0.57
YouTube 0.554 0.87 0.24
Skitter 0.794 0.50 0.16
Orkut 0.967 0.46 0.09
Pokec 0.817 0.0 0.0
LiveJournal 0.741 0.0 0.0

From the first four graphs (DBLP, YouTube, Skitter, Orkut), the
sampled RRR sets are close to power-law or linear decay distribu-
tions. Under this situation, there are only a small number vertices
that influence a lot of other vertices; while many vertices only
influence one or two other vertices. On the other hand, for the
last two graphs (Pokec and LiveJournal), the flat-head shows that
many vertices can influence many other vertices. In other words,
many vertices are equally influential, which makes the flat-head
distributed RRRs lack the data locality in the skew-distributed RRR
sets. Thus, they need different optimization strategies to reduce
their memory footprints.

In summary, the memory required to store intermediate RRR sets
is one to two order of magnitude larger than the memory footprint
of the diffusion process. We observe two types of graphs with
regards to their different behaviors in diffusion process and hence
the data localities. Considering the observed skewed-distributed
RRR sets, it is promising to leverage variable-length encoding to
reduce the memory footprint of RRR sets for those graphs. On the
ther hand, using bitmap coding can reduce the memory footprints
for the flat-head distributed RRR sets because of their high density
of non-zero elements.

4 OUR PROPOSED OPTIMIZATIONS

In this section, we propose a “‘compress-to-compute” IMM method
to reduce the memory footprint for the Ripples based on our char-
acterization and profiling.

PACT °22, October 10-12, 2022, Chicago, IL, USA

Decision Blockwise

Warm-Up > v Selection
Phase Making Encoding
Sampling git'g!ap) BIIO\E)V?(r)atlon
Block-1 characterize Q ocing Decoding
yes
Partial

Eggﬂ]‘g" — Decoding
w/ Early-Stop

Figure 3: Workflow overview of our proposed solution.

4.1 Overview of Our Proposed Workflow

The overview of the “compress-to-compute” workflow is shown
in Figure 3. It contains three main phases: warm-up, sample-and-
encode, and decode-and-select. Specifically, we first characterize
the skewness score and the density from the distribution of the
RRR sets in the warm-up phase. Based on that, we then choose an
efficient compression technique to encode the intermediate RRR
sets and query on the encoded RRR sets.

More specifically, we introduce a block-based sampling-and-
encoding approach and an integrated selection approach. To achieve
a better scalability on multicore architectures, we design two schemes
- (1) Huf fmax: We use Huffman coding to encode skew-distributed
RRR sets, and leverage the data locality knowledge acquired from
the warm-up phase to accomplish the selection without fully decod-
ing the compressed RRR sets. (2) Bitmax: We use bitmap coding to
encode flat-head distributed RRR sets. The corresponding selection
can be accomplished directly on the encoded data by efficient bit
operations. These two schemes are complementary to each other
so that the proposed workflow does not rely on the data locality
of skewed distributions. It can work with RRR sets that have non-
skewed distributed sizes such as normal distributions or uniform
distributions (their skewness scores are zero). In Figure 2, we show
the flat-headed distributions of Pokec and Livejournal are two spe-
cial cases that are close to uniform distributions. Furthermore, we
use a heuristic approach to optimize the parallel reduction opera-
tion to find the vertex with the highest frequency. We use Table 3
to list the notation used in the paper.

4.2 Sampling-and-Encoding

Next, we describe the proposed two encoding methods.

4.2.1 Block-based sampling-and-encoding. We adopt a block-by-
block sampling strategy and use the first block as the warm-up
phase. This design provides three benefits: First, as aforementioned,
the warm-up phase characterizes the graph and enables us to choose
between Huffman coding and bitmap coding. Second, the learned
characteristics of RRR sets distribution also helps to determine
whether the two encoding methods can efficiently compress RRR
sets and hence reduce the memory usage of RRR sets. For RRR
sets with negative skewness, using the Huffman coding will cause
low compression ratio, and the decoding cannot early stop due to
the lack of data localities; For RRR sets with density < 3.12%, the
bitmap coding will even increase the memory footprints. Third,
the block-by-block sampling enables us to interleave the sampling
and encoding so that we can release the used memory as soon as
possible to maximize the peak memory reduction.

417

Xinyu Chen, Marco Minutoli, Jiannan Tian, Mahantesh Halappanavar, Ananth Kalyanaraman, and Dingwen Tao

Table 3: Notation used in the paper.

Notation Description

n The number of vertices in Graph

RRR Random Reverse Reachable set

seeds The selected most influential vertices

k The number of most influential vertices in seeds

0 The number of random RRR sets to be sampled

S The skewness score of RRR sets

D The proportion of non-zero elements of sampled RRR sets
Xi The number of vertices in a sampled RRR set

€ The approximation factor

b The number of blocks that consists the Sampling step
R; A block of RRR sets

rrj One RR set from the block

Ci A block of Huffman encoded RRR sets

cj The encoded part of one RRR

CP; A block of copied buffers

cpj The copied part of one RRR

H* The Huffman codebook

h The shared vertex-frequency table

B; A block of bitmap encoded RRR sets

u* The current most influential vertex

4.2.2 Encoding of Huffmax. We simply check the skewness in the
warm-up phase to enable the Huffman coding. Table 1 shows the
skewness scores of our benchmark graphs. The skewed RRR sets
of the first four graphs have S > 0. They will be encoded with
Huffman Codes. Next, we will describe the block-based sampling-
and-encoding approach where the Huffman coding method is inter-
leaved with the sampling step. Algorithm 1 presents the block-based
sampling-and-encoding method in detail.

Specifically, we split the sampling step into b sub-steps. In each
sub-step we get a block of g RRR sets. Let Ry = {rry,...rrg/p}
be the first block. We build a Huffman codebook H* based on the
block R;. We use this codebook H* to encode R; into a set of
byte-strings C; = {c1,....,cg/p}, each of which corresponds to a

RRR set. At the same time, we construct a frequency table hto
store the vertex frequency of the block R;. In the following sub-
steps, we keep updating the frequencies stored in the table h and
encoding the RRR sets R; into C;, where i = 2, - - -, b. Because of
the data localities of the skew-distributed RRR sets, we can keep
track of the current most influential vertex u* and swap it to the
beginning position of the encoded byte string whenever it appears
in the corresponding RRR set. Note that this swap is beneficial as it
enables early-stopping (will be described in Section 4.3). At the end
of each sub-step, to reduce the peak memory usage, the memory for
R; is deallocated once the encoding of the current block completes.
Ideally, the codebook H* built from the first block R; should
contain the Huffman codes for all vertices in the entire RRR sets.
However, in our block-based sampling-and-encoding approach,
some vertices may not be sampled in Ry but could appear in later
blocks due to the skewed distributions. The more skewed distribu-
tions the RRR sets have, the more likely some vertices are missing
from R;. For example, 0.2% of DBLP’s vertices have no Huffman-
codes where the skewness score is 11.46; 0.02% vertices of Skitters
have no Huffman-code where the skewness is 5.38; and 0.003% ver-
tices of Orkut’s have no Huffman-code where the skewness is 0.75.
For those vertices do not have corresponding Huffman codes in the

HBMax: Optimizing Memory Efficiency for Parallel Influence Maximization on Multicore Architectures

PACT ’22, October 10-12, 2022, Chicago, IL, USA

Algorithm 1 Sampling-and-Encoding(G, 6, b)

: B=¢, C=¢, CP=4¢, h = zeros
2: fori < bdo

3 R; = Sampling(G, g, threshold)
4: if i = 1 then

5 S, D = Characterize(R;)

6: if S < 0 then

7: Bitmax= True

8: else

9: Huffmax= True

10: H* = BuildHuffmanCode(R;);
11: end if

12: end if

13: if Huffmax= True then

14: h= UpdateHistogram (R;, fl)
15: [Ci,CP;] = HuffmanEncode(H*, h, Ri)
16: C=CuUC;; CP=CPUCP;
17: end if

18: if Bitmax= True then

19: B; = BitmapEncode(R;)

20: B=BUB;

21: end if

22: Deallocate R;

23: end for

codebook H*, we use an additional array CP; to directly save those
vertices without encoding. By doing this, we preserve the exact
information of RRR sets by encoding and/or copying all the vertices
in the original RRR sets. From our empirical studies, the vertices
that do not have corresponding Huffman codes only consist of less
than 0.2% of the entire vertices. Thus we do not build new Huffman
code book in the following steps to reduce the overhead.

4.2.3 Encoding of Bitmax. We not only check the skewness (< 0),
but also check the density (> 3.12%) to enable the bitmap coding (as
mentioned in Section 3.2). For a block of RRR sets R;, the encoded
data is represented as a dense bit matrix B;, where the shape of
matrix B; is n rows by % columns (n is the number of vertices in

graph G, % is the number of RRR sets sampled in this block). If
the bit at the r-th row and c-th column in matrix B; is set to 1,
it represents the r-th vertex appears in the c-th RRR set. In our
implementation, we pad % columns to be the multiple of 32 so that
we can save the bit matrix in byte format. Because the padded bits
are all zeros, the padded columns do not affect the correctness of the
method. Similar to Huf fmax, we deallocate the R; after the bitmap
encoding to reduce the peak memory usage.

4.2.4 Parallel implementation. The sampling-and-encoding com-
putation on one sample is independent of other RRR sets. To accel-
erate the computation, we distribute the sampling-and-encoding
workload to multiple threads/cores. For Huffmax, the bottleneck is
to perform a parallel reduction to build a shared frequency table
h considering the NUMA effect [15]. Our solution is to follow the
first-touch principle: we allocate a local frequency table h/°¢? on
each thread to store the vertex frequencies and sum them to the
global frequency table after the sampling-and-encoding of this block
completes (the synchronization happens b times as we split the

418

Algorithm 2 Huf fmaxDecodeQuery (H*, hC, CP)

1: u*:argmax(ﬁ), seeds=¢, deleteRRRflag[f]=False
2: while [seeds| < k do

3 h = zeros;
4: #pragma omp parallel for

5 for j =1..0 do

6: if deleteRRRflag; = False then
7.

8

9

seeds = seeds U u*

tmp, findflag = DecodeFind(H", cj, cpj, u™)
if findflag = True then
deleteRRRflag; = True

10: else

110 h= UpdateHistogram(tmp, cpj, fl)
12: end if

13: end if

14: Deallocate tmp

15: end for

16: u* =argmax(l:t)

17: end while

sampling-and-encoding into b sub-steps). For Bitmax, its encoding
is embarrassingly parallel on multi-cores for high scalability.

4.3 Optimized Selection

Lastly, we describe two selection approaches for efficiently querying
in Huf fmax and Bi tmax, respectively. The selection iterates two core
computations for k times to select the most influential seeds. The
first computation is to locate and remove the RRR sets which contain
the current most frequent vertex u*. The second computation is to
reconstruct the frequency table h after every RRR set that contains
the previous u* is removed. After that, a new u”* is selected based
on the updated frequency table h.

4.3.1 Selection of Huffmax. For RRR sets encoded by Huffman
coding, we leverage the data locality to swap the most frequent
vertex u* to the beginning position during the Huf fmax encoding
steps (described in Section 4.2.2). This enables us to partially decode
an encoded RRR set (i.e., c; where j = 1,---,0) and stop early
whenever it contains u*. Due to the skew-distributed RRR sets,
we only need to decode a small number of encoded RRR sets.
As aforementioned in Table 1, graphs of greater skewness scores
(DBLP/11.46, YouTube/9.01) also have longer tails than graphs of
smaller skewness scores(Skitter/5.38, Orkut/0.75). However, the
difference of tails does not affect the selection efficiency: even graph
with small positive skewness (Orkut/0.75) still has the data locality
that enables Huf fmax to early-stop in the selection step. Note that
when we decode c; back to a temporary buffer tmp = {vq,--- }, it
implies that the current u* does not appears in the encoded part of
this RRR set; otherwise, we would have early stopped decoding. In
this case, we will search the corresponding copied array cp;.

To reconstruct the new frequency table h, we only need to count
the vertices in the fully decoded buffer tmp and the corresponding
copied array cp; if u* is not found. At this point, the temporary
buffer tmp is safely deallocated to reduce memory footprints. Algo-
rithm 2 describes this Huf fmax selection in detail.

PACT °22, October 10-12, 2022, Chicago, IL, USA

Algorithm 3 Bi tmaxQuery (h, B)

1: u*:argmax(fl), seeds=¢, deleteVTXflag[n]=False
2: while [seeds| < k do

3: h = zeros; seeds = seeds U u*

4: #pragma omp parallel for

5 fori=1..n do

6: if deleteVTXflag; = False then
7 SUBTRACT (v;, u*¥)

8 if POPCOUNT(v;) = 0 then

9 deleteVTXflag; = True
10: else

11 h= UpdateHistogram (POPCOUNT (v;))
12: end if

13: end if

14: end for

u* :argmax(fl)
16: end while

4.3.2 Selection of Bitmax. Unlike Huffmax’s selection, where we
leverage the data localities to partially decode the compressed data,
the selection in Bitmax directly operate on the encoded data with-
out decoding. The selection is accomplished by efficient bit oper-
ations. Note that the shape of bitmap encoded B is different from
the Huffman encoded C; we will use an example to illustrate the
two core selection computations (i.e., locate and remove RRR sets
which contains u*, reconstruct frequency table to find the new u™).

W1 1 0 0 1 1 00 0 0 0 0 0
w0 1 1 0 0 1 w0 01 0 0 0
v3)l 0 1 0 1 O|—]ow3l0 0 1 0O 0 O (4)
o 1 0 1 0 1 a0 0 0 1 0 0
o0 001 1 1 0 o0 01 1 0 0

Equation (4) shows a simple example that has 5 vertices and 6
RRR sets. The frequency table his computed by row-wise POPCOUNT
operation (i.e., find the sum of ones in each row). Given their fre-
quencies, v; is selected as the current most frequent u*. We do not
need to locate the RRR sets because their locations are explicitly
represented by the 1s in v1’s row (for simplicity, we use the nota-
tion v; to represent the v;’s row). To remove these RRR sets, we
subtract row v from all the other rows. We use two bit operations
to accomplish the SUBTRACT operation on the bitmap-encoded data.
Specifically, we use tmp = v; AND (v; XOR u*) to subtract row
u* from row v;.

After SUBTRACT, we use row-wise POPCOUNT again on the up-
dated bitmap matrix B to reconstruct the updated frequency table
h. Algorithm-3 describes the selection of Bitmax in detail.

4.3.3 Parallel implementation. The above example in Equation (4)
demonstrates the bit operations of POPCOUNT, AND, and XOR on each
row of vertices. However, the bit-columns of the encoded bitmap
B are distributed across different threads according to the first
touch principle (as described in Section 4.2.4). It is important to
consider the NUMA effect to parallelize the selection step of Bi tmax
along the bit-column direction instead of iteratively applying bit
operations on each row. More concretely, each thread keeps track

419

Xinyu Chen, Marco Minutoli, Jiannan Tian, Mahantesh Halappanavar, Ananth Kalyanaraman, and Dingwen Tao

10
—<— openMP-Reduction I 60%
8 —<— Parallel-Merge
- =%+ % openMP-Reduction
o % % Parallel-Merge - 40%
2 6
=
c
.2
5
S 44 F20%
o
Q
@
21 et
% 0%
< | | <
0 T T T T T
2 4 8 16 32

Figure 4: Time comparison of reduction on Skitter’s fre-
quency table h with different # of threads (solid line: absolute
time; dashed line: relative to the time-to-solution).

of a local frequency table h!°°@ and these local frequency tables
are reduced to the global frequency table h after each iteration.
The next section describes our solution to address the scalability
challenge on getting the global most frequent vertex u* without
reducing the entire global frequency table h.

4.3.4 Parallel merge. Both selections in Huf fmax and Bitmax need
to find the new most influential vertex u™ after reconstructing the
frequency table. However, we note that to generate the overall
reconstructed frequency table h from multiple threads, a parallel
reduction with k times of synchronizations is needed to sum local
frequencies for all vertices. This reduction introduces high time
overhead, as shown in Figure 4. The reduction times are measured
on the Skitter graph. The dashed line shows the runtime of the
OpenMP reduction function with 2~32 threads/cores. It illustrates
that the original OpenMP reduction would become the performance
bottleneck as the number of threads increases. The reduction time
takes upto 52.5% of the entire time-to-solution.

To solve this issue, we propose to use the following approach
to greatly decrease the number of reductions so as to make the
selection step more efficient and scalable: (1) Select the locally
most frequent vertex from each thread (these are local maxima); (2)
Perform reductions to get the global frequencies for these locally
selected vertices (the local maxima); and (3) Select the vertex with
the maximum global frequency from the locally selected vertices (
get the global maximum from these local maxima). Note that the
total number of reduction operations in (2) is k X p instead of k X n,
where p is the number of threads and n is the number of vertices
in graph (p << n). Figure 4 illustrates that our proposed parallel-
merge-based reduction is highly efficient and scalable with almost
constant time cost. In this example, the number of vertices of Skitter
is about 1.6 millions. With 32 threads, the OpenMP reduction needs
to reduce 650 MB data, whereas our approach only needs to reduce
12.5 KB data*. This explains why our approach is more efficient
with the constant computation time of about 0.5 seconds.

The heuristic is based on the fact that (1) The global RRR sets
is the collection of local RRR sets from each thread. The local RRR

“In the skitter example (n=1.6M, k=100), each frequency needs 4 bytes (one float), the
baseline reduction needs to sum 1.6M*100*4=650MB data; and with 32 threads, our
proposed method sums 32x100x4=12.5 KB data.

HBMax: Optimizing Memory Efficiency for Parallel Influence Maximization on Multicore Architectures

sets on each thread is independent because the MC simulations are
uniformly sampled. (2) Let P,(X) be the distribution of vertex v’s
frequency in the global RRR sets. Then, the distribution of vertex v’s
frequency on each thread is P, (X/p). (3) Given two vertices u, v, the
corresponding distributions of their frequencies are Py, (X), P, (X)
if they are measured from the global RRR sets. Let P, (X) > Py (X)),
without loss of generality, we also have P, (X/p) > Py(X/p) on
each thread. (4) Thus the globally most frequent vertex is among
the locally most frequent vertices from each thread.

5 EXPERIMENTAL EVALUATION

In this section, we first present our experimental setup. We then

demonstrate the effectiveness of our “compress-to-compute” method.

After that, we show the performance of HBMax in memory usage
and computation time. Finally, we show that our method has strong
scalability on the multicore architectures.

5.1 Experimental Setup

Test datasets. For evaluation purpose, we use the five largest
graphs tested in the Ripples software and three large graphs not
tested by Ripples®. Table 4 shows the main features of these widely
studied networks. In detail, (1) DBLP [39] describes a co-authorship
network of researchers in computer science; (2) YouTube [24] is
a social network of friendship and groups on the video-sharing
web site; (3) Skitter [8] is an internet topology graph by depicting
the forward paths that actual packets traversed to a destination;
(4) Orkut [24] is generated from an on-line social networking site
where its primary purpose is to finding and connecting new users;
(5) Pokec [33] is an on-line social network in Slovakia and Czech
Republic; (6) LiveJournal [1] is a graph from a social networking and
blogging site, with explicit user-defined communities; (7) Arabic-
2005 [3-5] crawls web pages written in Arabic; and (8) Twitter7 [38]
contains the graph of Twitter posts covering a 7-month period. The
first six graphs are characterized (as shown in Figure 2) to help us
design HBMax, while the last two are not characterized beforehand.
We use these two graphs as a test set to verify the effectiveness
of HBMax. For the Arabic graph, S = —0.25, D = 0.22, and for the
Twitter7 graph, S = —3.19, D = 0.62. Thus, these two graphs use
Bitmax. Note that the input data of the two largest graphs uses
large amount of storage. Specifically, Arabic has over 22.7 million
vertices and 639.9 million edges (requiring more than 11 GB storage
overhead), while Twitter7 has 41.6 million vertices and 1.46 billion
edges (requiring more than 23 GB storage overhead). These two
largest graphs cannot be run by Ripples on our tested platforms
due to memory overflow.

Evaluation platforms. We evaluate our proposed method and
compare it with the baseline on two platforms. The first platform is
a local workstation which has 4 Intel Xeon Gold 6238R CPUs, 376
GB RAM and 1 TB NVMe SSD storage. This local workstation is
used to make a fair comparison with Ripples because it has larger
memory. The second platform is a Regular Memory (RM) compute
node from the Bridges-2 supercomputer [7] at PSC, which has 2
AMD EPYC 7742 CPUs (64 cores per CPU) and 256 GB RAM. The

STested graphs are from the the SNAP collection [17], the UFL sparse matrix collection
[9], and Laboratory for Web Algorithms (LAW) [4, 5].

420

PACT ’22, October 10-12, 2022, Chicago, IL, USA

Table 4: Input real-world graphs tested.

Network #Vertices #Edges AvgDeg Max Deg
DBLP 317,080 1,049,866 3.31 306
YouTube 1,134,890 2,987,624 2.63 28,576
Skitter 1,696,415 11,095,298 6.54 35,387
Orkut 3,072,441 117,185,083 76.28 33,313
Pokec 1,632,803 30,622,564 37.51 20,518
LiveJournal 4,847,571 68,993,773 28.47 22,889
arabic-2005 22,744,080 639,999,458 28.14 575,618
twitter7 41,652,230 1,468,365,182 35.25 770,155

Table 5: Sampling time (in seconds) and reduced page faults
(in percentile) of Ripples and HBMax.

Graph HBMax Ripples Reduced Page Faults
DBLP 0.45 0.50 29.5%
YouTube 4.30 5.78 24.3%

Skitter 13.43 17.56 10.5%

Orkut 196.02 245.25 25.2%

Pokec 196.79 257.96 31.0%
LiveJournal 612.60 761.59 42.8%
arabic-2005 1297.60 NA NA

twitter7 11219.10 NA NA

Bridges-2 compute node is used for scalability study because it has
more CPU cores. We use GCC-8.3.1 for compilation.

Parameter setup. We choose k = 100 for all the graphs. We use
€ = 0.2 for DBLP, YouTube, and Skitter, € = 0.5 for Orkut, Pokec,
and LiveJournal, and € = 0.7 for Arabic and Twitter based on the
sizes of these graphs. Note that it takes 24+ hours to run Twitter7
using 2 cores on Bridges2.

Our implementation and comparison baseline. We use HBMax to
denote our solution; specifically, we use Huf fmax to denote our
solution using the Huffman encoding with partial decoding for
selection and Bitmax to denote our solution using the bitmap en-
coding with non-decoding selection. We compare HBMax with the
original Ripples v.2.1. We implement our optimization in parallel
based on this version of Ripples by using OpenMP-4.1.1. Note that
Ripples provides a flexibility to configure the number of threads
for sampling and selection phases separately. In our evaluation,
HBMax uses the same number of threads for both phases, while
Ripples can use different number of threads in the selection phase
to get the best performance.

5.2 Performance Evaluation

In this section, we evaluate the performance of our proposed HBMax.
We first evaluate on the local workstation to compare the memory
usage and time-to-solution of HBMax with Ripples because it has
larger memory (376 GBs). The experiment results are measured
with 16 cores. For a fair comparison, we repeat the experiments on
each tested graph for five times and take the averages to compare
memory usage and time-to-solution of HBMax with Ripples. We
show the averaged experiment results in Table 6, 7 and 8. We then
use Bridges-2 to study the scalability of HBMax because its compute

PACT °22, October 10-12, 2022, Chicago, IL, USA

Xinyu Chen, Marco Minutoli, Jiannan Tian, Mahantesh Halappanavar, Ananth Kalyanaraman, and Dingwen Tao

Table 6: Memory footprint (in MB) and reduction ratio (shown in parenthesis).

Graph DBLP YouTube Skitter Orkut Pokec Journal Arabic Twitter7
Ripples 424 (1.00) 3,143 (1.00) 9,838 (1.00) 46,506 (1.00) 55,682 (1.00) 163,745 (1.00) = 348,606(1.00) 1,193,006(1.00)
Huffmax 316 (1.34) 1,722 (1.83) 5,293 (1.86) 30,130 (1.54) - - - -
Bitmax - - - - 10,661 (5.22) 29,329 (5.58) 81,504(4.28) 200,250(5.96)
Table 7: Time-to-solution (in second) and overhead ratio (shown in parenthesis).
Graph DBLP YouTube Skitter Orkut Pokec Journal Arabic Twitter?
Ripples 0.95(1.0) 6.95(1.0) 20.46(1.0) 249.35(1.0) 262.66 (1.0) 775.58 (1.0) NA NA
Huffmax 1.10 (1.16) 6.31(0.91) 17.93(0.88) 235.14 (0.94) - - - -
Bitmax - - - - 222.63 (0.85) 692.70 (0.89) 1,608.48 12,098.30
Table 8: Time-to-solution (in second) and overhead ratio with the same memory footprint.
Graph DBLP YouTube Skitter Orkut Pokec Journal Arabic Twitter7
Ripples 1.68 (1.0) 20.69 (1.0) 85.95(1.0) 669.85(1.0) 998.85(1.0) 1930.60 (1.0) 5463.62(1.0) 26825.60(1.0)
HBMax 1.10 (0.66) 6.31(0.30) 17.93(0.21) 235.14(0.35) 222.63(0.22) 692.70 (0.36) 1608.48 (0.29) 12098.30 (0.45)

node has more CPU cores (i.e., 64 cores per CPU). We show the
scalability results in Figure 5 and 6.

5.2.1 Memory Reduction Evaluation. Table 6 shows the memory
footprint and memory reduction ratio of our proposed solution com-
pared with Ripples. The reduction ratio is computed as the ratio of
our memory usage to Ripples’s memory usage. With the proposed
“compress-to-compute” techniques, Huf fmax achieves an average
of 1.6xX memory reduction on four skew-distributed RRR sets (i.e.,
reduces 39.1% memory footprint); Bitmax achieves an average of
5.3x memory reduction (i.e., reduces 81.0% memory footprint)on
two flat-head distributed RRR sets. Note that the memory usage
of Ripples are colored to grey for the last two graphs (Arabic
and Twitter7). The numbers are projected from accumulation. The
original Ripples cannot finish due to out-of-memory (OOM) error.

5.2.2 Time-to-Solution Evaluation. Table 5 shows HBMax has better
performance than Ripples in the sampling phase. This is because,
although the sampling phases of HBMax and Ripples are identical
(HBMax only optimizes the storage of intermediate RRR sets in the
seed selection phase), reducing memory footprint can decrease the
page faults for the sampling phase (the average reduced percentile
of page faults is 27.2%°) and hence shorten the sampling time and
the overall time-to-solution. In other words, the encoding/decoding
overheads are offset by the performance gain from the improved
sampling phase.

Table 7 shows the time-to-solution of our proposed solution
compared with Ripples. We calculate the overhead (in ratio) as
Timeoyrs/Timep,se. When our time-to-solution is longer than that
of Ripples, the overhead is greater than 1.0; otherwise, it is less
than 1.0. The table shows that Huf fmax achieves an average over-
head of 0.97 for the four skew-distributed RRR sets, while the
Bitmax achieves an average overhead of 0.87 for the two flat-head
distributed RRR sets. In other words, Huf fmax reduces the time-
to-solution and the memory footprints at the same time. More

Sthe reduced page fault percentile = (PFRripples — PFigMax) /PFripples X 100%

421

concretely, the average reduction on peak memory usage is 52.5%
with 6.3% speedup on time-to-solution on all the tested graphs
(not including the last two graphs that Ripples gets OOM error).
Our solution reduces the peak memory usage by up to 82.1% (on
LiveJournal) and the time-to-solution by up to 15.0% (on Pokec).

Moreover, the memory reduction also brings performance bene-
fits to resource-constrained systems. To simulate such an environ-
ment, we simply limit the amount of available memory for Ripples
to be the same as the memory usage by HBMax. We modify Ripples
to let it write the exceeded RRR sets during the sampling step to
external SSD storage and read them back for the seed selection step.
Table 8 shows the performance gain of HBMax over Ripples with
the same limited memory capacity. The in-memory compression
technique increases the overall performance on the eight skewed-
distributed graphs. The average performance gain is 64.4%, which
equals 3.17X speed-up. This is obviously because Ripples increases
/O time due to insufficient memory, while our solution saves RRR
sets in a compressed format to avoid data movement.

5.3 Strong Scalability Evaluation

We now present the strong scaling result of HBMax with up to 64
CPU cores, as shown in Figure 6. We break down HBMax into four
operations: (1) sampling the RRR sets with MC diffusion process,
(2) encoding the RRR sets with Huffmax, (3) encoding the RRR sets
with Bitmax method, and (4) selecting the most influential seeds.
We analyze their impacts to the overall scalability separately.

First, Figure 5 shows that the parallel sampling step is the dom-
inant part on all evaluated graphs (takes an average of 83.30% of
the total time) and has a strong scalability due to the independent
nature of each sampling operation; thus, the scalability of HBMax is
affected by the encoding step and selection step.

Second, for Huffmax, we note that building the Huffman code-
book does not affect the overall scalability. This is because we only
build up the codebook once during the warm-up phase, which takes
an average of 2.19% of the total time. Also, the Huffman encoding

HBMax: Optimizing Memory Efficiency for Parallel Influence Maximization on Multicore Architectures

PACT ’22, October 10-12, 2022, Chicago, IL, USA

2 | 4 | 8 | 16 32 | 64

tree 22 (0.60%) 22 (1.06%) 22 (1.81%) 22 (2.57%) 22 (2.73%) 22 (1.96%)

& samp. 2275 (61.22%) 1215 (58.47%) 684 (56.01%) 484 (56.41%) 494 (61.55%) 794 (69.52%)
E enc. 309 (8.30%) 173 (8.35%) 94 (7.76%) 52 (6.11%) 34 (4.19%) 32 (2.84%)
| dec. 1110 (29.12%) 667 (31.08%) 420 (32.28%) 299 (31.90%) 253 (28.67%) 293 (24.14%)
sum 3717 2078 1222 859 804 1142
tree 137 (0.45%) 135 (0.84%) 129 (1.46%) 135.8 (2.42%) 137 (3.39%) 136 (2.88%)

_§ samp. 26608 (87.03%) 13876 (85.75%) 7268 (81.70%) 4385 (78.35%) 3095 (76.48%) 3396 (71.34%)
E-'= enc. 2848 (9.32%) 1502 (9.28%) 775 (8.72%) 462 (8.27%) 267 (6.60%) 178 (3.74%)
2 dec. 981 (3.17%) 668 (4.05%) 722 (7.86%) 613 (10.38%) 547 (12.72%) 1049 (20.89%)
sum 30575 16183 8896 5598 4047 4760
tree 516 (0.46%) 515 (0.90%) 514 (1.68%) 519 (3.04%) 512 (4.69%) 516 (4.79%)

5 samp. 100936 (89.90%) 51492 (89.37%) 26818 (87.26%) 14553 (85.13%) 8848 (80.96%) 7428 (69.02%)
E enc. 9743 (8.68%) 4732 (8.21%) 2626 (8.54%) 1304 (7.63%) 738 (6.76%) 490 (4.56%)
2 dec. 1079 (0.96%) 878 (1.51%) 776 (2.49%) 717 (4.10%) 829 (7.33%) 2328 (20.88%)
sum 112276 57619 30736 17094 10930 10764
tree 5586 (0.44%) 5503 (0.82%) 5526 (1.59%) 5398 (2.73%) 5584 (4.44%) 5432 (4.90%)

5 samp. 1058973 (84.27%) 565117 (84.61%) 292644 (83.94%) 162991 (82.57%) 102617 (81.54%) 92557 (83.47%)
% enc. 191110 (15.21%) 96622 (14.47%) 49723 (14.26%) 28388 (14.38%) 17093 (13.58%) 11846 (10.68%)
C dec. 981 (0.08%) 668 (0.10%) 722 (0.21%) 613 (0.31%) 547 (0.43%) 1049 (0.90%)
sum 125651 667912 348617 197393 125843 110885
samp. 1772380 (96.69%) 895568 (96.19%) 457269 (95.28%) 248158 (93.84%) 136100 (90.43%) 107484 (87.41%)

g enc. 56210 (3.07%) 32725 (3.52%) 20755 (4.32%) 14826 (5.61%) 12543 (8.33%) 12062 (9.81%)
5 sel 4444 (0.24%) 2702 (0.29%) 1910 (0.40%) 1464 (0.55%) 1855 (1.23%) 3425 (2.79%)
& sum 1833035 930996 479935 264450 150499 122972
= samp. 4595970 (96.18%) 2381220 (95.69%) 1370680 (95.23%) 653503 (92.63%) 362924 (86.97%) 276321 (82.59%)
£ enc 167383 (3.50%) 98444 (3.96%) 62422 (4.34%) 46721 (6.62%) 47836 (11.46%) 48252 (14.42%)
% sel. 15230 (0.32%) 8879 (0.36%) 6199 (0.43%) 5286 (0.75%) 6529 (1.56%) 9980 (2.98%)
E sum 4778584 2488544 1439302 705511 417291 334554
samp. 4541380 (86.71%) 2318360 (87.01%) 1238270 (86.19%) 670838 (84.19%) 423780 (82.23%) 368972 (81.81%)

9 enc. 358265 (6.84%) 205955 (7.73%) 137121 (9.54%) 92893 (11.66%) 61262 (11.89%) 38105 (8.45%)
'§ sel. 337602 (6.45%) 140188 (5.26%) 61305 (4.27%) 33066 (4.15%) 30298 (5.88%) 43931 (9.74%)
< sum 5237247 2664503 1436697 796798 515341 451009
samp. 48012600 (89.82%) 24223500 (92.78%) 12736200 (93.94%) 6922660 (96.25%) 4138640 (81.66%) 2819580 (80.95%)

E enc. 5349020 (10.01%) 1826720 (7.00%) 778796 (5.74%) 235330 (3.27%) 876097 (17.29%) 631004 (18.12%)
E . 89864 (0.17%) 58820 (0.23%) 42471 (031%) 34271 (0.48%) 532268 (1.05%) 32347 (0.937%)
EE sum 53451485 26109041 13557467 7192261 5068006 3482932

Figure 5: Time breakdown of HBMax with different numbers of threads/cores on our tested graphs. The underscore’s length of

each operation is proportional to its runtime.

takes an average of 8.77% of the total time as it only includes a
small number of synchronizations to build frequency table. Thus,
Huffmax’s encoding shows a strong scalability up to 64 cores.

Third, for all the large graphs (Pokec, LiveJournal, Arabic, Twit-
ter7), the encoding of Bitmax shows a strong scalability up to 64
cores due to its independent nature. The bitmap encoding takes an
average of 8.19% of the total time.

Fourth, the selection operation in both Huffmax and Bitmax
does not affect the overall scalability. First, our optimized reduction
with parallel merge plays an important role, as shown in Figure
4, to minimize the synchronization between threads. Without this
optimization, the selection operation would become the bottleneck

422

due to the original non-scalable parallel reduction. Second, both
the selection operations of Huffmax and Bitmax are parallelized
considering the NUMA effect so that each thread can maintain its
local frequency table by only accessing the locally encoded data.
Note that selection of Bitmax scales better than Huf fmax because
it does not have a decoding step.

Finally, we note that for the two small graphs DBLP and YouTube,
Ripples does not scale well. This is because of the highly imbalanced
workload between vertices in the seed-selection step, which can
be also reflected in its high skewness score. While HBMax achieves
better scalability (can scale up to 32 cores) thanks to the proposed

PACT °22, October 10-12, 2022, Chicago, IL, USA

B Ripples X HBMax pRLP YouTube
500K 40K
B
= 4 r 3K
F 100K 30K
300K 4 .
é [2K 20K
£ 200K 4
g 1K
£ 100K 10K
o
0K - L 0K 0K =
2 4 8 16 32 64 2 4 8 16 32 64
Pokec LiveJournal
6,000K
2,000K F 2, 000K
1,500K [1,500K 4 ook 4
1, 000K F 1,000K
2,000K 4
500K F 500K
0K - L 0K 0K =
2 4 8 16 32 64 2 4 8 16 32 64

40K

F 30K

F 20K

F 10K

- 0K

F 6. 000K

F 4. 000K

F 2, 000K

- 0K

5,000K 4
4,000K 4
3,000K 4
2.000K -

1,000K 4

OK -

Skitter

Arabic

2

, D lmm
4 8 16 32 64

[125K 1 500K A
F 100K
75K 1, 000K A
50K
500K -
25K
Lok 0K -
50,000K 4
40, 000K 4
30,000K A
20,000K 4

10, 000K 4

0K -r

Orkut

Xinyu Chen, Marco Minutoli, Jiannan Tian, Mahantesh Halappanavar, Ananth Kalyanaraman, and Dingwen Tao

2

4

8 16 32 64
Twitter7

r 1.500K

r 1,000K

r 500K

- 0K

2

4

I:l .D 0O =
8 16 32 64

Figure 6: Both HBMax and Ripples shows strong scalability on tested graphs, except Ripples does not scale on the DBLP and
YouTube graph. Note that Ripples does not run on the last two graphs - Arabic and Twitter7 because of OOM error.

parallel merge and the consideration of NUMA effect. The perfor-
mance starts to degrade from 64 cores due to the relatively small
workload. For the other six larger graphs, HBMax can scale up to 64
cores and achieve an average speedup of 12.98x on 64 cores.

6 CONCLUSIONS AND FUTURE WORK

Graph analytics has emerged as an important class of data analytics
tools. The ubiquity of data from a wide variety of sources has neces-
sitated the development of scalable graph analytics tools. Influence
Maximization (IM) is an important graph problem with many appli-
cations. Wide use of IM is currently limited due to the limitations
from memory and computation requirements. In this paper, we
presented a “compress-to-compute” approach to use Huffman or
bitmap coding to encode the sampled RRR sets. By exploiting the
data locality and leveraging the efficient bit operations, our method
is able to reduce the peak memory usage by up to 82.1% and reduce
computation by up to 15.0% without noticeable loss of accuracy.

Future research includes: i) establishing analytical bounds on
the loss of information so that approximation guarantees of IM
algorithms can be established,; ii) extension to distributed platforms
with GPU accelerators, and iii) extension of compression techniques
to other key graph algorithms (with large memory footprints) that
address fundamental graph problems such as triangle counting,
community detecting, and network alignment, which can poten-
tially benefit from our proposed vertex-encodings.

ACKNOWLEDGMENTS

The research is supported by the U.S. DOE Exascale Computing
Project’s (ECP) (17-SC-20-SC) ExaGraph codesign center at Pacific
Northwest National Laboratory (PNNL) and by the NSF awards
0OAC-2034169, OAC-2042084, OAC-1910213, SHF-1919122, and CCF-
1815467 at Washington State University. PNNL is operated by Bat-
telle Memorial Institute under Contract DE-AC06-76RL01830. This
work used the Bridges-2 system, which is supported by the NSF
award OAC-1928147, at Pittsburgh Supercomputing Center.

423

HBMax: Optimizing Memory Efficiency for Parallel Influence Maximization on Multicore Architectures PACT ’22, October 10-12, 2022, Chicago, IL, USA

REFERENCES In SC20: International Conference for High Performance Computing, Networking,

[1] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. 2006. Storage and Analysis. IEEE, 1-15.

Group formation in large social networks: membership, growth, and evolution. [24] Alan Mislove, Massimiliano Marcon, Krishna P Gummadi, Peter Druschel, and

In Proceedings of the 12th ACM SIGKDD international conference on Knowledge Bobby Bhattacharjee. 2007. Measurement and analysis of online social networks.

discovery and data mining. 44-54. In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement.
29-42.

[2] Maciej Besta, Simon Weber, Lukas Gianinazzi, Robert Gerstenberger, Andrey
Ivanov, Yishai Oltchik, and Torsten Hoefler. 2019. Slim graph: Practical lossy
graph compression for approximate graph processing, storage, and analytics.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1-25.

[25

Mohammad Hasanzadeh Mofrad, Rami Melhem, Yousuf Ahmad, and Mohammad
Hammoud. 2019. Efficient distributed graph analytics using triply compressed
sparse format. In 2019 IEEE International Conference on Cluster Computing (CLUS-
TER). IEEE, 1-11.

[3] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. 2004. [26] George LNem}'lauser, Laurerllce'A'Wolsey, and Marshall L Fi§her. 1978. An anal}fsis
UbiCrawler: A Scalable Fully Distributed Web Crawler. Software: Practice & of approximations for maximizing submodular set functions—I. Mathematical
Experience 34, 8 (2004), 711-726. programming 14, 1 (1978), 265-294. A o

[4] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered [27] Zalfeng Pan, Feng Zhang, Yanha“g Zhou, Jidong Zha" leeng Shen, Onur AMutlu,
Label Propagation: A MultiResolution Coordinate-Free Ordering for Compressing and Xiaoyong Du. 2021. Exploring dat? analytics without dgcqmpre551on on
Social Networks. In Proceedings of the 20th international conference on World Wide embedded GPU systems. IEEE Transactions on Parallel and Distributed Systems
Web, Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravindra, 33"7 (2021), 1553_1568“
Elisa Bertino, and Ravi Kumar (Eds.). ACM Press, 587-596. [28] Keith H Rax}dall, Raymie Stata, Rajiv G Wickremesinghe, and Janet L Wiener.

[5] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Com- 2002. The link database: Fast access to graphs of the web. In Proceedings DCC

pression Techniques. In Proc. of the Thirteenth International World Wide Web 2(_]02‘ Data Compression' Conference. IEEE" 122-131.
Conference (WWW 2004). ACM Press, Manhattan, USA, 595-601. [29] Ripples. 2022. https://github.com/pnnl/ripples. (Accessed on 4'1/20/2022).)
[6] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. 2014. [30] Mark A Roth and Scott J Van Horn. 1993. Database compression. ACM Sigmod

Maximizing social influence in nearly optimal time. In Proceedings of the twenty- Record 22,3 (1993), 31-39.

fifth annual ACM-SIAM symposium on Discrete algorithms. SIAM, 946-957. [31] Julian Shun and Guy E Blelloch. 2013. L?gra: a lightweight graph processing

[7] Bridge-2 system. 2020. https://www.psc.edu/resources/bridges-2/. (Accessed on ﬁrAamework. foT shared memory. In Proceedings of the A18th ACM SIGPLAN sympo-
12/22/2021). sium on Principles and practice of parallel programming. 135-146.

[8] CAIDA UCSD. 2008. The CAIDA UCSD Macroscopic Skitter Topology Dataset. [32] Janne Suontausta a?ld]ilei Tian. 2003. Low memory decision tree method for text-
https://www.caida.org/catalog/software/skitter [Online; accessed 24-January- to-phoneme mapping. In 2003 IEEE Wor kshop on Automatic Speech Recognition
2022]. and Understanding (IEEE Cat. No. 03EX721). IEEE, 135-140.

[9] Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix [33] Lubos Takac and Michal Zabovsky. 2012. Data analysis in public social networks.
collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011) In International scientific conference and international workshop present day trends

1-25. of innovations, Vol. 1.
[34] Youze Tang, Yanchen Shi, and Xiaokui Xiao. 2015. Influence maximization in

[10] Domenico Ficara, Andrea Di Pietro, Stefano Giordano, Gregorio Procissi, and . . B :
near-linear time: A martingale approach. In Proceedings of the 2015 ACM SIGMOD

Fabio Vitucci. 2010. Enhancing counting Bloom filters through Huffman-coded

multilayer structures. IEEE/ACM Transactions On Networking 18, 6 (2010), 1977— in.lfernationa'l cur.tference on marfager_nent ofd{zta. 1539-1554. i
1987, [35] Vijay V Vazirani. 2001. Approximation algorithms. Vol. 1. Springer.

[11] James D Foley, Foley Dan Van, Andries Van Dam, Steven K Feiner, John F Hughes, [36] Jianguo Wangi Chunbin Lin, Yafmis Papakons'tantino'u, and St‘even Swanson.
and] Hughes. 1996. Computer graphics: principles and practice. Vol. 12110. 2017. An experimental study of bitmap compression vs. inverted list compression.
Addison-Wesley Professional. In Proceedings of the 2017 ACM International Conference on Management of Data.

[12] Sayan Ghosh, Nathan R Tallent, Marco Minutoli, Mahantesh Halappanavar, 99‘?’7'1008' L . .

Ramesh Peri, and Ananth Kalyanaraman. 2021. Single-node partitioned-memory [37] Wll}lam Webber, Ahstalr Moffat, and Justin Zobel. 2010. A similarity measure
for huge graph analytics: cost and performance trade-offs. In Proceedings of the for indefinite rankings. ACM Transactions on Information Systems (TOIS) 28, 4
International Conference for High Performance Computing, Networking, Storage (2010), 1-38. . .

and Analysis. 1-14, [38] Jaewon Yang and Jure Leskovec. 2011. Patterns of temporal variation in online

[13] David A Huffman. 1952. A method for the construction of minimum-redundancy media. In P _ru_ceedings of the fourth ACM international conference on Web search
codes. Proceedings of the IRE 40, 9 (1952), 1098-1101. and data mining. 177-186. . .

[14] David Kempe, Jon Kleinberg, and Eva Tardos. 2003. Maximizing the spread of 39]]geyvon Yang and Jure Leskovec. 2015. Defining and eval}latlng network commu-
influence through a social network. In Proceedings of the ninth ACM SIGKDD nities based on ground-truth. Knowledge and Information Systems 42, 1 (2015),
international conference on Knowledge discovery and data mining. 137-146. 181-213. . . . -

[15] Christoph Lameter. 2013. An overview of non-uniform memory access. Commun. [40] Feng Zhang, Zaifeng Pan, Yanliang Zhou, Jidong Zhai, Xipeng Shen, Onur Mutlu,

and Xiaoyong Du. 2021. G-TADOC: Enabling efficient GPU-based text analyt-
ics without decompression. In 2021 IEEE 37th International Conference on Data
Engineering (ICDE). IEEE, 1679-1690.

Feng Zhang, Weitao Wan, Chenyang Zhang, Jidong Zhai, Yunpeng Chai, Haixiang
Li, and Xiaoyong Du. 2022. CompressDB: Enabling Efficient Compressed Data
Direct Processing for Various Databases. In Proceedings of the 2022 International

ACM 56, 9 (2013), 59-54.
[16] Jure Leskovec, Lada A Adamic, and Bernardo A Huberman. 2007. The dynamics
of viral marketing. ACM Transactions on the Web (TWEB) 1, 1 (2007), 5—es.
Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.
[18] Jiesong Liu, Feng Zhang, Hourun Li, Dalin Wang, Weitao Wan, Xiaokun Fang,
Jidong Zhai, and Xiaoyong Du. 2022. Exploring Query Processing on CPU-GPU Conference on Managem?nt f)fData. 1655-1669.
Integrated Edge Device. IEEE Transactions on Parallel and Distributed Systems [42] Feng Zhang, Jidong Zha%, Xipeng Shen, Dalin Wang, Zheng Cher_l, On_ur Mutly,
(2022). Wenguang Chen, and Xiaoyong Du. 2021. TADOC: Text analytics directly on
[19] Peter Macko, Virendra] Marathe, Daniel W Margo, and Margo I Seltzer. 2015. compression. The VLDB Journal 30, 2 (2021), 163-188.
Llama: Efficient graph analytics using large multiversioned arrays. In 2015 IEEE
31st International Conference on Data Engineering. IEEE, 363-374.
[20] Norbert Martinez-Bazan, M Angel Aguila-Lorente, Victor Muntés-Mulero, David
Dominguez-Sal, Sergio Gémez-Villamor, and Josep-L Larriba-Pey. 2012. Effi-
cient graph management based on bitmap indices. In Proceedings of the 16th
International Database Engineering & Applications Sysmposium. 110-119.
[21] Marco Minutoli, Maurizio Drocco, Mahantesh Halappanavar, Antonino Tumeo,
and Ananth Kalyanaraman. 2020. cuRipples: Influence maximization on multi-
GPU systems. In Proceedings of the 34th ACM International Conference on Super-
computing. 1-11.
[22] Marco Minutoli, Mahantesh Halappanavar, Ananth Kalyanaraman, Arun Satha-
nur, Ryan Mcclure, and Jason McDermott. 2019. Fast and scalable implementa-
tions of influence maximization algorithms. In 2019 IEEE International Conference
on Cluster Computing (CLUSTER). IEEE, 1-12.
[23] Marco Minutoli, Prathyush Sambaturu, Mahantesh Halappanavar, Antonino
Tumeo, Ananth Kalyananaraman, and Anil Vullikanti. 2020. Preempt: scalable
epidemic interventions using submodular optimization on multi-GPU systems.

[41

(17

424

https://www.psc.edu/resources/bridges-2/
https://www.caida.org/catalog/software/skitter
http://snap.stanford.edu/data
https://github.com/pnnl/ripples

PACT °22, October 10-12, 2022, Chicago, IL, USA Xinyu Chen, Marco Minutoli, Jiannan Tian, Mahantesh Halappanavar, Ananth Kalyanaraman, and Dingwen Tao

A APPENDIX: ARTIFACT
DESCRIPTION/EVALUATION

A.1 Experimental Environment

(1) OS: Linux Ubuntu (> 18.04)
(2) Compiler: GCC (>7.4.0)
(3) OpenMP (>4.5)
(a) For users in HPC systems (such as Summit) with Slurm,
please try “module load gcc/7.4.0” to load the gee compiler.
(b) For users in Chameleon Cloud, please request a node in the
user dashboard, create an instance using CC-Ubuntu18.04
image, and launch and login to the instance.

A.2 Step 1: Download Dependencies

A.2.1 Install Python3, CMake, Git, Wget.

sudo apt-get update && \

sudo apt-get install -y --no-install-recommends \
build-essential cmake git wget \
python3.6 python3-dev \
python3-pip python3-setuptools gcc

A.2.2 Install Conan.

pip3 install --no-cache-dir --upgrade pip
pip3 install --no-cache-dir conan==1.51.0
export PATH=$PATH:~/.local/bin

A.3 Step 2: Download HBMax and example data

HBMAX_ROOT=$(pwd)

git clone https://github.com/hipdac-1lab/hbmax-pact
cd $HBMAX_ROOT/hbmax-pact/test-data

wget https://eecs.wsu.edu/~dtao/data/dblp.txt

A.4 Step 3: Build HBMax

cd $HBMAX_ROOT/hbmax-pact

conan create conan/waf-generator user/stable
conan create conan/trng user/stable

conan install .

./waf configure build_release

A.5 Step 4: Test HBMax

A.5.1 Download other dataset (optional).

You can download and extract the example dataset (i.e., pokec) from

SNAP with the following commands.

cd $HBMAX_ROOT/hbmax-pact/test-data

wget https://snap.stanford.edu/data/\
soc-pokec-relationships.txt.gz

gunzip soc-pokec-relationships.txt.gz

mv soc-pokec-relationships.txt pokec.txt

A.5.2 Set environment variables.

export DATADIR=$HBMAX_ROOT/hbmax-pact/test-data
export EXECDIR=$HBMAX_ROOT/hbmax-pact/build/release/tools

A.5.3 Run test.

Compare the performance of HBMax and Ripples. Note that you
may need to change the number of openMP threads for scalability
tests. Other parameters that are changeable are target number of

425

seeds k; approximation error e.

cd $HBMAX_ROOT/hbmax-pact/
export task=dblp
export ncpus=8
export OMP_NUM_THREADS=$ncpus
$EXECDIR/imm -i $DATADIR/$task.txt -p \
-k 100 -d IC -e 0.2 -q 6 \
>> new_${task}_${ncpus}.txt
$EXECDIR/oimm -i $DATADIR/$task.txt -p \
-k 100 -d IC -e 0.2 -q 1 \
>> old_${task}_${ncpus}.txt
echo "======== begin "$task"-hbmax \
with "$ncpus" threads =============
>> /tmp/result
grep 'IMM Parallel :' new_${task}_${ncpus}.txt
| awk '{print "hbmax using:" $83}' >> /tmp/result
grep 'IMM Parallel :' old_${task}_${ncpus}.txt
| awk '{print "ripples using:" $8}' >> /tmp/result
echo "======== finish "$task"-hbmax \
================" >> /tmp/result
cat /tmp/result
rm new_${task}_${ncpus}.txt \
old_${task}_${ncpus}.txt \
/tmp/result

A.5.4 Test Results.

This demo code reads the DBLP graph and uses 8 openMP threads
for sampling. It (1) compresses the intermediate RRRs with Huffman
Coding (because the skewness is 11.46), (2) selects most influential
seeds, (3) runs HBMax/Ripples on the DBLP graph, and (4) show
the results with comparison.

You’ll expect to see the output like this:

======== begin dblp-hbmax with 8 threads =============
hbmax using: 2093.158376ms

ripples using: 26777.702168ms

======== finish dblp-hbmax =============

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Influence Maximization Problem
	2.2 RIS, IMM, and Ripples
	2.3 Huffman Coding and Bitmap Compression
	2.4 Graph Compression and Data Analytics on Compressed Data

	3 Memory Footprint Profiling and Graph Characterization
	3.1 Memory Usage of RRR Sets
	3.2 Characterize The RRR Sets
	3.3 Characterize The Influence of Vertices

	4 Our Proposed Optimizations
	4.1 Overview of Our Proposed Workflow
	4.2 Sampling-and-Encoding
	4.3 Optimized Selection

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Performance Evaluation
	5.3 Strong Scalability Evaluation

	6 Conclusions and Future Work
	References
	A Appendix: Artifact Description/Evaluation
	A.1 Experimental Environment
	A.2 Step 1: Download Dependencies
	A.3 Step 2: Download HBMax and example data
	A.4 Step 3: Build HBMax
	A.5 Step 4: Test HBMax

