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ABSTRACT

‘We demonstrate PI2, the first notebook extension that can automati-
cally generate interactive visualization interfaces during SQL-based
analyses.
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1 INTRODUCTION

SQL is the dominant language for accessing and analyzing data.
Along with the recent rise of notebooks, many popular computa-
tional notebooks for SQL have emerged such as xeus-sqlite [3] in
Jupyter, SQL notebook [4], Hex [2], Count [1], etc. Data scientists
have gradually ditched their traditional SQL IDEs, where they can
only see one output at a time, in favor of computational notebooks
so that they can enjoy narrative programming benefits [9].
Traditional SQL notebooks [3, 4] merely render query results
as tables. These are of limited usefulness, as data scientists rely on
interactive visualization interfaces to rapidly perform iterative anal-
yses and to better present analyses in a compelling narrative [12].
In contrast to static tables, interactive visualization interfaces (or
interfaces) consist of three main components: result visualizations
(e.g., bar and line charts), query configuration widgets (e.g. drop-
down, slider), and interactions within a visualization (e.g. brushing
to select points, panning, clicking). Numerous recent notebooks
and extensions, such as Lux [10], Count Notebook [1], and Hex
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Lux Count Hex P12
Visualizations v v v v
Widgets X Parameter  Parameter  Arbitrary
Vis. Interactions X X X v
Zero Effort v X X v

Table 1: Comparison among different tools.

select ra, dec from specObj
where ra between 213.2 and 213.6 and n
dec between -0.3 and -0.1

Number of Records
select ra, dec from specObj
where ra between 213.3 and 214.1 and n doc

dec between -0.9 and -0.2 21331603 056720881

21342609 020420926

(a) Lux. (b) Hex Notebook.
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Figure 1: Different interfaces for analysis of the SDSS dataset:
(a) static visualization recommendation with Lux, (b) param-
eterized query with widgets and visualization with Hex, (c)
automatically generated interactive interface with PI2.

Notebook [2] are designed to help users visualize data and create
simple interactive visualizations during their analysis. Unfortu-
nately, the type and complexity of interfaces that they can express
are limited (Table 1). For instance, Lux [10] automatically recom-
mends a static visualization for a dataframe, but does not support
interactive analysis. Count [1] and Hex [2] let users visualize tables
and add custom widgets that manipulate simple query parameters,
but this requires explicit user effort. In short, existing notebooks
have limited support for interactivity, do not support generating
interactive visualizations, and require manual effort to create and
lay out visualizations and widgets.

This paper demonstrates PI2, the first notebook extension which
can automatically generate interactive visualization interfaces dur-
ing SQL-based analyses. Users can select relevant queries during



their analysis and invoke PI2 to synthesize a fully interactive in-
terface without having to perform any manual specification. P12
automatically chooses the appropriate visualizations, widgets, and
visualization interactions to fully express the analysis represented
by the user’s selected queries.

ExaMPLE 1. Figure 1 illustrates the types of interfaces that Lux,
Hex, and PI2 generate using queries from the Sloan Digital Sky Sur-
vey (SDSS) [11] query log. The example queries retrieve astronomical
objects by specifying a celestial region (ra and dec ranges). Lux recom-
mends visualizations per-query, so it generates different visualizations
for each query, despite their similarities (Figure 1a). Users will need to
repeatedly tweak and re-execute the queries to continue their analysis.

Hex lets the user parameterize the ra and dec values in the query,
create custom sliders to control each parameter, and visualize the
query results (Figure 1b). This enables more interactivity than Lux,
since the user can drag the sliders instead of editing SQL strings.
However, the user still needs to tell Hex to parameterize parts of the
query on the slider values and choose an appropriate visualization.
Furthermore, using the interface is cumbersome, as the user needs to
manipulate four separate sliders to pan and zoom.

In contrast, PI2 uses the same two queries to generate the interface in
Figure 1c. The interface supports panning and zooming interactions, so
the user can simply drag and scroll on the visualization to manipulate
the ra and dec ranges and receive immediate visual feedback. The
collapsed Query Log tab archives the input queries.

To enable PI2 to automatically generate suitable interfaces, we
need to encode the systematic variation between queries in an anal-
ysis. To do so, we introduce a novel data structure called DIFFTREES
that generalizes the abstract syntax trees (ASTs) of multiple queries
and encodes structural differences between them at “choice nodes”
in the tree. PI2 uses the DIFFTREE schema and choice nodes to make
appropriate choices for the three components of interactive visual-
ization interfaces (visualizations, query configuration widgets, and
visualization interactions). The key intuition behind DIFFTREEs is
that by fixing values at each choice node, a single query is produced,
so by binding widgets and interactions to choice nodes, the user can
transform the query expressed by the interface. Furthermore, this
interface mapping process takes into account the available screen
size—on a large screen, the interface may show multiple visual-
izations side by side, whereas a small screen may show a single
visualization that can be changed via interactions. These techniques
enable PI2 to go beyond existing notebooks by handling complex
queries, expressing arbitrary query changes while ensuring that
good interfaces are produced.

We further design the notebook extension to aid iterative analy-
ses. Since notebook users often edit and re-run cells during analysis,
we preserve a snapshot of the queries used to generate a new inter-
face. In addition, we track interface versions, and let users see or
revert back to previous interfaces. To avoid interruption of the nor-
mal notebook workflow, we choose to lay the Generated Interface
panel side-by-side with the notebook cells.

The next section presents a brief overview of how PI2 generates
interfaces from queries, and Section 3 illustrates these features in a
case study. Please refer to our technical report[7] for more details.
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Figure 2: Example of three queries and their simplified ASTs.
A static interface would render one chart for each query.
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Figure 3: Example DIFFTREESs and interfaces for Q1, Q2, focus-
ing on the subtree for the predicate. The ANY choice node can
choose one of its children. (a) the ANY node maps to a radio
button that chooses between the two predicates, (b) the radio
lists separately specify the left and right operands, (c) the
choice nodes can instead be mapped to a button group and
slider, and organized vertically.

2 INTERFACE GENERATION OVERVIEW

PI2 transforms an input sequence of queries into an interactive inter-
face in four steps: it parses queries into a generalization of abstract
syntax trees (ASTs) that we call DIFFTREES; maps the DIFFTREES to
a candidate interface; estimates the interface’s cost; and repeatedly
transforms the DIFFTREES to generate new candidate interfaces, op-
timizing according to cost. This section walks through these steps
and introduces key concepts via simple examples. For details on
the interface generation process, please see the technical report [7].

Static Interfaces: Figure 2 lists three queries! and their ASTs,
where attributes p, a, b are integers. Q1 and Q2 change the predicates,
and Q3 selects a instead of p. Since each AST is a DIFFTREE, a valid
interface simply maps each AST’s results to a static chart.

Interactive Interfaces: Let us focus on the differing predicate in
Q1 and Q2 to show how different DIFFTREE structures can result
in different interface designs. For instance, Figure 3(a) is rooted at
an ANY node whose children are the two predicates. ANY is a Choice
Node that can choose one of its child subtrees. In general, choice
nodes encode subtree variations? that the user can control through
the interface. In the example, the ANY node is mapped to two radio
buttons (other widgets such as a dropdown are valid as well), where
clicking on the first button would bind the ANY to its first child a=1.
The DIFFTREE output is visualized as a bar chart.

Tree Transformations: Both of ANY’s children are rooted at =, so the
= can be refactored above the ANY node. This is an example of a Tree
Transformation Rule. The resulting DIFFTREE in Figure 3(b) shows
two ANY nodes that can independently choose the left and right
operands. This leads to an interface with two interactions—two

!For brevity, we omit the FROM and GROUPBY clauses and show simplified ASTs.
2Choice nodes generalize SQL parameterized literals to syntactic structures.
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Figure 4: A D1rrTREE for Q1-3 and a candidate interface
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Figure 5: Multi-view interface where clicking on the right-
side chart updates the left chart.

sets of radio buttons—and also generalizes the interface beyond the
input queries. For instance, the query can now express SELECT p,
count(x) WHERE b=1.

A DIFFTREE can map to many interface designs, each with differ-
ent visualizations, interactions (including widgets and visualization
interactions), and layouts. For instance, Figure 3(b) and (c) both
express Q1 and Q2, however Figure 3(c) uses horizontal layout and
the slider can choose a continuous range of numbers that generalize
beyond the radio buttons in Figure 3(b).

All Three Queries: Now, let us add Q3. A simple approach would be
to partition the queries into two clusters, where Q3 is rendered as a
static chart, and Q1 and Q2 are mapped to one of the interfaces dis-
cussed so far. We can then choose to lay these two visualizations out
horizontally or vertically. Another possibility is to merge all three
queries into a single DIFFTREE, which would map to an interface
with a single visualization. Figure 4 illustrates one such DIFFTREE
structure, where an ANY node in the SELECT clause chooses whether
to project p or a. This maps to an interface similar to Figure 3(c),
but with a radio button to choose the attribute to project and a
toggle for the optional WHERE clause. Naturally, which of these pos-
sible interface designs (or others not discussed here) that should
be returned to the user depends on many factors, such as usability,
layout, accessibility, and other factors that are difficult to quantify.
Quantitative interface evaluation is an active area of research, and
PI2 borrows current best practices to develop its cost function.

Multi-view Interfaces PI2 can also generate multi-view interfaces.
Figure 5 illustrates a slightly different set of queries, where Q1 and
Q2 only differ in the literal, and Q3 remains the same. Since the
literal is compared to attribute a, an alternative to mapping the ANY
node to a slider is to map it to a visualization interaction in Q3’s bar
chart. Specifically, each bar is derived from (a, count(*)) in Q3’s
result. Thus, clicking on a bar can derive a valid value in attribute
a’s domain that can bind to the ANY node which will produce a
new query for the left visualization. Then, the left visualization will
update to render the new query’s results.

Summary and Generation Pipeline PI2 transforms an input
query log into an interactive interface in four steps (Figure 6). D It
first parses the input query sequence Q into DIFFTREEs. (2) PI2 maps
the DIFFTREEs to an interface. An interface mapping I = (V, M, L)
is defined by a Visualization Mapping V from DIFFTREESs results
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Figure 6: PI2 interface generation pipeline.

to visualizations, a Interaction Mapping M from choice nodes to
interactions (including widgets and visualization interactions), and
a Layout Mapping L from DIFFTREEs structures to layouts. We
formulate the interface mapping problem as a schema matching
problem by defining schema for both D1rrTREES and interfaces. 3)
A cost model C(I, Q) evaluates the interface and PI2 either returns
the interface or chooses a valid transformation to apply to the
D1rrTREEs. Informally, our problem is to return the lowest cost
interface I that can express all queries in Q. (@ The space of possible
interfaces is enormous, so we solve this problem using Monte Carlo
Tree Search [5, 6] (MCTS), which balances exploitation of good
explored states (DIFFTREEs) with exploration of new states.

3 DEMONSTRATION

3.1 Interface Design

We integrate PI2 as a Jupyter Lab [8] extension. We design the
interface as shown in Figure 7. While authoring SQL queries in
the Jupyter notebook, a user can check the checkbox next to each
cell to include it as part of the query log for interface generation.
Clicking the Generate Interface button invokes PI2 to generate a
new interface, shown in the Generated Interfaces panel on the right.

The atomic unit of execution in notebooks allows users to easily
refer back to previous cells to edit and potentially re-execute them.
To adapt to edits and ensure reproducibility, our integration tracks
interface versions in the version tabs at the top of the Generated
Interfaces panel and archives the input query logs in the Query Log
collapsible section for each version. PI2 lays out the interfaces and
notebook cells side-by-side, so that the normal notebook analysis
workflow will not be interrupted.

3.2 Use Case Walkthrough

We demonstrate how PI2 aids the data analysis process via a real-
world scenario (shown in Figure 7): in late December 2021, an
analyst named Jane at a news organization is analyzing a COVID-
19 dataset of daily case counts per-state with the intent to give
travel warning advice for the winter holiday season. For the sake of
comparison, we show a static visualization recommendation below
each cell, which is given by an existing system Lux [10]. More
details on the full capabilities of PI2 are in the technical report [7].

Step 1: Overview and detailed look of the dataset. Seeking
to get an overall view of the data, Jane writes Q1 and gets a line
chart recommended by Lux showing total case count over time.
Looking for a more detailed view, Jane restricts the date range in
Q2 to look back over two preceding half-month periods to see more
recent trends. Moreover, she would like to do this over different
date ranges, which will result in many similar static visualizations
and a lengthy notebook. With PI2, she can select these three queries
via their corresponding checkboxes and automatically generate an
interface. PI2 produces a unified interactive interface V1 consisting
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Figure 7: PI2 Jupyter extension interface. Left: SQL-based analyses. Right: An interface automatically generated by PI2.

of two plots: one showing the overall timeline (G1) and the other
showing just the selected date range (G2). The two plots are linked
by a brushing interaction so that brushing over G1 dynamically
configures the date range of G2. In comparison, no existing note-
book tools can create such visualization interactions. In this way,
Jane can use this interface to further investigate trends in different
date ranges interactively and without writing more SQL queries.

Step 2: Drill down into state Level. Jane’s task is to give travel
warning advice. She writes Q3 to study each state’s trends over time.
Lux generates choropleth maps visualizing the case count for each
state averaged over the date window, which do not allow her to see
trends over time. Alternatively, she can use PI2 to generate a new
interface V2 with three plots: two are the sames as interface V1 and
the third chart (G3) is a bar chart (x — date,y — cases, color —
state). We omit G3 in Figure 7 due to space constraints. In this
interface V2, the linked brushing interaction will configure the
queries underlying both G2 and G3 such that Jane can brush over
G1 to see the detailed trend and per-state breakdown trend within
the selected date range at the same time.

Step 3: Focused region investigation. However, the state break-
down view is visually noisy due to the large number of states. Jane
decides to group states into regions and only show those states
whose average case counts over a period of time exceed the re-
gion’s average, expressed as the complicated query Q4 consisting
of joins, and correlative subqueries. Further, Jane would like to
study the South and Northeast regions within different date ranges.
She selects all the queries and invokes PI2. The interface V3 that
PI2 generates in Figure 7 has three plots, allowing Jane to view
the overall timeline (G1), detail view of the selected date range
(G2), and state breakdown filtered for above average states (G4).
This new interface maintains the date brushing functionality of
previous versions and introduces query configuration widgets: a
toggle which allows her to toggle between G3 and G4, and a pair
of buttons that switch between the South and Northeast regions.
Structurally, the toggle corresponds to an OPT choice node that

distinguishes the existence of a complicated subquery—{and state
in...} in Q4 not present in Q3. Through this interface, Jane is able
to fluidly reconfigure the date range by brushing on G1, toggle off
to see the overall state breakdown of cases, and toggle on to choose
to observe trends in the Northeast or South. Noticing very high
rates of growth in case count, Jane makes a recommendation that
travelers avoid Florida in the South and New York in the Northeast.
Through the above scenario, we show PI2’s ability to consume
arbitrarily complex SQL queries and automatically generate com-
plete interfaces, including visualization interactions and widgets
expressing arbitrary query differences that no other tools can.

Demonstration engagement. Participants will be able to write
their own analysis and generate interactive visual interfaces us-
ing the PI2 Jupyter extension. We will prepare three datasets —
COVID-19, SDSS, and S&P500 for users to explore.
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