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Abstract
Abstractive summarization systems today pro-
duce fluent and relevant output, but often
“hallucinate” statements not supported by the
source text. We analyze the connection be-
tween hallucinations and training data, and
find evidence that models hallucinate because
they train on target summaries that are un-
supported by the source. Based on our find-
ings, we present PINOCCHIO, a new decod-
ing method that improves the consistency of
a transformer-based abstractive summarizer by
constraining beam search to avoid hallucina-
tions. Given the model states and outputs at
a given step, PINOCCHIO detects likely model
hallucinations based on various measures of at-
tribution to the source text. PINOCCHIO back-
tracks to find more consistent output, and can
opt to produce no summary at all when no
consistent generation can be found. In exper-
iments, we find that PINOCCHIO improves the
consistency of generation (in terms of F1) by
an average of 67% on two abstractive summa-
rization datasets.

1 Introduction

Abstractive text generation is an important task
with the promise of compressing lengthy source
material into concise summaries, satisfying appli-
cation or user needs. Pretrained abstractive sum-
marizers (e.g. BART (Lewis et al., 2020)) have re-
cently achieved new state-of-the-art (SOTA) across
multiple datasets (Fabbri et al., 2020). However,
these systems remain unusable in most real world
scenarios, because they frequently hallucinate infor-
mation that is inconsistent with the input (Maynez
et al., 2020).

Many researchers have proposed methods to as-
sess and improve the consistency1 of summariza-
tion systems. Two popular approaches are 1) in-
corporating extracted knowledge (Zhu et al., 2021)

∗Denotes equal contribution.
1We use the terms “consistent” and "hallucinated" as

antonyms, and avoid “factual”. Check Section 2 for details.

Method Text

Source ...The PSNI said the tablets were “as yet
unidentified” but warned of the “potential
dangers” they posed...

BART A 17-year-old boy has been charged after
a teenager was taken ill after taking what
police have described as “potentially
lethal” ecstasy tablets.

PINOCCHIO A 17-year-old teenager has been charged
with drugs offences after a teenager was
treated in hospital after taking what
police described as an “unidentified”
drug.

Table 1: An example of hallucination. Inconsistent
words are highlighted in red italic fonts. In this
case, PINOCCHIO corrects the inconsistent detail in the
BART output.

(possibly in the form of questions (Durmus et al.,
2020)), and 2) incorporating a consistency text clas-
sifier (Kryscinski et al., 2020) (often based on nat-
ural language inference (NLI) (Falke et al., 2019)).
These methods tend to reduce the problem of gen-
erating consistent text to another difficult problem
(e.g. information extraction (IE) or NLI). Given
a strong IE system or a structured representation
of the source information, it is possible to dramat-
ically improve the consistency of generated text
(Zhang et al., 2020b; Tian et al., 2019), but such
resources are only available in a narrow subset of
domains.

We propose a different approach for generating
more consistent summaries. It is based on the ob-
servation that today’s abstractive summarizers are
often trained on gold summaries that contain state-
ments unsupported by the source text (Matsumaru
et al., 2020). This disconnect arises because the
training datasets are built using distant supervision
in order to scale, e.g. treating a news headline as
a summary of its article or an encyclopedia entry
as a summary of a portion of its references. We
conjecture that a model optimized for likelihood
and trained on target summaries containing unsup-
ported statements will have a strong tendency to
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hallucinate information rather than say something
less “likely,” but supported (§3). Further, common
automatic evaluation metrics like ROUGE reward
lexical similarity significantly more than consis-
tency, preferring hallucinated lexically similar sum-
maries to completely consistent lexically different
ones.

Our method, called PINOCCHIO, is a novel de-
coding algorithm that constrains beam search to
only consider predicted tokens that are likely to
be supported by the source text. PINOCCHIO es-
timates which tokens are likely supported using
simple but effective heuristics based on the model’s
confidence and attention distribution, and word fre-
quency. When PINOCCHIO reaches a state where
no supported token can be generated, it backtracks
the search. It can also opt-out from generating a
summary at all, rather than produce one expected
to be hallucinated. We show how PINOCCHIO sig-
nificantly improves consistency on two abstractive
summarization datasets with only a small decrease
in fluency, measured using careful human evalua-
tions.

To test PINOCCHIO on diverse domains, we also
develop a new abstractive summarization dataset
called Scientific Concept Description (SCD). In-
spired by the WikiSum (Liu* et al., 2018) dataset,
SCD uses Wikipedia descriptions as the target sum-
maries and the referenced papers as the source doc-
uments, detailed in (§5). It comes with a total of
60k samples of scientific concepts and 118k corre-
sponding paper identifiers, with full text for 8k of
the papers.

We make the following contributions:
1. We analyze the relationship between halluci-

nation and training on targets that are not fully
supported by the source.

2. We introduce PINOCCHIO, a decoding algo-
rithm that improves generation consistency by
constraining beam search to focus on input-
supported tokens. It improves consistency by
an average of 67% in two abstractive sum-
marization datasets at the expense of a minor
decrease to fluency.

3. We introduce Scientific Concept Description,
a challenging new abstractive summarization
task, and release a dataset.

The SCD dataset, along with our code, trained
models, and human evaluations, will be re-
leased at https://github.com/allenai/
pinocchio shortly after publication.

2 Related work

Pretrained language models have recently taken the
top spots on summarization leaderboards (Fabbri
et al., 2020; Huang et al., 2020). This includes
models like BART (Lewis et al., 2020), PEGASUS
(Zhang et al., 2020a), and UniLM (Dong et al.,
2019). In a recent large scale evaluation of summa-
rization models, Fabbri et al. (2020) found BART
and PEGASUS to be the top performing models.
We choose to focus on BART in this work.

It is widely known that SOTA summarization
models tend to hallucinate facts (Maynez et al.,
2020), and the most closely related works to ours
are those on factual summarization. However, we
avoid the term “factuality” and instead use “con-
sistency” to denote that the generated summary is
supported by the input text. As noted in Maynez
et al. (2020), a summary could be hallucinated but
still be factually correct. In this work, we aim to im-
prove consistency and reduce hallucinations, which
indirectly improves factuality, without directly op-
timizing for it.

Prior works attempt to improve consistency
by correcting already-generated summaries (Dong
et al., 2020; Zhu et al., 2021), using a knowledge
graph (Zhu et al., 2021), filtering training data
(Nan et al., 2021), constraining generation with
keywords (Mao et al., 2020), using NLI models
(Barrantes et al., 2020; Mishra et al., 2020), among
others. Some have focused on the data-to-text
setting, which presupposes structured input (Tian
et al., 2019; Wang et al., 2020b). Some works con-
trol the extractiveness of generations (Song et al.,
2020). There have also been multiple works on au-
tomatically measuring consistency (Durmus et al.,
2020; Kryscinski et al., 2020; Wang et al., 2020a).
Matsubara and Singh (2020) noted that hallucina-
tions come from a source-target discrepancy, where
many training targets are not fully supported by
their source text, and suggested to address it by re-
moving samples with unsupported summaries. We
extend their empirical findings with similar mea-
surements on three additional datasets, conjecture
that hallucination is unavoidable in such settings,
and provide evidence in terms of the lexical statis-
tics of output summaries.

We use beam search for decoding, which has
become standard practice for neural seq2seq mod-
els (Graves, 2012; Sutskever et al., 2014). Our
approach can be viewed as a version of constrained
decoding (Hokamp and Liu, 2017) but with dynam-

https://github.com/allenai/pinocchio
https://github.com/allenai/pinocchio


ically identified constraints and the ability to back-
track. Our constraints come from various model in-
ternal signals that indicate attribution to the source
text. One such signal is entropy, where Xu et al.
(2020) found that low next token entropy indicates
the model is copying. Unlike previous work, we
do not attempt to imbue models with a new level of
textual understanding, but rather show that we can
improve consistency of generated text using simple
signals based on model internals.

3 Why Do Models Generate Inconsistent
Summaries?

In this section, we analyze why models generate
inconsistent summaries. Here, we use the definition
of consistent from Fabbri et al. (2020), i.e., the
factual alignment between the summary and the
summarized source.

We hypothesize that there are two factors that
contribute to inconsistency: 1) the maximum like-
lihood training and generation strategy used in
summarization models, and 2) imperfect training
datasets that contain many instances where the gold
target is difficult or impossible to deduce from the
source. Specifically, we conjecture that in the pres-
ence of these two factors, models are guaranteed
to hallucinate because they either 1) default to a
background distribution of the most common rele-
vant terms during generation or 2) learn spurious
correlations between the source and target texts. In
either case, the model generates text that is often
inconsistent with the inputs.

We present our analysis in terms of a motivating
example below, and provide empirical support for
it in Sec. 7. The analysis inspires the design of the
PINOCCHIO method in Sec. 4.

3.1 Motivating example

Consider the gold summary of an article about a
team signing a football player, from XSUM:

’League Two club Cheltenham Town have

signed Hibernian striker Brian Graham on

a free transfer.’

Many of the details in this summary are diffi-
cult for a model to predict because they are not
supported directly by the input passage.2 For exam-
ple, the player’s first name (“Brian”) and position
(“striker”), and the lack of signing fee (“free trans-
fer”) are nowhere mentioned. This mismatch be-

2The full input passage summarized in this example is in
App. C.2.

tween typical summary fields and the text available
in the input passage is not restricted to summaries
about player signings, but is more generally ob-
served across a variety of article types in XSUM
and also our new SCD data set.

Achieving a high likelihood on the training
dataset requires that the trained models output the
aforementioned fields anyway: e.g., in summaries
of player signings, from a sample of 43 summaries,
100% mention the player’s full name, 88% the
player’s position, 78% the length of the signing,
etc, even though they are often not supported in the
source. As a result, the BART summarizer outputs
the following summary for the example:

’League Two side Cheltenham Town have

signed Hibernian midfielder Scott Graham

on loan until the end of the season.’

This summary begins nearly identically to the
gold, but then outputs the three field values incor-
rectly (first name, position, and length of the con-
tract).

The errors make sense when you consider the
model’s calculus for choosing a summary. Con-
sider a single field that can be present or absent in
a summary, and make the simplifying assumption3

that the probability of the most-likely summary
with a field value is strictly monotonic in the prob-
ability of the field value (see App. B for formal
details). In that case, a model that maximizes like-
lihood will output the field if and only if its best
guess of the field value is more probable than the
field’s absence. In practice, the probability of field
absence is often low because training summaries of
certain topics reliably cover certain fields, and the
best guess probabilities are often higher because
the model can do some inference to narrow the
choice set to a limited and typically peaked distri-
bution (e.g., to a small number of football player
positions). Thus, hallucinating a best guess is of-
ten preferred by the model—even, in some cases,
when the model estimates that the guess is less
likely than chance to be correct. In the example,
since the estimated probability that the player is
a “midfielder” is relatively high (“midfielder” is
relatively common, see Fig. 1) and position going
unmentioned is rare (about 12% of the time), the
model chooses to incorrectly output “midfielder.”

Of course, the assumptions in our analysis may
not always hold, and hallucination is likely more

3Note that the PINOCCHIO method (Sec. 4) does not de-
pend on this assumption, it is only used here for intuition and
ease of analysis.



complex than the single phenomenon analyzed
here. But our approach, motivated by the above
conjecture, can improve the consistency of sum-
maries in practice. Further, in Section 7 we validate
two aspects of our analysis empirically, showing
that ground truth training summaries for abstractive
summarization do contain unsupported statements,
and that summarizers do disproportionately pro-
duce more common terms in their output.

4 PINOCCHIO: Constraining Beam
Search to Improve Consistency

Inspired by the previous analysis, we introduce
PINOCCHIO; a modification to standard beam
search for supported-decoding (Alg. 1).

Beam search for text generation typically works
by adding to a small set of candidate generations
one token at a time, keeping the top B generations
according to model-predicted likelihood after each
prediction timestep. After <end> has been pre-
dicted inB beams, thoseB candidates are rescored
with a length penalty (Wu et al., 2016), and the best
one is chosen as the final output. PINOCCHIO dif-
fers from regular beam search only in its use of the
set R, which holds a set of disallowed generation
paths; if R is always empty, Alg. 1 simplifies to
standard beam search. PINOCCHIO modifies the
model predicted token scores to avoid inconsistent
predictions.

In particular, PINOCCHIO applies a function
fc(model state, candidate next generation) to the
predicted likelihood of the top predicted tokens. If
all top predicted tokens for a given timestep are in-
consistent according to fc, PINOCCHIO backtracks
by removing the last predicted token from each
beam, and predicts again without the ability to pre-
dict the removed tokens. The number of times
this backtracking occurs η, combined with the av-
erage entropy of the token predictions in the final
output is a good indicator of whether the model suc-
ceeded in producing a good summary or not. Thus,
we eliminate generations with multiple backtracks
(e.g., η > 2) and high entropy, as well as indi-
vidual sentences with high entropy (>2.75) from
multi-sentence outputs.

Within this framework, we present an instan-
tiation of fc based on a set of carefully curated
heuristics, determining if a token is allowed to be
predicted or not.

Inspired by the aforementioned analysis, fc con-
sists of a series of binary checks, which take into

Algorithm 1: Supported-decoding
Input: beam size B, generative model M ,

consistency function fc, vocab V ,
maximumly allowed backtrack count N

priority queue PQ = ["<start>"]*B;
completed generations CG = {};
rejected paths R = {};
backtrack count η = 0;
while |CG| < B do

C := {x+ v : x ∈ PQ, v ∈ V } −R;
T := top 2B items of C scored by M ;
R := R ∪ {d ∈ T : fc(M,d) = 0};
if T −R == ∅ then

if η ≥ N then
// Stop Generation
return {};

end
R := R ∪ {x[: −1] : x ∈ T};
PQ := {x[: −1] : x ∈ PQ};
η := η + 1;
continue;

end
T := T −R;
PQ := top B elements of T according to M not

ending in "<end>";
CG := CG ∪ {d ∈ T : d scores higher than

min in PQ and ends in "<end>"};
end
return top-ranked element of CG;

account both model internals as well as language
features. First, it considers the model confidence
for the current prediction—a high entropy of the
token prediction probability distribution over some
thresholds may correspond to less certain predic-
tions and thus inconsistent facts. Second, it keeps
tracks of the source text with high attention scores
during the generation process: when the attended
texts are semantically or lexically different from
the top generated tokens, it suggests a high prob-
ability of hallucination. Third, PINOCCHIO also
allows tokens that are especially common. We de-
velop a total of 8 different binary functions within
the three categories above (details in §D.1), and a
failure to pass any of the checks may lead to fc = 0
and backtrack during the generation process.

The heuristics do not require additional training
steps, and all the associated thresholds or hyperpa-
rameters can be determined by manual inspection
on a small number of samples (e.g., n=20) from
each dataset. Different from prior work Matsubara
and Singh (2020), this non-machine learning ap-
proach is based on scrutiny of the model generation
process. It is easy to execute and more explainable
compared to black box models.



5 Tasks and Datasets

We evaluate PINOCCHIO on two distinct summa-
rization tasks: news summarization (XSUM) and
scientific concept description (the newly proposed
SCD dataset).

5.1 XSUM
XSUM (Narayan et al., 2018) is a popular abstrac-
tive news summarization dataset. XSUM is a chal-
lenging dataset; the source text frequently does
not entail the target text, the target task is not ex-
actly summarization (XSUM is closer to headline
generation than summarization), and data is noisy
(e.g. there are articles in another language, Welsh).
Challenges aside, XSUM is highly regular, as men-
tioned in Sec. 3. Although this seems to make the
task easier, a strong pattern matcher will reproduce
dataset patterns (see Tab. 7 for example patterns),
whether or not it is able to fill in all the details in
the pattern correctly.

5.2 Scientific concept description
We introduce the novel task of scientific concept de-
scription (SCD): automatically generating a brief
description of a scientific concept, given the con-
cept name and some papers discussing the con-
cept. SCD training data is inspired by the WikiSum
dataset (Liu* et al., 2018), where a concept descrip-
tion (model output) is a Wikipedia intro section
and the input is the research papers cited in the
Wikipedia page. The dataset is 60K examples with
an average input of 319 sentences and average out-
put of 6 sentences per examples. Test data has been
manually evaluated to ensure quality. See App. E
for the dataset details.

6 Experiments

6.1 Metrics
We rely on human evaluation, as current automatic
metrics are unreliable for evaluating factuality (see
§6.5). We are not targeting ROUGE metrics (Lin,
2004), but present them for completeness.4

For human evaluation, we use standard dimen-
sions of consistency (does the source entail the
target?), fluency (is the target grammatical, under-
standable English?), relevance (does the target con-
tain important information for understanding the
source?), and coherence (do the sentences flow
together coherently?)5, with definitions adapted

4https://github.com/Yale-LILY/SummEval
5Coherence not used on XSUM as targets are 1 sentence

slightly from (Fabbri et al., 2020) via calibration
with our annotators. We also decided to rate con-
sistency and fluency on a five-point 1-5 scale, but
relevance and coherence on a coarser three-point
1,3,5 scale. See App. E for annotation guidelines.

6.2 Manual evaluation
In Tab. 2, we report manual evaluation results, with
each example annotated by one annotator. First,
PINOCCHIO improves overall consistency. PINOC-
CHIO is more consistent 44% and 24% of the time
on SCD and XSUM respectively, vs 16% and 13%
for BART. Second, on the examples where PINOC-
CHIO produces no output, BART’s output is less
factually consistent (0.30 and 0.44 points lower
than the full set on SCD and XSUM respectively).
Combined, these two wins increase the precision
(with respect to complete factual consistency) with-
out hurting recall, yielding an F1 improvement
from 0.209 to 0.345 and 0.287 to 0.361 on SCD and
XSUM respectively. Third, PINOCCHIO does re-
duce fluency with respect to the base BART model.
Fourth, the sentence level entropy filter applied in
PINOCCHIO sometimes removes the key first sen-
tence that defines the entity in SCD, resulting in a
decrease in relevance.

Pretrained language models are capable of pro-
ducing incredibly fluent text and prior work on
steering them over-optimizes for maximizing the
highest likelihood output (Subramani et al., 2019;
Subramani and Suresh, 2020). As a result, steering
them away from their highest likelihood output as
PINOCCHIO does is bound to reduce fluency. Our
results suggest that some of this fluency is coming
at the cost of factual consistency, as the model has
learned how to follow patterns to produce plausible
sentences, but not necessarily while sticking to the
source text (see §3 and §7.2).

6.3 Automatic evaluation
For completeness, we report ROUGE 1, 2 and L
(Tab. 3). We note here that there is a substantial
difference in the effect of PINOCCHIO on ROUGE
between the two datasets, with a large drop on
XSUM (see §7.2 for discussion).

6.4 Inter-annotator agreement
In Tab. 4, we report various inter-annotator agree-
ment measures. We had three expert annotators,
and the agreement stats are averaged between all
pairs of annotators, on a set of 30 examples (15
from each model) from each dataset. For model

https://github.com/Yale-LILY/SummEval


Method Dataset % Cons.=5 % Cons.= 4/5 Cons. Flue. Rele. Cohe.

BART (n=282) XSUM 0.287 0.709 3.908 4.794 4.887 -

PINOCCHIO (n=211) XSUM 0.422 0.82 4.19 4.649 4.886 -

BART (n=268) SCD 0.209 0.552 3.612 4.537 4.925 4.619

PINOCCHIO (n=207) SCD 0.396 0.768 4.082 4.338 4.816 4.585

Table 2: Human evaluation of models. PINOCCHIO improves consistency significantly, while decreasing flu-
ency slightly. For the 4 evaluation metrics, significant (Mann–Whitney U test, p<0.01) differences are bolded.
Cons.=Consistency, Flue.=Fluency, Rele.=Relevance, Cohe.=Coherence

Method Dataset # Samples R1 R2 RL

BART XSUM 11333 0.444 0.210 0.354

BART* XSUM 83451 0.442 0.207 0.349

PINOCCHIO XSUM 8345 0.431 0.196 0.338

BART SCD 4647 0.389 0.174 0.277

BART* SCD 2335 0.402 0.190 0.292

PINOCCHIO SCD 2335 0.394 0.182 0.286

BART CNN/DM 10990 0.438 0.209 0.372

BART* CNN/DM 10943 0.438 0.209 0.372

PINOCCHIO CNN/DM 10943 0.438 0.209 0.372

1 Because PINOCCHIO can elect to skip in certain cases, we report
two scores for BART model outputs: for all test samples, and for
the samples where PINOCCHIO generates results.

Table 3: Rouge scores on different datasets with and
without using PINOCCHIO. Datasets with higher ab-
stractiveness (e.g., XSUM and SCD) may suffer from
higher ROUGE drops when PINOCCHIO is used.

comparison, the most important metrics are the
“compare” metrics, which measure how often the
annotators agree on which model’s output is bet-
ter for a given example. The “compare” metric
is the fraction of examples for which the pair of
annotators agree on which model’s output is better
or both say the outputs are equivalent. The “com-
pare~” metric is similar but more lenient, as it only
counts as disagreement the examples where one
annotator says one model is better, and the other
annotator says the opposite. These kinds of strong
disagreements are very rare in our data, suggesting
that the relative comparisons between models in
our experiments are reliable.

6.5 Comparison against existing correctors
and factuality metrics

We also compare with three recent methods for
automatically correcting summaries or measuring
their factuality. Here we evaluate on XSUM, which
we expect to be more suitable for these methods
(each were evaluated on XSUM in previous work,
whereas SCD is out of domain). First, we compare

Metric Dataset Cons. Flue. Rele. Cohe.

tau XSUM 0.60 0.84 - -
exact XSUM 0.66 0.89 0.96 -
compare XSUM 0.69 0.82 1.0 -
compare~ XSUM 1.0 1.0 1.0 -
tau SCD 0.55 0.43 0.20 0.53
exact SCD 0.55 0.69 0.93 0.80
compare SCD 0.67 0.64 0.86 0.64
compare~ SCD 0.95 0.98 1.0 0.98

Table 4: Mean agreement metrics between all pairs of
annotators. tau=Kendall’s tau, exact=exact agreement,
see §6.4 for compare and compare~. The very low/null
correlation values are due to low variance in relevance.

against Zhu et al. (2021), a recent seq2seq fact
corrector (FC) that incorporates OpenIE (Angeli
et al., 2015) and knowledge graph embedding. We
take the output of their strongest model (UniLM
(Dong et al., 2019)+FC) on the XSUM test set and
find that it changes only ~5% of examples, and that
the net improvement rate of the changes is 15%
(see App. F for details). This corresponds to an
improvement on <1% of the full XSUM test set. By
contrast, our experiments in the previous section
show that PINOCCHIO yields an improvement on
~8.5% of XSUM, more than a factor of eight higher.

Finally, we assess two representative automatic
factuality metrics, FactCC (Kryscinski et al., 2020)
and FEQA (Durmus et al., 2020). FactCC trains
a <source, summary sentence> classifier; FEQA
generates/answers questions from the summary,
checking if answers are the same when using the
source. We find neither metric suitable for our
highly abstractive setting; each has low agreement
with our XSUM annotations (Tab. 5), a result in
line with a very recent evaluation of factuality mea-
sures (Pagnoni et al., 2021).



Metric FactCC FEQA

tau -0.02 0.233
compare6= 0.528 0.585
mean/σ pairwise ties 1.354/1.464 0.108/0.096
mean/σ pairwise not ties 1.699/1.518 0.113/0.1

Table 5: Agreement between automated metrics
and our annotations. tau represents Kendall’s tau,
compare6= denotes agreement with the annotator on
which model is better, when the annotator did not rate
the models as equivalent, "Mean/σ pairwise ties" gives
the mean/std of absolute value of difference between
the metric’s rating for each model, for pairs where the
annotator rated the models as the same, and "Mean/σ
pairwise not ties" is the same but for pairs where the an-
notator rated the models as different. A well-calibrated
metric should have mean near zero and low standard
deviation when the models are annotated as equivalent.
We find the automated metrics exhibit low agreement
with our annotators.
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Figure 1: Distribution of positions in summaries about
player signings in train vs. BART output. BART out-
put is more peaked at positions more common in train,
suggesting BART defaults to these when no position is
supported by the source.

7 Discussion

7.1 Empirical validation of the intuition
motivating PINOCCHIO

We now present two empirical analyses to verify
the intuition sketched in Section 3. First, we ver-
ify our claim that the ground truth summaries in
our data sets contain unsupported terms (Table 6).
We define Dataset Abstractiveness as the ratio of
n-grams that appear in the summary but not in the
source text. The two abstractive datasets (XSUM
and SCD) show high abstractiveness, with approxi-
mately half or more of the terms in the summaries
not appearing in the source. Of course, a lack of
lexical overlap could arise from summaries stating
supported information but in different terms from

the source. Thus, we also manually examine twenty
examples for XSUM and CNNDM and ten for SCD
and measure the fraction that are not directly sup-
ported by the source.6 This fraction is substantial
(18-24%) for the abstractive datasets, but much
smaller (2%) for the more extractive CNN/DM
dataset. Finally, η, the number of times our pro-
posed method BART + PINOCCHIO (discussed in
the next section) backtracks, which is a measure
of how often the method estimates that generated
tokens are unsupported, also correlates with the
abstractiveness measures.

We also verify one expected consequence of our
hypothesized mechanism of hallucination. If in-
deed BART is defaulting to a background distribu-
tion of field values (based on frequency in the train-
ing summaries), then we would expect the more
frequent training values to become even more prob-
able in BART’s output, as the model defaults to
these as best guesses. We do observe this effect
for positions in player signings, as shown in Fig.
1. It is notable that while this distribution is more
peaked, it is not entirely concentrated on the most-
likely field value, suggesting that the model has
learned spurious correlations that lead it to out-
put other more rare field values, even when unsup-
ported.

More generally, we also observe a similar bias
across all n-grams; compared to the original ground
truth summaries, the BART output tends to be less
heavy-tailed, including disproportionately more of
the high-likelihood n-grams. We show this by plot-
ting the n-gram frequency distributions (which fol-
low a power law) on a log-log scale in Fig. 2. The
BART output generally has a less negative slope
than the ground truth distribution on these plots.
Our BART + PINOCCHIO method results in a dis-
tribution that is closer to the ground truth, for 2-
and 3-grams.

7.2 Patterns and hallucination

We now discuss some qualitative aspects of our
results. First, we need to discuss the substantial
drop in ROUGE on XSUM. As alluded to in §3,
we believe this is due to a pervasive regularity in
the XSUM dataset, which BART is able to capture
very well. In Tab. 7, we show the top examples
sorted by ROUGE-L difference between BART
and PINOCCHIO, along with a hand-crafted regex

6This annotation task can be challenging and subjective
especially for the SCD dataset, see appendix §C for details.
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Figure 2: Comparing the n-gram frequency distribution on the XSUM Dataset for generated, versus ground truth
sources. The default BART model outputs (in green) over-represent frequent n-grams (bottom right of the distri-
bution), but PINOCCHIO is closer to the ground-truth. Results in the SCD dataset are similar. The slope of the
linear fits for ground-truth text and BART generations are significantly different (p� 0.05, ANCOVA) while those
between ground-truth and BART + PINOCCHIO generations are not (p > 0.05) for both 2-gram and 3-grams.

Dataset Abstractiveness Human Annotated Unsupported Words BART+PINOCCHIO

Dataset 1-gram 2-gram 3-gram 4-gram Avg. % Unsupported Words IAA - Cohen κ Avg. η per Successful Generation

CNN/DM1 17.18% 58.44% 78.06% 86.71% 60.10% 1.57% 0.571 0.0003

XSUM 49.88% 89.65% 98.13% 99.60% 84.31% 17.78% 0.728 0.1541

SCD 60.16% 88.97% 96.81% 98.61% 86.14% 23.84% 0.414 0.2300

1 We report the scores for the CNN / Daily Mail dataset (See et al., 2017; Hermann et al., 2015) for comparison because it is highly extractive.

Table 6: Analysis of the abstractiveness of three summarization datasets. The abstractive XSUM and SCD data
sets contain a substantial fraction of unsupported words, measured in terms of either automated n-gram overlap
measures or manual annotation. Also, BART+PINOCCHIO performs more backtracks η on datasets with high
abstractiveness scores.

matching the example, how many times it matches
gold examples from the training and validation set,
how many times it matches BART predictions on
the test set, and how many of those predictions are
completely factually consistent. Most of these ex-
amples straightforwardly map to patterns of text
that occur in the training data. We also see that test
set predictions matching these patterns are largely
not consistent. As discussed in §3, this is because
BART assigns high likelihood to the general pat-
tern, but guesses to fill in the details. Some of
these patterns are straightforward to identify, but
many are likely to be more complicated. Broadly
speaking, XSUM contains a lot of regularity in the
mapping between the source topic, phrases, and
vocabulary used in the target summary. BART ex-
ploits exactly this. PINOCCHIO steers the model
away from the patterns, which are often not sup-
ported by the source text, which lowers ROUGE.

A related question is if BART trained on XSUM
applies facts learned during training correctly.
Does it learn that Antonio Conte is the coach of the
Italian football team, thus someone named “Conte”
who coaches the Italian team is Antonio Conte? Or
does it merely learn the first name most commonly
associated with “Conte” in train is “Antonio”, and
so everyone named “Conte” is Antonio Conte? 7

It is difficult to assess this automatically, so we
present an example of BART’s tendency to guess
world knowledge. We create one three-sentence
source, “Sometime last week, a fire burned down
a <BUILDING>, killing a number of people. The
fire took place in <LOCATION>. Investigators
believe at least four people to be missing.”, fill-
ing in the blanks with three made up locations and
three building types. BART produces plausible but
inconsistent summaries. Nine out of nine outputs

7Experiments with this example strongly suggest the latter.



BART generation Manual pattern Train/val Predicted Consistent

A 70-year-old man who died after being .*year-old.*who died.*named.* 47 4 0
hit by a car in Monmouthshire has been
named by police.

Chinese businessman Dr Tony Xia has .*Tony Xia.*Aston Villa.*| 7 1 0
completed his £52m takeover of .*Aston Villa.*Tony Xia.*
Championship club Aston Villa.

All pictures are copyrighted. .*All pictures are copyrighted.* 44 4 4

Forfar Athletic extended their lead at the .*extended.*top.*points.*win.* 9 3 0
top of Scottish League Two to five points .*Forfar Athletic.*top of Scottish 10 1 0
with a 3-0 win over Berwick Rangers. League Two.*

Table 7: Top-5 BART generations, by ROUGE-L gain over PINOCCHIO (#2 is excluded; it doesn’t match an
obvious pattern and is factually consistent). In all examples, BART clearly memorized training patterns and guesses
the details in at least 3 (the 3rd output is memorized from noise in XSUM), which is not strongly penalized by
ROUGE.

hallucinate the location, eight discuss arrests or hos-
pitalizations, and three mention the police or fire
service reporting the details of the situation. These
characteristics are all due to biases present in the
training data. Locations are often abstracted, re-
ported fires often result in someone being arrested
or hospitalized, and they are usually reported by au-
thorities. We present this example as evidence that
BART is not learning how to reliably apply com-
monsense and learned facts, but rather, is naively
reproducing patterns and word associations.

7.3 Error analysis

To provide insight into dominant error types, we
sample 20 inconsistent PINOCCHIO generations
from SCD evaluation, identifying three common er-
ror causes, each occurring in ~20% of the samples:
1) Incorrect paraphrasing or omission of meaning-
changing information (e.g. X has a long history
of being used for Y vs. X is the model of choice
for Y) 2) Incorrect treatment of entities as coref-
erent/synonymous 3) Difficulty with heavy math-
ematical notation. Targeting each of these in a
generative model is a promising future direction.

8 Conclusion

In this work, we present PINOCCHIO, a simple,
no-additional-machine-learning required, method
for reducing hallucination in generative encoder-
decoder models. PINOCCHIO provides a substan-
tial lift in consistency, with only a small decrease
in fluency. We analyze why existing summarizers
hallucinate, showing that distantly supervised ab-
stractive summarization datasets can contain unsup-
ported target summaries, and presenting evidence

for our conjecture that models that maximize like-
lihood trained on such data will tend to hallucinate.
We also show that existing factuality metrics are
insufficient, and further explore how patterns in the
training dataset can produce misleading results on
the test set. We also introduce the task of scientific
concept description and release a Wikipedia-based
dataset for this task.

We would like to clearly acknowledge the limi-
tations of our approach. PINOCCHIO does not add
new learned behavior to the model, using simple
heuristics and single-step backtracking to steer the
model towards more consistent output. The heuris-
tics have settings that require some adaptation for
each data set. Further, preliminary experiments sug-
gest that the settings that were effective for BART
do not simply work out of the box for another sum-
marizer, PEGASUS. We hope the approach and
insights in this paper help spur further develop-
ment of models that generate consistent text, and
datasets where the source entails the target and
spurious patterns are minimal.
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A Example full text

A.1 Example from Table 1

Police said the 14-year-old reported feeling un-
well and required hospital treatment. He was
later discharged from hospital and is recovering
at home. The incident happened in Holywood,
County Down, on Saturday. The PSNI said the
tablets were "as yet unidentified" but warned of
the "potential dangers" they posed. The 17-year-
old, has been charged with possessing a Class A
controlled drug with intent to supply; possessing
a Class B controlled drug with intent to supply;
possession of a Class A controlled drug; posses-
sion of a Class B controlled drug and supplying
a Class A controlled drug. He is due to appear at
Newtownards Youth Court on 14 February.

A.2 Player signings

The 29-year-old Scot has signed a two-year con-
tract with the Gloucestershire outfit. Prior to join-
ing Hibs in August 2016, Graham had spells at six
other Scottish sides, including Dundee United, St
Johnstone and Ross County. He will be available
for Saturday’s league visit of Crawley Town, sub-
ject to receiving international clearance. Find all
the latest football transfers on our dedicated page.

B Mathematical Details of Hallucination
Analysis

Formally, a summarization model is defined by a
distribution P (S|P ) over output textual summaries
S conditioned on an input passage P . We assume
that the summarization system aims to maximize
the probability of the summary S given the text
passage, i.e. it outputs argmaxS P (S|P ). While
in practice (including in our experiments), summa-
rization models use imperfect search procedures
like beam search to find high-likelihood genera-
tions, and may rescore complete generations using
factors other than likelihood (like length), in this
analysis we ignore these details and assume the
generator simply maximizes likelihood. Analyzing
the impact of more complex generation aspects is
an item of future work.

Let F (S) be a function denoting the value of
a given “field” in the summary S, equal either to
some string value or to ∅ if the field does not occur
in S. A “field” is a typical piece of information
that is often mentioned in a summary of a given
topic (e.g., participating teams, in a summary of

a sporting event; or the university where an idea
was developed, in a scientific concept description).
Then the model’s distribution over a field value for
a given passage is P (F = f |P ) = ∑

S P (F (S) =
f |P ).

Our analysis uses the following assumption:
Assumption A1: The model’s most likely sum-

mary probability is strictly monotonic in the proba-
bility of its included field values. That is, whenever:

P (F = f |P ) > P (F = f ′|P ) (1)

then

max
S

P (S, F (S) = f |P ) >

max
S

P (S, F (S) = f ′|P ) (2)

That is, when the model thinks a field value is
more likely in a summary for a given passage, then
it can find a more likely summary that uses that
field value. This assumption seems likely to hold
often in practice (for example, we would expect
that by simply swapping out a less likely field value
in a summary for a more likely one, we would often
arrive at a more probable summary).

The observation used in the analysis in Section
3 is then:

Given a passage p, a field F , and a summariza-
tion model P (S|P ), if assumption A1 holds, then a
generator that maximizes likelihood will choose to
output f = argmaxf P (F = f |P ) for the field’s
value (or omit the field, if f = ∅).

Proof: Consider an alternative field value f ′,
which may be ∅, with P (f |P ) > P (f ′|P ). Let
S∗ = argmaxS P (S, F (S) = f |P ) and S′ =
argmaxS P (S, F (S) = f ′|P ). Since P (f |P ) >
P (f ′|P ), by A1 we know that P (S∗|P ) >
P (S′|P ). Since the generator maximizes likeli-
hood, it will output S∗ (which includes the field
value f ) instead of S′ or any other summary includ-
ing f ′.

C Manual Examination of the
Unsupported Dataset Samples

Identifying parts of a summary that are not sup-
ported by the source document is a challenging
annotation task. In this section, we explain how
we formalize this task as a binary token tagging
problem, and we show one example that illustrate
the difficulty of annotation.



C.1 Annotating unsupported words

Naturally, words that appear only in the summary
but not the source document tend to have a higher
chance of being “hallucinated”, and vice versa.
Hence, we select such words from the summary,
and the goal is try to identify whether the meaning
of these words can be deduced from the source doc-
uments. Compared to the automated measurements,
the manually inspected labels are considered to be
a better approximation of the true abstractiveness
of the dataset or the samples.

C.2 One challenging example

In practice, understanding the source document
involves multiple (common sense) reasoning steps
and subjective judgements.

Considering the following document text:
’ABC of allergies: Venom allergy

Stings from bees and wasps, the most

common stinging insects in Britain,

can cause severe allergic reactions,

including anaphylaxis. Coroners’ data

suggest that an average of four deaths

from bee or wasp stings occur each

year in the United Kingdom, but this

is almost certainly an underestimate

because venom anaphylaxis is not always

recognised as the cause of death’

For one sentence in the summary, we highlight
the words that do not appear in the source in red:

’The stings of most of these species

(Bees) can be quite painful, and are

therefore keenly avoided by many

people.’

The source text mentions several dangerous as-
pects of bee stings, but whether it can be con-
cluded that they are avoided by many people (a
plausible commonsense implication) is subjective
to judge, and annotators often had differing opin-
ions on these judgments.

D PINOCCHIO Details

D.1 Heuristics in fc
We develop 8 binary checks that constitute the
heuristics for fc, which fall into three categories.
Two categories use model internals, model confi-
dence and source text attribution for the predicted
token. The third category uses language features,
allowing generations that are common words.

Model confidence

• entropy of next-token distribution < τ for a
token in the top 2 predictions

• from the top 10 predicted next tokens, the
number that match a top 5 attended-to piece
of source text8 is >= 1

2(10−the number that
are stopwords)

Source text attribution
• the most attended-to piece of the source text

contains the predicted token
• 3 out of the top 5 attended-to pieces of the

source text contain the predicted token
• sum of the attention scores of the attended-to

pieces of source text (out of the top 5) that
contain the predicted token is greater than 1

3
of the sum of the top 5 attention scores

• max cosine similarity between the embedding
of the predicted token and that of any word in
the top 5 attended-to pieces of source text is
greater than 0.15 (and the word is not capital-
ized or a number word)*9

Common word
• predicted token is a stopword*
• prediction matches10 one of the top 5 predic-

tions of roberta-base11

All of the components and hyperparameters
above were determined via inspection on a small
number of samples (e.g., n=20) from the XSUM
and SCD dataset. In the subsequent sections we
detail the configurations of the parameters on each
dataset.

D.2 XSUM modeling details

For configuration of PINOCCHIO for XSUM, we
set τ = 1.0 and do not use the optional stopword
condition, in order to accommodate the highly ab-
stractive nature of the XSUM dataset and attempt
to prevent the use of stopwords in hallucinations.

One other important detail is that XSUM has a
surprising property with respect to first names. If
a person appears in the source as “Mr/Ms” X, and
also in the headline, they always appear as <FIRST
NAME> X in the headline. This leads to BART al-
ways guessing the first name of a person, frequently
incorrectly. Our fc often identifies the first name
as unsupported, but because BART is essentially

8All reference to “top attended-to pieces of the source text”
means a max across locations in the source text across atten-
tion heads in the final layer of the decoder’s cross-attention,
and a 10-wordpiece window around the attended-to location.

9Items marked with an asterisk * are optional.
10For all string matching, we lemmatize first.
11https://huggingface.co/roberta-base

https://huggingface.co/roberta-base


unable to predict anything other than a first name
in this situation, it is unable to recover from this
error. For this reason, when an unsupported to-
ken is identified as a name using spaCy (Honnibal
et al., 2020), we deterministically replace it with
Mr/Ms.12

D.3 SCD modeling details
For SCD, the source consists of full papers and
is too long to input to BART directly, so we
train a separate BERT-based model to extractively
rank chunks of the input text based on predicted
ROUGE-L F1 score against the target text. This
setup of ranking extractive chunks and then pass-
ing them to an abstractive model is similar to prior
work on long text summarization (Liu and Lapata,
2019). We pass the concept name/aliases and each
chunk of text to rank to SciBERT-base (Beltagy
et al., 2019), with a final linear layer to predict the
ROUGE-L score. We then finetune BART, with the
ranked extractive chunks as source, again concate-
nated with the concept name/aliases. For inference,
we also filter the chunks to those that include the
concept name or an alias.

Beam search parameters We use standard
parameters for the beam search of min_length=5,
max_length=500, no_repeat_ngram_size=3,
length_penalty=2.0, and num_beams=6.

Extractive ranker for descriptions The extrac-
tive ranker uses SciBERT13, followed by a linear
layer, and is trained with MSE loss. We also use
dropout of 0.1. We train on chunks containing three
sentences, and use the average ROUGE-L as the
label. To reduce the size of the training set, for
each target description, we select the top 5 and bot-
tom 5 chunks by ROUGE-L, and an additional 5
random chunks from the middle. We train for 3
epochs, with a batch size of 1, 8 gradient accumula-
tion steps, and the AdamW (Loshchilov and Hutter,
2017) optimizer, with weight decay 0.01, and a
slanted triangular learning rate scheduler with peak
learning rate 5e-5.

D.4 Finetuning BART on descriptions
BART was finetuned with the standard settings,14 a
batch size of 4 with 8 gradient accumulation steps,

12For real applications, we suggest using a gender neutral
honorific, as gender is not possible to infer using first names

13https://huggingface.co/allenai/
scibert_scivocab_uncased

14https://huggingface.co/facebook/
bart-large/blob/main/config.json

for 10 epochs, selecting the epoch 5 model based
on validation loss. The same optimizer as above
was used, with 500 warmup steps. The model was
trained for 5.5 hours on 3 NVIDIA Quadro RTX
8000s. We additionally filter out examples that
have a target length less than 150 characters, and
examples where the source and target have less
than 0.2 token overlap.

For configuration of PINOCCHIO for SCD, we
set τ=0.75 and do not use the optional cosine simi-
larity condition, to encourage more extractiveness.

E SCD Dataset Construction Details

E.1 Wikipedia intro sections
We take the first section of a Wikipedia article to be
its “intro” section, and also include sections with
definitional headers (Introduction, Definition, Uses,
Description, Function, Overview) in our dataset.

E.2 SCD training corpus
Training an SCD system requires a large set of
ground-truth descriptions. Inspired by the Wik-
iSum dataset (Liu* et al., 2018), we construct our
training set using Wikipedia intro sections (see
App. C for details) as the target descriptions,15

with the papers cited in each description as source
text. To remove intractable examples, we filter out
those with lower than 0.15 ROUGE-1 recall be-
tween the cited papers and the target Wikipedia
description. The dataset is split into train/dev/test
with 47570/5989/5839 examples. Examples have
2.4 source documents with a total of 319 sentences
on average and target descriptions averaging 6 sen-
tences each. We are able to extract body text for
~57% of the cited papers, and use just the titles and
abstracts of the remainder.16

E.3 SCD test corpus
The motivating use case for the SCD task is au-
tomatically generating a high-quality encyclope-
dia for the long tail of scientific knowledge pre-
sented in papers. As a result, we construct our
SCD evaluation examples not from Wikipedia, but
instead from a much broader set of scientific con-
cepts mined from computer science papers using

15English Wikipedia 4/1/20 dump processed with
https://github.com/spencermountain/
dumpster-dive

16Due to copyright restrictions we only release the open
access subset of this corpus which is smaller (~24% of the
papers with body text), but in many cases the PDF may be
available (just not licensed for redistribution), and we provide
metadata to assist with this (e.g., Unpaywall or arXiv links).

https://huggingface.co/allenai/scibert_scivocab_uncased
https://huggingface.co/allenai/scibert_scivocab_uncased
https://huggingface.co/facebook/bart-large/blob/main/config.json
https://huggingface.co/facebook/bart-large/blob/main/config.json
https://github.com/spencermountain/dumpster-dive
https://github.com/spencermountain/dumpster-dive


ForeCite (King et al., 2020). This set lacks gold tar-
get descriptions, so it requires manual evaluation.

Training on surrogate data that differs some-
what from the intended use case but can be ob-
tained at scale is common in summarization re-
search (e.g. abstracts as paper summaries (Co-
han et al., 2018); headlines as news summaries
(Narayan et al., 2018)). In our case there are two
major discrepancies between train and test: the
textual domain (train is mostly biomedical, test is
largely computer science), and the level of support-
ing text (the Wikipedia-cited training inputs often
have less support for the concept description than
the ForeCite-mined test inputs do, as ForeCite pairs
concepts with their likely introducing paper(s)).

F Annotation instructions

• Consistency
– 1: completely made up
– 2: some phrases supported, but largely

made up
– 3: some full details correct, but key de-

tails made up
– 4: minor details not fully supported (e.g.

acronym wrong, location abstracted a bit
wrong)

– 5: fully supported
– Other notes: An unresolved “it” should

be assumed to refer to the main concept.
If this makes it not factual, that counts
against consistency, otherwise it counts
against coherence.

• Coherence
– 1: all sentences/phrases don’t make

sense together
– 3: some sentences/phrases don’t make

sentence together, separate from whether
they are factual

– 5: no issues with how phrases/sentences
are put together

• Fluency (at the sentence level)
– 1: not fluent English to the point that it

is impossible to understand/meaningless
– 2: not fluent English to the point that it

is very hard to understand
– 3: semi fluent English (including ma-

jor fluency errors resulting from copying
source text), but still largely understand-
able

– 4: Mostly fluent English (including mi-
nor fluency errors resulting from source

text), does not impact understanding
– 5: Fluent English

• Relevance
– 1: off-topic
– 3: mostly on-topic or seems to be miss-

ing an actual statement of what the con-
cept is (or for news, what the article is
about)

– 5: on-topic and contains the key state-
ment of what the concept is (or for news,
what the article is about)

G UniLM+FC comparison details

Model output downloaded from https:
//drive.google.com/file/d/
1blmmJvniToN1yedoWUH3u0SNtXnMVDAs/
view?usp=sharing on 03/23/21. We consider
an output “changed” by FC if it is not a prefix
match for the original UniLM output, after
lowercasing and removing spaces and apostrophes.
Many FC-corrected examples seem to simply
cutoff the end of the generated text. We choose
to not count these as “changed.” There are 579
such cases. Given this criteria, FC changes 594
examples in the XSUM test set, and we sample
100 of these for evaluation. FC makes very
minimal edits, so it is straightforward to identify
whether the edit is an improvement or not. The
net improvement is the number of increases in
consistency minus the number of decreases in
consistency.

https://drive.google.com/file/d/1blmmJvniToN1yedoWUH3u0SNtXnMVDAs/view?usp=sharing
https://drive.google.com/file/d/1blmmJvniToN1yedoWUH3u0SNtXnMVDAs/view?usp=sharing
https://drive.google.com/file/d/1blmmJvniToN1yedoWUH3u0SNtXnMVDAs/view?usp=sharing
https://drive.google.com/file/d/1blmmJvniToN1yedoWUH3u0SNtXnMVDAs/view?usp=sharing

