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Abstract

Accurately extracting structured content
from PDFs is a critical first step for NLP over
scientific papers. Recent work has improved
extraction accuracy by incorporating elemen-
tary layout information, e.g., each token’s 2D
position on the page, into language model
pretraining. We introduce new methods
that explicitly model VIsual LAyout (VILA)
groups, i.e., text lines or text blocks, to fur-
ther improve performance. In our I-VILA
approach, we show that simply inserting spe-
cial tokens denoting layout group boundaries
into model inputs can lead to a 1.9% Macro
F1 improvement in token classification. In
the H-VILA approach, we show that hierar-
chical encoding of layout-groups can result
in up-to 47% inference time reduction with
less than 0.8% Macro F1 loss. Unlike prior
layout-aware approaches, our methods do
not require expensive additional pretraining,
only fine-tuning, which we show can reduce
training cost by up to 95%. Experiments
are conducted on a newly curated evalua-
tion suite, S2-VLUE, that unifies existing
automatically-labeled datasets and includes a
new dataset of manual annotations covering
diverse papers from 19 scientific disciplines.
Pre-trained weights, benchmark datasets,
and source code are available at https:
//github.com/allenai/VILA.

1 Introduction

Scientific papers are usually distributed in Portable
Document Format (PDF) without extensive seman-
tic markup. Extracting structured document repre-
sentations from these PDF files—i.e., identifying
title and author blocks, figures, references, and
so on—is a critical first step for downstream NLP
tasks (Beltagy et al., 2019; Wang et al., 2020) and is
important for improving PDF accessibility (Wang
et al., 2021).

Recent work demonstrates that document layout
information can be used to enhance content extrac-
tion via large-scale, layout-aware pretraining (Xu
et al., 2020, 2021; Li et al., 2021). However, these
methods only consider individual tokens’ 2D po-
sitions and do not explicitly model high-level lay-
out structures like the grouping of text into lines
and blocks (see Figure 1 for example), limiting
accuracy. Further, existing methods come with
enormous computational costs: they rely on fur-
ther pretraining an existing pretrained model like
BERT (Devlin et al., 2019) on layout-enriched in-
put, and achieving the best performance from the
models requires more than a thousand (Xu et al.,
2020) to several thousand (Xu et al., 2021) GPU-
hours. This means swapping in a new pretrained
text model or experimenting with new layout-aware
architectures can be prohibitively expensive, incom-
patible with the goals of green AI (Schwartz et al.,
2020).

In this paper, we explore how to improve the
accuracy and efficiency of structured content ex-
traction from scientific documents by using VIsual
LAyout (VILA) groups. Following Zhong et al.
(2019) and Tkaczyk et al. (2015), our methods use
the idea that a document page can be segmented
into visual groups of tokens (either lines or blocks),
and that the tokens within each group generally
have the same semantic category, which we refer
to as the group uniformity assumption (see Fig-
ure 1(b)). Given text lines or blocks generated by
rule-based PDF parsers (Tkaczyk et al., 2015) or
vision models (Zhong et al., 2019), we design two
different methods to incorporate the VILA groups
and the assumption into modeling: the I-VILA
model adds layout indicator tokens to textual inputs
to improve the accuracy of existing BERT-based
language models, while the H-VILA model uses
VILA structures to define a hierarchical model that
models pages as collections of groups rather than of
individual tokens, increasing inference efficiency.
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Previous datasets for evaluating PDF content
extraction rely on machine-generated labels of
imperfect quality, and comprise papers from a
limited range of scientific disciplines. To better
evaluate our proposed methods, we design a new
benchmark suite, Semantic Scholar Visual Layout-
enhanced Scientific Text Understanding Evaluation
(S2-VLUE). The benchmark extends two existing
resources (Tkaczyk et al., 2015; Li et al., 2020) and
introduces a newly curated dataset, S2-VL, which
contains high-quality human annotations for papers
across 19 disciplines.

Our contributions are as follows:

1. We introduce a new strategy for PDF con-
tent extraction that uses VILA structures to in-
ject layout information into language models,
and show that this improves accuracy without
the expensive pretraining required by existing
methods, and generalizes to different language
models.

2. We design two models that incorporate VILA
features differently. The I-VILA model injects
layout indicator tokens into the input texts and
improves prediction accuracy (up to +1.9%
Macro F1) and consistency compared to the
previous layout-augmented language model
LayoutLM (Xu et al., 2020). The H-VILA
model performs group-level predictions and
can reduce model inference time by 47% with
less than 0.8% loss in Macro F1.

3. We construct a unified benchmark suite S2-
VLUE which enhances existing datasets with
VILA structures, and introduce a novel dataset
S2-VL that addresses gaps in existing re-
sources. S2-VL contains hand-annotated gold
labels for 15 token categories on papers span-
ning 19 disciplines.

The benchmark datasets, modeling code, and
trained weights are available at https://
github.com/allenai/VILA.

2 Related Work

2.1 Structured Content Extraction for
Scientific Documents

Prior work on structured content extraction for
scientific documents usually relies on textual or
visual features. Text-based methods like Scien-
ceParse (Ammar et al., 2018), GROBID (GRO,
2008–2021) or Corpus Conversion Service (Staar

Figure 1: (a) Real-world scientific documents often
have intricate layout structures, so analyzing only flat-
tened raw text forfeits valuable information, yielding
sub-optimal results. (b) The complex structures can be
broken down into groups (text blocks or lines) that are
composed of tokens with the same semantic category.

et al., 2018) combine PDF-to-text parsing en-
gines like CERMINE (Tkaczyk et al., 2015) or
pdfalto,1 which output a sequence of tokens ex-
tracted from a PDF, with machine learning models
like RNN (Hochreiter and Schmidhuber, 1997),
CRF (Lafferty et al., 2001), or Random For-
est (Breiman, 2001) trained to classify the to-
ken categories of the sequence. Though these
models are practical and fairly efficient, they fall
short in prediction accuracy or generalize poorly
to out-of-domain documents. Vision-based Ap-
proaches (Zhong et al., 2019; He et al., 2017; Siegel
et al., 2018), on the other hand, treat the parsing
task as an image object detection problem: given
document images, the models predict rectangular
bounding boxes, segmenting the page into indi-
vidual components of different categories. These
models excel at capturing complex visual layout
structures like figures or tables, but because they
operate only on visual signals without textual infor-
mation, they cannot accurately predict fine-grained
semantic categories like title, author, or abstract,
which are of central importance for parsing scien-
tific documents.

2.2 Layout-aware Language Models
Recent methods on layout-aware language mod-
els improve prediction accuracy by jointly mod-
eling documents’ textual and visual signals. Lay-
outLM (Xu et al., 2020) learns a set of novel posi-

1https://github.com/kermitt2/pdfalto
(last accessed Jan. 1, 2022).
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Figure 2: Comparing inserting indicator tokens [BLK]
based on VILA groups and sentence boundaries. Indi-
cators representing VILA groups (e.g., text blocks in
the left figure) are usually consistent with the token cat-
egory changes (illustrated by the background color in
(a)), while sentence boundary indicators fail to provide
helpful hints (both "false positive"s and "false negative"s
occur frequently in (b)). Best viewed in color.

tional embeddings that can encode tokens’ 2D spa-
tial location on the page and improves accuracy on
scientific document parsing (Li et al., 2020). More
recent work (Xu et al., 2021; Li et al., 2021) aims
to encode the document in a multimodal fashion
by modeling text and images together. However,
these existing joint-approach models require ex-
pensive pretraining, and may be less efficient as a
consequence of their joint inputs (Xu et al., 2021),
making them less suitable for deployment at scale.
In this work, we aim to incorporate document lay-
out features in the form of visual layout groupings,
in novel ways that improve or match performance
without the need for expensive pretraining. Our
work is well-aligned with recent efforts for incor-
porating structural information into language mod-
els (Lee et al., 2020; Bai et al., 2021; Yang et al.,
2020; Zhang et al., 2019).

2.3 Training and Evaluation Datasets

The available training and evaluation datasets for
scientific content extraction models are automati-
cally generated from author-provided source data,
e.g. GROTOAP2 (Tkaczyk et al., 2014) and Pub-
LayNet (Zhong et al., 2019) are constructed from
PubMed Central XML and DocBank (Li et al.,
2020) from arXiv LaTeX source. Despite their
large sample sizes, these datasets have limited lay-
out variation, leading to poor generalization to
papers from other disciplines with distinct lay-
outs. Also, due to the heuristic nature in which
the data are automatically labeled, they contain sys-
tematic classification errors that can affect down-
stream modeling performance. We elaborate on the
limitations of GROTOAP2 (Tkaczyk et al., 2014)

and DocBank (Li et al., 2020) in Section 4. Pub-
LayNet (Zhong et al., 2019) provides high-quality
text block annotations on 330k document pages,
but its annotations only cover five distinct cate-
gories. Livathinos et al. (2021) and Staar et al.
(2018) curated a multi-disciplinary, manually anno-
tated dataset of 2,940 paper pages, but only make
available the processed page features without the
raw text or source PDFs needed for experiments
with layout-aware methods. We introduce a new
evaluation dataset, S2-VL, to address limitations
in these existing datasets.

3 Methods

3.1 Problem Formulation

Following prior work (Tkaczyk et al., 2015; Li
et al., 2020), our task is to map each token ti
in an input sequence T = (t1, . . . , tn) to its se-
mantic category ci (e.g. title, body text, reference,
etc.). Input tokens are extracted via PDF-to-text
tools, which output both the word ti and its 2D
position on the page, a rectangular bounding box
ai = (x0, y0, x1, y1) denoting the left, top, right,
and bottom coordinate of the word. The order of
tokens in sequence T may not reflect the actual
reading order of the text due to errors in PDF-
to-text conversion (e.g., in the original DocBank
dataset (Li et al., 2020)), which poses an additional
challenge to language models pre-trained on regu-
lar texts.

Besides the token sequence T , additional visual
structures G can also be retrieved from the source
document. Scientific papers are organized into
groups of tokens (lines or blocks), which consist
of consecutive pieces of text that can be segmented
from other pieces based on spatial gaps. The group
information can be extracted via visual layout de-
tection models (Zhong et al., 2019; He et al., 2017)
or rule-based PDF parsing (Tkaczyk et al., 2015).

Formally, given an input page, the group detec-
tor identifies a series of m rectangular boxes for
each group bj ∈ B = {b1, . . . , bm} in the input
document page, where bj = (x0, y0, x1, y1) de-
notes the box coordinates. Page tokens are allo-
cated to the visual groups gj = (bj , T

(j)), where
T (j) = {ti | ai � bj , ti ∈ T} contains all tokens
in the j-th group, and ai � bj denotes that the cen-
ter point of token ti’s bounding box ai is strictly
within the group box bi. When two group regions
overlap and share common tokens, the system as-
signs the common tokens to the earlier group by



Figure 3: Illustration of the H-VILA model. Texts from each visual layout group are encoded separatedly using
the group encoder, and the generated representation are subsequently modeled by a page encoder. The semantic
category are predicted at the group-level, which significantly improves efficiency.

the estimated reading order from the PDF parser.
We refer to text block groups of a page as G(B)

and text line groups as G(L). In our case, we de-
fine text lines as consecutive tokens appearing at
the nearly same vertical position.2 Text blocks are
sets of adjacent text lines with gaps smaller than
a certain threshold, and ideally the same semantic
category. That is, even two close lines of different
semantic categories should be allocated to separate
blocks, and in our models we use a block detector
trained toward this objective. In practice, block or
line detectors may generate incorrect predictions.

In the following sections, we describe our two
models, I-VILA and H-VILA. The models take a
BERT-based pretrained language model as a foun-
dation, which may or may not itself be layout-
aware (we experiment with DistilBERT, BERT,
RoBERTa, and LayoutLM in our experiments).
Our models then augment the base model to in-
corporate group structures, as detailed below.

3.2 I-VILA: Injecting Visual Layout
Indicators

According to the group uniformity assumption, to-
ken categories are homogeneous within a group,
and categorical changes should happen at group
boundaries. This suggests that layout information
should be incorporated in a way that informs to-
ken category consistency intra-group and signals
possible token category changes inter-group.

Our first method supplies VILA structures by
inserting a special layout indicator token at each
group boundary in the input text, and models this
with a pretrained language model (which may or
may not be position-aware). We refer to this as
the I-VILA method. As shown in Figure 2(a), the

2Or horizontal position, when the text is written vertically.

inserted tokens partition the text into segments that
provide helpful structure to the model, hinting at
possible category changes. In I-VILA, the special
tokens are seen at all layers of the model, provid-
ing VILA signals at different stages of modeling,
rather than only providing positional information
at the initial embedding layers as in LayoutLM
(Xu et al., 2020). We empirically show that BERT-
based models can learn to leverage such special
tokens to improve both the accuracy and the con-
sistency of category predictions, even without an
additional loss penalizing inconsistent intra-group
predictions.

In practice, given G, we linearize tokens
T (j) from each group and flatten them into a
1D sequence. To avoid capturing confounding
information in existing pretraining tasks, we insert
a new token previously unseen by the model,
[BLK], in-between text from different groups
T (j). The resulting input sequence is of the form
[[CLS], T

(1)
1 , . . . , T

(j)
nj ,[BLK], T

(j+1)
1 , . . . ,

T
(m)
nm ,[SEP]], where T (j)

i and nj indicate the i-th
token and the total number of tokens respectively
in the j-th group, and [CLS] and [SEP] are the
special tokens used by the BERT model and are
inserted to preserve a similar input structure.3 The
BERT-based models are fine-tuned on the token
classification objective with a cross entropy loss.
When I-VILA uses a visual pretrained language
model as input, such as LayoutLM (Xu et al.,
2020), the positional embeddings for the newly
injected [BLK] tokens are generated from the
corresponding group’s bounding box bj .

3The [CLS] and [SEP] tokens are only inserted at the
beginning or end of each input sequence, and they do not
represent the sentence boundaries in this case.



Figure 4: Model predictions for the 10th page of our paper draft. We present the token category and text block
bounding boxes (highlighted in red rectangles) based on the (a) ground-truth annotations and model predictions
from both I-VILA and H-VILA models (the three results happen to be identical) and (b) model predictions from
the LayoutLM model. When VILA is injected, the model achieves more consistent predictions for the example, as
indicated by arrows (1) and (2) in the figure. Best view in color.

3.3 H-VILA: Visual Layout-guided
Hierarchical Model

The uniformity of group token categories also sug-
gests the possibility of building a group-level clas-
sifier. Inspired by recent advances in modeling
long documents, hierarchical structures (Yang et al.,
2020; Zhang et al., 2019) provide an ideal architec-
ture for the end task while optimizing for computa-
tional cost. Illustrated in Figure 3, our hierarchical
approach uses two transformer-based models, one
to encode each group in terms of its words, and
another modeling the whole document in terms of
the groups. We provide the details below.

The Group Encoder is a lg-layer transformer
that converts each group gi into a hidden vector
hi. Following the typical transformer model set-
ting (Vaswani et al., 2017), the model takes a se-
quence of tokens T (j) within a group as input, and
maps each token T (j)

i into a dense vector e(j)i of
dimension d. Subsequently, a group vector aggre-
gation function f : Rnj×d → Rd is applied that
projects the token representations

(
e
(j)
1 , . . . , e

(j)
nj

)
to a single vector h̃j that represents the group’s tex-
tual information. A group’s 2D spatial information
is incorporated in the form of positional embed-
dings, and the final group representation hj can be
calculated as:

hj = h̃j + p(bj). (1)

where p is the 2D positional embedding similar to

the one used in LayoutLM:

p(b) =Ex(x0) + Ex(x1) + Ew(x1 − x0)+ (2)

Ey(y0) + Ey(y1) + Eh(y1 − y0),

where Ex, Ex, Ew, Eh are the embedding matrices
for x, y coordinates and width and height. In prac-
tice, we find that injecting positional information
using the bounding box of the first token within the
group leads to better results, and we choose group
vector aggregation function f to be the average
over all tokens representations.

The Page Encoder is another stacked trans-
former model of lp layers that operates on the
group representation hj generated by the group
encoder. It generates a final group representation
sj for downstream classification. A MLP-based lin-
ear classifier is attached thereafter, and is trained to
generate the group-level category probability pjc.

Different from previous work (Yang et al., 2020),
we restrict the choice of lg and lp to {1, 12} such
that we can load pre-trained weights from BERT
base models. Therefore, no additional pretrain-
ing is required, and the H-VILA model can be
fine-tuned directly for the downstream classifica-
tion task. Specifically, we set lg = 1 and initial-
ize the group encoder from the first-layer trans-
former weights of BERT. The page encoder is con-
figured as either a one-layer transformer or a 12-
layer transformer that resembles a full LayoutLM
model. Weights are initialized from the first-layer
or full 12 layers of the LayoutLM model, which



is trained to model texts in conjunction with their
positions.

Group Token Truncation As suggested in
Yang et al. (2020)’s work, when an input document
of length N is evenly split into segments of Ls,
the memory footprint of the hierarchical model is
O(lgNLs+ lp(

N
Ls

)2), and for long documents with
N � Ls, it approximates asO(N2/L2

s). However,
in our case, it is infeasible to adopt the Greedy Sen-
tence Filling technique (Yang et al., 2020) as it
mingles signals from different groups and obfus-
cates group structures. It is also less desirable to
simply use the maximum token count per group
max1≤j≤m nj to batch the contents due to the high
variance of group token length (see Table 1). In-
stead, we choose a group token truncation count ñ
empirically based on statistics of the group token
length distribution such that N ≈ ñm, and use the
first ñ to aggregate the group hidden vector hj for
all groups (we pad the sequence to ñ when it is
shorter).

4 Benchmark Suite

To systematically evaluate the proposed meth-
ods, we develop the the Semantic Scholar Visual
Layout-enhanced Scientific Text Understanding
Evaluation (S2-VLUE) benchmark suite. S2-
VLUE consists of three datasets—two previously
released resources which we augment with VILA
information, and a new hand-curated dataset S2-
VL.

Key statistics for S2-VLUE are provided in Ta-
ble 1. Notably, the three constituent datasets dif-
fer with respect to their: 1) annotation method,
2) VILA generation method, and 3) paper domain
coverage. We provide details below.

GROTOAP2 The GROTOAP2 dataset (Tkaczyk
et al., 2014) is automatically annotated. Its text
block and line groupings come from the CERMINE
PDF parsing tool (Tkaczyk et al., 2015); text block
category labels are then obtained by pairing block
texts with structured data from document source
files obtained from PubMed Central. A small sub-
set of data is inspected by experts, and a set of
post-processing heuristics is developed to further
improve annotation quality. Since token categories
are annotated by group, the dataset achieves per-
fect accordance between token labels and VILA
structures. However, the method of rule-based PDF
parsing employed by the authors introduces label-
ing inaccuracies due to imperfect VILA detection:

the authors find that block-level annotation accu-
racy achieves only 92 Macro F1 in a small gold
evaluation set. Additionally, all samples are ex-
tracted from the PMC Open Access Subset4 that
includes only life sciences publications; these pa-
pers have less representation of classification types
like “equation”, which are common in other scien-
tific disciplines.

DocBank The DocBank dataset (Li et al., 2020)
is fully machine-labeled without any postprocess-
ing heuristics or human assessment. The authors
first identify token categories by automatically pars-
ing the source TEX files available from arXiv. Text
block annotations are then generated by grouping
together tokens of the same category using con-
nected component analysis. However, only a spe-
cific set of token tags is extracted from the main
TEX file for each paper, leading to inaccurate and
incomplete token labels, especially for papers em-
ploying LaTeX macro commands,5 and thus, incor-
rect visual groupings. Hence, we develop a Mask
R-CNN-based vision layout detection model based
on a collection of existing resources (Zhong et al.,
2019; MFD, 2021; He et al., 2017; Shen et al.,
2021) to fix these inaccuracies and generate trust-
worthy VILA annotations at both the text block
and line level.6 As a result, this dataset can be
used to evaluate VILA models under a different
setting, since the VILA structures are generated in-
dependently from the token annotations. Because
the papers in DocBank are from arXiv, however,
they primarily represent domains like Computer
Science, Physics, and Mathematics, limiting the
amount of layout variation.

S2-VL We introduce a new dataset to address the
three major drawbacks in existing work: 1) annota-
tion quality, 2) VILA fidelity, and 3) domain cover-
age. S2-VL is manually labeled by graduate stu-
dents who frequently read scientific papers. Using

4https://www.ncbi.nlm.nih.gov/pmc/
tools/openftlist/ (last accessed Jan. 1, 2022).

5For example, in DocBank, “Figure 1” in a figure caption
block is usually labeled as “paragraph” rather than “caption”.
DocBank labels all tokens that are not explicitly contained in
the set of processed LaTeX tags as “paragraph.”

6The original generation method for DocBank requires
rendering LaTeX source, which results in layouts different
from the publicly available versions of these documents on
arXiv. However, because the authors of the dataset only pro-
vide document page images, rather than the rendered PDF, we
can only use image-based approaches for layout detection. We
refer readers to the appendix for details.

https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/


GROTOAP2 DocBank S2-VL

Train / Dev / Test Pages 83k / 18k / 18k 398k / 50k / 50k 1.3k1

Annotation Method Automatic Automatic Human Annotation
Scientific Discipline Life Science Math / Physics / CS 19 Disciplines
Visual Layout Group PDF parsing Vision model Gold Label / Detection methods
Number of Categories 22 12 15

Average Token Count2 1203 (591) 838 (503) 790 (453)
Average Text Line Count 90 (51) 60 (34) 64 (54)
Average Text Block Count 12 (16) 15 (8) 22 (36)

1 This is the total number of pages in the S2-VL dataset; we use 5-fold cross-validation for training and testing.
2 We report the average token, text line, and text block count per page, with standard deviations in parentheses.

Table 1: Details for the three datasets in the S2-VLUE benchmark.

the PAWLS annotation tool (Neumann et al., 2021),
annotators draw rectangular text blocks directly on
each PDF page, and specify the block-level seman-
tic categories from 15 possible candidates.7 Tokens
within a group can therefore inherit the category
from the parent text block. Inter-annotator agree-
ment, in terms of token-level accuracy measured on
a 12-paper subset, is high at 0.95. The ground-truth
VILA labels in S2-VL can be used to fine-tune
visual layout detection models, and paper PDFs are
also included, making PDF-based structure pars-
ing feasible: this enables VILA annotations to be
created by different means, which is helpful for
benchmarking new VILA-based models. More-
over, S2-VL currently contains 1337 pages of 87
papers from 19 different disciplines, including e.g.
Philosophy and Sociology which are not present in
previous data sets.

Overall, the datasets in S2-VLUE cover a wide
range of academic disciplines with different lay-
outs. The VILA structures in the three component
datasets are curated differently, which helps to eval-
uate the generality of VILA-based methods.

5 Experimental Setup

5.1 Implementation Details

Our models are implemented using Py-
Torch (Paszke et al., 2019) and the transformers
library (Wolf et al., 2020). A series of baseline
and VILA models are fine-tuned on 4-GPU
RTX8000 or A100 machines. The AdamW
optimizer (Kingma and Ba, 2015; Loshchilov and

7Of our defined categories, 12 are common fields and
taken directly from other similar datasets, e.g., title, abstract
etc. We add three categories: equation, header, and footer,
which commonly occur in scientific papers and are included
in full text mining resources like S2ORC (Lo et al., 2020) and
CORD-19 (Wang et al., 2020).

Hutter, 2019) is adopted with a 5× 10−5 learning
rate and (β1, β2) = (0.9, 0.999). The learning
rate is linearly warmed up over 5% steps then
linearly decayed. For all datasets (GROTOAP2,
DocBank, S2-VL), unless otherwise specified, we
select the best fine-tuning batch size (40, 40 and
12) and training epochs (24, 6,8 and 10) for all
models. As for S2-VL, given its smaller size, we
use 5-fold cross validation and report averaged
scores, and use 2 × 10−5 learning rate with 20
epochs. We split S2-VL based on papers rather
than pages to avoid exposing paper templates of
test samples in the training data. Mixed precision
training (Micikevicius et al., 2018) is used to speed
up the training process.

For I-VILA models, we fine-tune several BERT-
variants with VILA-enhanced text inputs, and the
models are initialized from pre-trained weights
available in the transformers library. The H-VILA
models are initialized as mentioned in Section 3.3,
and by default, positional information is injected
for each group.

5.2 Competing Methods

We consider three approaches that compete with
the proposed methods from different perspectives:

1. Baselines The LayoutLM (Xu et al., 2020)
model is the main baseline method. It is
the closest model counterpart to our VILA-
augmented models as it also injects layout in-
formation and achieves previous SOTA perfor-
mance on the Scientific PDF parsing task (Li
et al., 2020).

8We try to keep gradient update steps the same for the
GROTOAP2 and the DocBank dataset. As DocBank con-
tains 4× examples, the number of DocBank models’ training
epochs is reduced by 75%.



GROTOAP2 DocBank S2-VL 1

Macro F1 � H(G) � Macro F1 � H(G) � Macro F1 � H(G) �

LayoutLMBASE (Xu et al., 2020) 92.34 0.78 91.06 2.64 82.69(6.04) 4.19(0.25)

LayoutLMBASE + Sentence Breaks 91.83 0.78 91.44 2.62 82.81(5.21) 4.21(0.55)

LayoutLMBASE + I-VILA(Text Line) 92.37 0.73 92.79 2.17 83.77(5.75)2 3.28(0.35)

LayoutLMBASE + I-VILA(Text Block) 93.38 0.53 92.00 2.10 83.44(6.48) 2.83(0.34)

1 For S2-VL, we show averaged scores with standard deviation in parentheses across the 5-fold cross validation subsets.
2 In this table, we report S2-VL results using VILA structures detected by visual layout models. When the ground-truth VILA
structures are available, both I-VILA and H-VILA models can achieve better accuracy, shown in Table 6.

Table 2: Performance of baseline and I-VILA models on the scientific document extraction task. I-VILA provides
consistent accuracy improvements over the baseline LayoutLM model on all three benchmark datasets.

2. Sentence Breaks For I-VILA models, be-
sides using VILA-based indicators, we also
compare with indicators generated from sen-
tence breaks detected by PySBD (Sadvilkar
and Neumann, 2020). Figure 2(a) shows that
the inserted sentence-break indicators may
have both "false-positive" or "false-negative"
hints for token semantic category changes,
making it less helpful for the end task.

3. Simple Group Classifier For hierarchical
models, we consider another baseline ap-
proach, where the group texts are separately
fed into a LayoutLM-based group classifier.
It doesn’t require complicated model design,
and uses a full LayoutLM to model each
group’s text, as opposed to the lg = 1 layer
used in the H-VILA models. However, this
method cannot account for inter-group inter-
actions, and is far less efficient.9

5.3 Metrics

Prediction Accuracy The token label distri-
bution is heavily skewed towards categories
corresponding to paper body texts (e.g., the
“BODY_CONTENT” category in GROTOAP2 or
the “paragraph” category in S2-VL and DocBank).
Therefore, we choose to use Macro F1 as our pri-
mary evaluation metric for prediction accuracy.

Group Category Inconsistency To better char-
acterize how different models behave with respect
to group structure, we also report a diagnostic met-
ric that calculates the uniformity of the token cate-
gories within a group. Hypothetically, tokens T (j)

9Despite the group texts being relatively short, this method
causes extra computational overhead as the full LayoutLM
model needs to be run m times for all groups in a page. The
simple group classifier models are only trained for 5, 2, and 5
epochs for GROTOAP2, DocBank, and S2-VL for tractability.

in the j-th group gj share the same category c, and
naturally the group inherits the semantic label c.
We use the group token category entropy to mea-
sure the inconsistency of a model’s predicted token
categories within the same group:

H(g) = −
∑
c

pc log pc, (3)

where pc denotes the probability of a token in group
g being classified as category c. When all tokens
in a group have the same category, the group token
category inconsistency is zero. H(g) reaches the
maximum when pc is a uniform distribution across
all possible categories. The inconsistency for G is
the arithmetic mean of all individual groups gi:

H(G) =
1

m

m∑
i

H(gi) (4)

H(G) acts as an auxiliary metric for evaluating pre-
diction quality with respect to the provided VILA
structures. In the remainder of this paper, we report
the inconsistency metric for text blocks G(B) by
default, and scale the values by a factor of 100.

Measuring Efficiency We report the inference
time per sample as a measure of model efficiency.
We select 1,000 pages from the GROTOAP2 test
set, and report the average model runtime for 3
runs on this subset. All models are tested on an
isolated machine with a single V100 GPU. We
report the time incurred for text classification; time
costs associated with PDF-to-text conversion or
VILA structure detection are not included (these
are treated as pre-processing steps, which can be
cached and re-used when processing documents
with different content extractors).



GROTOAP2 DocBank S2-VL

Macro F1 � H(G) � Macro F1 � H(G) � Macro F1 � H(G) � Inference Time (ms)

LayoutLMBASE 92.34 0.78 91.06 2.64 82.69(6.04) 4.19(0.25) 52.56(0.25)

Simple Group Classifier 92.65 0.00 87.01 0.00 -1 - 82.57(0.30)

H-VILA(Text Line) 91.65 0.32 91.27 1.07 83.69(2.92) 1.70(0.68) 28.07(0.37)2

H-VILA(Text Block) 92.37 0.00 87.78 0.00 82.09(5.89) 0.36(0.12) 16.37(0.15)

1 The simple group classifier fails to converge for one run. We do not report the results for fair comparison.
2 When reporting efficiency in other parts of the paper, we use this result because of its optimal combination of accuracy and efficiency.

Table 3: Content extraction performance for H-VILA. The H-VILA models significantly reduce the inference time
cost compared to LayoutLM, while achieving comparable accuracy on the three benchmark datasets.

Base Model Baseline Text Line G(L) Text Block G(B)

DistilBERT 90.52 91.14 92.12

BERT 90.78 91.65 92.31

RoBERTa 91.64 92.04 92.52

LayoutLM 92.34 92.37 93.38

Table 4: Content extraction performance (Macro F1
on the GROTOAP2 dataset) for I-VILA using different
BERT model variants. I-VILA can be applied to both
standard BERT-based models and layout-aware ones,
and consistently improves the classification accuracy.

6 Results

6.1 I-VILA Achieves Better Accuracy

Table 2 shows that I-VILA models lead to con-
sistent accuracy improvements without further
pretraining. Compared to the baseline Lay-
outLM model, inserting layout indicators results in
+1.13%, +1.90%, and +1.29% Macro F1 improve-
ments across the three benchmark datasets. I-VILA
models also achieve better token prediction con-
sistency; the corresponding group category incon-
sistency is reduced by 32.1%, 21.7%, and 21.7%
compared to baseline. Moreover, VILA informa-
tion is also more helpful than language structures:
I-VILA models based on text blocks and lines all
outperform the sentence boundary-based method
by a similar margin. Figure 4 shows an example of
the VILA model predictions.

6.2 H-VILA is More Efficient

Table 3 summarizes the efficiency improvements
of the H-VILA models with lg = 1 and lp = 12.
As block-level models perform predictions directly
at the text block level, the group category inconsis-
tency is naturally zero. Compared to LayoutLM,
H-VILA models with text lines brings a 46.59%
reduction in inference time, without heavily pe-

Figure 5: Illustration of models trained and evaluated
with incorrect text block detections (only the top half
of the page is shown). The blocks are created by vision
predictions, which fails to capture the correct caption
text structure (arrow 1). Because the I-VILA model
can generate different token predictions within a group,
it maintains high accuracy, whereas H-VILA assigns
the same category for all tokens in the incorrect block,
leading to lower accuracy.

nalizing the final prediction accuracies (-0.75%,
+0.23%, +1.21% Macro F1). When text blocks
are used, H-VILA models are even more efficient
(68.85% and 80.17% inference time reduction com-
pared to the LayoutLM and simple group classifier
baseline), and they also achieve similar or better
accuracy compared to the simple group classifier
(-0.30%, +0.88% Macro F1 for GROTOAP2 and
DocBank).

However, in H-VILA models, the inductive bias
from the group uniformity assumption also has a
drawback: models are often less accurate than their
I-VILA counterparts, and performing block level
classification may sometimes lead to worse results
(-3.60% and -0.73% Macro F1 in the DocBank and
S2-VL datasets compared to LayoutLM). More-
over, shown in Figure 5, when the injected lay-
out group is incorrect, the H-VILA method lacks
the flexibility to assign different token categories
within a group, leading to lower accuracy. Addi-
tional analysis of the impact of the layout group
predictions is detailed in Section 8.



GROTOAP2 DocBank S2-VL

F1 � H(G) � F1 � H(G) � F1 � H(G) � Training Cost1

BERTBASE (Devlin et al., 2019) 90.78 1.58 87.24 3.50 78.34(6.53)1 7.17(0.95) 40 hr fine-tuning

BERTBASE + I-VILA(Text Line) 91.65 1.13 90.25 2.56 81.15(4.83) 4.76(1.28) 40 hr fine-tuning

BERTBASE + I-VILA(Text Block) 92.31 0.63 89.49 2.25 81.82(4.88) 3.65(0.26) 40 hr fine-tuning

LayoutLMBASE (Xu et al., 2020) 92.34 0.78 91.06 2.64 82.69(6.04) 4.19(0.25)
1.2k hr pretraining
+ 50 hr fine-tuning

LayoutLMv2BASE (Xu et al., 2021) -2 - 93.33 1.93 83.05(4.51) 3.34(0.82)
9.6k hr pretraining3

+ 130 hr fine-tuning

1 We report the equivalent V100 GPU hours on the GROTOAP dataset in this column.
2 LayoutLMv2 cannot be trained on the GROTOAP2 dataset because almost 30% of its instances do not have compatible PDF images.
3 The authors do not report the exact cost in the paper. The number is a rough estimate based on our experimental results.

Table 5: Comparison between I-VILA models and other layout-aware methods that require expensive pretraining.
I-VILA achieves comparable accuracy with less than 5% of the training cost.

7 Ablation Studies

7.1 I-VILA is Effective Across BERT
Variants

To test the applicability of the VILA methods, we
adapt I-VILA to different BERT variants and train
them on the GROTOAP2 dataset. Shown in Ta-
ble 4, I-VILA leads to consistent improvements
on DistilBERT (Sanh et al., 2019), BERT, and
RoBERTa (Liu et al., 2019),10 leading to up-to
+1.77%, +1.69%, and 0.96% Macro F1 compared
to non-VILA counterparts.

7.2 I-VILA Improves Accuracy without
Pretraining

In Table 5, we fine-tune a series of I-VILA models
based on BERT, and compare their performance
with LayoutLM and LayoutLMv2 (Xu et al., 2021)
which require additional large-scale pretraining on
corpora with layout. BERT+I-VILA achieves com-
parable accuracy to LayoutLM (0.00%, -0.89%,
-1.05%), with only 5% of the training cost.11 I-
VILA also closes the gap with the latest multimodal
method LayoutLMv2 (Xu et al., 2021) with only
1% of the training cost. This further verifies that
injecting layout indicator tokens is a novel and ef-
fective way of incorporating layout information
into language models.

10Positional embeddings are not used in these models.
11It takes 10.5 hours to finish fine-tuning I-VILA on the

GROTOAP2 dataset using a 4 RTX 8000 machine, equivalent
to around 60 V100 GPU hours, approximately 5% of the 1280
hours of the pretraining time for LayoutLM.

8 VILA in Practice: The Impact of
Layout Group Detectors

Applying VILA methods in practice requires run-
ning a group layout detector as a critical first step.
In this section, we analyze how the accuracy of
different block and line group detectors affects the
accuracy of H-VILA and I-VILA models.

The results are shown in Table 6. We report on
the S2-VL dataset using two automated group de-
tectors: the CERMINE PDF parser (Tkaczyk et al.,
2015) and the Mask R-CNN vision model trained
on the PubLayNet dataset (Zhong et al., 2019). We
also report on using ground truth blocks as an up-
per bound. The “Group-uniform Oracle” illustrates
how well the different group detectors reflect the
group uniformity assumption; in the oracle setting,
one is given ground truth labels but is restricted to
assigning the same label to all tokens in a group.

When using text blocks, the performance of H-
VILA hinges on the accuracy of group detection,
while I-VILA shows more reliable results when
using different group detectors. This suggests that
improvements in vision models for block detection
could be a promising avenue for improving content
extraction performance, especially when using H-
VILA, and I-VILA may be the better choice when
block detection accuracy is lower.

We also observe that text line-based methods
tend to be higher performing for both group detec-
tors, by a small margin for I-VILA and a larger
one for H-VILA. The group detectors in our exper-
iments are trained on data from PubLayNet, and
applied to a different dataset, S2-VL. This domain
transfer affects block detectors more than line de-
tectors, because the two datasets define blocks dif-
ferently. This setting is realistic because ground



Group-uniform Oracle I-VILA H-VILA

Experiment Group Source Max Macro F1 H(G) Macro F1 H(G) Macro F1 H(G)

Varying GB
Ground-Truth 100.00(0.00) 0.00(0.00) 86.50(4.52) 1.86(0.29) 85.91(3.13) 0.35(0.19)

Vision Model 99.31(0.23) 1.09(0.30) 83.44(6.48) 2.83(0.34) 82.09(5.89) 0.36(0.12)

PDF Parsing 96.91(1.09) 2.06(0.86) 83.95(4.45) 3.93(0.93) 78.69(4.90) 0.02(0.01)

Varying GL
Vision Model 99.57(0.13) 0.42(0.18)1 83.77(5.75) 1.20(0.16) 83.69(2.92) 0.20(0.12)

PDF Parsing 99.70(0.12) 0.38(0.26) 82.97(5.56) 1.28(0.13) 82.61(4.10) 0.00(0.00)

1 For text line detector experiments, we report H(G) based on text lines rather than blocks.

Table 6: VILA model performance when using different layout group detectors for text blocks G(B) and lines G(L)

on the S2-VL dataset.

truth blocks from the target dataset may not always
be available for training (even when labeled tokens
are). Training a group detector on S2-VL is likely
to improve performance.

9 Conclusion

In this paper, we introduce two new ways to inte-
grate Visual Layout (VILA) structures into the NLP
pipeline for structured content extraction from sci-
entific paper PDFs. We show that inserting special
indicator tokens based on VILA (I-VILA) can lead
to robust improvements in token classification accu-
racy (up to +1.9% Macro F1) and consistency (up
to -32% group category inconsistency). In addition,
we design a hierarchical transformer model based
on VILA (H-VILA), which can reduce inference
time by 46% with less than 0.8% Macro F1 reduc-
tion compared to previous SOTA methods. These
VILA-based methods can be easily incorporated
into different BERT variants with only fine-tuning,
achieving comparable performance against existing
work with only 5% of the training cost. We ablate
the influence of different visual layout detectors on
VILA-based models, and provide suggestions for
practical use. We release a benchmark suite, along
with a newly curated dataset S2-VL, to systemati-
cally evaluate the proposed methods.

Our study is well-aligned with the recent explo-
ration of injecting structures into language models,
and provides new perspectives on how to incorpo-
rate documents’ visual structures. The approach
shows how explicitly modeling task structure can
help achieve "green AI" goals, dramatically reduc-
ing computation and energy costs without signifi-
cant loss in accuracy. While we evaluate on scien-
tific documents, related visual group structures also
exist in other kinds of documents, and adapting our
techniques to those domains could offer improve-

ments in corporate reports, historical archives, or
legal documents, and this is an item of future work.
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A Model Performance Breakdown

In Table 7, 8, and 9, we present model accuracies
on GROTOAP2, DocBank, and S2-VL of each
category for the results reported in the main paper.

B Improvements of the DocBank Dataset

We implement several fixes for the public version
of the DocBank dataset to improve its accuracy and
create faithful VILA structures.

B.1 Dataset Artifacts
As the DocBank dataset is automatically generated
via parsing LaTeX source from arXiv, it will in-
evitably include noise. Moreover, the authors only
release the document screenshots and token infor-
mation parsed using PDFMiner12 instead of the
source PDF files, which causes additional issues
when using the dataset. We identify some major
error categories during the course of our project,
detailed as follows:

Incorrect PDF Parsing The PDFMiner soft-
ware does not work perfectly when parsing CID
fonts,13 which are often used for rendering special
symbols in PDFs. For example, the software may
incorrectly parse 25◦C as 25(cid:176) C. In-
cluding such (cid:*) tokens in the input text is
not reasonable, because they break the natural flow
of the text and most pre-trained language model to-
kenizers cannot appropriately encode such tokens.

Erroneous Label Generation Token labels in
DocBank are extracted by parsing latex commands.
For example, it will label all text in the command
\abstract{*} as “abstract”. Though theoreti-
cally this approach may work well for “standard”
documents, we find the resulting label quality is
far from ideal when processing real-world docu-
ments at scale. One major issue is that it cannot
appropriately handle user-created macros, which
are often used for compiling complex math equa-
tions. It leads to very low (label) accuracy in the
“equation” category in the dataset – in fact, we man-
ually inspected 10 pages, and found 60% of the
math equation tokens are wrongly labeled as other
classes. This approach also fails to appropriately
label some document texts that are passively gener-
ated with the LaTeX commands, e.g., the "Figure

12https://github.com/euske/pdfminer (last
accessed Jan. 1, 2022).

13https://en.wikipedia.org/wiki/
PostScript_fonts (last accessed Jan. 1, 2022).

*" produced by the \caption command is treated
as “paragraph”.

Lack of VILA Structures As the DocBank
dataset generating method solely operates on the
document tex sources, it does not include visual
layout information. The missing VILA structures
leads to low label accuracy for layout-sensitive cat-
egories like figure and tables – for example, when
a figure contains selectable text (i.e., it is not stored
in a format like PNG or JPG, but instead contains
text tokens returned by the PDF parser), the method
cannot recognize such tokens and thus it assigns
incorrect labels (other than “figure”). Though the
authors tried to create layout group structures by
applying connected component analysis method to
PDF tokens,14 we observed different types of errors
in the generated groups, e.g., mis-identifying para-
graph breaks (combining multiple paragraph blocks
into one) or overlapping layout groups (caused by
incorrect token labels), and chose not to use them.

B.2 Fixes and Enhancement

Based on the aforementioned issues, we imple-
ment the following fixes and enhance the DocBank
dataset with VILA structures.

Remove Incorrect PDF Tokens Provided that
there are no simple ways to recover the incorrect
(cid:*) tokens generated by PDFMiner, we sim-
ply remove them from the input text.

Generate VILA Structures We use pre-trained
Faster-RCNN models (Ren et al., 2015) from the
LayoutParser (Shen et al., 2021) tool to identify
both the text lines and blocks based on the page
images. Specifically, for text blocks, we use the
PubLayNet/mask_rcnn_R_50_FPN_3x/
model to detect the body content regions (including
title, paragraph, figure, table, and list) and the
MFD/faster_rcnn_R_50_FPN_3x/ model
to detect the display math equation regions. We
also fine-tune a Fast RCNN model on the GRO-
TOAP2 dataset (which has text line annotation),
and use it to detect the text lines. All other regions
(or texts that are not covered by the detected blocks
or lines) are created by the connected component
analysis method.

14The algorithm iteratively selects and groups adjacent to-
kens with the same category, and ultimately produces a list of
token collections that approximate the layout groups.
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Abstract Acknowledgment Affiliation Author
Author

Title
Bib
Info

Body
Content

Conflict
Statement

BERTBASE 97.42 95.83 96.12 96.91 96.09 95.00 98.80 88.66

BERTBASE + I-VILA(Text Line) 97.65 95.89 96.61 97.17 96.48 95.78 98.93 88.28

BERTBASE + I-VILA(Text Block) 97.67 96.46 96.80 97.23 97.73 96.29 98.99 91.88

LayoutLMBASE 98.05 96.29 96.64 97.49 96.51 96.74 99.06 91.16

LayoutLMBASE + Sentence Breaks 97.92 96.32 96.68 96.74 95.42 96.77 99.11 90.42

LayoutLMBASE + I-VILA(Text Line) 97.99 96.41 96.72 97.29 95.98 96.66 99.11 90.75

LayoutLMBASE + I-VILA(Text Block) 98.12 96.81 96.93 96.96 97.52 96.87 99.14 91.43

Simple Group Classifier 96.10 95.53 97.10 97.48 97.94 96.68 98.94 93.25
H-VILA(Text Line) 98.47 95.88 96.21 97.46 95.26 96.68 99.16 89.67

H-VILA(Text Block) 98.01 96.45 96.14 97.38 96.31 96.33 99.08 91.67

# Tokens in Class 395788 88531 90775 26742 7083 223739 7567934 22289

contd. Copyright Correspondence Dates Editor Equation Figure Glossary Keywords

BERTBASE 97.34 89.66 94.56 99.71 17.60 94.05 80.18 93.42

BERTBASE + I-VILA(Text Line) 97.38 89.57 94.60 99.93 25.00 94.84 81.35 94.34

BERTBASE + I-VILA(Text Block) 97.85 91.29 94.99 99.95 29.46 95.52 80.45 95.40

LayoutLMBASE 97.63 89.99 94.80 99.90 30.78 95.52 83.83 94.95

LayoutLMBASE + Sentence Breaks 97.62 90.07 94.73 99.95 20.73 95.83 84.99 93.88

LayoutLMBASE + I-VILA(Text Line) 97.47 90.97 95.20 99.93 26.42 95.67 84.16 94.82

LayoutLMBASE + I-VILA(Text Block) 97.66 91.04 95.13 100.00 39.28 95.74 87.00 96.23
Simple Group Classifier 97.56 92.11 95.47 100.00 33.17 95.77 80.35 95.64

H-VILA(Text Line) 97.78 89.96 94.98 99.91 15.60 95.63 84.01 93.69

H-VILA(Text Block) 97.98 90.37 94.92 100.00 30.64 95.86 78.29 96.15

# Tokens in Class 57419 26653 23702 2937 761 581554 2807 7012

contd.
Page

Number
References Table Title Type Unknown Macro F1

BERTBASE 98.32 99.60 94.11 97.60 87.62 88.60 90.78

BERTBASE + I-VILA(Text Line) 98.82 99.60 94.53 97.77 93.70 88.14 91.65

BERTBASE + I-VILA(Text Block) 98.92 99.64 94.31 98.19 93.09 88.81 92.31

LayoutLMBASE 98.94 99.62 95.30 97.91 91.24 89.19 92.34

LayoutLMBASE + Sentence Breaks 98.90 99.61 95.63 98.13 91.68 89.14 91.83

LayoutLMBASE + I-VILA(Text Line) 99.05 99.63 95.61 97.80 94.59 89.86 92.37

LayoutLMBASE + I-VILA(Text Block) 99.05 99.65 95.73 98.39 95.17 90.47 93.38
Simple Group Classifier 99.02 99.61 93.94 98.18 94.91 89.60 92.65

H-VILA(Text Line) 98.96 99.63 96.02 97.76 93.61 90.00 91.65

H-VILA(Text Block) 99.16 99.68 95.00 98.36 95.07 89.23 92.37

# Tokens in Class 46884 2340796 558103 22110 4543 54639 —

Table 7: Prediction F1 breakdown for all models on the GROTOAP2 dataset.

Abstract Author Caption Date Figure Footer List Paragraph Reference Section Table Title Macro F1

BERTBASE 97.82 89.96 93.91 87.33 71.97 84.76 75.99 96.84 92.05 92.81 74.19 89.31 87.24

BERTBASE + I-VILA(Text Line) 97.99 90.67 95.74 88.12 88.85 88.29 80.20 97.85 92.68 94.91 77.39 90.34 90.25

BERTBASE + I-VILA(Text Block) 98.15 90.66 96.56 87.83 79.49 88.40 80.72 97.51 92.62 94.86 76.91 90.22 89.49

LayoutLMBASE 98.63 92.25 96.88 87.13 76.56 94.26 89.67 97.72 93.16 96.31 77.38 92.80 91.06

LayoutLMBASE + Sentence Breaks 98.48 92.70 96.93 88.06 77.65 94.35 90.46 97.81 92.61 96.58 78.84 92.81 91.44

LayoutLMBASE + I-VILA(Text Line) 98.57 92.64 97.35 87.87 90.78 94.37 90.77 98.44 92.87 96.60 80.43 92.78 92.79

LayoutLMBASE + I-VILA(Text Block) 98.68 92.31 97.44 87.69 83.41 94.03 90.56 98.13 93.27 96.44 79.51 92.48 92.00

LayoutLMv2BASE 98.68 93.04 97.49 89.55 85.60 95.30 93.63 98.46 94.30 96.48 84.41 93.10 93.34
Simple Group Classifier 93.85 84.68 96.55 71.04 80.63 91.58 83.84 97.53 92.54 85.33 73.85 92.65 87.01

H-VILA(Text Line) 98.68 90.95 95.46 80.99 88.79 93.84 90.77 98.36 93.81 95.27 78.46 89.81 91.27

H-VILA(Text Block) 98.57 86.81 95.76 70.33 80.29 91.23 79.82 97.53 92.97 86.70 79.84 93.52 87.78

# Tokens in Class 461898 81061 858862 3275 932150 158176 684786 20630188 1813594 154062 235801 26355 —

Table 8: Prediction F1 breakdown for all models on the DocBank dataset.



Abstract Author Bibliography Caption Equation Figure Footer Footnote

BERTBASE 91.67(5.51) 71.38(18.79) 97.90(1.59) 94.64(1.38) 76.23(4.36) 60.14(24.13) 61.99(17.04) 62.91(7.23)

BERTBASE + I-VILA(Text Line) 89.38(6.50) 65.93(15.48) 97.92(1.56) 96.66(1.39) 83.22(5.87) 72.11(13.35) 57.75(22.46) 72.78(12.45)

BERTBASE + I-VILA(Text Block) 90.45(3.61) 64.97(16.11) 97.21(1.27) 96.82(0.94) 83.56(5.59) 70.57(11.56) 59.79(23.18) 80.17(10.48)

LayoutLMBASE 91.87(4.89) 69.39(11.30) 98.08(1.13) 92.98(7.35) 77.49(7.13) 74.46(18.48) 67.42(18.90) 77.22(17.59)

LayoutLMBASE + Sentence Breaks 92.01(4.79) 69.22(11.02) 98.57(1.24) 95.74(1.36) 77.94(9.68) 67.80(25.61) 69.67(20.06) 78.57(16.45)

LayoutLMBASE + I-VILA(Text Line) 91.77(5.85) 69.81(7.86) 98.09(1.64) 94.06(2.91) 84.48(7.00) 71.57(21.49) 67.23(23.01) 77.10(15.64)

LayoutLMBASE + I-VILA(Text Block) 92.91(4.02) 70.42(13.38) 98.19(1.57) 97.19(1.16) 83.76(6.61) 68.38(26.11) 68.03(19.11) 76.77(17.64)

LayoutLMv2BASE 91.09(6.46) 63.42(17.55) 97.74(2.00) 96.73(1.39) 77.18(13.70) 83.71(11.53) 64.37(22.24) 70.20(12.43)

H-VILA(Text Line) 93.90(5.16) 70.86(9.78) 97.71(1.26) 92.86(3.89) 81.38(7.79) 77.86(10.65) 65.95(23.44) 81.76(15.03)

H-VILA(Text Block) 93.40(6.14) 67.03(19.43) 96.11(3.38) 92.76(6.47) 86.87(8.64) 79.64(11.21) 63.72(22.01) 83.66(9.88)

# Tokens in Class 2854(432) 543(118) 15681(3704) 4046(2119) 2552(1872) 1402(1316) 480(205) 2468(1254)

contd. Header Keywords List Paragraph Section Table Title Macro F1

BERTBASE 76.47(8.51) 90.16(6.44) 51.00(16.90) 96.07(1.37) 79.72(3.46) 79.93(16.26) 84.81(8.52) 78.34(6.53)

BERTBASE + I-VILA(Text Line) 81.53(7.94) 87.06(5.57) 58.64(8.10) 96.67(1.13) 87.21(3.25) 85.58(15.67) 84.80(5.84) 81.15(4.83)

BERTBASE + I-VILA(Text Block) 83.99(8.74) 87.86(7.51) 62.01(13.25) 96.65(1.21) 86.71(3.23) 80.44(16.35) 86.14(5.23) 81.82(4.88)

LayoutLMBASE 88.21(5.81) 88.14(5.94) 58.21(15.15) 96.88(0.87) 88.14(2.73) 82.02(15.58) 89.90(8.17) 82.69(6.04)

LayoutLMBASE + Sentence Breaks 88.08(5.71) 88.80(3.23) 60.61(11.80) 97.01(0.85) 88.05(2.79) 81.59(16.22) 88.52(5.92) 82.81(5.21)

LayoutLMBASE + I-VILA(Text Line) 87.14(6.49) 86.66(6.24) 65.82(10.92) 97.17(1.26) 89.79(2.48) 86.00(12.33) 89.89(7.47) 83.77(5.75)
LayoutLMBASE + I-VILA(Text Block) 88.39(6.20) 90.92(3.97) 59.06(17.99) 97.17(1.14) 88.67(3.57) 81.84(15.77) 89.95(6.32) 83.44(6.48)

LayoutLMv2BASE 86.95(6.84) 89.71(7.95) 68.36(10.05) 96.65(0.71) 89.48(4.13) 81.69(15.05) 88.46(6.00) 83.05(4.51)

H-VILA(Text Line) 87.89(6.45) 86.34(5.02) 65.76(10.26) 96.90(0.75) 85.45(2.02) 85.19(7.55) 85.62(6.00) 83.69(2.92)

H-VILA(Text Block) 86.49(6.08) 76.97(18.82) 55.82(16.99) 96.43(1.40) 86.72(4.55) 81.38(14.94) 84.39(9.10) 82.09(5.89)

# Tokens in Class 1122(463) 130(27) 2274(593) 95732(8226) 882(113) 3887(2041) 240(26) —

Table 9: Prediction F1 breakdown for all models on the S2-VL dataset. Similar to the results in the main paper, we
show averaged scores with standard deviation in parentheses across the 5-fold cross validation subsets.

Correct Label Errors Given the VILA struc-
tures, we can easily correct some previously men-
tioned errors like incorrect labels for “Figure *”
by applying majority voting for token labels in a
text block. However, for the “equation” category,
given the low accuracy of the original DocBank
labels, neither majority voting nor other automatic
methods can easily recover the correct token cate-
gories. Hence, we choose to discard this category
in the modeling phase, i.e., converting all exist-
ing “equation” labels to the background category
“paragraph”.

We update our methods for several rounds to co-
ordinate the fixes and enhancements, and ultimately
we can reduce more than 90% of the label errors
for figure and table captions. By using the accurate
pre-trained layout detection models, the generated
VILA structures are more than 95% accurate.15

15We randomly sample 30 pages from both the training
and test dataset, and annotate the number of the incorrect text
blocks for each page. A text block is considered as incorrect
when it wrongly merges multiple regions (e.g., two paragraphs
or one paragraph and the adjacent section header) or splits
regions (e.g., generating multiple blocks for one paragraph).
We report the average of page block accuracy.


