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ABSTRACT 

A dynamic Bayesian Network (DBN) is proposed in this study to 

diagnose faults for building heating, ventilating, and air-

conditioning (HVAC) systems that are controlled based on 

American Society of Heating, Refrigerating and Air-Conditioning 

Engineers (ASHRAE)’s Guideline 36: High Performance 

Sequence of Operation for HVAC (hereinafter Guideline 36). 

Guideline 36 provides recommendations on supervisory-level 

control. HVAC systems that adopt these strategies have more 

comprehensive setpoint reset schedules and more advanced control 

logics than typical HVAC systems. It is hence of interest to 

understand how faults might affect the performance of HVAC 

systems that are controlled based on Guideline 36 and whether we 

can develop strategies to diagnose and isolate faults even for 

systems with such comprehensive control sequences. Contrarily to 

a Bayesian Network (BN), DBN method incorporates the temporal 

dependencies of fault nodes between time steps using temporal 

conditional probabilities. This allows fault beliefs to accumulate 

over time and thus improves diagnosis accuracy. In this study, the 

accuracy and scalability of the proposed method is evaluated using 

the data from a Modelica-based simulated testbed. Overall, the 

developed DBN shows good potential in diagnosing and isolating 

the root fault causes for HVAC systems that are controlled based 

on the Guideline 36 control sequence. 
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Studies and field practices have shown that applying automated 

fault detection and diagnosis (AFDD) tools in HVAC systems, 

followed up with service and corrections, can help reduce the 

energy waste, improve occupant comfort and extend equipment 

lifecycle [3]. Within the AFDD framework, the process of locating 

and isolating the physical root cause of a fault has been challenging 

for HVAC systems since a detailed and accurate reasoning of the 

HVAC system and its control strategies is required. Among several 

inference and classification approaches that have been developed 

as fault diagnosis tools, Bayesian networks (BN) models based on 

the conditional probability theorem that predict the fault responses 

based on a set of observations have been popular for the HVAC 

system [6,7] 

Successfully implemented BNs for fault diagnosis for different 

HVAC components have been reported in existing literature for 

both component-level and whole building fault diagnosis 

[4,5,8,9,10,11]. Although the existing studies demonstrate good 

potentials of BNs for both component-level and whole building 

fault diagnosis, the BN structure model used are event-based, time-

invariant models (i.e., information from the previous time steps are 

not carried over to the next time step). Instead, a dynamic BN 

(DBN) model is more suitable for diagnosing faults for a 

continuous-time engineering system such as a building HVAC 

system [12]. The main advantage is that a DBN carries over past 

information which allows fault belief to accumulate over time. 

Using the past information could help eliminate measurement 

errors and only retain persistent faults [13]. In our earlier work [14], 

we conducted a systematic comparison between conventional BN 

and DBN by converting the existing WPM-BN model from [10] for 

whole building fault diagnosis. The DBN was demonstrated to be 

more effective in diagnosing and isolating faults when multiple 

and/or propagating symptoms are seen across various components 

or sub-systems. However, the HVAC system that has been 

examined by existing studies have been controlled by conventional 

control strategies with minimum supervisory control. It is of 

interest to understand, when a HVAC system adopts more 

advanced control strategies with varying setpoints and much more 

complicated subsystem interactions, whether the DBN would still 

be effective at diagnosing root causes of a fault. 

ASHRAE Guideline 36 [17], first published in 2018, provides 

best-in-class HVAC sequences of operation to maximize the energy 

efficiency, improve system stability, enhance code compliance, and 

allow fault detection and diagnostics. Guideline 36 will be 

continuously developed with the state-of-the-art research on the 

high-performance sequences of operation for HVAC systems and 

expand the coverage to the whole building system types and 

configurations. Hence, HVAC systems that adopt Guideline 36 

would experience much more dynamic setpoints and much more 

interactions among subsystems which add more challenges for fault 

diagnosis tools. 

In this paper, the DBN structure model reported in [14] is further 

adapted to diagnose faults from HVAC systems that are controlled 

following the newest Guideline 36, in order to test the scalability of 

the DBN framework under different control sequences. A small-

scale evaluation is performed using operation data from a virtual 

testbed to examine the effectiveness of the adapted DBN 

framework. 

2. DBN for Fault Diagnosis 

A BN or DBN is a probabilistic graphical model formed using 

causal relations. For fault diagnosis, a directed acyclic network is 

used in which the nodes represent the faults and symptoms 

(evidences) from measurements and observations, and the arcs 

represent the direct probabilistic dependencies among the 

connected nodes [4] . Details on how the BN is developed for fault 

diagnosis can be found in [10]. 

A DBN is an extension of the conventional, static BN which can 

represent temporal relationships of the fault and symptom nodes 

between different time steps. Figure 1 shows the difference 

between a BN and a DBN with one fault and one symptom node 

for n-time steps. In a static BN, the probability of a fault node (Ft+1) 

only depends on the corresponding symptom node (St+1), whereas, 

in a DBN, the probability of node Ft+1 depends on its symptom 

nodes St+1 and also its own values at the previous time step Ft. 

 

 

Figure 1. Schematics of a static BN (above) and a dynamic BN 

(below) 

The additional dependency on the fault node from the previous 

time step requires a temporal CPT, 𝑃(𝐹𝑡+1|𝐹) , to define the 

relationship. The temporal CPTs carry over posterior probabilities 

from the previous to the current time step. 

Maximum likelihood estimation (MLE) and Bayesian 

estimation (BE) are some of the techniques used to estimate the 

unknown probabilities [16]. However, utilizing statistical 

techniques to obtain the probability distributions is a major 

challenge for building system data since (i) ground truth data that 

confirms the root fault causes of natural-occurring faults are hard 

to obtain, and (ii) even if the ground truth data exists for a specific 

building, the probability distributions learned from specific 

building system data are usually not scalable to other building 

systems [10]. Hence, in this study, the temporal CPT are also 

developed using some expert knowledge and parameter sensitivity 

analysis. 

3. Method Description 
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As reported in [14], the development of the DBN methodology 

is divided into seven steps. First, incoming snapshot data and 

baseline data under similar weather conditions are collected in Step 

1. Following this, in Step 2, the DBN structure which includes the 

nodes for the fault and associated evidence, and the causal relation 

between them based on expert knowledge is developed. In Steps 3 

and 4, various probability distributions for each fault node and 

evidence node, including the LEAK distribution, are calculated and 

assigned in the parameter model. Next, the evidence event are 

developed to compare the incoming snapshot data with the baseline 

in Step 5. An evidence event is classified to be abnormal if the 

incoming data is significantly different from the baseline, i.e., is 

higher than the statistical threshold. Based on the judgment in this 

step, the Bayesian inference in Step 6 is trigged, and the posterior 

probabilities of each fault node is calculated. Finally, the posterior 

probabilities are ranked, and the root fault is isolated based on pre-

defined rules in Step 7. 

In this study, the above-described DBN is developed for a 

medium-sized office building with an air handling unit that is 

served by a chiller. In total, 17 fault nodes which represent the 

faults implemented in the AHU, and 15 evidence nodes using both 

direct measurements and physics-based models (e.g., fan curve fits) 

are used to create a two-layer DBN. Table 1 list all fault nodes 

included in the DBN. Several common faults such as outdoor air 

damper stuck, cooling coil valve stuck, supply temperature bias etc. 

are considered. Again, the structure of the DBN is developed based 

on physical analysis, first-principle-models, and expert knowledge 

of the authors, as described in [14].  

Table 1. Fault node descriptions 

Fault 

No. 
Fault Node Description 

1 AHU outdoor air damper stuck higher than normal 

2 AHU outdoor air damper stuck lower than normal 

3 AHU cooling coil valve stuck higher than normal 

4 AHU cooling coil valve stuck lower than normal 

5 AHU return fan speed higher than normal 

6 AHU return fan speed lower than normal 

7 AHU return fan complete failure 

8 AHU outdoor air damper leaking 

9 AHU Air Loop Supply Duct Leakage 

10 AHU Supply Air Temperature Positive Bias 

11 AHU Supply Air Temperature Negative Bias 

12 AHU Return Air Temperature Positive Bias 

13 AHU Return Air Temperature Negative Bias 

14 AHU Outdoor Air Flowrate Sensor Positive Scale Error 

15 AHU Outdoor Air Flowrate Sensor Negative Scale Error 

16 Chilled water differential pressure sensor positive bias 

17 Chilled water differential pressure sensor negative bias 

4. Method Evaluation 

4.1 Description of Experimental Data 

To evaluate the DBN for fault diagnosis, simulated 

experimental data collected from a Modelica-based simulation 

testbed is used. More details about the testbed and fault simulation 

are provided in [18].  

The system is a one-floor, five-zone medium-sized office 

building. Heating and cooling are delivered by a single-duct VAV 

system. It has one AHU connected with five VAV terminal boxes 

serving five zones (four exterior zones, and one interior zone, 

respectively). The chilled water is supplied by a central chiller plant 

which consists of a chiller, a waterside economizer, a cooling 

tower, and one chilled water pump and one cooling water pump. A 

boiler, fed by natural gas, supplies the hot water to the AHU heating 

coil. The reheat in the VAV terminals is supplied by electric 

resistance coils. 

Figure 2 illustrates the schematics of the system. The system is 

sized under the ASHRAE climate zone 5A Chicago, IL. Airside 

(AHU and VAV terminals) and waterside (chilled water loop and 

hot water loop) are scheduled for an automatic operation on a time-

of-day basis with seven types of system operation mode according 

to Guideline 36, PART 5.C.6 [17].  

 

Figure 2. Schematics of the system model [18] 

A total of 14 faults, which are artificially injected to the system 

fault model during the summer and transitional seasons as, are used 

to evaluate the DBN. The fault injection model is detailed in [18]. 

Data is collected for the period when the faults are implemented. 

Data that represented the baseline fault-free conditions is also 

collected from the simulation testbed. The baseline data is used to 

calculate the statistical thresholds for generating evidences in the 

DBN framework. 

4.2 Results 

The fault diagnosis results using a DBN is generated for the 15 

cases. Table 2 summarizes the fault cases and the posterior 

probabilities of the fault identified by the DBN.  

Table 2. Fault ranking for artificially injected faults 

Fault Type 
Posterior 

Probability 

Diagnosis 

Result 

AHU Cooling coil valve stuck at 0% 87% Diagnosed 

AHU Cooling coil valve stuck at 
100% 

63% Misdiagnosed 

AHU Cooling coil valve stuck at 

15% 
89% Diagnosed 
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AHU Cooling coil valve stuck at 5% 88% Diagnosed 

AHU Outdoor air damper leakage of 
10% 

2% 
No fault 

symptoms 

AHU Outdoor air damper stuck at 

0% 
85% Diagnosed 

AHU Outdoor air damper stuck at 
100% 

71% Diagnosed 

AHU Outdoor air damper stuck at 

15% 
71% Diagnosed 

AHU Outdoor air damper stuck at 
5% 

82% Diagnosed 

Chilled water differential pressure 

sensor negative bias of 10 kPa 
3% 

No fault 

symptoms 

Chilled water differential pressure 
sensor positive bias of 10 kPa 

6% 
No fault 

symptoms 

AHU Air loop supply duct leakage 

of 20% 
90% Diagnosed 

AHU Outdoor air flow rate sensor 
negative scale error of 30% 

74% Diagnosed 

AHU Outdoor air flow rate sensor 

positive scale error of 30% 
67% Diagnosed 

 

Out of the 14 cases, the DBN correctly diagnosed 10 cases, i.e., 

identified the root causes of the faults. For three of four remaining 

cases, the implemented fault did not yield any symptom which is 

reflected by the low posterior probability value from the DBN. The 

one misdiagnosed case was for the fault of cooling coil valve stuck 

at 100% position. Key symptoms for this fault were believed, based 

on physical knowledge, to be heating coil valve at a higher-than-

normal value and increase in chilled water flowrate and chiller 

cooling. A closer manual inspection of the data revealed that the 

heating valve was not opened further since the boiler was prevented 

from turning on in the hot summer day in the simulated control 

logic. This caused the fault belief to be very low for the AHU 

cooling coil valve stuck higher than normal fault node since the 

heating coil valve was a critical symptom for this fault. Overall, the 

proposed framework was able to diagnose most considered faults 

for HVAC systems controlled by the Guideline 36 control 

sequences.  Further improvements are needed to increase the 

diagnosis accuracy, especially for faults that are impacted by the 

boiler operation schedule.   

As mentioned in our previous work in [14], the fault beliefs 

(posterior probabilities) obtained when using a DBN is stronger 

when compared to a static BN. Since a DBN allows the evidence to 

accumulate over time, whereas in a static BN, only evidence from 

a single time step is considered for inference, the fault belief is often 

limited to a lower value for static BN. Similar trends are seen across 

the fault cases evaluated in this paper. 

5. Conclusions 

This paper presents a DBN framework for diagnosing faults of 

HVAC systems that are controlled based on Guideline 36, which 

significantly increases the dynamics and coupling of different 

subsystems and hence adds challenges for fault diagnosis tools. The 

DBN models incorporates the temporal relationship between fault 

nodes in the previous time step to the current fault node using 

temporal conditional probabilities, contrarily to static BNs which 

are time-invariant models. The proposed method is evaluated using 

data from a simulated testbed. Causal relations between faults and 

their corresponding symptoms are developed using expert 

knowledge and observations from the data. Preliminary results 

show that the proposed method shows good potential in diagnosing 

and isolating root fault causes for HVAC system controlled by the 

Guideline 36 control sequences. Further study and improvements 

are needed to increase the diagnosis accuracy.  
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