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ABSTRACT

A dynamic Bayesian Network (DBN) is proposed in this study to
diagnose faults for building heating, ventilating, and air-
conditioning (HVAC) systems that are controlled based on
American Society of Heating, Refrigerating and Air-Conditioning
Engineers (ASHRAE)’s Guideline 36: High Performance
Sequence of Operation for HVAC (hereinafter Guideline 36).
Guideline 36 provides recommendations on supervisory-level
control. HVAC systems that adopt these strategies have more
comprehensive setpoint reset schedules and more advanced control
logics than typical HVAC systems. It is hence of interest to
understand how faults might affect the performance of HVAC
systems that are controlled based on Guideline 36 and whether we
can develop strategies to diagnose and isolate faults even for
systems with such comprehensive control sequences. Contrarily to
a Bayesian Network (BN), DBN method incorporates the temporal
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dependencies of fault nodes between time steps using temporal
conditional probabilities. This allows fault beliefs to accumulate
over time and thus improves diagnosis accuracy. In this study, the
accuracy and scalability of the proposed method is evaluated using
the data from a Modelica-based simulated testbed. Overall, the
developed DBN shows good potential in diagnosing and isolating
the root fault causes for HVAC systems that are controlled based
on the Guideline 36 control sequence.
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Studies and field practices have shown that applying automated
fault detection and diagnosis (AFDD) tools in HVAC systems,
followed up with service and corrections, can help reduce the
energy waste, improve occupant comfort and extend equipment
lifecycle [3]. Within the AFDD framework, the process of locating
and isolating the physical root cause of a fault has been challenging
for HVAC systems since a detailed and accurate reasoning of the
HVAC system and its control strategies is required. Among several
inference and classification approaches that have been developed
as fault diagnosis tools, Bayesian networks (BN) models based on
the conditional probability theorem that predict the fault responses
based on a set of observations have been popular for the HVAC
system [6,7]

Successfully implemented BNs for fault diagnosis for different
HVAC components have been reported in existing literature for
both component-level and whole building fault diagnosis
[4,5,8,9,10,11]. Although the existing studies demonstrate good
potentials of BNs for both component-level and whole building
fault diagnosis, the BN structure model used are event-based, time-
invariant models (i.e., information from the previous time steps are
not carried over to the next time step). Instead, a dynamic BN
(DBN) model is more suitable for diagnosing faults for a
continuous-time engineering system such as a building HVAC
system [12]. The main advantage is that a DBN carries over past
information which allows fault belief to accumulate over time.
Using the past information could help eliminate measurement
errors and only retain persistent faults [13]. In our earlier work [14],
we conducted a systematic comparison between conventional BN
and DBN by converting the existing WPM-BN model from [10] for
whole building fault diagnosis. The DBN was demonstrated to be
more effective in diagnosing and isolating faults when multiple
and/or propagating symptoms are seen across various components
or sub-systems. However, the HVAC system that has been
examined by existing studies have been controlled by conventional
control strategies with minimum supervisory control. It is of
interest to understand, when a HVAC system adopts more
advanced control strategies with varying setpoints and much more
complicated subsystem interactions, whether the DBN would still
be effective at diagnosing root causes of a fault.

ASHRAE Guideline 36 [17], first published in 2018, provides
best-in-class HVAC sequences of operation to maximize the energy
efficiency, improve system stability, enhance code compliance, and
allow fault detection and diagnostics. Guideline 36 will be
continuously developed with the state-of-the-art research on the
high-performance sequences of operation for HVAC systems and
expand the coverage to the whole building system types and
configurations. Hence, HVAC systems that adopt Guideline 36
would experience much more dynamic setpoints and much more
interactions among subsystems which add more challenges for fault
diagnosis tools.

In this paper, the DBN structure model reported in [14] is further
adapted to diagnose faults from HVAC systems that are controlled
following the newest Guideline 36, in order to test the scalability of
the DBN framework under different control sequences. A small-
scale evaluation is performed using operation data from a virtual
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testbed to examine the effectiveness of the adapted DBN
framework.

2. DBN for Fault Diagnosis

A BN or DBN is a probabilistic graphical model formed using
causal relations. For fault diagnosis, a directed acyclic network is
used in which the nodes represent the faults and symptoms
(evidences) from measurements and observations, and the arcs
represent the direct probabilistic dependencies among the
connected nodes [4] . Details on how the BN is developed for fault
diagnosis can be found in [10].

A DBN is an extension of the conventional, static BN which can
represent temporal relationships of the fault and symptom nodes
between different time steps. Figure 1 shows the difference
between a BN and a DBN with one fault and one symptom node
for n-time steps. In a static BN, the probability of a fault node (Fr+1)
only depends on the corresponding symptom node (S:+1), whereas,
in a DBN, the probability of node Fi+; depends on its symptom
nodes S;+; and also its own values at the previous time step F.

Figure 1. Schematics of a static BN (above) and a dynamic BN
(below)

The additional dependency on the fault node from the previous
time step requires a temporal CPT, P(F;,1|F), to define the
relationship. The temporal CPTs carry over posterior probabilities
from the previous to the current time step.

Maximum likelihood estimation (MLE) and Bayesian
estimation (BE) are some of the techniques used to estimate the
unknown probabilities [16]. However, utilizing statistical
techniques to obtain the probability distributions is a major
challenge for building system data since (i) ground truth data that
confirms the root fault causes of natural-occurring faults are hard
to obtain, and (ii) even if the ground truth data exists for a specific
building, the probability distributions learned from specific
building system data are usually not scalable to other building
systems [10]. Hence, in this study, the temporal CPT are also
developed using some expert knowledge and parameter sensitivity
analysis.

3. Method Description
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As reported in [14], the development of the DBN methodology
is divided into seven steps. First, incoming snapshot data and
baseline data under similar weather conditions are collected in Step
1. Following this, in Step 2, the DBN structure which includes the
nodes for the fault and associated evidence, and the causal relation
between them based on expert knowledge is developed. In Steps 3
and 4, various probability distributions for each fault node and
evidence node, including the LEAK distribution, are calculated and
assigned in the parameter model. Next, the evidence event are
developed to compare the incoming snapshot data with the baseline
in Step 5. An evidence event is classified to be abnormal if the
incoming data is significantly different from the baseline, i.e., is
higher than the statistical threshold. Based on the judgment in this
step, the Bayesian inference in Step 6 is trigged, and the posterior
probabilities of each fault node is calculated. Finally, the posterior
probabilities are ranked, and the root fault is isolated based on pre-
defined rules in Step 7.

In this study, the above-described DBN is developed for a
medium-sized office building with an air handling unit that is
served by a chiller. In total, 17 fault nodes which represent the
faults implemented in the AHU, and 15 evidence nodes using both
direct measurements and physics-based models (e.g., fan curve fits)
are used to create a two-layer DBN. Table 1 list all fault nodes
included in the DBN. Several common faults such as outdoor air
damper stuck, cooling coil valve stuck, supply temperature bias etc.
are considered. Again, the structure of the DBN is developed based
on physical analysis, first-principle-models, and expert knowledge
of the authors, as described in [14].

Table 1. Fault node descriptions

FNal;t Fault Node Description
1 AHU outdoor air damper stuck higher than normal
2 AHU outdoor air damper stuck lower than normal
3 AHU cooling coil valve stuck higher than normal
4 AHU cooling coil valve stuck lower than normal
5 AHU return fan speed higher than normal
6 AHU return fan speed lower than normal
7 AHU return fan complete failure
8 AHU outdoor air damper leaking
9 AHU Air Loop Supply Duct Leakage
10 AHU Supply Air Temperature Positive Bias
11 AHU Supply Air Temperature Negative Bias
12 AHU Return Air Temperature Positive Bias
13 AHU Return Air Temperature Negative Bias
14 AHU Outdoor Air Flowrate Sensor Positive Scale Error
15 AHU Outdoor Air Flowrate Sensor Negative Scale Error
16 Chilled water differential pressure sensor positive bias
17 Chilled water differential pressure sensor negative bias
4. Method Evaluation

4.1 Description of Experimental Data

To evaluate the DBN for fault diagnosis,
experimental data collected from a Modelica-based simulation
testbed is used. More details about the testbed and fault simulation
are provided in [18].

simulated
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The system is a one-floor, five-zone medium-sized office
building. Heating and cooling are delivered by a single-duct VAV
system. It has one AHU connected with five VAV terminal boxes
serving five zones (four exterior zones, and one interior zone,
respectively). The chilled water is supplied by a central chiller plant
which consists of a chiller, a waterside economizer, a cooling
tower, and one chilled water pump and one cooling water pump. A
boiler, fed by natural gas, supplies the hot water to the AHU heating
coil. The reheat in the VAV terminals is supplied by electric
resistance coils.

Figure 2 illustrates the schematics of the system. The system is
sized under the ASHRAE climate zone 5A Chicago, IL. Airside
(AHU and VAV terminals) and waterside (chilled water loop and
hot water loop) are scheduled for an automatic operation on a time-
of-day basis with seven types of system operation mode according
to Guideline 36, PART 5.C.6 [17].

Zone Supply
Heating & Air Damper

zer
Cooling Coil

Outdoor Air
Damper

% AHU Fan

Tenwsip

Primary Chilled
Water Pump

Chiller Waterside Economizer

Boiler  Hot Water Pump

Tewsup
SHCoR >
0

Cooling Tower Condenser Water Pump

Figure 2. Schematics of the system model [18]

A total of 14 faults, which are artificially injected to the system
fault model during the summer and transitional seasons as, are used
to evaluate the DBN. The fault injection model is detailed in [18].
Data is collected for the period when the faults are implemented.
Data that represented the baseline fault-free conditions is also
collected from the simulation testbed. The baseline data is used to
calculate the statistical thresholds for generating evidences in the
DBN framework.

4.2 Results

The fault diagnosis results using a DBN is generated for the 15
cases. Table 2 summarizes the fault cases and the posterior
probabilities of the fault identified by the DBN.

Table 2. Fault ranking for artificially injected faults

Posterior Diagnosis
Fault Type Probability Result
AHU Cooling coil valve stuck at 0% 87% Diagnosed
AHU Cooling coil valve stuck at o .
100% 63% Misdiagnosed
?;})/U Cooling coil valve stuck at 89% Diagnosed
0
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AHU Cooling coil valve stuck at 5% 88% Diagnosed
AHU Outdoor air damper leakage of 2 No fault
10% ° symptoms
Q)EU Outdoor air damper stuck at 85% Diagnosed
?&I)%Outdoor air damper stuck at 71% Diagnosed
11%5}01/? Outdoor air damper stuck at 71% Diagnosed
?OI/{U Outdoor air damper stuck at 2% Diagnosed
0

Chilled water differential pressure 39 No fault
sensor negative bias of 10 kPa ° symptoms
Chilled water differential pressure 6% No fault
sensor positive bias of 10 kPa ’ symptoms
i)&f};[é O/?lr loop supply duct leakage 90% Diagnosed
AHU Outdoor air flow rate sensor o .
negative scale error of 30% 4% Diagnosed
AHU Outdoor air flow rate sensor o .
positive scale error of 30% 67% Diagnosed

Out of the 14 cases, the DBN correctly diagnosed 10 cases, i.c.,
identified the root causes of the faults. For three of four remaining
cases, the implemented fault did not yield any symptom which is
reflected by the low posterior probability value from the DBN. The
one misdiagnosed case was for the fault of cooling coil valve stuck
at 100% position. Key symptoms for this fault were believed, based
on physical knowledge, to be heating coil valve at a higher-than-
normal value and increase in chilled water flowrate and chiller
cooling. A closer manual inspection of the data revealed that the
heating valve was not opened further since the boiler was prevented
from turning on in the hot summer day in the simulated control
logic. This caused the fault belief to be very low for the AHU
cooling coil valve stuck higher than normal fault node since the
heating coil valve was a critical symptom for this fault. Overall, the
proposed framework was able to diagnose most considered faults
for HVAC systems controlled by the Guideline 36 control
sequences. Further improvements are needed to increase the
diagnosis accuracy, especially for faults that are impacted by the
boiler operation schedule.

As mentioned in our previous work in [14], the fault beliefs
(posterior probabilities) obtained when using a DBN is stronger
when compared to a static BN. Since a DBN allows the evidence to
accumulate over time, whereas in a static BN, only evidence from
a single time step is considered for inference, the fault belief'is often
limited to a lower value for static BN. Similar trends are seen across
the fault cases evaluated in this paper.

5. Conclusions

This paper presents a DBN framework for diagnosing faults of
HVAC systems that are controlled based on Guideline 36, which
significantly increases the dynamics and coupling of different
subsystems and hence adds challenges for fault diagnosis tools. The
DBN models incorporates the temporal relationship between fault
nodes in the previous time step to the current fault node using
temporal conditional probabilities, contrarily to static BNs which
are time-invariant models. The proposed method is evaluated using
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data from a simulated testbed. Causal relations between faults and
their corresponding symptoms are developed using expert
knowledge and observations from the data. Preliminary results
show that the proposed method shows good potential in diagnosing
and isolating root fault causes for HVAC system controlled by the
Guideline 36 control sequences. Further study and improvements
are needed to increase the diagnosis accuracy.
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