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We stand at the foot of a significant inflection in the trajectory of
scientific discovery. As society continues on its fast-paced digital
transformation, so does humankind’s collective scientific knowl-
edge and discourse. We now read and write papers in digitized
form, and a great deal of the formal and informal processes of sci-
ence are captured digitally—including papers, preprints and books,
code and datasets, conference presentations, and interactions in
social networks and collaboration and communication platforms.
The transition has led to the creation and growth of a tremen-
dous amount of information—much of which is available for public
access—opening exciting opportunities for computational models
and systems that analyze and harness it. In parallel, exponential
growth in data processing power has fueled remarkable advances in
artificial intelligence, including self-supervised neural models capa-
ble of learning powerful representations from large-scale unstruc-
tured text without costly human supervision. Dramatic changes in
scientific communication channels—such as the advent of the first
scientific journal in the 17th century—have historically catalyzed
revolutions in scientific thought and behavior. The confluence of
societal and computational trends suggests that computer science
is poised to ignite a revolution in the scientific process itself.

Widening Gap
At the heart of the scientific process, a basic behavior has remained
unchanged for hundreds of years: We build on existing ideas for
forming new ideas. When faced with a new question or problem, we
leverage knowledge from accumulated learnings and from external
sources and perform synthesis and reasoning to generate insights,
answers, and directions. But the last few decades have brought
changes. The explosion of digital information and steep acceleration
in the production of scientific data, results and publications [28, 38]—
with over one million papers added every year to the PubMed
biomedical index alone—stand in stark contrast to the constancy of
human cognitive capacity. While scientific knowledge, discourse,
and the larger scientific ecosystem are expanding with rapidity, our
human minds have remained static, with severe limitations on the
capacity for finding, assimilating and manipulating information.
Herbert Simon’s reflection that “. . . a wealth of information creates
a poverty of attention,” aptly describes the limited attention of
researchers in the modern scientific ecosystem. Even within narrow
areas of interest, there is a vast space of potential directions to
explore—while the keyhole of cognition admits only a tiny fraction
of the broad landscape of information and deliberates over small
slices of possibility. The way we search through and reflect about

information across the vast space—the areas we select to explore,
and how we explore them—is hindered by cognitive biases [40] and
lacks principled and scalable tools for guiding our attention [46].
“Unknowns” are not just holes in science, but important gaps in
personal knowledge about the broader knowns across the sciences.

We thus face an imbalance between the treasure trove of schol-
arly information and our limited ability to reach into it. Despite
technological advances, we require new paradigms and capabili-
ties to address this widening gap. We see promise in developing
new foundational capabilities that address the cognitive bottleneck,
aimed at extending human performance on core tasks of research—
e.g., keeping abreast with developments, forming and prioritizing
ideas, conducting experiments, reading and understanding papers
(see Table 1). We focus on a research agenda we call task-guided
scientific knowledge retrieval, in which systems counter humans’
bounded capacity by ingesting corpora of scientific knowledge
and retrieving inspirations, explanations, solutions and evidence
synthesized to directly serve task-specific utility. We present key
concepts of task-guided scientific knowledge retrieval, including
work on prototypes that highlight the promise of the direction
and bring into focus concrete steps forward for novel representa-
tions, tools, and services. We review systems that help researchers
discover novel perspectives and inspirations [16, 17, 19, 42], help
guide the attention of researchers toward opportunity areas rife
with uncertainties and unknowns [26, 46], and models that leverage
retrieval and synthesis of scientific knowledge as part of machine
learning and prediction [12, 37]. We conclude with a discussion of
opportunities ahead with computational approaches that have the
potential to revolutionize science.

1 HUMAN-CENTRIC PERSPECTIVE
Extraordinary developments at the convergence of AI and scientific
discovery have emerged in specific areas, including new kinds of
analytical tools, with the prominent example of AlphaFold, which
harnesses deep neural models to dramatically improve the predic-
tion of protein structure from amino acid sequence information
[22]. While celebrating impressive achievements in modeling and
simulation, we focus on a complementary set of opportunities for
computing in scientific discovery, taking a human-centered, cog-
nitive perspective: We pursue computational approaches that can
augment the abilities of individual researchers, taking into account
the diversity of tasks, contexts, and cognitive processes involved in
consuming and producing scientific knowledge. Collectively, we
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Task/Activity Description
Attention to areas of interest A background process of keeping track of latest developments in relevant scientific communities.

Involves applying selective attention, perceiving relevance and utility.
Problem identification & prioritization Identifying new research questions and deciding on which ones to work. Involves factors such as

subjective preferences and assessment of feasibility.
Forming directions Given a problem/question, forming ideas to address it. Involves cognitive processes such as

constructing mental models of a problem, problem reformulation, abstraction and decomposition,
adaptation of relevant knowledge to new scenarios, and assessing likelihood of success.

Literature search & review Accessing and ingesting knowledge in the literature. Involves many processes such as query
formulation, skimming and assessing relevance, positioning ideas with relations and contrasts to
existing work, and reading and summarization strategies.

Learning, understanding, sense-making The cognitive processes and activities involved in assimilating new knowledge and concepts, and
making sense of complex scientific information spaces.

Experimentation, analysis, action A broad category referring to the many processes and activities involved in formulating and
conducting experiments (e.g., planning data collection and measurements), performing analyses
(e.g., understanding a set of data points, modeling and extrapolation, prediction, evaluation), and
producing artifacts, techniques, theories, decisions, policies, actions.

Research communication Writing research documents (papers, proposals, analyses), communicating with peers (feedback
and review, collaboration, presentation).

Table 1: Research may be decomposed into salient tasks that are prime targets for computational augmentation (§ 2).

group these under the inner cognitive world of a researcher1 (see
Figure 1). The researcher interacts with the scientific ecosystem—
literature, resources, discussions—in order to inform decisions and
actions. Researchers can have many different uses for scholarly
information, depending on the task at hand and the stage of ex-
ploration (see Table 1 and discussion in Section 2). We pursue a
research agenda around assisting researchers in their tasks, guided
by two main desiderata:

(1) Systems for augmenting human capabilities in the sciences
need to enhance the effective flow of knowledge from the outer world
of scientific information and discourse to the researcher’s inner cog-
nitive world—countering humans’ bounded capacity by retrieving
and synthesizing information targeted to enhance performance on
tasks. Achieving this goal requires methods that build and leverage
rich representations of scientific content and that can align compu-
tational representations with human representations, in the context
of specific tasks and backgrounds of researchers.

(2) Research on such systems should be rooted in conceptual
models of the inner cognitive world of a researcher. Shining a spot-
light on this inner world brings numerous factors and questions
to the fore. How do researchers form ideas? How do they decide
which problems to look into? How do they find and assimilate new
information in the process of making decisions? What cognitive
representations and bottlenecks are involved? What computing
services would best augment these processes?

Background and Related Themes. In our research agenda,
we leverage research in natural language processing, information
retrieval, data mining and human-computer interaction and draw
concepts from multiple disciplines. For example, efforts in meta-
science focus on sociological factors that influence the evolution of
science [25], e.g., analyses of information silos that impede mutual
understanding and interaction [53] and analyses of macro-scale
1We use the term researcher to include also practitioners in science-driven areas, such
as medical doctors and technological engineers, who require deep scientific knowledge.

Inner
Cognitive
World

Scientific Ecosystem

Research 
Tasks

Task-Guided 
Knowledge 
Retrieval 

Cognitive Bottlene
ck

Figure 1: Information flows from the outer world into the
inner cognitive world of researchers, constrained by cogni-
tive capacity and biases. We see opportunities to support
researchers by retrieving knowledge that helps with tasks
across multiple phases of the scientific process (Table 1).

ramifications of the rapid growth in scholarly publications [5] —
work enabled by digitization of scholarly corpora (see Section 1.1).
Metascience research makes important observations about human
biases (desideratum 2) but generally does not engage in building
computational interventions to augment researchers (desideratum
1). Conversely, work in literature-based discovery [48] mines infor-
mation from literature to generate new predictions (e.g., functions
of materials [52] or drug targets [36]) but is typically done in iso-
lation from cognitive considerations; however, these techniques
have great promise in being used as part of human-augmentation
systems (see Sections 2-3). Other work uses machines to automate
aspects of science. Pioneering work from Herbert Simon and Pat
Langley [29] automated discovery of empirical laws from data, with
models inspired by cognitive mechanisms of discovery (see Section
1.2). More recent work has focused on developing robot scientists
[7, 23] that run certain biological experiments—not only formu-
lating hypotheses but “closing the loop” by automated tests in a
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physical laboratory—where robots use narrow curated background
knowledge (e.g., of a specific gene regulatory network [7]) and
machine learning to guide new experiments. Related work explores
automating scientific data analysis [12], which we discuss in Sec-
tion 2 as a case of retrieval from scientific repositories to augment
aspects of experimentation and analysis (see Table 1).

We now turn to a discussion of central concepts: the ecosystem
of science, and the cognitive world. This presentation lays the
foundations for our exposition of task-guided retrieval in Section 2
and the research opportunities in Section 3.

1.1 Outer World: Scientific Ecosystem
We collectively name the scientific ecosystem and the digital repre-
sentations of scientific knowledge as the outer world (see Figure 1).
The outer world is comprised of scientific communities, a complex
and shifting web of peers, concepts, methodologies, problems and
directions revolving around shared interests, understandings and
paradigms [25]. This ecosystem generates a tremendous amount
of digital information—digital “traces” of scientific thought and
behavior—lying at the center of our attention as computer scien-
tists interested in boosting human capacity to “reach into” the
pool of scientific knowledge. This knowledge includes, first and
foremost, scholarly publications, unstructured texts that appear in
journals, conference proceedings, and online preprint repositories.
Online publications can be seen as one main case of digital research
artifacts; other examples of products of research include software,
datasets, knowledge bases. Research artifacts are also associated
typically with signals of quality and interest, such as citations to
a specific paper or downloads of a dataset. The specific context
of why a paper or resource was cited or used is often reflected in
natural language descriptions. Different types of signals include
peer review prior to publication (mostly not shared publicly), and
social media discussions such as on Twitter, which has become a
major virtual platform for academic dissemination and conversa-
tion [13]. Along with the trend in society, private communication
channels among researchers are also digital—emails, online calls
and messages. Similarly, note taking and writing—important activi-
ties across the scientific workflow—are done in digital form. This
information is siloed in different platforms under privacy restric-
tions, yet represents a treasure trove for tools for the augmentation
of scientific reasoning and exploration.

1.2 Inner World: Human Cognition in Science
The way researchers decide to interact with information in the
outer world and the way they process and use this information
is governed by a complex array of cognitive processes, personal
knowledge and preferences, biases and limitations, which are only
partially understood. We collectively name these the inner world,
and briefly discuss several salient aspects.

Early work in AI by Herbert Simon and Alan Newell and later
efforts by Pat Langley and Paul Thagard focused on cognitive and
computational aspects of problem solving, creativity, decision mak-
ing and scientific reasoning and discovery, seeking algorithmic
representations to help understand and mimic human intelligence
[29, 51]. Cognitive mechanisms that play important roles in scien-
tific discovery include inductive and abductive reasoning, mental

modeling of problems and situations, abstraction, decomposition,
reformulation, analogical transfer and recombination [10, 51]; for
example, in analogical transfer, given a situation or problem being
considered in our working memory, we retrieve from our long-term
memory prior analogous problems or situations [10].

This cognitive machinery powers humans’ ingenuity. However,
the human mind also has severe limitations—bounded rationality in
the words of Simon—that impede these powerful mechanisms. Our
limitations and capabilities have been studied for over a hundred
years with the discipline of cognitive psychology. Our limitations
manifest in bounded cognitive capacity and knowledge, and deeply-
ingrained biases that govern our behaviors and subjective prefer-
ences. These limitations are all tightly interrelated. The ability to
generate ideas, for instance, directly relies on prior knowledge and
understandings; but, when a large volume of information from the
outer world of science is met by insufficient cognitive capacity for
processing and assimilating it, the result is information overload—a
ubiquitous hindrance for researchers [28, 42]. Information over-
load in science strains the attentional resources of researchers, and
forces researchers to allocate attention to increasingly narrow areas.
This effect, in turn, amplifies a host of biases which researchers,
just like all humans, suffer from [40, 46]. For example, scientists can
be limited by confirmation bias [8], aversion to information from
novel domains [24, 42], homophily [32], and fixation on specific
directions and perspectives without consideration of alternative
views [19, 40]. More broadly, selection of directions and areas to
work on is a case of decision-making, and as such personal prefer-
ence and subjective utility play fundamental roles. Our research
decisions rely on subjective assessment of feasibility, long-term
or short-term goals and interests, and even psychological factors
(e.g., tendencies for risk aversion). These factors are of course also
impacted by biases [40].

Clearly, the inner world of researchers is dauntingly complex.
However, in the next section, we present encouraging results of ap-
plying computational methods to augment cognition in the sciences,
helping to mitigate biases and limitations and enabling researchers
to make better use of their powerful creative mechanisms.

2 AN APPROACH: TASK-GUIDED RETRIEVAL
How might we widen and deepen the connection between the
fast-expanding outer world of science with researchers’ limited
cognitive worlds? We see a key bridge and research opportunity
with developing tools for scientific task-guided knowledge retrieval.
Drawing from discussions in literature on the process of scien-
tific discovery, we enumerate in Table 1 salient scientific tasks
and activities, such as problem identification, forming directions,
learning, literature search and review, experimentation. These tasks
could benefit from augmentation of human capabilities but remain
underexplored in computer science.

Existing computational technologies for assisting humans in
discovering scientific knowledge are underinvested in important
aspects of the intricate cognitive processes and goal-oriented con-
texts involved in scholarly endeavors. The dominant approach to
information retrieval research and systems can be summarized
as “relevance first”—focusing on results that answer user queries
as accurately as possible. Academic search engines assume users
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know what queries to explore and how to formulate them. For
pinpointed literature search in familiar areas, this assumption may
often suffice; but a broad array of other scholarly tasks, such as
ideation or learning about a new topic, are very much underserved
[17–19, 26, 42]. At the same time, many voices in the information
retrieval community have discussed a different, broader view of
utility-driven search, where the search is situated in a wider context
of information seeking by users with specific intents and tasks [45].
Here, we adapt ideas and principles from this general paradigm.

We envision methods for task-guided scientific knowledge re-
trieval: systems that retrieve and synthesize outer knowledge in
a manner that directly serves a task-guided utility of a researcher,
while taking into consideration the researcher’s goals, state of in-
ner knowledge, and preferences. Consider the tasks in Table 1. For
researchers engaged in experimentation or analysis, we envision
systems that help users identify discussions of specific experiments
and analyses in the literature to guide design choices and decisions.
For researchers in early stages of selecting problems to work on, we
picture systems that support this decision with information from
literature and online discussions, synthesized and aggregated to
obtain estimated impact and feasibility. As part of forming direc-
tions to address a problem, systems will help users find inspirations
for solutions. Researchers who are learning about a new topic will
be provided with retrieved texts and discussions that explain the
topic in a manner personally tailored to personal knowledge. Impor-
tantly, task-guided knowledge retrieval follows the two desiderata
introduced in Section 1; namely, systems should enable users to
find knowledge that directly assists them in core research tasks by
augmenting their cognitive capacity and mitigating their biases,
and computational representations and services should align with
salient cognitive aspects of the inner world of researchers.

We present work on initial steps and prototypes, including rep-
resentative work that we have done and the work of others, framed
in alignment with task-guided knowledge retrieval and tasks enu-
merated in Table 1. The main aim of this brief review is to stimulate
discussion in the computer science community on tools for extend-
ing human capabilities in the sciences. Existing methods are far
from able to realize our vision. For example, we seemajor challenges
in representation and inferences about the inner world of knowl-
edge and preferences, and aligning these with representations and
inferences drawn from the outer world knowledge. Today’s proto-
types are limited examples of our vision, using very rough proxies
of inner knowledge and interest based on papers and documents
written or read by the user, or in some cases only a set of keywords.
We discuss these research challenges and others in Section 3.

2.1 Prototypes of Task-Guided Retrieval
Forming Directions. We have developed methods for helping
researchers generate new directions. A fundamental pattern in
the cognitive process of creativity involves detecting abstract con-
nections across ideas and transferring ideas from one problem to
another [11]. Grounded in this cognitive understanding, we have
pursued several approaches for stimulating creativity powered by
retrieving outer knowledge. We developed and studied a system
named Bridger that connects researchers to peers who inspire novel

directions for research [42]. Bridger identifies matches among au-
thors based on commonalities and contrasts, identifying peers who
are both relevant and novel—working on similar problems but us-
ing very different methods, potentially inspiring new solutions. By
doing so, Bridger helps mitigate the cognitive bias of fixation [19].

In this setting, inner knowledge is represented as mentions of
problems and methods extracted automatically from a researcher’s
papers and weighted by term frequency. The outer knowledge be-
ing retrieved takes the form of other authors in computer science,
following the same representation. For each retrieved author, the
system displays salient problems, methods and papers, ranked by
measures of relevance to the user. In studies with CS researchers,
we found that Bridger dramatically boosted creative search and
inspiration over state-of-art neural models employed by the Seman-
tic Scholar search engine [6], surfacing useful connections across
diverse areas; for example, one researcher drew novel connections
between the mathematical area of graph theory and their own area
of human-centered AI, by exploring a recommended author who
applies graph theory to decision making.

Input: 
Researcher’s 
papers 

Retrieved Knowledge: 
Researchers who 
inspire novel directions 

Figure 2: Matching researchers to authors with whom they
are unfamiliar, to help in generating directions. Author
cards show key problems and methods extracted from their
papers.

We have also explored retrieving outer knowledge in the form of
ideas that can explicitly enhance the human ability to find opportu-
nities for analogical transfer [4, 16]. Extensive work in cognitive
studies has highlighted the human knack for “analogical retrieval”
as a central function in creativity—bringing together structurally re-
lated ideas and adapting them to a task at hand [9, 15].We developed
a search method that enables researchers to search through a data-
base of technological inventions and find mechanisms that can be
transferred from distant domains to solve a given problem. Given as
input from the user a textual description of an invention, we retrieve
ideas (inventions, papers) that have partial structural similarity to
the input (e.g., inventions with similar mechanisms), to facilitate
discovery of analogical transfer opportunities. We found that the
method could significantly boost measures of human creativity in
ideation experiments, in which users were asked to formulate new
ideas after viewing inspirations retrieved with our approach versus
baseline information retrieval methods. For example, a biomechan-
ical engineering lab working on polymer stretching/folding for
creating novel structures found useful inspiration in a civil engi-
neering paper on web crippling in steel beams—abstractly related
to stretching and folding.
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Input: Problem description

Retrieved 
Knowledge: 
Neighboring 
problems for 
forming new 
perspectives

Figure 3: Using an ex-
tracted hierarchy of
problems to retrieve new
perspectives on a focal
problem of interest.

Innovation may also in-
volve traversing multiple lev-
els of abstraction around a fo-
cal problem to “break out” of
fixation on the details of a
specific problem at hand by
exploring novel perspectives.
Given as input a problem de-
scription written by the user
(as a proxy summary of the
user’s inner world of knowl-
edge and purpose), we have
pursued mechanisms that can
retrieve diverse problem per-
spectives that are related to
the focal problem, with the

goal of inspiring new ideas for problem abstraction and reformula-
tion [19] (see Figure 3). Using NLP models to extract mentions of
problems, we mine a corpus of technological invention texts to dis-
cover problems that often appear together, and use this information
to form a hierarchical problem graph that supports automatic tra-
versal of neighboring problems around a focal problem, surfacing
novel inspirations to users. In a study of the efficacy of the methods,
over 60% of “inspirations” retrieved this way were found to be use-
ful and novel—a relative boost of 50-60% over the best-performing
baselines. For example, given an input problem of reminding pa-
tients to take medication, our system retrieves related problems
such as in patient health tracking and alerting devices.

Guiding attention and problem identification.We see great
opportunity in developing methods for guiding the attention of
researchers to important areas in the space of ideas where there ex-
ists less knowledge or certainty [26, 46] (Figure 4). In one direction,
we built a search engine that allows users to retrieve outer knowl-
edge in the form of difficulties, uncertainties and initial hypotheses
discussed in literature. The key goals of this mode of search are to
bolster attention to rising and standing challenges of relevance to
the end user so as to help overall with identification and selection
of problems. We performed experiments with participants with
diverse research backgrounds, including medical doctors working
in a large hospital. Using query topics as a proxy for the inner world
of participants’ interests, we found the system could dramatically
outperform PubMed search, the go-to biomedical search engine,
at discovering important and interesting areas of challenges and
directions. For example, while searching PubMed for the ACE2
receptor in the context of COVID-19 returns well-studied results,
the prototype system by contrast focuses on finding statements
of uncertainty, open questions and initial hypotheses, like a paper
noting the possibility that ACE2 plays a role in liver damage in
COVID-19 patients.

Another direction on biases and blindspots considers the long-
term effort to identify protein-protein interactions (PPIs). A dataset
of the growing graph of confirmed PPIs over decades was con-
structed and leveraged to identify patterns of scientific attention
[46]. A temporal analysis revealed a significant “bias of locality,”
where explorations of PPIs are launchedmore frequently from those
that were most recently studied, rather than following more general

Retrieved 
Knowledge: 
Specific areas with 
blindspots, uncertainty, 
difficulty & opportunity 

Concept1 add more...Concept2Input: 
Items of 
interest 
(concepts,
entities, 
topics...)

Extraction, mining, inference

Biomedical
literature,
databases

Ingest scientific corpora, resources

Figure 4: Suggesting research opportunities for query con-
cepts (e.g., medical topics) by identifying blindspots, gaps in
collective knowledge and promising areas for exploration.

prioritization of exploration. While locality reflects an understand-
able focus on adjacent and connected problems in the biosciences,
the pattern of attention leads to systematic blindspots in large,
widely used PPI databases that are likely unappreciated—further
exacerbating attentional biases. The study further demonstrated
mechanisms for reprioritizing candidate PPIs based on properties
of proteins, and showed how earlier discoveries could be made
with use of the debiasing methods. The findings underscore the
promise of tools that retrieve existing outer world knowledge to
guide attention to worthwhile directions. In this case, the outer
knowledge source is a PPI database, and a user-selected sub-graph
provides a proxy for inner world knowledge and interests.

Literature search and review. A great body of work on litera-
ture search and review has deep relevance to task-guided retrieval in
the sciences. In particular, we see great opportunity with building
on recent advances in information retrieval to (1) help biomedical
researchers with domain-specific representations and (2) enhance
scientific search by building new neural models.

Specialized search systems have been developed for the biomed-
ical domain, with the overall vision of harnessing natural language
understanding technologies to help researchers discover relevant
evidence and expedite the costly process of systematic literature
review [1, 41]. For example, Nye et al. [41] build a search and synthe-
sis system based on automated extraction of biomedical treatment-
outcome relations from clinical trial reports. The system is found
to assist in identification of drug repurposing opportunities. As
another recent example, the SPIKE system enables researchers to
extract and retrieve facts from a corpus using an expressive query
language with biomedical entity types and new term classes that the
user can define interactively [49]. Together, this work underscores
the importance of extracting a semantically meaningful represen-
tation of outer world knowledge that aligns with core aspects of
inner world reasoning by researchers (see Section 3).

In separatework, neural languagemodels built via self-supervision
on large corpora of biomedical publications have recently led to per-
formance boosts and new features in literature search systems [55],
such as support for natural language queries that provide users with
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Figure 5: Leveraging medical corpora to enhance the preci-
sion of AI models for inference about patient outcomes.

a more natural way to formulate their informational goals. Neural
models have also been trained to match abstract discourse aspects
of pairs of papers (e.g., sentences referring to methodologies) and
automatically retrieve documents that are aspectually similar [35].
By employing a representation that aligns with scientific reason-
ing across areas, this method achieves state-of-art results across
biomedical and computer science literature.

Experimentation, analysis, and action. Beyond helping re-
searchers via awareness and knowledge, we see great opportunities
to use scientific corpora to construct task-centric inferential sys-
tems with automated models and tools for assisting with analysis,
prediction and decisions. We demonstrate these ideas by casting
two different lines of work as cases of task-guided retrieval.

(1) Workflows are multi-step computational pipelines used as
part of scientific experimentation for data preparation, analysis and
simulation [12]. Technically this includes execution of code scripts,
services and tools, querying databases and submitting jobs to the
cloud. In the life sciences, in areas such as genomics, there are spe-
cialized workflowmanagement systems to help researchers find and
use workflows, enabled by a community that creates and publicly
shares repositories of workflows with standardised interfaces, meta-
data and functional annotations of tools and data [27]. As discussed
in Gil [12], machine learning algorithms can potentially use these
resources to automate workflow construction, learning to retrieve
and synthesize data analysis pipelines. In this setting, outer world
knowledge takes the form of workflow repositories, from which
systems retrieve and synthesize modular building blocks; users’
inner world is reflected via analysis objectives and constraints.

(2) In our work on clinical predictions [37], the goal is to enhance
prediction of medical outcomes of patients hospitalized in the in-
tensive care unit (ICU), such as in-hospital mortality or prolonged
length of stay. Our system, named BEEP (biomedical evidence en-
hanced prediction), learns to perform predictions by retrieving
medical papers that are relevant to each specific ICU patient, and to
synthesize this outer knowledge in combination with internal EMR
knowledge to form a final prediction. The primary envisaged user
is a practice-oriented researcher—a medical doctor, whose inner
knowledge is given by a rough proxy in the form of internal clinical

notes from which we extract “queries” issued over medical papers.
We find BEEP to provide large improvements over state-of-art mod-
els that do not use retrieval from the literature. BEEP’s output can
be aligned with inner world representations, e.g., matches between
patient aspects and related cohorts in papers (see Figure 5).

Learning and understanding. We introduced a system [34]
for helping users learn about new scientific concepts by showing
definitions grounded in concepts the users know. For example, a
new algorithm is explained as a variant of an algorithm the user
is familiar with. Cognitive studies have asserted that effective de-
scriptions of a new concept ground it within the network of known
concepts [39]. Our system takes as input a list of concepts reflect-
ing the user’s inner knowledge as obtained from papers that they
have written or read (drawn from Semantic Scholar logs). When
the user seeks a definition of a new target concept, we retrieve
outer knowledge in the form of definitions appearing in scientific
papers, in which the target concept is explained in terms of source
concepts that the user is familiar with. To further assist with reading
complex scientific texts, we employ a neural text generation model
to re-write the text in a structured, template form that relates the
target concept to the source concepts.

3 OPPORTUNITIES AHEAD
The challenges of task-guided retrieval in support of researchers
frames a host of problems and research opportunities. We discuss
select challenges and directions (see also Table 2). We first motivate
the discussion with an illustrative example, imagining a futuristic
system for task-guided retrieval in science. We use this example to
guide the discussion of future research needs.

3.1 Aspirations
We envision research tools with the capability of flowing outer
world knowledge to researchers based on inferences about the state
of the inner world— users’ acute goals and difficulties, as well as
users’ knowledge, their past and present pursuits, and the tasks
from Table 1 they are engaged in. Such systems would use multi-
ple signals in these inferences, including users’ papers, data and
experiments, users’ communication channels and documents, and
would also engage in conversational interaction to understand users
and their needs, suggesting solutions, hypotheses and experiments
aiming to maximize utility on tasks captured in Table 1.

We foresee systems powered by rich representations of both
inner and outer scientific knowledge. For a given concept, e.g., a
certain algorithm or organism, an aspirational system would ingest
all papers on the subject to form a multi-faceted representation of
concepts as objects with associated properties and functions. Us-
ing this representation, the system could assist in literature search
and review, enabling expressive queries to outer world informa-
tion that target abstract aspects like functionalities, mechanisms,
behaviors and designs in a manner that transcends field-specific
jargon, abstracting away lexical differences that hindered histori-
cal search engines (e.g., Google Scholar). To help users learn and
understand new concepts they encounter, the system would explain
them in relation to other concepts the user already knows. A future
system might also assist in automating experimentation, analysis
and action and in forming directions, by forming compositions of
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concepts and predicting the affordances that would be formed as a
result; for example, matching a certain algorithm with a suitable
problem based on the algorithm’s properties and the problem’s
requirements, matching an organism with a specific method of
measurement or modification, or recombining parts of two devices
to form a new device. The system could help identify related prob-
lems in the literature, synthesizing from them useful suggestions
for problem reformulations. Considering the huge combinatorial
space of potential suggestions, a system could assist in prioritization
using estimated measures of interestingness, feasibility and value
by synthesizing historical and current signals in literature, online
discussions and knowledge bases.

Envisioned systems would be designed as human-centric, fo-
cusing on the individual researcher. The systems would enable
users to convey preferences, goals and interests, and mediate the
presentation of suggested directions and problem solutions based
on personal prior knowledge, proposing concrete new directions
grounded in representations that researchers can follow, and as-
sisting users in reading complex retrieved texts by editing their
language to conform with concepts that users are familiar with.

3.2 Research Directions
We are far from having machines with the capabilities described in
the vision above. But imagining these capabilities can be valuable
for guiding research efforts. We elaborate on challenges and direc-
tions, including limitations in representing scientific knowledge
and inferring about researchers’ inner worlds (see Table 2).

Task-aligned representations and scientific NLP. Paul Tha-
gard writes: “thinking can best be understood in terms of repre-
sentational structures in the mind and computational procedures
that operate on those structures” [58]. We seek representations that
can be aligned with human thinking—for insight-building, decision
making and communication. How can we go beyond the representa-
tion of ideas in unstructured textual papers, toward representations
that support such cognitive processes? The quest for formulating a
universal schema that could represent scientific ideas and thinking
goes back hundreds of years. Scholars such as Gottfried Leibniz
and René Descartes were intrigued by the prospects of developing
a universal codification of scientific knowledge. Leibniz proposed
the characteristica universalis, a hypothesized formal language of
ideas that would enable inferences with algebraic operators.

While such a representation is not within reach, envisioning its
existence—and what may be needed to even roughly approximate
it—points to important research directions. An exciting direction,
for example, is obtaining representations that support a “compu-
tational algebra of ideas”—e.g., modeling novel compositions of
concepts and the new affordances that would be formed as a result.
Small steps toward this vision can be seen in work on representa-
tions of concepts as vectors in natural language embeddings [33]
that support rudimentary forms of addition, subtraction, and anal-
ogy. More recently, models of language and images [2, 43] have
made striking progress in generating new content and coherently
combining concepts, albeit currently far from achieving full com-
positionality and relational reasoning [31]. We are excited by the
prospect of future representations and operators developing and
extending these capabilities to the complex world of scientific ideas.

One core limitation is that the underlying representations learned
by these powerful models are currently far from understood and
lack “hooks” for control and interpretability, critical in human-AI
collaboration [56]. In our own work, in line with our focus on
grounding representations of outer world knowledge with inner
world cognitive aspects of researchers, we have pursued methods
that “reverse engineer” scientific papers to automatically extract,
using NLP models, structured representations that aim to balance
three desiderata:

(1) Semantically meaningful representations, aligned with a salient
task from the tasks in Table 1, grounded in cognitive research to
guide us toward useful structures.
(2) Representations with sufficient level of abstraction to generalize
across areas and topics.
(3) Representations expressive enough for direct utility in helping
researchers as measured in human studies.

For example, we have extracted representations that capture
causal mechanisms and hierarchical graphs of functional relation-
ships. This kind of decomposition of ideas has enabled us, for exam-
ple, to perform basic analogical inference in the space of complex
technological and scientific ideas, helping researchers discover new
inspirations (see Section 2). However, many forms of richer struc-
tures should be explored (e.g., of experimentation processes and
methodologies to facilitate tasks in Table 1).

A central challenge is that current models’ extraction accuracy is
limited, and the diversity of scientific language leads to problems in
generalization and normalization of terms and concepts. We have
pursued construction of new datasets, models and evaluations for
identifying similarity between concepts and aspects across papers
[3, 35], with fundamental problems in resolving diversity, ambiguity
and hierarchy of language. As our results have highlighted, neural
models still tend to focus on surface-level lexical patterns, as op-
posed to deeper semantic relationships; this has also been echoed
in recent work in the scientific NLP community [47]. More gener-
ally, substantial advances are needed to handle challenges posed by
scientific documents. We require NLP models with full-document
understanding, not only of text but of tables, equations, figures,
and reference links [57]. Open access corpora (e.g., S2ORC [30],
CORD-19 [54]) provide a foundation to address this challenge.

New modes of writing and reading. Perhaps the way we
write can be dramatically different in the digital world, usingmachine-
actionable representations? This theme is in its infancy [44] and
faces massive cultural and technological barriers. Moreover, be-
yond mere reporting and documentation, the process of writing
represents a direct channel between the inner and outer worlds,
forcing us to communicate ideas in concrete language; this process
often brings to light new questions which suggest new analyses
and problem framings. Can systems accompany different phases of
writing, suggesting new perspectives and shaping ideas?

In parallel, there is the task of reading what others have written;
a new scientific reading interface has recently been built with inter-
active PDF documents that can, for example, provide customized
concept definitions [14]. We imagine a future where every reader
will see a different form of the same paper, with text re-written to
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Challenge Description
Task-aligned representations, scientific NLP How can we automatically and accurately extract conceptual representations of scientific

knowledge, that are aligned with tasks that comprise the endeavor of science (Table 1)? How
can we build NLP models that understand full scientific papers?

Computational algebra of ideas Can we build representations of scientific knowledge that support composition of ideas? e.g.,
inferring the result of recombining two concepts.

Identifying conceptual relationships across
literature

How do we detect important relationships across scientific ideas, across related discussions
in different communities and areas? How can we resolve challenges of diversity, ambiguity,
and multiple levels of detail in scientific language?

Estimation of personal knowledge How can we estimate the knowledge of a given researcher? What are useful, practical models
of this knowledge? What concepts does a researcher know, which of their aspects, and to
what technical extent? How do we account for latent knowledge?

Addressing gaps in knowledge Given an estimated model of a researcher’s knowledge, and given a specific task in Table 1,
what new knowledge would be useful for the task at hand?

Estimation of preferences, goals, interests How can we estimate key latent preferences, interests and subjective utilities of researchers?
Using information in papers and discussions to infer factors behind researchers’ choices.

Prediction and prioritization How might we identify promising sparse/unexplored areas in large “spaces of ideas” and
prioritize directions that are novel, plausible and valuable?

Developing new representations for learning
and communicating

Might the way we read and write papers change to be more effective? Might we communicate
with machine-actionable, interlinked representations of scholarly knowledge. Might we
create personalized “living” documents that tailor their content to readers’ backgrounds.

Table 2: Directions with formulating and leveraging computational representations of scientific knowledge.

align with readers’ knowledge; e.g., our personalized concept defi-
nitions system [34] (§ 2) will insert new wording and explanations
grounded in readers’ knowledge.

Internal world of researchers. The latter point, of grounding
new concepts in the previous knowledge of readers, suggests a
wider and highly challenging problem. How can we estimate inner-
world aspects of researchers? New methods are needed to enable
researchers to specify their knowledge, preferences, and goals, in
order to direct systems to carry out tasks. However, directly query-
ing for these aspects places a burden on the researcher and may
be prone to reporting biases. Digital scientific activity presents an
opportunity for automatically approximating a researcher’s knowl-
edge, objectives, needs and interests—based on data. We are in-
terested in using researchers’ papers to estimate a spectrum of
knowledge, what concepts users know and to what extent. We en-
vision mixed-initiative interfaces [20] in which approximations of
the inner world are presented to researchers and refined in human-
machine collaboration, to identify personal gaps in knowledge in
the context of a specific task and suggest new useful knowledge.

Representations of interest and preference are central in web
commerce based on user activity histories. We are encouraged by
results that highlight the feasibility of rich user models, including
use in the personalization of general search engines [45, 50] and
dynamically updated inferences [21]. Paul Samuelson wrote of “re-
vealed preferences”— preferences that are revealed indirectly by the
economic price people are willing to pay; while not directly equiva-
lent, researchers’ digital traces may reveal underlying choices, e.g.,
selecting to work on one problem and not another.

Prediction and prioritization of directions. Whenever we
decide to work on a research direction, we are implicitly making
a prediction about an area in “idea space” that is unknown to us.
Can automated systems help make these predictions? This involves

identifying promising areas and generating directions—hypotheses,
ideas—in either natural or structured language, under constraints
on a given user’s background knowledge. It also involves ranking di-
rections as function of estimated likelihood (feasibility, plausibility),
utility (value) and novelty. Despite the great challenges involved, we
are encouraged by advances in models trained on scientific datasets
for predicting specific targets (e.g., protein structures [22]); we see
potential in building on these advances as part of our wider agenda
that considers the inner world of cognitive aspects and tasks, and
the outer world outside the context of a narrow dataset.

4 SUMMARY
As the terrain of science widens at a fast pace, researchers are
constrained by the limits of human cognition, and lack principled
methods to follow developments, review literature, guide attention,
and formulate and prioritize research directions. For the first time
in the history of science, essentially all of scientific knowledge
and discourse has moved into the digital space. This shift, coupled
with dramatic advances in computational tools for analyzing and
forming representations, presents tremendous opportunities for
leveraging scientific corpora as databases from which knowledge,
solutions, insights and inspirations can be gleaned to help scientists.
We see great opportunity ahead for developing tools for researchers
that can address the imbalance between the growing treasure trove
of scholarly information and their limited ability to reach into it.
Computational approaches have the potential to revolutionize the
scientific process, harnessing humankind’s collective knowledge
and intelligence by performing syntheses of literature, databases,
and discussions. Numerous challenges stand in the way of making
progress on the path to achieving the vision we have laid out.
However, even small steps forward will unlock vast opportunities
for making advances at the frontiers of science.
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