


their analysis and invoke PI2 to synthesize a fully interactive in-

terface without having to perform any manual specification. PI2

automatically chooses the appropriate visualizations, widgets, and

visualization interactions to fully express the analysis represented

by the user’s selected queries.

Example 1. Figure 1 illustrates the types of interfaces that Lux,

Hex, and PI2 generate using queries from the Sloan Digital Sky Sur-

vey (SDSS) [11] query log. The example queries retrieve astronomical

objects by specifying a celestial region (ra and dec ranges). Lux recom-

mends visualizations per-query, so it generates different visualizations

for each query, despite their similarities (Figure 1a). Users will need to

repeatedly tweak and re-execute the queries to continue their analysis.

Hex lets the user parameterize the ra and dec values in the query,

create custom sliders to control each parameter, and visualize the

query results (Figure 1b). This enables more interactivity than Lux,

since the user can drag the sliders instead of editing SQL strings.

However, the user still needs to tell Hex to parameterize parts of the

query on the slider values and choose an appropriate visualization.

Furthermore, using the interface is cumbersome, as the user needs to

manipulate four separate sliders to pan and zoom.

In contrast, PI2 uses the same two queries to generate the interface in

Figure 1c. The interface supports panning and zooming interactions, so

the user can simply drag and scroll on the visualization to manipulate

the ra and dec ranges and receive immediate visual feedback. The

collapsed Query Log tab archives the input queries.

To enable PI2 to automatically generate suitable interfaces, we

need to encode the systematic variation between queries in an anal-

ysis. To do so, we introduce a novel data structure called Difftrees

that generalizes the abstract syntax trees (ASTs) of multiple queries

and encodes structural differences between them at łchoice nodesž

in the tree. PI2 uses the Difftree schema and choice nodes to make

appropriate choices for the three components of interactive visual-

ization interfaces (visualizations, query configuration widgets, and

visualization interactions). The key intuition behind Difftrees is

that by fixing values at each choice node, a single query is produced,

so by binding widgets and interactions to choice nodes, the user can

transform the query expressed by the interface. Furthermore, this

interface mapping process takes into account the available screen

sizeÐon a large screen, the interface may show multiple visual-

izations side by side, whereas a small screen may show a single

visualization that can be changed via interactions. These techniques

enable PI2 to go beyond existing notebooks by handling complex

queries, expressing arbitrary query changes while ensuring that

good interfaces are produced.

We further design the notebook extension to aid iterative analy-

ses. Since notebook users often edit and re-run cells during analysis,

we preserve a snapshot of the queries used to generate a new inter-

face. In addition, we track interface versions, and let users see or

revert back to previous interfaces. To avoid interruption of the nor-

mal notebook workflow, we choose to lay the Generated Interface

panel side-by-side with the notebook cells.

The next section presents a brief overview of how PI2 generates

interfaces from queries, and Section 3 illustrates these features in a

case study. Please refer to our technical report[7] for more details.

Q1
SELECT p, count(*)

WHERE a = 1

Q

p

SELECT

count()

=

a 1

Q

p

SELECT

count()

=

b 2

Q2
SELECT p, count(*)

WHERE b = 2

Q3
SELECT a, count(*)

Q

a

SELECT

count()

c
o
u
n
t

a

c
o
u
n
t

p

c
o
u
n
t

p

Figure 2: Example of three queries and their simplified ASTs.

A static interface would render one chart for each query.

=

a 1

=

b 2

ANY

a=1 

b=2 c
o
u
n
t

p

ANY

a b

ANY

1 2

=

a b

1 2

(a) (b) (c)

1

a b

Figure 3: Example Difftrees and interfaces for Q1, Q2, focus-

ing on the subtree for the predicate. The ANY choice node can

choose one of its children. (a) the ANY node maps to a radio

button that chooses between the two predicates, (b) the radio

lists separately specify the left and right operands, (c) the

choice nodes can instead be mapped to a button group and

slider, and organized vertically.

2 INTERFACE GENERATION OVERVIEW

PI2 transforms an input sequence of queries into an interactive inter-

face in four steps: it parses queries into a generalization of abstract

syntax trees (ASTs) that we call Difftrees; maps the Difftrees to

a candidate interface; estimates the interface’s cost; and repeatedly

transforms the Difftrees to generate new candidate interfaces, op-

timizing according to cost. This section walks through these steps

and introduces key concepts via simple examples. For details on

the interface generation process, please see the technical report [7].

Static Interfaces: Figure 2 lists three queries1 and their ASTs,

where attributes p, a, b are integers. Q1 and Q2 change the predicates,

and Q3 selects a instead of p. Since each AST is a Difftree, a valid

interface simply maps each AST’s results to a static chart.

Interactive Interfaces: Let us focus on the differing predicate in

Q1 and Q2 to show how different Difftree structures can result

in different interface designs. For instance, Figure 3(a) is rooted at

an ANY node whose children are the two predicates. ANY is a Choice

Node that can choose one of its child subtrees. In general, choice

nodes encode subtree variations2 that the user can control through

the interface. In the example, the ANY node is mapped to two radio

buttons (other widgets such as a dropdown are valid as well), where

clicking on the first button would bind the ANY to its first child a=1.

The Difftree output is visualized as a bar chart.

Tree Transformations: Both of ANY’s children are rooted at =, so the

= can be refactored above the ANY node. This is an example of a Tree

Transformation Rule. The resulting Difftree in Figure 3(b) shows

two ANY nodes that can independently choose the left and right

operands. This leads to an interface with two interactionsÐtwo

1For brevity, we omit the FROM and GROUPBY clauses and show simplified ASTs.
2Choice nodes generalize SQL parameterized literals to syntactic structures.



Q

SELECT

count() =

a b

ANY

1 2

ANY

ANY

p a

OPT

c
o
u
n
t

p

1

a b

p a

Figure 4: A Difftree for Q1-3 and a candidate interface

a ANY

1 2

=
c
o
u
n
t

a

c
o
u
n
t

p

Q1: SELECT p, count(*) WHERE a = 1
Q2: SELECT p, count(*) WHERE a = 2

Q

a

SELECT

count()

Q3: SELECT a, count(*)

Figure 5: Multi-view interface where clicking on the right-

side chart updates the left chart.

sets of radio buttonsÐand also generalizes the interface beyond the

input queries. For instance, the query can now express SELECT p,

count(*) WHERE b=1.

A Difftree can map to many interface designs, each with differ-

ent visualizations, interactions (including widgets and visualization

interactions), and layouts. For instance, Figure 3(b) and (c) both

express Q1 and Q2, however Figure 3(c) uses horizontal layout and

the slider can choose a continuous range of numbers that generalize

beyond the radio buttons in Figure 3(b).

All Three Queries: Now, let us add Q3. A simple approach would be

to partition the queries into two clusters, where Q3 is rendered as a

static chart, and Q1 and Q2 are mapped to one of the interfaces dis-

cussed so far. We can then choose to lay these two visualizations out

horizontally or vertically. Another possibility is to merge all three

queries into a single Difftree, which would map to an interface

with a single visualization. Figure 4 illustrates one such Difftree

structure, where an ANY node in the SELECT clause chooses whether

to project p or a. This maps to an interface similar to Figure 3(c),

but with a radio button to choose the attribute to project and a

toggle for the optional WHERE clause. Naturally, which of these pos-

sible interface designs (or others not discussed here) that should

be returned to the user depends on many factors, such as usability,

layout, accessibility, and other factors that are difficult to quantify.

Quantitative interface evaluation is an active area of research, and

PI2 borrows current best practices to develop its cost function.

Multi-view Interfaces PI2 can also generate multi-view interfaces.

Figure 5 illustrates a slightly different set of queries, where Q1 and

Q2 only differ in the literal, and Q3 remains the same. Since the

literal is compared to attribute a, an alternative to mapping the ANY

node to a slider is to map it to a visualization interaction in Q3’s bar

chart. Specifically, each bar is derived from (a, count(*)) in Q3’s

result. Thus, clicking on a bar can derive a valid value in attribute

a’s domain that can bind to the ANY node which will produce a

new query for the left visualization. Then, the left visualization will

update to render the new query’s results.

Summary and Generation Pipeline PI2 transforms an input

query log into an interactive interface in four steps (Figure 6). 1○ It

first parses the input query sequence Q intoDifftrees. 2○ PI2maps

the Difftrees to an interface. An interface mapping I = (V,M,L)

is defined by a Visualization Mapping V from Difftrees results

Difftrees
Choice Nodes

à

Interactions

Trees

à

Layouts

Results 

à

Vis

Map Difftrees à Interface

Tree Transformations

CostQs

Monte Carlo Tree Search (MCTS)

1

2

3

4

Figure 6: PI2 interface generation pipeline.

to visualizations, a Interaction Mapping M from choice nodes to

interactions (including widgets and visualization interactions), and

a Layout Mapping L from Difftrees structures to layouts. We

formulate the interface mapping problem as a schema matching

problem by defining schema for both Difftrees and interfaces. 3○

A cost model C(I, Q) evaluates the interface and PI2 either returns

the interface or chooses a valid transformation to apply to the

Difftrees. Informally, our problem is to return the lowest cost

interface I that can express all queries in Q. 4○ The space of possible

interfaces is enormous, so we solve this problem using Monte Carlo

Tree Search [5, 6] (MCTS), which balances exploitation of good

explored states (Difftrees) with exploration of new states.

3 DEMONSTRATION

3.1 Interface Design

We integrate PI2 as a Jupyter Lab [8] extension. We design the

interface as shown in Figure 7. While authoring SQL queries in

the Jupyter notebook, a user can check the checkbox next to each

cell to include it as part of the query log for interface generation.

Clicking the Generate Interface button invokes PI2 to generate a

new interface, shown in the Generated Interfaces panel on the right.

The atomic unit of execution in notebooks allows users to easily

refer back to previous cells to edit and potentially re-execute them.

To adapt to edits and ensure reproducibility, our integration tracks

interface versions in the version tabs at the top of the Generated

Interfaces panel and archives the input query logs in the Query Log

collapsible section for each version. PI2 lays out the interfaces and

notebook cells side-by-side, so that the normal notebook analysis

workflow will not be interrupted.

3.2 Use Case Walkthrough

We demonstrate how PI2 aids the data analysis process via a real-

world scenario (shown in Figure 7): in late December 2021, an

analyst named Jane at a news organization is analyzing a COVID-

19 dataset of daily case counts per-state with the intent to give

travel warning advice for the winter holiday season. For the sake of

comparison, we show a static visualization recommendation below

each cell, which is given by an existing system Lux [10]. More

details on the full capabilities of PI2 are in the technical report [7].

Step 1: Overview and detailed look of the dataset. Seeking

to get an overall view of the data, Jane writes Q1 and gets a line

chart recommended by Lux showing total case count over time.

Looking for a more detailed view, Jane restricts the date range in

Q2 to look back over two preceding half-month periods to see more

recent trends. Moreover, she would like to do this over different

date ranges, which will result in many similar static visualizations

and a lengthy notebook. With PI2, she can select these three queries

via their corresponding checkboxes and automatically generate an

interface. PI2 produces a unified interactive interface V1 consisting




	Abstract
	1 Introduction
	2 Interface Generation Overview
	3 Demonstration
	3.1 Interface Design
	3.2 Use Case Walkthrough

	References

