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Abstract
By closely following a construction by Ganelius, we use Faber rational functions to
derive tight explicit bounds on Zolotarev numbers. We use our results to bound the
singular values of matrices, including complex-valued Cauchy matrices and Vander-
monde matrices with nodes inside the unit disk. We construct Faber rational functions
using doubly connected conformal maps and use their zeros and poles to supply shift
parameters in the alternating direction implicit method.
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1 Introduction

The Zolotarev number from rational approximation theory is given by [35]:

Zn(E, F) = inf
sn∈Rn,n

supz∈E |sn(z)|
inf z∈F |sn(z)| , n ≥ 0, (1.1)
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Constructive Approximation

Fig. 1 We mainly focus on the situation when E and F are disjoint and compact sets in the complex plane.
Here, � : � → A is the conformal map that transplants � onto an annulus A = {z ∈ C : 1 < |z| < h}
with h = exp(1/cap(E, F)). The location ω0 ∈ C is the pole of the inverse map � = �−1

where Rn,n denotes the set of rational functions of type (n, n) and E, F ⊂ C are
disjoint sets in the complex plane. Due to the infimum over Rn,n in (1.1), we know
that Zn(E, F) ≤ supz∈E |sn(z)|/ inf z∈F |sn(z)| for any sn ∈ Rn,n . In this paper, we
closely follow a construction by Ganelius [12–14] to derive Faber rational functions
and use them to derive explicit upper bounds on Zn(E, F)when E and F are such that
C\F is open and simply connected and E is a compact, simply connected subset of
C\F . The Faber rational functions are rational analogues of the Faber polynomials [10,
22]. A formal definition and a list of relevant properties can be found in [14, Sec. 3].
Throughout this paper, we assume that the boundaries of E and F are rectifiable Jordan
curves. To be concrete, the main situation we focus on is when:

(A1) E and F are disjoint, simply connected, compact sets (see Fig. 1).

In Sect. 5, we discuss two other types of sets E and F : (A2)C\F is a bounded domain
containing E (see Fig. 7) and (A3) F is an unbounded domain and E is a compact
domain contained in C\F (see Fig. 8).

The Zolotarev number, Zn(E, F), has applications for explicitly bounding the sin-
gular values of matrices [6], solving Sylvester matrix equations [23], the computation
of the singular value decomposition of a matrix [25], and the solution of generalized
eigenproblems [19]. It is often important to have a tight explicit bound as well as the
zeros and poles of a rational function that attains the bound. Explicit and tight bounds
on Zn(E, F) are available in the literature when (i) E and F are disjoint intervals
[6, Sec. 3.2] and (ii) E and F are disjoint disks [32]. Faber rationals offer a general
approach for obtaining explicit bounds.

It is immediate that Z0(E, F) = 1 and Zn+1(E, F) ≤ Zn(E, F) for n ≥ 0. As a
general rule, the number Zn(E, F) → 0 rapidly as n → ∞ if E and F are disjoint,
compact, and well-separated. More precisely, for disjoint sets E and F , a lower bound
on Zn(E, F) as well as its asymptotic behavior is known [15]:

123



Constructive Approximation

Zn(E, F) ≥ h−n, lim
n→∞ (Zn(E, F))1/n = h−1, h = exp

(
1

cap(E, F)

)
,

(1.2)

where cap(E, F) is the condenser capacity of a condenser with plates E and F
[29, Thm. VIII. 3.5]. Our goal is to derive explicit upper bounds on Zolotarev numbers
of the form:

Zn(E, F) ≤ KE,Fh
−n, n ≥ 0,

where KE,F is a constant that depends on the geometry of E and F . When E and
F are disjoint disks, it is known that KE,F can be taken to be 1 [32] (see Sect. 2)
and when E and F are disjoint real intervals, KE,F can be taken to be 4 [6]. To the
authors’ knowledge, the best previous explicit upper bound for sets satisfying one of
(A1)–(A3) is Zn(E, F) ≤ 4000n2h−n [12].

1.1 The Total Rotation of a Domain

Our upper bound on Zn(E, F) involves the so-called total rotation of the domains E
and F [11, 28].

Definition 1.1 Let E ⊂ C be a simply connected domain with a rectifiable Jordan
curve boundary. The total rotation of E is defined as:

Rot(E) = 1

2π

∫
∂E

|dθ(s)| , (1.3)

where θ(s) for s ∈ (0, 1) is the angle of the boundary tangent of E (which exists for
almost every s ∈ (0, 1)).

If θ(s) can be extended to a function of bounded variation to s ∈ [0, 1], then Rot(E) <

∞. For any simply connected domain, we note that Rot(E) ≥ 1.When E is a polygon,
2πRot(E) equals the sum of the absolute values of E’s exterior angles. Moreover,
when E is a convex domain, Rot(E) = 1 [2, p. 6].

1.2 Main Theorem

We are now ready to state our main theorem.

Theorem 1.2 (Main Theorem) Let E, F ⊂ C be disjoint, simply connected, compact
sets with rectifiable Jordan boundaries. Then, for h = exp(1/cap(E, F)), we have

Zn(E, F) ≤ (2Rot(E) + 2)(2Rot(F) + 2)h−n + O(h−2n), as n → ∞,

where Rot(E) and Rot(F) are the total rotation of the boundaries of the domains E
and F, respectively. If, in addition, E and F are convex sets, then we simply have
Zn(E, F) ≤ 16h−n + O(h−2n) as n → ∞.
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The rational function that we use to derive our upper bound in (1.4) below is
the so-called Faber rational function associated with the sets E and F (see (3.8)).
Theorem 1.2 shows that the lower bound on Zn(E, F) in (1.2) is sharp up to a constant.
In particular, for disjoint, simply connected, compact sets E, F ⊂ C with rectifiable
Jordan boundaries, we have

1 ≤ lim sup
n→∞

Zn(E, F)

h−n
≤ (2Rot(E) + 2)(2Rot(F) + 2).

We do not believe that the upper bound of (2Rot(E) + 2)(2Rot(F) + 2) is sharp and
highlight in our derivation where there might be possible improvements.

The actual upper bound that we derive is an inelegant expression that is nevertheless
explicit and computable. With the same assumptions as in Theorem 1.2, we have

Zn(E, F) ≤
⎛
⎜⎝

Mn(E,F)Mn(F,E)

1−h−2n + 32nMn(E,F)h−n

(1−Cnh−n)
2
(1+Cnh−n)

max
{
0, 1 − Mn(E,F)Mn(F,E)

1−h−2n h−n − Mn(E,F)
1−Cnh−n h−n − h−2n

}
⎞
⎟⎠ h−n

(1.4)

for any n > N0. Here, N0 = max{1 + 1/(h − 1), log(x1)/ log(h)}, Mn(E, F) =
2Rot(E)+2h−nRot(F)+2h−n +2,Cn = 1+Mn(E, F)/(1−h−2n). The expression
in the denominator is positive for n > log(x1)/ log(h), where x1 is the largest real root
of a seventh-degree polynomial with coefficients depending on Rot(E) and Rot(F);
in the case where E and F are convex, x1 ≈ 29.9 (see Lemma A.1).

Note that as n → ∞, the denominator in (1.4) takes the limiting value of 1 . In
particular, the bound in (1.4) has the correct geometric decay to zero as n → ∞. If
the bound in (1.4) turns out to > 1 (which it may for small n), then one is welcome
to take Zn(E, F) ≤ 1 instead. Figure 2 illustrates how the bounds behave for convex
sets with varying values of h.

1.3 Conformal Mapping of Doubly Connected Sets

The construction of Faber rationals requires conformal maps of doubly connected sets.
Adomain� ⊂ C is said to bedoubly connected if between any twopoints in� there are
twodistinct paths, i.e., twopaths that cannot be smoothly deformed into eachother.Any
doubly connected domain, except for regions conformally equivalent to a punctured
disk and a punctured plane, is conformally equivalent to A = {z ∈ C : 1 < |z| < h} for
some h > 1 [9, Ch.1, sec.7]. When E, F ⊂ C are as in Theorem 1.2, � = C\(E ∪ F)

is doubly connected and can be conformally mapped to an annulus, i.e.,

� : � → A, A = {z ∈ C : 1 < |z| < h}. (1.5)

Since conformal maps preserve the logarithmic capacity of two plate condensers and
the capacity of A is 1/ log(h) [20], the outer radius in (1.5) is h = exp(1/cap(E, F))

(see (1.2)). If E and F are disjoint polygons, then the conformal map, �, can be
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Fig. 2 Bounds on Zn(Eα,−Eα) with Eα = {z ∈ C : Re(z) ∈ [−.4 − α, .4 − α], Im(z) ∈ [−.6, .6]},
where α = .45 (blue), .6 (orange), 1 (purple), 3 (green). As α grows, h = exp(−1/cap(Eα, −Eα)) grows,
and Zn(Eα, −Eα) decays more rapidly. The solid lines are the bounds from Theorem 1.2, combined with
the trivial bound Zn(E, F) ≤ 1. The dotted lines are the lower bounds of Zn(Eα, −Eα) ≥ h−n in (1.2).
The dots are computed by first constructing the Faber rational function rn(z) associated with (Eα, −Eα)

and then computing the maxz∈Eα |rn(z)|/minz∈−Eα |rn(z)| (Color figure online)

constructed as a doubly connected Schwarz–Christoffel mapping [21]. The inverse
conformal map is denoted by � = �−1 : A → �.

1.4 Paper Summary

This paper is structured as follows: In Sect. 2, we briefly describe the simplest case
when the conformal map � is a Möbius transform. In Sect. 3, we describe the general
construction of a Faber rational function associated with sets E and F satisfying the
assumptions in Theorem 1.2. In Sect. 4, we bound Faber rational functions to obtain
the explicit upper bound on Zn(E, F) given in (1.4). We extend our results to cases
(A2) and (A3) in Sect. 5. In Sect. 6, we provide numerical details, and we provide
some examples of applications in Sect. 7.

2 When8 is a Möbius Transformation

Suppose that E, F ⊂ C are such that there exists a Möbius transform � : � → A
in (1.5). Since �(z) = (az + b)/(cz + d) with ad − bc 
= 0, we find that � is a type
(1, 1) rational function. One can immediately verify that �n ∈ Rn,n , |�(z)| ≤ 1 for
z ∈ E , and |�(z)| ≥ h for z ∈ F . This means that Zn(E, F) = h−n as

h−n ≤ Zn(E, F) ≤ supz∈E |�n(z)|
inf z∈F |�n(z)| ≤ h−n,
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z0−z0

2 2
− −1.2

1.2

Fig. 3 Aphase plot of the type (5, 5)Faber rational function on twodisjoint disks, E = {z ∈ C : |z−1| ≤ .7}
and F = −E . Since there is a Möbius transformation from C\(E ∪ F) to an annulus, Zn(E, F) is known
explicitly

where the lower bound is from (1.2). Moreover, the rational function that attains the
value of Zn(E, F) is known because it is simply given by �n . (An alternative proof
of the optimality of �n for Zn(E, F) is the near-circularity criterion [32].)

When E and F are disjoint disks, there is a Möbius transform that maps � to an
annlulus [32]. For example, suppose that E = {z ∈ C : |z − z0| ≤ η0} and F = −E
with 0 < η0 < z0 and z0, η0 ∈ R. Then, the Möbius transform

�(z) = z0 + η0 + c

z0 + η0 − c

z − c

z + c
, c =

√
z20 − η20

maps � = C\(E ∪ F) onto the annulus A = {z ∈ C : 1 < |z| < h} with h =
(z0 + c)/(z0 − c). Therefore, we know that Zn(E, F) = (z0 − c)n/(z0 + c)n , and this
value is attained by the rational function rn(z) = �n(z) (see Fig. 3).

3 Constructing Faber Rational Functions

When � in (1.5) is not a Möbius transform, we find that �n /∈ Rn,n . Therefore, �n

is not immediately useful for bounding Zn(E, F). However, we still expect �n to
be O(hn) near F and O(1) near E . Thus, the idea is to construct a rational function
from �n by “filtering" �n using the Faber operator associated with � = �−1 [2] (see
Fig. 4). The rational function obtained from �k after applying this “filtering" process
is called the Faber rational associated with E and F . The Faber operator was first
introduced as a means for constructing polynomial approximations known as Faber
polynomials [10, 22].

We now describe how one constructs a Faber rational, which closely follows the
procedure in [12]. There are twomain steps: (1) constructing a function, Rn(z), defined
on C\F with precisely n zeros, and (2) constructing a rational function, rn(z), of type
(n, n). Both steps are accomplished by taking Cauchy integrals along the boundaries
of E and F .
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Fig. 4 Left: A plot of the conformal map � = �−1, where � maps C\E ∪ F to the annulus A = {z ∈ C :
1 < |z| < h}. Right: The magnitude of the degree (9, 9) Faber rational function is plotted on a logarithmic
scale. As n increases, the Faber rational function grows increasingly larger on F and smaller on E , making
it useful for bounding the Zolotarev number Zn(E, F)

3.1 Step 1: Constructing a function Rn(z)with n Zeros Near E

Let γ : [0, 1] → � be a positively oriented parameterization of the boundary E . We
can define the following “filtered" function inside E :

Rn(z) := 1

2π i

∫
γ

�n(ζ )dζ

ζ − z
, z ∈ E . (3.1)

The holomorphic function Rn(z) is initially defined inside E . If it is possible to extend
� homomorphically to the whole interior of E , then Rn(z) = �n(z) there, but this
occurs only in exceptional cases. Intuitively one might expect Rn(z) to behave like a
degree n polynomial whose zeros are all in E . This is because Rn(z) has boundary
values on ∂E close to those of �n , which are the same as the function zn on the
boundary of the unit circle.We show this usingVillat’s strategy for solving theDirichlet
problem in an annulus [1, Section 56].

Lemma 3.1 Let E, F ∈ C be sets satisfying the assumptions in Theorem 1.2. For
n ≥ 1, the function in (3.1) satisfies

sup
z∈E

|Rn(z)| ≤ Mn(E, F)

1 − h−2n , Mn(E, F) = 2(Rot(E) + h−nRot(F) + 1 + h−n),

where Rot(E) and Rot(F) are defined in (1.3), and h is defined in (1.2).

Proof Let � : A → � be the inverse conformal map to �, which is meromorphic
inside A with a simple pole at ω0 = �(∞) ∈ A (see Fig. 1). For any z ∈ E , we can
use a change of variables to write

Rn(z) = 1

2π i

∫
γ

�n(ζ )dζ

ζ − z
= 1

2π i

∫
|ω|=ρ

ωn� ′(ω)dω

�(ω) − z
, 1 ≤ ρ ≤ h,

One can take ρ = 1 and ρ = h since the integrand extends continuously to the
boundary by Caratheodory’s theorem [18, Thm. 13.2.3]. We note that the logarithmic
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derivative d
dω

log(�(ω) − z) has a simple pole at ω0 with residue −1. If we set
Gz(ω) = ω� ′(ω)/(�(ω) − z), then Gz(ω) can be written as the sum of a term of the
form (ω − ω0)

−1 and a doubly infinite convergent Laurent series.
Setting

Gz(ω) = −ω0

ω − ω0
+

∞∑
k=−∞

ak(z)ω
k,

we have

ak(z) = 1

2π i

∫
|ω|=ρ

1

ωk+1

(
Gz(ω) + ω0

ω − ω0

)
dω

for any 1 < |ρ| < h with |ρ| 
= |ω0|.
Now, we observe that

1

2π i

∫
|ω|=1

1

ωk+1

ω0

ω − ω0
dω =

{
−ω−k

0 , k ≥ 0,

0, k < 0,

and

1

2π i

∫
|ω|=h

1

ωk+1

ω0

ω − ω0
dω =

{
ω−k
0 , k ≥ 0,

2ω−k
0 , k < 0,

because when integrating over the outer boundary of the annulus there is a nonzero
residue at 0 for k < 0 and a residue at ω0 for all k.

Now consider n > 0 and compare a−n(z) to an(z):

a−n(z) + an(z) = 1

π

∫ 2π

0
Re

(
Gz(e

iθ )
)
einθdθ − ω0

−n,

a−n(z)h
−n + an(z)h

n = 1

π

∫ 2π

0
Re

(
Gz(he

iθ )
)
einθdθ + 2h−nωn

0 + hnω0
−n .

Since Rn(z) = a−n(z), we find that for z ∈ E we have

Rn(z) = 1

π(1 − h−2n)

∫ 2π

0
einθ

(
Re(Gz(e

iθ )) − h−nRe(Gz(he
iθ ))

)
dθ

− (2h−2nωn
0 + 2ω0

−n)

1 − h−2n .

The geometric significance of this integrand is revealed by the identity:

Re
(
Gz(e

iθ )
)

= Im
(
iGz(e

iθ )
)

= d

dθ
Im

(
log(�(eiθ ) − z)

)
= d

dθ
Arg(�(eiθ ) − z).
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Therefore, we find that

∣∣∣∣
∫ 2π

0
einθRe

(
Gz(e

iθ )
)
dθ

∣∣∣∣ ≤
∫ 2π

0

∣∣∣∣ ddθ Arg
(
�(eiθ ) − z

)∣∣∣∣ dθ ≤ 2πRot(E),

(3.2)

where the last inequality follows since the total variation in argument around a
closed curve as measured from a point not on the curve is bounded by total rotation
[11, (1.6.14)]. Similarly, the same integral as (3.2) with integrand einθRe(Gz(heiθ ))
is bounded by 2πRot(F). The upper bound on supz∈E |Rn(z)| follows by noting that
1 < |ω0| < h.

Now we address the contribution of the pole term

pn = −2
h−2nωn

0 + ω0
−n

1 − h−2n .

Note that since 1 < |ω0| < h, we have that

|h−2nωn
0 | < h−n, |ω0

−n| < 1.

The ω0
−n term gives the larger contribution to Rn(z) and could be bounded by a

quantity decaying exponentially if |�(∞)| is bounded away from 1. For the statement
of the lemma, we take the simplest bound |pn| ≤ (2(1 + h−n))/(1 − h−2n). �


Lemma 3.1 simplifies when E and F are, in addition, convex sets because we have
Rot(E) = Rot(F) = 1. We obtain

sup
z∈E

|Rn(z)| ≤ 4(1 + h−n)

1 − h−2n , n ≥ 0. (3.3)

Previously, it was shown by Ganelius that supz∈E |Rn(z)| ≤ 4e2n [12]. For most
practical n and h, the bound in Lemma 3.1 is sharper than the bound in [12]. For
example, for convex sets E, F , the bound in (3.3) is an improvement over 4e2n for
all n ≥ 1 if h > e2/(e2 − 1) ≈ 1.157. Similarly, when h > 1.072, the bound is an
improvement for n ≥ 2, and for any n ≥ 3 when h > 1.047.

There are opportunities to improve the bound in Lemma 3.1 as (3.2) can be weak,
especially when h ≈ 1. The bound in (3.2) ignores potential cancellation in the
integral

∫
einθ d

dθ
Arg(� − z)dθ . However, as the point z approaches the boundary

of E , the function d
dθ

Arg(� − z) tends to a delta function centered at the value of θ

corresponding to the limit on the boundary, which is π if the boundary point is smooth.
For this reason, we suspect that one can improve the bound in Lemma 3.1 by a factor
of about 2.

By analytic continuation, the definition of Rn can now be extended to� = C\(E ∪
F). Fix z ∈ �. First, we continuously deform the contour γ to a contour γ ′ that is
contained in � and encircles z. By continuously deforming the contour γ ′ back to γ
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plus a path traversed in both directions extending to an arbitrarily small circle around
z, we find that

Rn(z) = 1

2π i

∫
γ ′

�n(ζ )dζ

ζ − z
= �n(z) + 1

2π i

∫
γ

�n(ζ )dζ

ζ − z
, z ∈ �.

Here, the term �n(z) appears because it is the average value of the Cauchy integral
over an arbitrarily small circle around z. Since |�n(z)| < hn for z ∈ �, we find that
Rn is a bounded function in �.

Since the Cauchy transform of a continuous function on a closed contour can be
used to define two distinct holomorphic functions—one in the interior of the region
bounded by the contour and the other on the exterior—we can write

C+
∂E (�n)(z) = 1

2π i

∫
γ

�n(ζ )dζ

ζ − z
, z inside of γ,

C−
∂E (�n)(z) = 1

2π i

∫
γ

�n(ζ )dζ

ζ − z
, z outside of γ,

where the subscript indicates that the integral is taken over the boundary of E . There-
fore, the function Rn(z) can be expressed as

Rn(z) =
{
C+

∂E (�n)(z), z ∈ E,

�n(z) + C−
∂E (�n)(z), z ∈ C\E ∪ F).

(3.4)

To further emphasize the interpretation that Rn(z) is a filtered version of �n(z), we
show that Rn(z) is relatively close to �n(z) for z ∈ �.

Lemma 3.2 Let E, F ∈ C be sets satisfying the assumptions in Theorem 1.2, and let
� = C\(E ∪ F). Then, Rn(z) in (3.4) satisfies

sup
z∈�

∣∣Rn(z) − �n(z)
∣∣ ≤ 1 + sup

z∈E
|Rn(z)| .

Proof From the definition of Rn(z) for z ∈ � (see (3.4)), we just need to bound
|C−

∂E (�n)(z)|. Note that C−
∂E (�n)(z) is a bounded analytic function outside of γ whose

maximum modulus is attained on the curve γ . By the Sokhotski–Plemelj theorem
[20, (14.1-9)], we find that C−

∂E (�n)(z0) = C+
∂E (�n)(z0) − �n(z0) for z0 ∈ ∂E .

Therefore, |C−
∂E (�n)(z)| ≤ supz∈E |Rn(z)| + 1. �


Note that the bound in Lemma 3.2 is the worst possible based on the maximum
difference attained for z ∈ ∂E . The bound can be improved for z sufficiently far from
E using the decay of C−

∂E (�n)(z).
Lemma 3.2 allows us to show that all the zeros of Rn lie in E or within a small

neighborhood of E . Rouché’s theorem says that the winding numbers of �n and Rn

around a closed curve � will be equal, provided that |�n(z) − Rn(z)| < |�n(z)| for
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E F

i

−i

−1.5 1.5Re(z)

Im
(z
)

Fig. 5 Left: A plot of the conformal map � = �−1, where � maps C\E ∪ F to the annulus A = {z ∈ C :
1 < |z| < h}. Right: The magnitude of the type (9, 9) Faber rational function is plotted on a logarithmic
scale. As n increases, the Faber rational function grows increasingly larger on F and smaller on E , making
it useful for bounding the Zolotarev number Zn(E, F)

z on � [18, Theorem 5.3.1]. By Lemma 3.2, the theorem applies on any closed curve
� in � winding once around E such that 1 + supz∈E |Rn(z)| < |�n(z)| for z on �.
Such a curve � can always be found when the bound 1+ supz∈E |Rn(z)| < hn , say, by
taking the image of � to be an appropriate level set of |�n|. The map �n has winding
number precisely n around � by definition (though it is not defined in E) and hence so
does Rn . Since Rn is analytic inside �, it has n zeros (counting multiplicities) inside
�. Moreover, the same reasoning shows that Rn has no additional zeros outside of �

in � (Fig. 5).
At this point, we have not attempted to address whether or under what conditions

the roots of Rn actually lie in the domain E . A paper of Goodman [16] gives an
example of a domain and a Faber polynomial with a zero that lies outside the convex
hull of the domain. We believe that if E is a convex set, then the zeros of Rn(z) lie in
E , analogous to Faber polynomials [22, Thm. 2].

3.2 Step 2: Constructing a Faber Rational Function

While Rn has precisely n zeros, it is typically not a rational function. We must “filter"
Rn again to obtain a rational function. Let 0 < δ < 1, and let η : [0, 1] → � be a
curve that is close to the boundary of F with |�(η(t))| ≥ h − δ for t ∈ [0, 1] and
winds around F once in the counterclockwise direction.1 By Lemma 3.2, Rn is close
to �n on η, and |�n| is close to hn on η, so make sure that δ is sufficiently small to
avoid encircling any zeros of Rn . Therefore, we can assume that 1/Rn is analytic on
the curve η (see (3.4)). We can construct analytic functions inside and outside of η

(the inside of η contains F) as

1 The requirement that δ > 0 is a technical necessity as Rn(z) is defined for z ∈ C\F . Later, we take
δ → 0 so conceptually one may prefer to think of η as a parameterization of the boundary of F .
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Fig. 6 The contour � in the
proof of Lemma 3.3

E F

z

z1

z2

zK

η

C+
η (1/Rn)(z) = 1

2π i

∫
η

dζ

Rn(ζ )(ζ − z)
, z inside of η,

C−
η (1/Rn)(z) = 1

2π i

∫
η

dζ

Rn(ζ )(ζ − z)
, z outside of η.

(3.5)

It is possible to give an exact expression for C−
η (1/Rn)(z) in terms of Rn(z) for z

outside of η.

Lemma 3.3 Let E, F ∈ C be sets satisfying the assumptions in Theorem 1.2 and Rn(z)
be defined as in (3.4). If z1, . . . , zK are the distinct zeros of Rn(z) with multiplicities
m1 + · · · + mK = n, then for z outside of η we have

C−
η (1/Rn)(z) = − 1

Rn(z)
+

K∑
k=1

mk∑
j=1

ak− j

(z − zk) j
+ 1

Rn(∞)
, (3.6)

where ak− j is the z
− j coefficient of the principal part of the Laurent series for Rn(z)

about zk .

Proof The proof is an application of the Cauchy residue formula. We evaluate
C−

η (1/Rn)(z) on a large circle � of radius 1/� oriented clockwise enclosing E , F
and z, with detour paths in both directions leading to small counterclockwise circles
around z, η, and each of the zeros of Rn , as well as the curve η (see Fig. 6). For an
arbitrarily small ε > 0, we have

−
∫

�

dζ

Rn(ζ )(ζ − z)
=

∫
η

dζ

Rn(ζ )(ζ − z)
+

∫
|ζ−z|=ε

dζ

Rn(ζ )(ζ − z)

+
K∑

k=1

∫
|ζ−zk |=ε

dζ

Rn(ζ )(ζ − z)
.
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If we perform the change-of-variables ζ = 1/t on the left-hand side, then we find that

− 1

2π i

∫
�

dζ

Rn(ζ )(ζ − z)
= 1

2π i

∫
|t |=�

dt

t Rn(
1
t )(1 − zt)

= Rest=0
1

t Rn(
1
t )(1 − zt)

= 1

Rn(∞)
.

Since |�n(∞)| ≤ hn , we note that, for fixed n, |Rn(∞)| is finite by Lemma 3.2. For
each circle of radius ε around zk for 1 ≤ k ≤ K , we find from the residue theorem
that

lim
ε→0

1

2π i

∫
|ζ−zk |=ε

dζ

Rn(ζ )(ζ − z)
= −

mi∑
j=1

ai− j

(z − zi ) j
.

These residues and the residue at the point z are summed together to give (3.6). �

Lemma 3.3 can be combined with the Sokhotski–Plemelj Theorem [20, (14.1–9)]

to find an expression for C+
η (1/Rn)(z) in terms of Rn(z). We have

C+
η (1/Rn)(z) − C−

η (1/Rn)(z) = 1

Rn(z)
, for z on η.

and, by analytic continuation, we have

C+
η (1/Rn)(z) =

K∑
k=1

mk∑
j=1

ak− j

(z − zk) j
+ 1

Rn(∞)
, z inside of η. (3.7)

We conclude that C+
η (1/Rn) is a rational function of type (n, n). Finally, we define

the Faber rational associated with E and F as

1

rn(z)
=

K∑
k=1

mk∑
j=1

ak− j

(z − zk) j
+ 1

Rn(∞)
. (3.8)

The expression for rn(z) in (3.8) is ideal for identifying rn(z) as a rational function
of type (n, n). The relationship 1/rn(z) = C+

η (1/Rn)(z) in (3.5) is more convenient
for practical computations as it does not involve computing zk for 1 ≤ k ≤ K or the
Laurent coefficients {a− j

k }.

4 Using the Faber Rational to Bound a Zolotarev Number

In this section, we set out to find an upper bound on the Zolotarev number Zn(E, F) by
bounding the Faber rational in (3.8) associated with the sets E and F . Since sn ∈ Rn,n
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if and only if 1/sn ∈ Rn,n , we note that Zn(E, F) = Zn(F, E). Given our setup, we
find it more convenient to derive a bound on Zn(E, F) as follows:

Zn(E, F) = Zn(F, E) = inf
sn∈Rn,n

supz∈F |sn(z)|
inf z∈E |sn(z)| ≤ supz∈F |1/rn(z)|

inf z∈E |1/rn(z)| , (4.1)

where rn is the Faber rational associated with E and F . Therefore, we seek an
upper bound on supz∈F |1/rn(z)| in Sect. 4.1 and a lower bound on inf z∈E |1/rn(z)|
in Sect. 4.2.

4.1 Bounding the Faber rational on F

From (3.7) and (3.8), we know that 1/rn(z) = C+
η (1/Rn)(z) for z ∈ F . Thus, an upper

bound on supz∈F |1/rn(z)| follows from an upper bound on C+
η (1/Rn)(z) for z ∈ F .

From simple algebra, we have

C+
η (1/Rn)(z) = 1

2π i

∫
η

dζ

Rn(ζ )(ζ − z)

= 1

2π i

∫
η

dζ

�n(ζ )(ζ − z)
+ 1

2π i

∫
η

�n(ζ ) − Rn(ζ )

Rn(ζ )�n(ζ )

dζ

ζ − z

= −1

2π i

∫
|ω|=h

1

ωn

� ′(ω)dω

�(ω) − z︸ ︷︷ ︸
=I (z)

+ 1

2π i

∫
|ω|=h

ε̃(ω)� ′(ω)dω

�(ω) − z︸ ︷︷ ︸
=I I (z)

,

(4.2)

where ε̃(ω) = (ωn − Rn(�(ω)))/(Rn(�(ω))ωn). (One can take the contours over
|ω| = h since the integrand extends continuously to the boundary by Caratheodory’s
theorem.) Here, the minus sign in the definition of I appears to respect the orientation
of η with respect to the interior of η. The integral I may be bounded using the same
argument as in the proof of Lemma 3.1 to obtain

sup
z∈F

|I (z)|≤ Mn(F, E)

1 − h−2n h−n, Mn(F, E)=(
2Rot(F)+2h−nRot(E) + 2h−n+2

)
.

(4.3)

To bound |I I (z)|, we note that ε̃(ω) is holomorphic in the annulus A with a pole at 0.
So, for any 0 < α < 1 − 1/h, we have

|I I (z)| =
∣∣∣∣ 1

2π i

∫
|ω|=(1−α)h

ε̃(ω)� ′(ω)dω

�(ω) − z

∣∣∣∣
≤ sup

|ω|=(1−α)h
|ε̃(ω)| 1

2π

∫
|ω|=(1−α)h

∣∣∣∣ � ′(ω)dω

�(ω) − z

∣∣∣∣.
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By the same argument as Ganelius in [12, p. 411] using the Koebe–1/4 theorem, we
find that

1

2π

∫
|ω|=(1−α)h

∣∣∣∣ � ′(ω)dω

�(ω) − z

∣∣∣∣ ≤ 4(1 − α)h

d
, d = min{αh, (1 − α)h − 1}. (4.4)

The bound in (4.4) simplifies to 4(1 − α)/α when α < (1 − 1/h)/2. For the ε̃ term,
we have

sup
|ω|=(1−α)h

|ε̃(ω)| ≤ Cn

(1 − α)nhn((1 − α)nhn − Cn)
, Cn = 1 + sup

z∈E
|Rn(z)|

(4.5)

as long as ((1 − α)nhn − Cn) > 0. We now want to find 0 < α < (1 − 1/h)/2 with
((1 − α)nhn − Cn) > 0 to minimize the product of (4.4) and (4.5) as that will derive
a reasonable bound on |C+

η (1/Rn)(z)| for z ∈ F . We have the following result:

Lemma 4.1 For any n > N0 with N0 = max{1 + 1/(h − 1), log(x1)/ log(h)}, we
have

min
0<α<(1−1/h)/2

((1−α)nhn−Cn)>0

4(1 − α)Cn

α(1 − α)nhn((1 − α)nhn − Cn)
≤ 32nhn

(hn − Cn)2(hn + Cn)
, (4.6)

where it is sufficient to take x1 as given in Lemma A.1.

Proof Let f (α) = (4(1 − α)Cn)/(α(1 − α)nhn((1 − α)nhn − Cn)). Using calculus,
we find that the minimum of (4.6) is given by a unique value 0 < α∗ < 1/(2n) such
that

(1 − α∗)nhn = 1 − nα∗
1 − 2nα∗

Cn ⇒ α∗ = hn − 1−nα∗
(1−α∗)n Cn

2nhn
.

Since n > 1 + 1/(h − 1), we find that α∗ < 1/(2n) < (1 − 1/h)/2. Moreover,
by using (1 − x)n ≥ 1 − nx for n ≥ 1 and x ∈ R, we have α∗ ≥ α0, where
α0 = (hn − Cn)/(2nhn). Note that we also have

(1 − α0)
nhn − Cn ≥ (1 − nα0)h

n − Cn =
(
1 − hn − Cn

2hn

)
hn − Cn = hn − Cn

2
.

The restriction n > N0 guarantees that hn > Cn , and therefore also that α0 satisfies
the constraints in (4.6), and we have the following upper bound on f (α∗):

f (α∗) ≤ f

(
hn − Cn

2nhn

)
≤ 4(1 − hn−Cn

2nhn )Cn

hn−Cn
2nhn

hn+Cn
2hn hn( h

n+Cn
2 − Cn)

= 16((2n − 1)hn − Cn)Cn

(hn − Cn)2(hn + Cn)
,
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where the second inequality follows from (1− α0)
n ≥ 1− nα0. The result follows as

((2n − 1)hn − Cn) < 2nhn . �

By combining (4.2), (4.3), and Lemma 4.1, we conclude that

sup
z∈F

∣∣∣∣ 1

rn(z)

∣∣∣∣ ≤ Mn(F, E)

1 − h−2n h−n + 32nhn

(hn − Cn)2(hn + Cn)
, (4.7)

where Mn(F, E) is defined in (4.3). The upper bound in (4.7) controls the numerator
in (4.1).

4.2 Bounding the Faber Rational on E

From the triangle inequality, we have

inf
z∈E

∣∣∣∣ 1

rn(z)

∣∣∣∣ ≥ inf
z∈E

∣∣∣∣ 1

Rn(z)

∣∣∣∣ − sup
z∈E

∣∣∣∣ 1

rn(z)
− 1

Rn(z)

∣∣∣∣ ,

where rn is theFaber rational associatedwith the sets E and F and Rn is defined in (3.4).
Since Rn(z) = C+

∂E (�n)(z) for z ∈ E , we have 1/rn(z) = 1/Rn(z) + C−
η (1/Rn)(z)

for z outside of η. Thus, we have

inf
z∈E

∣∣∣∣ 1

rn(z)

∣∣∣∣ ≥ 1

supz∈E
∣∣C+

∂E (�n)(z)
∣∣ − sup

z∈E

∣∣∣C−
η (1/Rn)(z)

∣∣∣ .

Lemma 3.1 provides an upper bound on the first term supz∈E
∣∣C+

∂E (�n)(z)
∣∣. For the

second term, observe that C−
η (1/Rn) is an analytic function outside of the contour

η. Therefore, the maximum of |C−
η (1/Rn)| is on the curve η, where we have the

Sokhostski–Plemelj theorem. We find that for z outside of the contour η,

|C−
η (1/Rn)(z)| ≤ sup

z∈η
|C+

η (1/Rn)(z)| + sup
z∈η

|1/Rn(z)|

≤ sup
z∈η

|C+
η (1/Rn)(z)| + 1

(h − δ)n − Cn
,

where the second inequality follows from |Rn(z)| ≥ |�n(z)| − |Rn(z) − �n(z)|, the
fact that |�n(z)| ≥ (h−δ)n for z on the curve η and Lemma 3.2. Because 0 < δ < 1 is
arbitrarily small, wemay take |C−

η (1/Rn)(z)| ≤ supz∈η |C+
η (1/Rn)(z)|+1/(hn−Cn).

Since E is contained in the region outside of the contour η, we conclude that

inf
z∈E

∣∣∣∣ 1

rn(z)

∣∣∣∣ ≥ 1 − h−2n

Mn(E, F)
− Mn(F, E)

1 − h−2n h−n − 1

hn − Cn
. (4.8)

The lower bound in (4.8) controls the denominator in (4.1). As n → ∞, this lower
bound becomes 1/Mn(E, F).
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Note that the bound in (4.8) is only effective when the degree n is sufficiently
large so that the bound is positive. Fortunately the degree does not have to be too big;
see Lemma A.1.

4.3 Bounding the Zolotarev Number

Putting (4.7) and (4.8) together completes the proof of (1.4) and Theorem 1.2. That
is, we have

Theorem 4.2 (Main Theorem) Let E, F ⊂ C be disjoint, simply connected, compact
sets with rectifiable Jordan boundaries. Then, for h = exp(1/cap(E, F)) and n > N0,
we have

Zn(E, F) ≤
⎛
⎜⎝

Mn(E,F)Mn(F,E)

1−h−2n + 32nMn(E,F)h−n

(1−Cnh−n)
2
(1+Cnh−n)

max
{
0, 1 − Mn(E,F)Mn(F,E)

1−h−2n h−n − Mn(E,F)
1−Cnh−n h−n − h−2n

}
⎞
⎟⎠ h−n,

where Mn(E, F) = 2Rot(E)+2h−nRot(F)+2h−n+2, andCn = 1+Mn(E, F)/(1−
h−2n). Here, N0 = max{1+ 1/(h − 1), log(x1)/ log(h)}, x1 is the largest real root of
a certain seventh-degree polynomial (see Lemma A.1), and Rot(E) and Rot(F) are
the total rotation of the boundaries of the domains E and F, respectively.

The explicit bound in Theorem 4.2 slightly simplifies when E and F are convex sets
as Rot(E) = Rot(F) = 1. We find that x1 ≈ 29.901 and Mn(E, F) = Mn(F, E) =
4(1 + h−n). We have

Zn(E, F) ≤

⎛
⎜⎜⎜⎜⎝

16(1+h−n)2

1−h−2n + 128n(1+h−n)h−n

(1−(1+ 4(1+h−n )

1−h−2n )h−n)2(1+(1+ 4(1+h−n )

1−h−2n )h−n)

max

{
0, 1 − 16(1+h−n)2

1−h−2n h−n − 4(1+h−n)

1−(1+ 4(1+h−n )

1−h−2n )h−n
h−n − h−2n

}

⎞
⎟⎟⎟⎟⎠ h−n,

for any n > max{1 + 1/(h − 1), log(29.901)/ log(h)}.

5 Other Cases

In addition to E and F both being compact sets, there are two other types of sets E
and F that may be of interest to the reader.

5.1 C\F is a bounded domain containing E

Let E, F ⊂ C be disjoint sets with rectifiable Jordan boundaries so that C\F is an
open and bounded domain containing a compact set E (see Fig. 7). Small adjustments
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Fig. 7 Illustration of the typical setup when C\F is a bounded domain containing a compact set E

to our arguments in this paper are needed to bound Zn(E, F) here. In particular, due
to the fact that � no longer has a pole in the annulus A, Lemma 3.1 becomes

sup
z∈E

|Rn(z)| ≤ M̃n(E, F)

1 − h−2n , M̃n(E, F) = 2Rot(E) + 2Rot(F)h−n,

which causes minor changes to the final bounds. Let C̃n = 1+ M̃n(E, F)/(1−h−2n).
We find that

Theorem 5.1 Let E, F ⊂ C be disjoint sets with rectifiable Jordan boundaries so that
C\F is bounded and E is a compact subset ofC\F. Then, for h = exp(1/cap(E, F))

and n > Ñ0, we have

Zn(E, F) ≤
⎛
⎝

M̃n(E,F)M̃n(F,E)

1−h−2n + 32nM̃n(E,F)h−n

(1−C̃nh−n)2(1+C̃nh−n)

max
{
0, 1 − M̃n(E,F)M̃n(F,E)

1−h−2n h−n − M̃n(E,F)

1−C̃nh−n h
−n − h−2n

}
⎞
⎠ h−n .

(5.1)

Here, we also have Ñ0 = max{1 + 1/(h − 1), log(x̃1)/ log(h)}, with x̃1 defined
analogously to x1 in Lemma A.1.

When the denominator in (5.1) is zero, then one can take the trivial bound of
Zn(E, F) ≤ 1 instead. For large n, we conclude that

1 ≤ lim sup
n→∞

Zn(E, F)

h−n
≤ 4Rot(E)Rot(F).
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Fig. 8 Illustration of the typical setupwhen F is an unbounded domain and E is a compact domain contained
in C\F . The location ω0 ∈ C is the pole of the inverse map � = �−1

5.2 F is an unbounded domain and E is a compact domain contained inC\F

Let E, F ⊂ C be disjoint sets with rectifiable Jordan boundaries, where F is an
unbounded domain and E is a compact domain contained in C\F (see Fig. 8). In this
situation, our bound on Zn(E, F) is the same as that found in Theorem 1.2 and (1.4).

6 Numerical Methods

In this section, we briefly describe the algorithms we use to evaluate Faber rational
functions, as well compute h = exp(1/cap(E, F)). We also discuss a method for
finding the poles and zeros of rn .

6.1 Evaluating rn

To evaluate rn(z), we use the integral formulations for 1/rn(z) developed in Sect. 3.2.
It is acceptable for numerical purposes to choose the contour η in Lemma 3.3 as ∂F .
Taking this liberty, we have from the lemma that

1/rn(z) =

⎧⎪⎪⎨
⎪⎪⎩

1

2π i

∫
∂F

dζ

Rn(ζ )(ζ − z)
, z ∈ F,

− 1

Rn(z)
+ 1

2π i

∫
∂F

dζ

Rn(ζ )(ζ − z)
, z ∈ C\F,

(6.1)

where the first integral is understood in the principal value sense for z ∈ ∂F ,2 and Rn

is defined in (3.4).

2 We avoid sampling directly on ∂F in our applications, and so omit discussion on the numerical compu-
tation of principle value integrals.
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The integrals in (3.4) and (6.1) can be computed using a quadrature rule. These
computations can become numerically unstable when z is close to the contour of the
integral being evaluated. To alleviate this issue, we apply a variant of the barycentric
interpolation formula [7]. For z ∈ F , this takes the following form:

1

rn(z)
=

∫
∂F

dζ

Rn(ζ )(ζ − z)∫
∂F

dζ

ζ − z

≈

∑NQ

j=1

w j

Rn(x j )(x j − z)∑NQ

j=1

w j

x j − z

,

where {(w j , x j )}NQ
j=1 are an appropriate set of quadrature weights and nodes. A similar

procedure is used when evaluating Rn(z) for z ∈ E near ∂E . Once fz = 1/rn(z) is
computed, we set rn(z) = 1/ fz . After one can evaluate rn on E ∪ F , rn can be
represented as a rational function via the AAA algorithm [26], which makes further
evaluations more efficient.

6.2 Computing the Conformal Map

Evaluating Rn(z) requires the conformalmap� : � → A (see Sect. 1.3).We construct
� using the method in [33]. In this approach, � is computed via the Green’s function,
u(z), associated with the Laplacian operator with zero Dirichlet boundary conditions
on � (see [30, p. 253], [33, Sec. 4]). To solve for u, boundary data are used to find
the least squares fit to the coefficients of an approximate rational expansion of u. This
is especially effective for resolving singularities in corners of the domain because the
poles of the expansion are chosen to be exponentially clustered near the singular points
[17]. The modulus h is treated as an additional unknown in the least squares system
of equations, and it is recovered along with u.

This method is versatile and can be used when E and F are polygons, as well
as when their boundaries are either analytic curves or piecewise continuous analytic
curves. It can be adapted for use in the case from Sect. 5.1 where F is unbounded.

6.3 The Poles and Zeros of rn

To compute the poles and zeros of rn , we first construct a representation of rn in
barycentric form via the AAA algorithm [26]. This construction is computationally
expensive because rn must be sufficiently sampled on the sets E and F . The poles
and zeros are then computed by solving an (n + 2) × (n + 2) generalized eigenvalue
problem. To improve the accuracy of the computation, we apply AAA twice: first to
rn on E to compute the zeros and then again to rn on F to compute the poles. For an
application involving poles and zeros, see Sect. 7.2.

7 Applications

We give two examples from numerical linear algebra where our results can be applied.
In the first, we bound the singular values of Cauchy and Vandermonde matrices. In
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the second example, we treat rn as a proxy to the true infimal rational function that
attains Zn(E, F). We show that the poles and zeros of rn are near-optimal parameters
in the alternating direction implicit (ADI) method.

7.1 Bounding Singular Values of Matrices with Low Displacement Rank

A matrix X ∈ C
m×p is said to have displacement rank ν if there are A ∈ C

m×m and
B ∈ C

p×p so that rank(AX − XB) ≤ ν. When A and B are normal matrices with
spectra λ(A) ⊂ E , λ(B) ⊂ F , the normalized singular values of X are bounded above
in terms of Zolotarev numbers [6, Thm. 2.1]. Specifically,

σ jν+1(X) ≤ Z j (E, F)‖X‖2, 0 ≤ j ≤ �(N − 1)/ν�, N = min(m, p), (7.1)

where σ1(X) ≥ · · · ≥ σN (X) are the nonzero singular values of X . Pairing this
observation with Theorems 1.2, 4.2 and 5.1 gives bounds on σ jν+1(X) whenever E
and F are as in the theorems. We illustrate the point with two examples.

7.1.1 Complex-Valued Cauchy Matrices

Let C be a Cauchy matrix in C
m×p, with entries given by

C jk = 1/(x j − yk), x = {x j }mj=1 ⊂ E, y = {yk}pk=1 ⊂ F,

where E and F are as in Theorem 1.2 and the sets x, y are each collections of distinct
points. Since rank(DxC −CDy) ≤ 1, where Dx = diag(x1, . . . , xm), it immediately
follows from (7.1) and Theorem 1.2 that for 0 ≤ j ≤ N − 1,

σ j+1(C) ≤ KE,Fh
− j‖C‖2, h = exp(1/cap(E, F)).

Here, KE,F is given in (1.4). To implement the bound, we compute h using the method
in Sect. 6.2.A comparison of the bounds to computed singular values is shown in Fig. 9.

7.1.2 Vandermonde Matrices with Nodes Inside the Unit Circle

Let Vα be an m × p Vandermonde matrix with entries (Vα) jk = α
(k−1)
j , where the

nodes α = {α j }mj=1 are distinct points in C. The singular values of Vα are known to
decay rapidly when each α j is real [6], and there are multiple results on the (extremal)
singular values of Vα when all |α j | = 1 [4, 24]. Less is known about singular value
decay when |α j | < 1, despite the fact that this assumption is encountered in several
applications [5, 8, 27]. We give the following lemma:

Lemma 7.1 Let Vα ∈ C
m×p, N = min(m, p), have a set of distinct nodes contained

in the disk E := {|z − z0| < η0}, z0 
= 0, where E is in the open unit disk. Then, the
following bound holds for 0 ≤ j ≤ N − 1:

σ j+1(Vα) ≤ h− j‖Vα‖2,
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Fig. 9 The first 18 normalized singular values of a Cauchy matrix (blue dots) and Vandermonde matrix
(red dots) are plotted against the singular value index j on a logarithmic scale. The Cauchy matrix is
given by C jk = 1/(x j − yk ), 1 ≤ j, k ≤ 100, where for all ( j, k), x j ∈ EC := {z ∈ C : .3 ≤
Re(z) ≤ 1.3, |Im(z)| ≤ .5} and yk ∈ −EC . The nodes of the Vandermonde matrix V ∈ C

100×80 all
lie in EV = {z ∈ C : |z − (2 + i)/10| < .4}. The solid lines show bounds on σ j (C)/σ1(C) (blue) and
σ j (V )/σ1(V ) (red) obtained via Theorem 1.2 and Lemma 7.1, respectively (Color figure online)

where

h =
∣∣∣∣ z0 − |z0|β(z0 + η0)

|z0|(z0 + η0) − βz0

∣∣∣∣ , β = 1

2|z0|
(
1 + c −

√
(c + 1)2 − 4|z0|2

)
, c = |z0|2 − η20.

Proof We observe that rank(DαV − V Q) = 1, where Q = [ 0 1
In−1 0

]
is the circulant

shift matrix. The eigenvalues λ(Q) are the pth roots of unity. We choose F as the set
exterior to the open unit disk and note that λ(Q) ⊂ F . We map � := C\E ∪ F to the
annulus A := {z ∈ C : 1 < |z| < h} with the following Möbius transformation:

T (z) := h(|z0|z − z0β)

z0 − |z0|βz ,

where h, β, and c are as in the theorem. Since T maps � → A conformally and T is
rational, r j = T j is the rational function that attains Z j (E, F), and Z j (E, F) = h− j

(see Sect. 2). Applying (7.1) completes the proof. �


The bounds from Lemma 7.1 are shown in Fig. 9 along with computed singular values.
We remark that if E is centered on the origin, then h = 1/η0. For more general choices
of E , an argument similar to the proof of Lemma 7.1 can be applied using the bound
on Z j (E, F) from Theorem 4.2.
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7.2 ADI Shift Parameters

The ADI method is an iterative method used to solve the Sylvester matrix equation

AX − XB = M, X , M ∈ C
m×p. (7.2)

For an overview with applications, see [31]. One iteration of ADI consists of the
following two steps:

1. Solve for X ( j+1/2), where

(
A − τ j+1 I

)
X ( j+1/2) = X ( j) (B − τ j+1 I

) + M .

2. Solve for X ( j+1), where

X ( j+1) (B − κ j+1 I
) = (

A − κ j+1 I
)
X ( j+1/2) − M .

The numbers (κ j , τ j ) are referred to as shift parameters, and an initial guess X (0) = 0
is used to begin the iterations. After k iterations, an approximate solution X (k) is
constructed. Suppose that A and B are normal matrices with spectra λ(A) ⊂ E ,
λ(B) ⊂ F . Then, the ADI error is bounded by a rational function determined by the
shift parameters [23]:

‖X − X (k)‖2 ≤ supz∈E |sk(z)|
inf z∈F |sk(z)| ‖X‖2, sk(z) =

k∏
j=1

(z − κ j )

(z − τ j )
, k ≥ 1. (7.3)

The bound in (7.3) is minimized by selecting as shift parameters the poles and zeros of
the rational function that attains Zk(E, F) in (1.1). The solution to (1.1) is generally
unknown, but when E and F are as in Theorems 1.2,4.2 and 5.1, we choose sk as the
Faber rational function rk . We refer to the poles and zeros of rk as Faber shifts. The
bounds on Zk(E, F) in Theorems 1.2,4.2 and 5.1 also bound the expression involving
sk in (7.3). Since the bounds decay with k at essentially the same rate as Zk(E, F),
the Faber shifts are nearly optimal shift parameters.

Wedonot claim to have an efficientmethod for computingFaber shifts; the approach
in Sect. 6.3 is impractical for applications. For convex E , F , we observe that ADI with
shifts derived from other so-called asymptotically optimal rational functions [32], i.e.,
rationals sn with the property that

lim
n→∞

(
supz∈E |sn(z)|
inf z∈F |sn(z)|

)1/n

= h−1, h = exp

(
1

cap(E, F)

)
,

often performs comparably to ADI with Faber shifts (see Fig. 10). This includes the
generalized Fejér points [34], which can be computed with the inverse conformal map
� from Sect. 1.3, and the generalized Leja points, which are computed recursively by
a greedy process [3, 32].
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Fig. 10 Left: The computed ADI error ‖X − X (k)‖2/‖X‖2 is plotted against the indices k on a logarithmic
scale, where ADI is applied using Faber shifts (blue), generalized Fejér points (red), and generalized Leja
points (yellow). The bound on the error for ADI with Faber shifts is shown as a dotted line. Here, X
satisfies (7.2), with m = p = 100, λ(A) ∈ E , λ(B) ∈ −E , where E = {z ∈ C : .3 ≤ Re(z) ≤
1.3, −1.3 ≤ Im(z) ≤ 1.3}. Right: The magnitude of the Faber rational r8 is plotted on a logarithmic scale
over E . Generalized Fejér points (red squares) and generalized Leja points (yellow squares) associated with
(E, −E) are plotted. These are selected as the κ j parameters for ADI, and due to the symmetry of the
domain, we choose τ j = −κ j . The Faber shifts are formed by using the zeros of r8 as κ j parameters, and
the poles of r8 (not depicted) as τ j parameters (Color figure online)
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Appendix A: Ensuring n is Large Enough for a Valid Bound

For the bound in (1.4) to be effective, n must be taken large enough so that both
hn > Cn , and the lower bound in (4.8) must also be greater than 0, or

1 − h−2n

Mn(E, F)
− Mn(F, E)

1 − h−2n h−n − 1

hn − Cn
≥ 0 (A.1)

so that the denominator in (1.4) is positive. This latter condition subsumes the first,
and so a minimal effective value of n may be given as follows.

Lemma A.1 For any integer n > log(x1)/ log(h), we have that the expression in (4.8)
is greater than 0, where x1 is the largest positive real root of the seventh-degree
polynomial
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x7 − (4e f + 8e + 4 f + 9)x6 + (8e2 f + 4e2 + 20e f + 12e − 4 f 2 − 3)x5

+ (8e3 + 28e2 + 16e f 2 + 32e f + 56e + 20 f 2 + 40 f + 43)x4

+ (16e2 f + 20e2 + 32e f + 40e + 8 f 3 + 28 f 2 + 56 f + 43)x3

+ (−4e2 + 8e f 2 + 20e f + 4 f 2 + 12 f − 3)x2

− (4e f + 4e + 8 f + 9)x + 1,

where we have abbreviated Rot(E) and Rot(F) as e and f , respectively.

In the case where E and F are convex, the polynomial above reduces to

x7 − 25x6 + 37x5 + 243x4 + 243x3 + 37x2 − 25x + 1, (A.2)

whose rightmost root satisfies 29.9 < x1 < 29.901.
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