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Abstract

The main result of this article is that we obtain an elementwise error bound for the Fused
Lasso estimator for any general convex loss function Ã. We then focus on the special
cases when either Ã is the square loss function (for mean regression) or is the quantile loss
function (for quantile regression) for which we derive new pointwise error bounds. Even
though error bounds for the usual Fused Lasso estimator and its quantile version have been
studied before; our bound appears to be new. This is because all previous works bound
a global loss function like the sum of squared error, or a sum of huber losses in the case
of quantile regression in Padilla and Chatterjee (2021). Clearly, element wise bounds are
stronger than global loss error bounds as it reveals how the loss behaves locally at each
point. Our element wise error bound also has a clean and explicit dependence on the
tuning parameter » which informs the user of a good choice of ». In addition, our bound is
nonasymptotic with explicit constants and is able to recover almost all the known results
for Fused Lasso (both mean and quantile regression) with additional improvements in some
cases.

Keywords: Generalized Fused Lasso, Nonparametric Quantile Regession, Total Variation
Denoising, Pointwise Risk Bounds, Adaptive Risk Bounds, Nonasymptotic Risk Bounds,
Law of Iterated Logarithm.

1. Introduction

Fused Lasso or (1D) Total Variation Denoising is arguably one of the most fundamen-
tal signal processing methods and is a basic tool for a vast array of data analysis prob-
lems. The literature studying the statistical accuracy of the Fused Lasso method is vast;
see Mammen and van de Geer (1997), Harchaoui and Lévy-Leduc (2010), Dalalyan et al.
(2017),Lin et al. (2016, 2017),Ortelli and van de Geer (2018), Ortelli and van de Geer (2021),
Guntuboyina et al. (2020), Ortelli and van de Geer (2021), Padilla and Chatterjee (2021)
to name a few. In this paper, we revisit this issue and take a closer look at the statistical
error of the Fused Lasso estimator with a general convex loss function. Specifically, given a
data vector y * R

n, we study the following estimator for a tuning parameter » g 0,
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»̂ = arg min
»*R

n
∑

i=1

Ã(yi 2 »i) + »
n21
∑

i=1

|»i 2 »i+1|, (1)

where Ã : R ³ R is a given convex function. Obviously, different choices of Ã yield different
estimators. The most popular choice of Ã is the square function Ã(x) = x2

2 which corresponds
to the usual Fused Lasso or the 1D Total Variation Denoising estimator. In this paper, we
will also be interested in the quantile regression version of Fused Lasso where Ã is the
quantile check function defined as

Ã(x) =

{

Ç |x|, if x g 0

(12 Ç)|x|, if x < 0
(2)

where Ç is any fixed quantile level between 0 and 1.

1.1 Informal Theorem and Proof Strategy

Throughout the paper, we focus on the case when the true signal »7 is piecewise constant
with an unknown number of pieces and unknown changepoints. The main result of this
paper is a general theorem giving pointwise error bounds for a certain transformation of
»̂i 2 »7i for any 1 f i f n; see Theorem 1. To the best of our knowledge, such a theorem
handling a general loss function Ã and providing pointwise error bounds for Fused Lasso is
new. We then apply this theorem to the particular cases of quantile and mean regression.
For example, for the particular case of mean regression, our bound can be written informally
as

Theorem 1 (Informal) Fix any i such that 1 f i f n. Let di denote the distance of i to
the nearest change point of »7 and li denote the length of the constant piece of »7 containing
i. With high probability, we have

|»̂i 2 »7i | .
1:
di

+
1

»
+

»

li
.

Here, the . notation hides certain log log factors.

This bound reveals a few things:

1. With a theoretical choice of » =
:
li one obtains a Õ( 1:

di
) rate of convergence for

|»̂i 2 »7i |. This means that within any level set of »7, for most points in the interior,
the rate of convergence is Õ( 1:

li
). Note that an oracle who knows the the level set

of »7 containing the index i would just estimate by the mean within this block and
would incur a rate of convergence exactly O( 1:

li
) as well.

2. At the boundary of the level sets the rate of convergence can be bad. For instance,
at the change points themselves, the above bound gives a Õ(1) rate of convergence.
This is validated by our simulations where we indeed find that the TVD estimator is
inconsistent at the true change points.
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3. Consider the typical and realistic case where the lengths of all the k pieces of »7

are comparable up to a constant factor; equivalently each of the lengths are roughly
O(n/k). In this case, the optimal choice of » reduces to Õ(

√

n/k) which is what
is recommended in the existing literature. Under this choice, squaring the bound
we get Õ(1/di) which when summed over all i gives the mean squared error bound
Õ(k/n) log n rate which is known to be unimprovable for any given k g 1. This is how
one can recover existing MSE bounds from our bound.

For a general Ã function and in particular quantile regression; we obtain a similar bound
as in Theorem 1 except that the left hand side of our bound is a certain transformation
of |»̂i 2 »7i |. This transformation can be thought of as the natural loss function to measure
error in our problem. If one desires, one can invert this transformation to get a bound on
»̂i 2 »7i which is what we have carried out for quantile regression; see Section 4.

The proof of Theorem 1 relies on a few high level steps which we mention here for the
convenience of the reader.

1. Reduction to one piece: Fix any i * [1 : n]. Consider the constant piece of »7; say
[e : l] containing i. The Fused Lasso solution »̂i is a function of the entire data vector
y. However, Lemma 7 shows that it is possible to bound »̂i in terms of only the data
ye:l in the block [e : l]. This is perhaps the most crucial observation facilitating our
proof. This makes it possible to analyze each constant piece of »7 separately.

2. Using subgradient information for a constant piece: Reducing attention to
the constant piece [e : l] containing the index i as in above, Lemma 7 then uses
appropriately chosen subgradient information at the optima »̂ to derive a bound on
»̂i.

3. Bound averages over intervals uniformly by a nonasymptotic law of iterated
logarithm: The bound given by Lemma 7 can be expressed in terms of a maximum
of a sum/average of i.i.d random variables over all possible intervals containing i. We
then use a nonasymptotic law of iterated logarithm to further bound this term. This
is carried out in Proposition 10.

1.2 Related Work

The literature on total variation penalized estimators and Fused Lasso is quite vast; e.g.
see Rudin et al. (1992); Tibshirani et al. (2005); Steidl et al. (2006); Tibshirani and Wang
(2008); Rinaldo (2009) and references therein. The estimation error of 1D total variation
denoising or Fused Lasso has been well-studied in a variety of papers. These works analyze
the convergence rate of the mean squared error 1

n

∑n
i=1(»̂i 2 »7i )

2 as n ³ >.
One of the earlier works in this area, Mammen and Geer (Mammen and van de Geer,

1997, Theorem 9), obtain rates of convergence for a least-squares estimator penalized by
a continuous version of total variation of the k-th derivative of the regression function
(locally adaptive regression splines). When k = 1, this estimator reduces to the continuously
penalized version of the Fused Lasso estimator. In particular, for k = 1, Mammen and Geer
establish a rate of O(n22/3), which is the minimax rate in the space of functions of bounded
total variation Donoho and Johnstone (1994). This work turned out to be a precursor to
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the study of Trend Filtering estimators (discretely penalized version of locally adaptive
regression splines), Kim et al. (2009) Tibshirani (2014), Tibshirani (2020) of general orders,
of which the Fused Lasso is a special case.

There has been quite a lot of work recently on establishing a fast rate (with a near para-
metric rate of convergence O(K/n)) for the usual mean regression version of Trend Filtering
when the true underlying signal »7 is assumed to be piecewise constant/polynomial (actually
discrete spline) withK change points, see Harchaoui and Lévy-Leduc (2010), Dalalyan et al.
(2017), Lin et al. (2016, 2017), Ortelli and van de Geer (2018), Ortelli and van de Geer (2021),
Guntuboyina et al. (2020). The quantile regression version of Trend Filtering has been stud-
ied a lot less. Recently, Padilla and Chatterjee (2021) has established a similar fast rate
bound for quantile trend filtering.

All the above mentioned existing works analyze the asymptotic rate of a global loss
such as mean squared error. Secondly, these methods only work with a specific choice of Ã.
There is no existing result which gives a unified treatment for any convex loss function Ã
and gives pointwise error bounds. In this paper we attempt to fill this gap in the literature
by establishing a nonasymptotic upper bound of the elementwise loss |»̂i 2 »7i |, which is a
much more precise characterization of the estimation errors. In addition, our bound can
be applied to any choice of convex loss function Ã. Our elementwise bound also implies
tight bounds for the global loss: our global loss bound on the quantile fused lasso estimator
improves over the current best result and our global loss bound on the fused lasso estimator
is slightly worse than the current best result by a factor of log n. More detailed comparisons
of our bounds with existing ones in the literature are given in Sections 4, 5.

There is another strand of results on Trend Filtering which establishes slow rates, e.g the
Fused Lasso attains the O(n22/3) rate for bounded variation functions. For example, slow
rate for a general rth order trend filtering estimator has been shown in Tibshirani (2014)
which imply that it is minimax rate optimal for the set of functions whose r-th derivative
is of bounded variation. We do not focus on slow rates in this paper. We note that once
fast rates are available, slow rates will naturally follow from an oracle risk bound known
for Fused Lasso; e.g see Theorem 3.4 in Ortelli and van de Geer (2021). Similar oracle risk
bounds should be proveable for Quantile Regression which we leave for future work.

1.3 Outline

The rest of this paper is structured as follows. In Section 2, we state our main result in
Theorem 1. We then give a complete proof of Theorem 1 in Section 3. In Section 4, we
focus on the Quantile Fused Lasso estimator and use Theorem 1 to derive new and improved
bounds. Similarly, in Section 5, we focus on the usual Fused Lasso estimator and explore
consequences of Theorem 1. Detailed comparisons of our bounds with existing ones in the
literature are given in both Section 4 and Section 5.
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2. A General Bound

2.1 Notations

Let Ã : R ³ R be a convex function. A standard fact about convex functions is that the left
and right derivatives exist at all points. We denote the left and right derivative function of
Ã by Ã22 and Ã2+. Both Ã22 and Ã2+ are non decreasing functions on R.

We denote the set of positive integers at most n by [1 : n] for any positive integer n. For
any vector » * R

n, using standard terminology, we term the corresponding penalty term in
the objective function in (1) as its total variation denoted by

TV (») =
n21
∑

i=1

|»i 2 »i+1|.

In this paper, we follow (Wainwright, 2019, Definition 2.2) and say that a random
variable X is sub-Gaussian with parameter Ã, if E[e»(X2E[X])] f eÃ

2»2/2 for all » * R.

2.2 A General Elementwise Estimation Error Bound

We now state a general elementwise error bound for the fused lasso estimator defined in (1).
Suppose the observations {yi}ni=1 are generated from

yi = »7i + ëi, 1 f i f n, »7i , yi, ëi * R, (3)

where {ëi}ni=1 represents the noise and {»7i }ni=1 is a piecewise constant mean sequence with
K pieces. Then there exists changepoints {nk}Kk=1 such that 1 = n1 < n2 < · · · < nK < n
and for any 1 f k f K, »7nk

= »7nk+1 = · · · = »7nk+121,. Throughout the paper, we let
nK+1 = n+ 1 for simplicity of notation.

Assumption A: The errors ëi are i.i.d with common distribution D such that Ã2+(ëi2t)
and Ã22(ëi 2 t) are sub-Gaussian random variables with parameter Ã for any t * R.

We now introduce the natural loss function in our problem. Define the functions L+, L2 :
R ³ R

+ as follows:
{

L+(t) = Eë>D Ã2+(ë2 t)

L2(t) = Eë>D Ã22(ë2 t).

We are now ready to state our general element-wise estimation error bound.

Theorem 1 [General Elementwise Error Bound]

Let »̂ denote the fused lasso estimator defined in (1) when y = »7 + ë is the input data.
Suppose Assumption A holds. Fix any i * [1 : n]. Then the following is true for any
· * (0, log 2/e):

1. Pr
(

L+(»̂i 2 »7i ) f 2Bi,·

)

f
(

1 + 24
(log 2)2

)

·2,

2. Pr
(

L2(»̂i 2 »7i ) g Bi,·

)

f
(

1 + 24
(log 2)2

)

·2,

5
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where the number Bi,· > 0 is defined as

Bi,· = 4Ã

û

ý

√

log log 2max(3, di)

max(3,di)
+

√

log 1
·

di

þ

ø+4Ã2 log log(2mk(i))+log 1
·

»
+
2
√

mk(i)Ã2 log 1
·+2»

mk(i)
.

(4)
Here, we define the positive integer k(i) * [1 : K] such that the i-th point lies in the k(i)-th
constant piece of »7, i..e,, nk(i) f i f nk(i)+1, and di = min(i + 1 2 nk(i), nk(i)+1 2 i) is
its distance to the nearest change point. Moreover, mk(i) denotes the length of the constant
piece of »7 which contains i.

We now make some remarks explaining and discussing the above theorem.

Remark 2 As we will show subsequently, for both the mean regression and the quantile
regression case, the Ã function will satisfy the subgaussianity assumption in Assumption

A on the random variables Ã2+(ë2 t) and Ã22(ë2 t) under natural assumptions on the error
random variable ë. In general, if Ã is lipschitz (true for quantile regression) then Ã2+, Ã

2
2 are

bounded and thus automatically subgaussian without any tail decay assumptions on ë itself.
In such cases, the above theorem holds for arbitrary heavy tailed ë, a point discussed more
in Section 4.

Remark 3 Theorem 1 says that the functions L+ and L2 are the natural loss functions (to
measure the performance of »̂) in our setup, in the sense that with these loss functions one
can write such a unifying and general bound for any Ã satisfying Assumption A. Due to
the possible non symmetry of the convex function Ã around 0, we need both the loss functions
L+ and L2 to capture the deviation of »̂ from »7 on both sides.

Remark 4 Operationally, the above theorem also gives an upper or lower bound on any
particular element »̂i 2 »7i as we now explain. The first assertion in Theorem 1 says that
with high probability the event {L+(»̂i 2 »7i ) g 2Bi,·} holds. Since L+ is a monotone non
increasing function and further, suppose it is strictly monotone in a neighborhood around
0, then we can invert L+ locally and thus we can rewrite the above event as {(»̂i 2 »7i ) g
(L+)21 (2Bi,·)}. Since Bi,· will typically be a very small number and (L+)21(0) = 0 (true
for both mean and quantile regression), then (L+)21 (2Bi,·) will also be a small number.

Thus, by inverting L+, we can get a lower bound on »̂i2 »7i . By a similar logic, by inverting
L+, one can obtain an upper bound on »̂i 2 »7i .

Remark 5 For ease of interpretation the reader can read B·,i as a sum of three terms
1:
di
+ 1

» +
»

mk(i)
. This reveals that the dependence of the error »̂i2»7i on the local structure of

»7 around »7i is explicit. In particular, this dependence is only through di, the distance of i
to the nearest change point of »7 and mk(i), the length of the constant piece of »7 containing
i. The dependence of the bound on the tuning parameter » is also clean and explicit.

Remark 6 Another notable aspect of the bound given in the above theorem is that all the
constants are explicit and small. This makes our bound truly nonasymptotic.
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3. Proof of the General Bound

3.1 An intermediate optimization problem and its elementwise estimation
error

We first present an important intermediate lemma that concerns the optimization problem
(10). Compared with the objective function in (1), the objective function in this optimiza-
tion problem is similar with two additional terms |»12a| and |»m2 b| for any arbitrary real
numbers a, b. In particular, Lemma 7 is completely deterministic and establishes a subset
inclusion relation.

Lemma 7 Fix a data vector y * R
m. For any two real numbers a, b, consider the solution

to the m dimensional optimization problem

»̃(a,b) = arg min
»*Rm

G(a,b)(»), (5)

where

G(a,b)(») =

m
∑

i=1

Ã(yi 2 »i) + » (|»1 2 a|+ |»m 2 b|+ TV (»))

and Ã : R ³ R is convex. Then we have for any i * [1 : m] and any ³ g 0,

{

sup
a,b*R

»̃
(a,b)
i g ³

}

¦
{

#s, t : 1 f s f i f t f m, z1(s, t) g 0
}

(6)

{

inf
a,b*R

»̃
(a,b)
i f 2³

}

¦
{

#s, t : 1 f s f i f t f m, z2(s, t) f 0
}

. (7)

where

z1(s, t) =

ù

ü

ú

ü

û

∑t
j=s Ã

2
+(yj 2 ³)2 2», if s 6= 1 and t 6= m

∑t
j=s Ã

2
+(yj 2 ³), if s 6= 1, t = m or s = 1, t 6= m

∑t
j=s Ã

2
+(yj 2 ³) + 2», if s = 1 and t = m

and

z2(s, t) =

ù

ü

ú

ü

û

∑t
j=s Ã

2
2(yj 2 ³) + 2», if s 6= 1 and t 6= m

∑t
j=s Ã

2
2(yj 2 ³), if s 6= 1, t = m or s = 1, t 6= m

∑t
j=s Ã

2
2(yj 2 ³)2 2», if s = 1 and t = m

Remark 8 A notable aspect of the above deterministic lemma is that the events or sets in
the right hand side of (41) and (42) do not depend on a, b. This fact plays a key role in our
overall analysis.

Proof [Proof of Lemma 7]
Let us fix any a, b * R. We will drop the superscript (a, b) notation within this proof to

reduce notational clutter.
Fix i * [1 : m]. First, we define s, t as follows: s f t are integers, and [s, t] is the

largest interval containing i such that »̃j is greater or equal to »̃i for all j * [s, t]. Note that
this interval is always non empty as it always contains i. This definition also implies that
»̃s21 < »̃i if s 6= 1, and »̃t+1 < »̃i if t 6= m.
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Secondly, for any · > 0 let us define a · perturbation of »̃, denoted by »̃2 and defined as

»̃2j =

{

»̃j 2 ·, if j * [s, t],

»̃j, if j 6* [s, t].

For all j * [s : t],

lim
·³0+

Ã(yj 2 »̃2j)2 Ã(yj 2 »̃j)

·
= Ã2+(yj 2 »̃j). (8)

Let us denote the m+ 2 dimensional vector (a, »̃1, . . . , »̃m, b) by [a : »̃ : b]. Similarly, we
use the notation [a : »̃

2

: b] to denote the vector where we concatenate a and b to both ends
of »̃

2

.
Since »̃s21 < »̃i if s 6= 1 and »̃t+1 < »̃i if t 6= m, for a small enough · > 0 one can check

that the following holds:

TV ([a : »̃
2

:b])2TV ([a : »̃ :b])=

ù

ü

ü

ü

ü

ú

ü

ü

ü

ü

û

22·», if s 6= 1 and t 6= m

22·»+ 2·»I(»̃1 < a), if s = 1, t 6= m

22·»+ 2·»I(»̃m < b), if s 6= 1, t = m

22·»+ 2·»I(»̃1 < a) + 2·»I(»̃m < b), if s = 1 and t = m.

Therefore, using the last two displays and the fact that »̃ is the optimizer, we can
conclude that

0 f lim
·³0+

G({»̃2j}mj=1)2G({»̃j}mj=1)

·
(9)

=

ù

ü

ü

ü

ü

ú

ü

ü

ü

ü

û

∑t
j=s Ã

2
+(yj 2 »̃j)2 2», if s 6= 1 and t 6= m

∑t
j=s Ã

2
+(yj 2 »̃j)2 2»+ 2»I(»̃1 < a), if s = 1, t 6= m

∑t
j=s Ã

2
+(yj 2 »̃j)2 2»+ 2»I(»̃m < b), if s 6= 1, t = m

∑t
j=s Ã

2
+(yj 2 »̃j)2 2»+ 2»I(»̃1 < a) + 2»I(»̃m < b), if s = 1 and t = m.

Finally, observe that when »̃i g ³, the convexity of Ã and »̃j g »̃i g ³ for j * [s : t]
imply that Ã2+(yi 2 »̃j) f Ã2+(yi 2³). The statement in (41) now follows. The proof of (42)
is similar.

We will now state the following lemma, which is a restatement of the finite version of
law of iterated logarithm from (Jamieson et al., 2014, Lemma 1) (by setting ë = 1 in their
notation):

Lemma 9 [Anytime Finite Sample Version of Law of Iterated Logarithm]
Let X1,X2, · · · be a sequence of i.i.d. sub-Gaussian random variables with mean µ and

scale parameter Ã. For any · * (0, log 2/e) we have

Pr

( >
⋂

t=1

{

24Ã

√

t
(

log log(2t) + log
1

·

)

f
t
∑

s=1

Xs 2 tµ f 4Ã

√

t
(

log log(2t) + log
1

·

)

})

g1 2 6
·2

(log 2)2
.
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Proof [Proof of Theorem 1]
The true signal »7 has K constant pieces which are intervals of the form [n1, n2 2 1],

[n2, n321], · · · , [nK , n]). In this proof we will analyze each piece separately. Let us focus on
any one of the K pieces; say the kth piece or in other words, the interval Ik = [nk, nk+121].
Without loss of generality, we can assume that »7Ik = 0 * R

mk . This is because adding a

constant to the data vector y changes the solution »̂ by the same constant.
Now we make the observation that »̂Ik can be written as a solution of the following

optimization problem:

{»̂i}i*Ik = arg min
{»i}i*Ik

∑

i*Ik
Ã(yi 2 »i) + »

(

|»nk
2 »̂nk21|+ |»nk+1

2 »̂nk+1+1|+ TV ({»i}nk+121
i=nk

)
)

Here we are implicitly assuming that this piece is not the first or the last one. However,
as the proof will reveal, the same conclusion can also be reached for the first and the last
piece.

Now note that the above display is the same optimization problem as in (5) with a =
»̂nk21 and b = »̂nk+1+1. Since Lemma 7 gives a bound on the entries of the solution of such
an optimization problem uniformly over a, b we will now use Lemma 7. Infact, Lemma 7
along with Lemma 9 actually implies the following result which we state as a proposition.

Proposition 10 For any vector y * R
m and for any two real numbers a, b consider the

solution to the m dimensional optimization problem

»̂(a,b) = arg min
»*Rm

G(a,b)(»), (10)

where

G(a,b)(») =

m
∑

i=1

Ã(yi 2 »i) + » (|»1 2 a|+ |»m 2 b|+ TV (»))

and Ã : R ³ R is convex.
Suppose the input data vector y = »7+ ë is a random vector where the true signal vector

»7 = 0 * R
m and the noise vector ë satisfies Assumption A.

For any i * [1 : m] and any · > 0, define the number

B·,i = 4Ã

û

ý

√

log log 2max(3, »i)

max(3, »i)
+

√

log 1
·

»i

þ

ø+4Ã2 log log(2m) + log 1
·

»
+
2
√

mÃ2 log 1
· + 2»

m
,

where »i = min(i,m2 i+ 1).
For any ³ > 0, if L+(³) f 2B·,i then

Pr( sup
a,b*R

»̂
(a,b)
i > ³) f

(

1 +
24

(log 2)2

)

·2. (11)

Similarly, if L2(³) g B·,i then

Pr( inf
a,b*R

»̂
(a,b)
i < 2³) f

(

1 +
24

(log 2)2

)

·2. (12)
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We now claim that the above proposition can be directly applied to »̂Ik to obtain the
desired bounds in Theorem 1 by plugging in m = mk(i) and »i = di in the expression for
B·i .

For example, to show that the first assertion in Theorem 1 follows from (11), we need to
ensure that there exists an ³ > 0 such that L+(³) f 2B·,i. This is because if such an ³ > 0
exists then for this ³ we have the event inclusion relation (since L+ is non increasing),

{L+( sup
a,b*R

»̂
(a,b)
i ) < L+(³) f 2B·,i} ¢ { sup

a,b*R
»̂
(a,b)
i > ³}.

The above display along with (11) implies that

Pr
(

L+(»̂i 2 »7i ) f 2Bi,·

)

f
(

1 +
24

(log 2)2

)

·2

which is the same as the first assertion in Theorem 1.
Now note that the existence of an ³ > 0 such that L+(³) f 2B·,i. is automatically

guaranteed if 2B·,i g infx*R L+(x). In the complementary case when 2B·,i < infx*R L+(x)

then Pr
(

L+(»̂i 2 »7i ) f 2Bi,·

)

= 0 and hence the desired bound is anyway true. The

second assertion can be proved similarly.

Finally it remains to prove Proposition 10.
Proof [Proof of Proposition 10] We will prove (11) and (12) can then be shown similarly.
Within this proof, we will fix any arbitrary a, b * R and show the final bound which is free
from a, b. We will also drop the superscript notation and simply denote »̂(a,b) by »̂.

By our assumption, yi = ëi. Within this proof, let us denote the partial sums of the
random variables Ã2+(yi 2 ³) within any interval [s, t] ¢ [1 : m] by

z(s, t) =
t
∑

i=s

Ã2+(yi 2 ³).

By the set inclusion relation in (6) in Lemma 7, we can now write for any i * [1 : m]
and any ³ > 0,

Pr
(

»̂i > ³
)

f p1 + p2 + p3 + p4, (13)

where p1, p2, p3, p4 are probabilities of events given by

p1 =Pr
(

#s 6= 1, t 6= m : s f i f t, z(s, t) g 2»
)

p2 =Pr
(

#t g i : z(1, t) g 0
)

p3 =Pr
(

#s f i : z(s,m) g 0
)

p4 =Pr
(

z(1,m) g 22»
)

.

We will now use Lemma 9 to bound these probabilities. Fix · > 0. Let us also denote
µ = E Ã2+(y1 2 ³) = L+(³).

10
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First, let us consider p3. Let us define the event

E
(1)
· =

i
⋂

s=1

{

z(s,m) * [(m2 s+ 1)µ ± 4Ã

√

(m2 s+ 1)
(

log log(2(m2 s+ 1)) + log
1

·

)

]

}

.

By Lemma 9 we have

Pr(E
(1)
· ) g 12 6

·2

(log 2)2
.

It is not hard to check that if

µ f 2T1, where T1 = 4Ã max
1fsfi

√

log log(2(m2 s+ 1)) + log 1
·

m2 s+ 1
(14)

then the event E
(1)
· + {#s f i : z(s,m) g 0} cannot happen. Therefore, if µ f 2T1 then

p3 = Pr
(

#s f i : z(s,m) f 0
)

f Pr
(

{#s f i : z(s,m) f 0} + (E
(1)
· )c

)

f 6
·2

(log 2)2
.

Similarly, we can conclude that p2 f 6(·/ log 2)2 if

µ f 2T2, where T2 = 4Ã max
iftfm

√

log log(2t) + log 1
·

t
. (15)

We will now bound p1. Define the events
{

A = {#t : i f t f m, z(i, t) g »}
B = {#s : 1 f s < i, z(s, i 2 1) g »}.

Now we can use a union bound argument and note that

p1 f Pr(A) + Pr(B).

We will now bound Pr(A) and Pr(B) can then be bounded similarly.
Let us define the event

E· =

m
⋂

t=i

{

z(i, t) * [(t2 i+ 1)µ± 4Ã

√

t
(

log log(2(t2 i+ 1)) + log
1

·

)

]

}

.

Lemma 9 says that

Pr(E·) g 12 6
·2

(log 2)2
.

This implies in particular that if

µ f 2 max
t*[i:m]

(

4Ã

√

log log(2(t2 i+ 1))2 log ·

(t2 i+ 1)
2 »

(t2 i+ 1)

)

then the event A + E· cannot happen.

11
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Similarly, if

µ f 2 max
s*[1:(i21)]

(

4Ã

√

log log(2s)2 log ·

s
2 »

s

)

then the event B + E· cannot happen.
Combining the last two displays lets us conclude that if µ f 2T3, where

T3 = max
s*[1:m]

(

4Ã

√

log log(2s)2 log ·

s
2 »

s

)

then

p1 f Pr(A) + Pr(B) = Pr(A +Ec
·) + Pr(B +Ec

·) f 2Pr(Ec
·) f 12

·2

(log 2)2
. (16)

Finally, an application of Hoeffding’s inequality for sum of independent subgaussian
random variables (Wainwright, 2019, Proposition 2.5) implies that

p4 f exp
(

2 (2»2mµ)2

2mÃ2

)

.

Equivalently, p4 f ·2 if

µ f 2T4, where T4 =
2
√

mÃ2 log 1
· + 2»

m
. (17)

Combining (13) with the derived bounds on p1, p2, p3, p4 in (14)-(17), we have

Pr
(

»̂i > ³
)

f (·2 +
24

(log 2)2
·2)

if

2 µ g max(T1, T2, T3, T4). (18)

At this point, we further bound

T1f4Ã

û

ýmax
1fsfi

√

log log(2(m2s+1))

m2 s+ 1
+

√

log 1
·

m2 i+ 1

þ

øf 4Ã

û

ý

√

log log 2max(3, »i)

max(3, »i)
+

√

log 1
·

»i

þ

ø ,

(19)
where »i = min(i,m2 i+ 1).

The above inequality uses the fact that for the function f(x) = log log 2x
x , f(1) f f(2) f

f(3), and f(x) is nonincreasing for x g 3, since f 2(x) =
1

log(2x)
2log log(2x)

x2 and 1
log(2x) 2

log log(2x) < 0 for x g 3.
A similar reasoning gives the same upper bound to T2:

T2 f 4Ã

û

ý

√

log log 2max(3, »i)

max(3, »i)
+

√

log 1
·

»i

þ

ø ,

12
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Finally, we can bound

T3 f max
1fsfm

(

4Ã

√

log log(2m) + log 1
·

s
2 »

s

)

f 4Ã2 log log(2m) + log 1
·

»
,

where we used the fact that maxxg1

(

u:
x
2 v

x

)

f u2

4v for any positive numbers u, v.

We can now define Bi,· to be the sum of these bounds on T1, T2, T3 along with T4 itself.
This finishes the proof.

4. Quantile Fused Lasso Regression

In the quantile regression set up, the data vector y follows the model (3) where the noise
{ëi}ni=1 variables are i.i.d. sampled from a distribution D with CDF F whose Ç2th quantile
is uniquely 0. Then the piecewise constant sequence »7 becomes a unique Ç quantile sequence
of the data y. We record this formally as an assumption on the error variables.

Assumption Q1: The error variables ëi are i.i.d with distribution D and CDF F such
that F (0) = Ç and F is continuously strictly increasing at Ç.

We want to study the Fused Lasso estimator defined in (1) with Ã(x) chosen to be the
Ç -th quantile loss function:

Ã(x) =

{

Ç |x|, if x g 0

(12 Ç)|x|, if x < 0,
. (20)

We note that for this choice of Ã, we have Ã2+(x) = ÇI(x g 0) 2 (1 2 Ç)I(x < 0) and
Ã22(x) = ÇI(x > 0) 2 (1 2 Ç)I(x f 0). Since Ã2+ and Ã22 are bounded within an interval of
length 1, Ã2+(ëi 2 t) and Ã22(ëi 2 t) are automatically sub-Gaussian random variables with
parameter 1/2 for any t * R (Wainwright, 2019, Example 2.4, Exercise 2.4). Therefore,
Assumption A, required for Theorem 1 to hold, is automatically satisfied here without
any further assumptions on the error distribution D.

Before proceeding further, we characterize the loss functions L+, L2 in this setup. For
the CDF F , we denote its left limit function by F2;

F2(t) = lim
s±t

F (s).

Lemma 11 Under Assumption Q1, for any t > 0 we have,

L+(t) = Eë>D Ã2+(ë2 t) = 2Pr(0 f ë < t) = F2(0) 2 F2(t).

Similarly, for any t < 0 we have,

L2(t) = Eë>D Ã22(ë2 t) = 2Pr(t < ë f 0) = F (t)2 F (0).

Proof [Proof of Lemma 11] By assumption Q1, 0 is the unique Ç -th quantile and we have

Eë>D Ã2+(ë) = Ç Pr(ë g 0)2 (12 Ç) Pr(ë < 0) = 0.

13
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For t > 0,

Eë>D Ã2+(ë2 t) = Eë>D Ã2+(ë2 t)2 Eë>D Ã2+(ë)

=
(

Ç Pr(ë g t)2 (12 Ç) Pr(ë < t)
)

2
(

Ç Pr(ë g 0)2 (12 Ç) Pr(ë < 0)
)

=2 Ç Pr(0 f ë < t)2 (12 Ç) Pr(0 f ë < t) = 2Pr(0 f ë < t).

The proof for the case t < 0 is similar.

A direct application of Theorem 1 gives the following pointwise bound for the quantile
regression version of Fused Lasso.

Theorem 12 (Assumptionless Bound for Quantile Regression) Fix 0 < Ç < 1. Let
»̂ denote the fused lasso estimator defined in (1) when y = »7 + ë is the input data and Ã is
the function given in (20). Suppose Assumption Q1 holds. Fix any i * [1 : n]. Then the
following is true for any · * (0, log 2/e):

1. Pr
(

(F2(»̂i 2 »7i )2 F2(0) g Bi,·

)

f
(

1 + 24
(log 2)2

)

·2,

2. Pr
(

F (0) 2 F (»̂i 2 »7i )) g Bi,·

)

f
(

1 + 24
(log 2)2

)

·2,

where the number Bquantile
i,· > 0 is defined as

Bquantile
i,· =2

û

ý

√

log log 2max(3, di)

max(3, di)
+

√

log 1
·

di

þ

ø+
log log(2mk(i)) + log 1

·

»
+

√

mk(i) log
1
·+2»

mk(i)
.

Proof The result follows from applying Theorem 1 with Ã = 1/2.

Remark 13 As discussed in Section 4.2, the above result appears to be new for Quantile
Fused Lasso. The reason we state such a result in terms of the CDF of the error distribution
is that it allows us to present a clean result which holds for all entries 1 * [1 : n] with an
explicit bound involving the tuning parameter » and the signal parameters under minimal
assumptions.

Remark 14 We stress on the fact that only Assumption Q1 is needed on the distribution
of the error variables for the above theorem to hold. This assumption ensures that 0 is a
unique Ç th quantile of the errors and consequently, »7 is a unique Ç th quantile sequence
of the data vector y. Clearly, such an assumption is necessary to make sense of estimating
the quantiles. So, the above theorem holds for all distributions satisfying Assumption Q1,
including arbitrarily heavy tailed errors.
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4.1 Bounds on »̂i 2 »7i

Theorem 12 gives a pointwise bound in terms of the CDF F of the distribution of the errors.
Under a slightly stronger assumption than Assumption Q1 (stated below), it is possible
to translate the above bound to a bound on the pointwise error »̂i 2 »7i . The results here
are necessarily slightly messier than in Theorem 12 because of the need to invert F.

Assumption Q2: The error variables ëi are i.i.d with distribution D and CDF F such
that F (0) = Ç , and there exists a constant L > 0 such that for any x * [21, 1],

|F (x) 2 F (0)| g L|x|. (21)

Remark 15 Assumption Q2 is stronger than in the sense that it implies Assump-

tion Q1. This assumption is a local linear growth assumption on the true cdf function
F in a neighborhood of 0. This assumption is pretty mild, since any distribution which
has density (w.r.t to Lebesgue measure) which is bounded away from 0 on the compact in-
terval [21, 1], will automatically satisfy this assumption. Therefore, this assumption does
not prevent the error to have very heavy tails, like the Cauchy distribution. This type of
an assumption is commonly made in the quantile regression literature; see Assumption 1
in Padilla and Chatterjee (2021), Condition 2 in He and Shi (1994) and Condition D.1
in Belloni and Chernozhukov (2011).

Under this assumption, we may establish the following result on the elementwise error
bound for fused quantile lasso, which follows from Theorem 12. We defer the proof to the
appendix.

Corollary 2 (Elementwise error bound for quantile regression, under Assumption Q2)
Suppose that Assumption Q2 holds. Fix any i * [1 : n]. If

Bquantile
i,· f L, (22)

then the following is true for any · * (0, log 2/e):

Pr

(

|»̂i 2 »7i | f
Bquantile

i,·

L

)

g 12 2
(

1 +
24

(log 2)2

)

·2. (23)

Corollary 2 is an elementwise bound for the elementwise error |»̂i 2 »7i | which holds for
all entries i * [1 : n] satisfying assumption (22). The next lemma 16 gives a sufficient
condition which shows that this assumption holds for most indices, and as a result, (23)
holds for most indices as well. The proof of this lemma is deferred to the Appendix.

Lemma 16 Let mmin = mink=1,··· ,K mk represents the length of the shortest level set of »7.
Then, if

mmin g 36

L2
log

1

·
,
6(log log(2mmin) + log 1

· )

L
f » f L

12
mmin, (24)

then the assumption (22) holds for all i such that

di g max

(

3,
124

L4
,
122

L2
log

1

·

)

, (25)

i.e., the locations that are separated from the change points by a certain distance.

15



Zhang and Chatterjee

Remark 17 Lemma 16 implies that (22) holds for at least n 2 2K max
(

3, 12
4

L4 ,
122

L2 log 1
·

)

indices. If L = O(1), · = O(1), K = o(n), then (22) holds for almost all 1 f i f n as
n ³ >.

Next, we present a bound on the sum of squared errors in Corollary 3. The proof is based on
the fact that the elementwise bound in (23) holds for most indices as discussed in Lemma 16,
and a separate argument (see Lemma 22 and its proof) that establishes a crude uniform
bound on the estimation errors over all 1 f i f n of the following form

min
1fifn

»7i 2 1 f min
1fifn

»̂i f max
1fifn

»̂i f max
1fifn

»7i + 1.

The point is that, we only need to use the above crude bound on a few indices where (23)
does not hold. The detailed proof and algebraic calculations are deferred to the Appendix.

Corollary 3 (Sum of squared estimation errors for quantile regression) Under As-

sumption Q2, assuming that

mmin g 18

L2
log

n

·
,
3(2 log log(2n) + log n

· )

L
f » f L

12
mmin,

then the sum of squared errors is bounded above with high probability for all · * (0, (log 2/e)2),

Pr

(

n
∑

i=1

|»̂i 2 »7i |2 f
24

L2

(

2 log log 2n + log
n

·

)(

K +

K
∑

k=1

log
mk

2

)

+
3n

L2

(

4
log log2(2n) + log2 n

·

»2

)

+
6K

L2
log

n

·
+

24»2

L2

K
∑

k=1

1

mk
+ 2Kmax

(

3,
124

L4
,
122

2L2
log

n

·

)

V 2

)

g 12 4
(

1 +
24

(log 2)2

)

·,

(26)

where V = max1fifn »
7
i 2min1fifn »

7
i .

Remark 18 The above bound consists of several terms and maybe hard to read at a first
glance. It is instructive to consider the special case, when L = O(1), · = o(1), and the
length of all intervals are in the same order, i.e., m1 = · · · = mK = O(n/K) which will
hold for any realistic »7 and noise distribution. In this case, the estimation error becomes
(26) becomes

n
∑

i=1

|»̂i 2 »7i |2 f O

(

K log n log
n

K
+ n

log2 n

»2
+

»2K2

n
+K log nV 2

)

. (27)

Furthermore, if we set » = log n
√

n/K, our bound in (27) becomes

n
∑

i=1

|»̂i 2 »7i |2 f O
(

K log n(log
n

K
+ V 2)

)

. (28)

Remark 19 We have made a conscious effort to keep explicit constants in the bound (26).
This is to highlight the fact that our proof technique yields truly nonasymptotic bounds with
explicit dependence on the tuning parameter » and V. It may be possible to obtain better
constants but that is too delicate an issue and is beyond the scope of this paper.
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4.2 Comparison with existing works on the estimation errors

As far as we are aware, the only result (before this work) giving error bounds for Quantile
Fused Lasso appear in Padilla and Chatterjee Padilla and Chatterjee (2021) who investigate
the risk underAssumption A and also assuming that the total variation of {»7i }ni=1 is O(1),
which implies that V = O(1) in our result. In particular, (Padilla and Chatterjee, 2021,
Theorem 4) shows that for a particular choice of » defined up to an unspecified constant,
see (30), the risk bound measured in Huber loss is bounded by

n
∑

i=1

min(|»̂i 2 »7i |, |»̂i 2 »7i |2) f CK log(
en

K
) log n logK (29)

with high probability.
We now give some points of comparison.

• The LHS of our bound (28) is stronger in the sense that it bounds the sum of squared
errors instead of the Huber loss as in (29).

• The RHS of our bound (28) is smaller than the RHS of (29) by a factor of logK.

• Our bound depends explicitly on » for a large range of », thereby informing the user
about a good choice of ». In contrast, their result only holds for a particular choice of
» given below for some unspecified constant c

» = cmax

(

K log n logK log n
K

V 7 ,

√

n

K
log n

)

. (30)

Here V 7 represents the total variation of the sequence {»7i }ni=1 and is assumed to be
O(1) (which is also stronger than our assumption that V = O(1)).

• The dependence on V is also explicit in our bound and our bound holds for any V.
In fact, it shows that the choice of » need not depend on V as the term involving V
in (26) does not involve ». In contrast, the bound in (29) only holds when V 7 = O(1)
and their choice of » needs to depend on V 7.

• The bound in (26) is truly nonasymptotic, while Padilla and Chatterjee (2021) estab-
lish an asymptotic bound.

An improved bound on the sum of squared errors
Actually, we can prove a slightly stronger version of (26) where the term 24»2

L2

∑K
k=1

1
mk

is replaced with
144»2

L2

∑

·k21 6=·k

1

mk
,

where ·k = sign(»7nk
2 »7nk21

) is the direction of the jump of the piecewise constant mean
seuence from the k-the segment to the k + 1-th segment, and we let ·0 = ·K = 0.

The proof of this fact is deferred to Section 7.2 in the Appendix. This fact improves
our result in the following way. Note that a minimum length condition ensuring that each
mi = O(n/k) is needed for (27) to hold. However, this fact allows (27) to hold under a
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less stringent minimum length assumption where we only need mi = O(n/k) for i such that
·i 6= ·i21. For example, if »7 is monotone we only need m1 and mK to have length at least
O(n/K). This fact that one only requires a minimum length condition on these local optima
(of »7) blocks (plus the first and the last block) is known from before; see Guntuboyina et al.
(2020), Ortelli and van de Geer (2018). Therefore, our result is in accordance with this fact.

5. Mean Fused Lasso Regression

Our general theorem yields pointwise error bounds which are new even for the well studied
usual Fused Lasso estimator which performs mean regression. In the mean regression set
up, the data vector y follows the model (3) where the noise {ëi}ni=1 variables are i.i.d.
sampled from a sub-Gaussian distribution with parameter Ã and zero mean. Then the
piecewise constant sequence »7 becomes a unique mean sequence of the data y. We record
this formally as an assumption on the error variables.

Assumption Q3: The error variables ëi are i.i.d with distribution D such that it is
sub-Gaussian distribution with parameter Ã and has zero mean.

We want to study the Fused Lasso estimator defined in (1) with Ã(x) = x2/2. For this
choice of Ã, Ã2+(x) = Ã22(x) = x, and L+(t) = L2(t) = 2t. Then a direct application of
Theorem 1 gives the following pointwise bound for the mean regression version of Fused
Lasso.

Theorem 4 (Elementwise error bound for mean regression) Let »̂ denote the fused
lasso estimator defined in (1) when y = »7 + ë is the input data and Ã(x) = x2/2. Suppose
Assumption Q3 holds. Fix any i * [1 : n]. Then the following is true for any · *
(0, log 2/e):

Pr
(

|»̂i 2 »7i | > Bi,·

)

f 2
(

1 +
24

(log 2)2

)

·2

where the number Bi,· > 0 is defined as in (4).

Remark 20 We bring attention to the fact that Theorem 4 is clean, holds for all entries
i * [1 : n] and is easily interpretable.

As before, summing up the pointwise bound above for all 1 f i f n, we have the
following bound on the sum of squared errors:

Corollary 5 (Sum of squared estimation errors for mean regression) Suppose As-

sumption Q3 holds. Then the sum of squared errors is bounded above with high probability:
for all · * (0, n(log 2/e)2),

Pr

(

n
∑

i=1

|»̂i 2 »7i |2 f 192Ã2
(

log log 2n+
1

2
log

n

·

)(

K +

K
∑

k=1

log
mk

2

)

+ 24nÃ4
( log log2(2n) + 1

4 log
2 n

·

»2

)

+ 12KÃ2 log
n

·
+ 24»2

K
∑

k=1

1

mk

)

g 12 4

(

1 +
24

(log 2)2

)

·.

(31)
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Proof Following the proof of (51),

n
∑

i=1

B2
i,· f 192Ã2(log log 2n+ log

1

·
)(K +

K
∑

k=1

log
mk

2
) (32)

+ 24nÃ4

(

log log2(2n) + log2 1
·

»2

)

+ 24KÃ2 log
1

·
+ 24»2

K
∑

k=1

1

mk
. (33)

holds with probability 12n
(

1+ 24
(log 2)2

)

·2. Replacing · with
√

·/n, the corollary is proved.

Remark 21 For ease of readability, we can again consider the main case of interest, when
· = O(1) and the length of all intervals are in the same order, i.e., m1 = · · · = mK =
Θ(n/K), (31) becomes

n
∑

i=1

|»̂i 2 »7i |2 f O

(

KÃ2 log n log
n

K
+ nÃ4 log

2 n

»2
+

»2K2

n

)

. (34)

Furthermore, when we set » = log n
√

n/K, we obtain

n
∑

i=1

|»̂i 2 »7i |2 f O
(

K log n log
n

K

)

(35)

5.1 Comparison with existing works on the estimation errors

Here we do a quick literature survey of existing results on the sum of squared error of fused
lasso under the setting that {ëi}ni=1 are i.i.d. sampled from N(0, Ã2). As mentioned before,
to the best of our knowledge pointwise error bounds were not available before this work.

• Lin et al. (2016, 2017) assume that the noises {ëi}ni=1 are i.i.d. sampled from a sub-
Gaussian distribution with parameter Ã = 1. In (Lin et al., 2017, Corollary 1), they
show that for » = (nmmin)

1/4, there exists constants c, C,N that only depend on Ã
such that for all ³ > 1 and n > N ,

Pr

(

n
∑

i=1

|»̂i 2 »7i |2 f ³2cK

(

(logK + log log n) log n+
»2

mmin

)

)

> 12 exp(2C³).

In the supplement of Lin et al. (Lin et al., 2017, (A.10)), it is proved that for
sufficiently large n, there exist constants C, c such that with probability at least
12 exp(2C³),

n
∑

i=1

|»̂i 2 »7i |2 f ³2cK

(

(logK + log log n) log n+
»2

mmin
+

n

»2

)

(36)
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• Guntuboyina et al. Guntuboyina et al. (2020) analyze Fused Lasso along with trend
higher order versions known as Trend Filtering, with the assumption that the noises
are i.i.d. sampled from the Gaussian distribution N(0, Ã2). In (Guntuboyina et al.,
2020, Corollary 2.8), they show

E

n
∑

i=1

|»̂i 2 »7i |2 f CÃ2
(

n∆1 + (»2 »7)2³m

)

(37)

for every » g »7, where »7 is chosen implicitly in (Guntuboyina et al., 2020, (27))
and

∆1 =
K

n
log
(en

K

)

+
³m

K
log
(en

K

)

+

:
³m:
n

,

where ³m =
∑

·k21 6=·k
1
mk

.

• Ortelli and van de Geer (Ortelli and van de Geer, 2018, Corollary 5.6) improve the
bounds in Dalalyan et al. (2017): when » = O(Ã

√

2n log(n/·)), then with probability
12 ·, the estimation error is bounded above by

n
∑

i=1

|»̂i 2 »7i |2 f O

(

Ã2K log(n/·)

(

log
n

K
+

n

mH

))

, (38)

where the mH = K∑K
k=1

1
mk

is the harmonic mean between the distances of jumps, i.e.,

the harmonic mean of nk+1 2 nk for all 1 f k f K.

Comparisons

• Compared with Ortelli and van de Geer (2018), our rate (35) is smaller by removing
the term n/mH .

• Compared with the rate in Lin et al. (2016, 2017) and Guntuboyina et al. (2020), our

rate for the squared error is worse by a factor of
log n

K

logK+log logn and log n respectively.
The reason is that here we are aiming for point wise bounds and then summing up
these pointwise bounds to arrive at a bound for the squared error.

• Our bound depends cleanly and explicitly on the tuning parameter » for a large range
of », while the results of Guntuboyina et al. (2020) and Ortelli and van de Geer (2018)
only hold under an implicit optimal choice of ».

• We establish a truly nonasymptotic explicit bound in (31), while most of the existing
works are asymptotic in the sense that they depend implicitly on unspecified constants
or other unknown problem parameters.

• The main probabilistic part of our proof uses a nonasymptotic law of iterated log-
arithm. Instead, one could also use a cruder argument which applies Hoeffding’s
inequality and a union bound for means of the error random variables over all pos-
sible intervals. This would give slightly worse log factors. Upon observing this, it
is not hard to see that our proof technique can be easily generalized to the setting
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where Ãi are i.i.d. sampled from a non-subgaussian distribution, such as a zero-mean
subexponential distribution. In this case, our estimation on the sum of squared er-
rors would be larger by an order of at most log2 n. Existng proof techniques such
as in Guntuboyina et al. (2020),Lin et al. (2016, 2017) and Ortelli and van de Geer
(2018) are not easily extendable to sub exponential noises to the best of our under-
standing.

An improved bound on the sum of squared errors Similar to the discussion in
Section 4.2, we may replace the term 24»2

∑K
k=1

1
mk

in (31) with

144»2
∑

·k21 6=·k

1

mk
.

As explained before, this makes the minimum length assumption, required for our bound
to be meaningful, less stringent.

6. Discussion

We first summarize our contributions in this paper. We analyzed the fused lasso estimator
with a general convex loss function (1) and established an element-wise upper bound of
the estimation error for the first time. The main advantage of our result is its elementwise
and nonasymptotic nature, and the fact that it can be applied for a general class of convex
functions Ã. The derived elementwise bound imply tight bounds for a global loss as well:
it improves the existing optimal result on quantile fused lasso and recoveres the exising
optimal result on fused lasso up to a logarithmic factor.

Our work here raises a few intriguing follow up questions. The analysis presented here
is valid under a fixed choice of the tuning parameter ». It will be interesting if one can
obtain a data-driven strategy of choosing » and still attain these elementwise error bounds.
Our current element wise error bounds are in terms of some unknown signal parameters.
A natural question is whether these signal parameters can be estimated which would give
a way to obtain finite sample confidence bands for the underlying function. Such elemen-
twise confidence bands are important in application domains such as contextual bandits,
see Chatterjee and Sen (2021).

Our proof technique to analyze Fused Lasso is new. Our main insight is that we can
analyze each constant piece of the true signal separately. We hope that our proof technique
can be useful for several natural extensions of the Fused Lasso estimator, including higher
order trend filtering estimators for which pontwise error bounds are not known yet.

It would also be interesting to examine other versions of the Fused Lasso estimator such
as 2D total variation denoising (Hütter and Rigollet, 2016; Chatterjee and Goswami, 2021),
and the graph fused lasso (Hallac et al., 2015; Tansey and Scott, 2015; Barbero and Sra,
2014). For these extensions, all existing analyses bound a global loss. We hope and expect
that our main strategy of “reduction to one piece” can be applied to establish a nonasymp-
totic elementwise error bound for these more involved settings as well. We leave this for
future work.
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7. Appendix

7.1 Technical proofs

Proof [Proof of Corollary 2] (a) If »̂i 2 »7i >
Bquantile

i,δ

L , then

Pr
(

0 f ë < »̂i 2 »7i
)

g Pr
(

0 f ë f
Bquantile

i,·

L

)

= F
(Bquantile

i,·

L

)

2 F (0) g Bquantile
i,· ,

where the equality follows from the assumption of Pr(ë = 0) = 0 and the last inequality
follows from (21).

Similarly, if »̂i 2 »7i < 2Bquantile
i,δ

L , then

Pr
(

»̂i 2 »7i < ë f 0
)

g F (0)2 F
(

2
Bquantile

i,·

L

)

g Bquantile
i,· .

Combining the above equations with Theorem 12, Corollary 2 (a) is proved.

Proof [Proof of Lemma 16] The first assumption (22) is satisfied when

max

û

ý2

√

log log 2max(3, di)

max(3, di)
, 2

√

log 1
·

di
,
log log(2mk(i))

»
,
log 1

·

»
,

√

mk(i) log
1
·

mk(i)
,

2»

mk(i)

þ

ø f L

6
.

Note that for x g 3, g(x) = x
log log 2x satisfies g(x) g :

x, the above equation and (22) is
satisfied when

di g max

(

3,
124

L4
,
122

L2
log

1

·

)

,
6(log log(2mk(i)) + log 1

· )

L
f » f

mk(i)L

12
,mk(i) g

36 log 1
·

L2

Similarly, the second assumption (39) is independent of the location i, and is satisfied
when

n g 4

L2
log

1

·
, » g 2

L
(log log(2n) + log

1

·
).

Proof [Proof of Corollary 3] We first present a lemma that establishes a uniform upper
bound and lower bound of {»̂i}ni=1. The proof is based on an argument similar to that of
Lemma 7 and Theorem 1.

Lemma 22 Suppose that Assumption Q2 holds. If

Bquantile
uniform,· :=

log log(2n) + log 1
·

»
+

√

log 1
·

n
f L, (39)
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then the following is true for any · * (0, log 2/e):

Pr

(

min
1fifn

»7i 2
1

L
Bquantile

uniform,· f min
1fifn

»̂i f max
1fifn

»̂i f max
1fifn

»7i +
1

L
Bquantile

uniform,·

)

(40)

g12 2
(

1 +
24

(log 2)2

)

·2.

Proof [Proof of Lemma 22] Applying the same argument as in Lemma 7 to the problem
(1), we have that for any i * [1 : n] and any ³ g 0,

{

»̃i g ³
}

¦
{

#s, t : 1 f s f i f t f n, z3(s, t) g 0
}

(41)
{

»̃i f ³
}

¦
{

#s, t : 1 f s f i f t f n, z4(s, t) f 0
}

. (42)

where

z3(s, t) =

ù

ü

ú

ü

û

∑t
j=s Ã

2
+(yj 2 ³)2 2», if s 6= 1 and t 6= n

∑t
j=s Ã

2
+(yj 2 ³)2 », if s 6= 1, t = n or s = 1, t 6= n

∑t
j=s Ã

2
+(yj 2 ³), if s = 1 and t = n

and

z4(s, t) =

ù

ü

ú

ü

û

∑t
j=s Ã

2
2(yj 2 ³) + 2», if s 6= 1 and t 6= n

∑t
j=s Ã

2
2(yj 2 ³) + », if s 6= 1, t = n or s = 1, t 6= n

∑t
j=s Ã

2
2(yj 2 ³), if s = 1 and t = n

We can now write for any i * [1 : n] and any ³ > 0,

Pr
(

»̂i > ³
)

f p21 + p22 + p23 + p24, (43)

where p21, p
2
2, p

2
3, p

2
4 are probabilities of events given by

p21 =Pr
(

#s 6= 1, t 6= m : s f i f t, z(s, t) g 2»
)

= p1

p22 =Pr
(

#t g i : z(1, t) g »
)

p23 =Pr
(

#s f i : z(s,m) g »
)

p24 =Pr
(

z(1,m) g 0
)

.

A similar argument as in Proposition 1 shows that

Pr(»̂i g max
i=1,··· ,n

»7i + ³) f (1 +
24

(log 2)2
)·2, (44)

if ³ > 0 is chosen such that

E Ã22(ë1 2 ³) f 2max(T 2
1, T

2
2, T

2
3, T

2
4) (45)
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for

T 2
1 = max

iftfn

û

ý4Ã

√

log log(2t) + log 1
·

t
2 »

t

þ

ø f max
iftfm

û

ý4Ã

√

log log(2n) + log 1
·

t
2 »

t

þ

ø

f4Ã2 log log(2n) + log 1
·

»
,

similarly,

T 2
2 = max

1fsfi

û

ý4Ã

√

log log(2(n 2 s+ 1)) + log 1
·

n2 s+ 1
2 »

n2 s+ 1

þ

ø f 4Ã2 log log(2n) + log 1
·

»
,

T 2
3 f 4Ã2 log log(2n)+log 1

δ

» (similar to the proof of T3), and

T 2
4 =

√

24nÃ2 log ·

n
= 2Ã

√

log 1
·

n
.

Plug in Ã = 1/2, the upper bound in part (b) is then proved by combining (44), (45), and
the estimations of T 2

1, T
2
2, T

2
3, T

2
4. The lower bound would be proved similarly.

The assumption (39) in Lemma 22 is satisfied when

n g 4

L2
log

1

·
, » g 2(log log(2n) + log 1

· )

L
. (46)

As a result, if n is large and » is well-chosen, this assumption holds.
Combining Corollary 2 with · =

√

·0/n, Lemma 22 with · =
:
·0, Lemma 16, and (46),

we have that when

mmin g 36

L2
log

1
√

·0/n
,
6(log log(2n) + log 1:

·0/n
)

L
f » f L

12
mmin,

then for all
√

·0/n * (0, log 2/e),

Bquantile

uniform,
:
·0

f Bquantile

uniform,
:

·0/n
f L.

As a result, for all
:
·0 * (0, log 2/e), (40) holds with · =

:
·0.

In addition, for I = {1 f i f n : Bquantile

i,
:

·0/n
> L}

|I| f 2Kmax

(

3,
124

L4
,
122

L2
log

1
√

·0/n

)

.

Comining these estimations with (23) and (40), we have that for all
:
·0 * (0, log 2/e),

Pr

û

ý

n
∑

i=1

|»̂i 2 »7i |2 f
n
∑

i=1

(

Bquantile

i,
:

·0/n

L

)2
+ |I|

(Bquantile

uniform,
:
·0

L
+ V

)2

þ

ø g 12 4
(

1 +
24

(log 2)2

)

·0.

(47)
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Considering that |I| f n and Bquantile
uniform,· is a nonincreasing function of ·, a relaxation of (47)

is

Pr

û

ý

n
∑

i=1

|»̂i 2 »7i |2f
n
∑

i=1

(

Bquantile

i,
:

·0/n

L

)2
+2n

(

Bquantile

uniform,
:

·0/n

L

)2
+2|I|V 2

þ

øg124
(

1+
24

(log 2)2

)

·0.

(48)

It remains to estimate
∑n

i=1

(

Bquantile
i,·

)2
. Using (a1 + · · ·+ a6)

2 f 6(a21 + · · ·+ a26), it is

bounded above by

24

(

log log 2max(3, di)

max(3, di)
+

log 1
·

di

)

+6

(

log log2(2mk(i)) + log2 1
·

»2

)

+6
log 1

·

mk(i)
+24

»2

m2
k(i)

(49)

Applying
∑n

i=1
1
n f lnn + 1, we have

∑n
i=1

1
di

f 2
∑K

k=1(log
mk

2 + 1). As a result, the
summation of the first term in (49) over i = 1, · · · , n can be bounded by

48(log log 2n + log
1

·
)(K +

K
∑

k=1

log
mk

2
).

The summation of the third term is 6K log 1
· , and the summation of the fourth term is

24»2
∑K

k=1
1
mk

. Combining these estimations, we have

n
∑

i=1

(

Bquantile
i,·

)2
f 48(log log 2n+ log

1

·
)(K +

K
∑

k=1

log
mk

2
) (50)

+ 6n

(

log log2(2n) + log2 1
·

»2

)

+ 6K log
1

·
+ 24»2

K
∑

k=1

1

mk
. (51)

On the other hand,

(

Bquantile
uniform,·

)2
=
( log log(2n) + log 1

·

»
+

√

log 1
·

n

)2

f3
log log2(2n)

»2
+ 3

log2 1
·

»2
+ 3

log 1
·

n
.

Combining the estimations above with (48) and plug in · =
√

·0/n, we reach the corollary
(in the statement we write · instead of ·0).

7.2 Improved estimation on the sum of squared errors

Following the proof of Theorem 12 and Corollary 2, the term 2»
mk(i)

in Bquantile
i,· comes from

the probability p4 in the proof of Lemma 7. Let k(i)2 and k(i)22 chosen to be the left-most
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and right-most indices such that [»7nk(i)2
, · · · , »7nk(i)

, · · · , »7nk(i)22
] is a monotonic sequence, then

by the properties of k(i)2 and k(i)22, we may consider the intervals [nk(i)2 , nk(i)+1 2 1] and
[nk(i), nk(i)22+1 2 1] separately for the estimation of the upper bounds and lower bounds of

»̂i (instead of the interval of the piecewise constant observations [nk(i), nk(i)+1 2 1] in the
proof of Lemma 7).

Then, the term 2»
mk(i)

in Bquantile
i,· can be replaced with

2

û

ý

»

mleft
k(i)

+
»

mright
k(i)

þ

ø , (52)

where

mleft
k(i) = mk(i)2 +mk(i)2+1 + · · ·+mk(i), mright

k(i) = mk(i) +mk(i)+1 + · · ·+mk(i)22 .

As a result, the term
∑K

k=1
»2

mk
in (26), which is obtained from

n
∑

i=1

(

»

mk(i)

)2

(53)

can be replaced with

n
∑

i=1

û

ý

»

mleft
k(i)

+
»

mright
k(i)

þ

ø

2

f 2
n
∑

i=1

û

ý

(

»

mleft
k(i)

)2

+

û

ý

»

mright
k(i)

þ

ø

2þ

ø . (54)

To simplify (54), let us introduce an auxillary Lemma:

Lemma 23 For any integer K g 1 and any m1, · · · ,mK > 0, we have

m1

(m1 + · · ·+mK)2
+

m2

(m2 + · · · +mK)2
+ · · ·+ mK21

(mK21 +mK)2
+

mK

m2
K

f 3

mk
. (55)

Proof [Proof of Lemma 23] The proof is based on induction. First, the first term of the
LHS of (55) has the upper bound of m1

(m1+···+mK)2
f 2

(m2+···+mK) . Second, we have the

following bound on the sum of the first two terms of the LHS of (55):

2

(m2 + · · ·+mK)
+

m2

(m2 + · · ·+mK)2
f 1

m3 + · · ·+mK
min
x

(

2

(x+ 1)
+

x

(x+ 1)2

)

f 2

m3 + · · · +mK
.

Similarly, the first three terms of the LHS of (55) is bounded by 2
m4+···+mK

. Repeat the
procedure, Lemma 23 is proved.

As for the RHS of (54) squared over all 1 f i f n, we define 1 f k1 < · · · f kl < K to
be the locations of the “change of directions” in the sense that

·1 = · · · = ·k1 6= ·k1+1 = · · · = ·k2 6= ·k2+1 = · · · = ·k3 6= ·k3+1 + · · · .
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Then we have

n
∑

i=1

û

ý

1

mright
k(i)

þ

ø

2

f m1

(m1 + · · ·+mk1)
2
+

m2

(m2 + · · · ,mk1)
2
+ · · ·+ mk1

(mk1)
2

+
mk1+1

(mk1+1 + · · · +mk2)
2
+

mk1+2

(mk1+2 + · · ·+mk2)
2
+ · · ·+ mk2

(mk2)
2
+ · · ·

f3

(

1

mk1

+
1

mk2

+ · · ·+ 1

mkl

+
1

mK

)

,

and similarly,

n
∑

i=1

û

ý

1

mright
k(i)

þ

ø

2

f 3

(

1

m1
+

1

mk1+1
+

1

mk2+1
+ · · · + 1

mkl+1

)

.

As a result, the RHS of (54) is bounded by

6

(

1

m1
+ (

1

mk1

+
1

mk1+1
) + · · ·+ (

1

mkl

+
1

mkl+1
) +

1

mK

)

= 6
∑

1fkfK:·k21 6=·k

1

mk

and the improved bound is obtained by combining it with (53) and (54).
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Álvaro Barbero and Suvrit Sra. Modular proximal optimization for multidimensional total-
variation regularization. nov 2014. URL https://arxiv.org/abs/1411.0589.

Alexandre Belloni and Victor Chernozhukov. 31-penalized quantile regression in high-
dimensional sparse models. The Annals of Statistics, 39(1):82–130, 2011.

Sabyasachi Chatterjee and Subhajit Goswami. New risk bounds for 2d total variation
denoising. IEEE Transactions on Information Theory, 67(6):4060–4091, 2021.

Sabyasachi Chatterjee and Subhabrata Sen. Regret minimization in isotonic, heavy-tailed
contextual bandits via adaptive confidence bands. arXiv preprint arXiv:2110.10245, 2021.

Arnak S. Dalalyan, Mohamed Hebiri, and Johannes Lederer. On the prediction perfor-
mance of the lasso. Bernoulli, 23(1):552–581, 02 2017. doi: 10.3150/15-BEJ756. URL
http://dx.doi.org/10.3150/15-BEJ756.

David L Donoho and Iain M Johnstone. Ideal spatial adaptation by wavelet shrinkage.
Biometrika, 81(3):425–455, 09 1994. ISSN 0006-3444. doi: 10.1093/biomet/81.3.425.
URL https://doi.org/10.1093/biomet/81.3.425.

Adityanand Guntuboyina, Donovan Lieu, Sabyasachi Chatterjee, and Bodhisattva Sen.
Adaptive risk bounds in univariate total variation denoising and trend filtering. The
Annals of Statistics, 48(1):205–229, 02 2020. doi: 10.1214/18-AOS1799. URL
https://doi.org/10.1214/18-AOS1799.

27



Zhang and Chatterjee

David Hallac, Jure Leskovec, and Stephen Boyd. Network lasso: Clustering and op-
timization in large graphs. KDD : proceedings. International Conference on Knowl-
edge Discovery & Data Mining, 2015:387–396, aug 2015. ISSN 2154-817X. doi:
10.1145/2783258.2783313.
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