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Abstract

This paper introduces a measure, called Lipschitz widths, of the optimal performance pos-
sible of certain nonlinear methods of approximation. Notably, those Lipschitz widths provide
a theoretical benchmark for the approximation quality achieved via deep neural networks. The
paper also discusses basic properties of the Lipschitz widths and their relation to entropy num-
bers and other well known widths such as the Kolmogorov and the stable manifold widths.
We show that Lipschitz widths with fixed Lipschitz constant and entropy numbers decay very
similar, while when the Lipschitz constant grows with n, the Lipschitz width could be much
smaller than the entropy numbers.
AMS subject classification: 41A46, 41A65, 82C32
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1 Introduction

Nonlinear methods of approximation provide reliable and efficient ways of investigating the under-
lying phenomena in many application areas. Despite of their extensive usage however, there is still
a lack of comprehensive understanding of the intrinsic limitations of these nonlinear methods, even
on a purely theoretical level. Several mathematical concepts, called widths, have been established
to access numerous aspects of the quality of linear and nonlinear approximations. As such, we men-
tion the classical by now Kolmogorov, linear, manifold, Gelfand widths, which give a theoretical
benchmark on what is the best possible performance of particular methods of approximation. We
refer the reader to [8], where a summary of different nonlinear widths and their relations to one
another is discussed.

Recently, Deep Neural Networks (DNN) have been used extensively as a method of choice for
variety of machine learning problems and as a computational platform in many other areas. Despite
of their empirical successes, the explanation of the reasons behind their stellar performance is still
in its infancy. On mathematical level, DNN can be viewed as a method of nonlinear approximation
of an underlying function f , where the approximant Φ(y) ≈ f is a continuous function, generated
by a DNN with parameters y. It can be shown that the mapping which to every choice of param-
eters y of the DNN assigns Φ(y) is in fact a Lipschitz mapping. Thus, DNN approximation is a
particular case of a nonlinear approximation of a function f , or a compact class K, by the images of
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Lipschitz mappings. Then, the question of DNN optimal performance is intimately related to the
quantification of the optimal performance of such nonlinear methods and to the introduction and
study of corresponding ways to measure it. A width, called stable manifold width, was presented
in [5], with the sole purpose to determine the optimal performance of such nonlinear methods in
the context of numerical computation, where the stability plays an essential role. In this paper, we
take a slightly different point of view and introduce the concept of Lipschitz widths, where we are
not so concerned about the numerical stability of the method, but , like in the case of DNN, rather
about the best possible performance of these nonlinear methods of approximation.

Our setting is a Banach space X equipped with a norm ‖ · ‖X , where we wish to approximate
the elements f of a compact subset K ⊂ X of X with error measured in this norm. For every
fixed n ∈ N and every γ ≥ 0, the approximants to K will come from the images Φ(y) ∈ X of all
possible γ-Lipschitz maps Φ : (BYn , ‖ · ‖Yn) → X, where BYn is the unit ball in R

n with respect to
some norm ‖ · ‖Yn in R

n. The quality of this approximation is a critical element in the design and
analysis of various numerical methods, among which are DNNs. Note that any numerical method
based on Lipschitz mappings will have performance no better than the optimal performance of this
approximation method. On the other hand, it may not be easy to actually design a numerical
method for a particular application that achieves this optimal performance.

In our analysis, we examine model classes K ⊂ X, i.e., compact subsets K of X, that summarize
what we know about the target function f . Classical model classes K are finite balls in smoothness
spaces like the Lipschitz, Sobolev, or Besov spaces. The Lipschitz widths dγn(K)X then quantify the
best possible performance of the above approximation methods on a given model class K.

The paper is organized as follows. Some of the basic properties of Lipschitz widths are discussed
in §2, where we present many elementary but very useful properties of dγn(K)X , such as, for
example, the fact that for a fixed n ∈ N, dγn(K)X is a continuous function of γ ≥ 0, see Theorem
2.7. We also prove the statements

lim
n→∞

dγn(K)X = 0, and lim
γ→∞

dγn(K)X = 0,

each of which characterizes the set K as a totally bounded set, see Lemma 2.8 and Lemma 2.11.
We also show that in the definition of Lipschitz width the infimum over all norms is achieved for
some special norm, see Theorem 2.14. While this observation may not be very useful in practical
applications, it can be helpful in theoretical considerations.

The relation between Lipschitz widths and entropy numbers εn(K)X is investigated in §3, where
among other things we prove that, see Theorem 3.3, for any compact subset K ⊂ X of a Banach
space X we have

d2 rad(K)
n (K)X ≤ εn(K)X , n = 1, 2, . . . .

Examples are given to show that this inequality is almost optimal. We also discuss in this section
estimates from below and above for the Lipschitz width dγn(K)X , provided bounds for the entropy
numbers εn(K)X are available. These are stated in Theorem 3.1, where we prove that when the
Lipschitz constant γ is fixed, both the entropy numbers and the Lipschitz width have a similar
decay. Some of our estimates are optimal, as demonstrated in Theorem 3.12, where we show that
the Lipschitz widths could be smaller than the entropy numbers for certain compact classes K.

Since the Lipschitz width is a new concept of width, we compare it with some of the well known
classical widths. We show that for appropriate values of the parameter γ, Lipschitz widths are
smaller than the Kolmogorov widths, see §4, Theorem 4.1. They are also smaller than the stable
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manifold widths, see §5, Theorem 5.1. However, as demonstrated by the provided Examples, in
both cases, their actual behavior may be very different.

At last, in §6, we discuss the Lipschitz widths dγnn (K)X , where the parameter γn = C ′λn, with
C ′ > 0 and λ > 2 being fixed constants, and show that they provide a theoretical benchmark for
the performance of certain DNN approximation, see Theorem 6.1. The analysis of these widths is
performed in Theorem 6.3 and Corollary 6.4, where it is demonstrated that there is indeed a gain
in the performance of the Lipschitz width dγnn (K)X when compared to the entropy numbers εn(K)X
in the following sense

if εn(K)X ≍ [log2 n]β

nα
⇒ dγnn (K)X ≍ [log2 n]β

n2α
.

This estimate, when applied in the case of K being the unit ball of certain Besov spaces, extends
some results from [6] to the case when error is measured in Lp, p 6= ∞.

2 Definition and basic properties

We are mainly interested in compact sets, however we define the basic concepts for bounded sets.
We consider a bounded subset K ⊂ X of a Banach space (X, ‖ · ‖X) with norm ‖ · ‖X and denote
by (Rn, ‖.‖Yn), n ≥ 1 the n-dimensional Banach space with a fixed norm ‖ · ‖Yn . For γ ≥ 0, we
define the fixed Lipschitz width

dγ(K, Yn)X := inf
Φn

sup
f∈K

inf
y∈BYn

‖f − Φn(y)‖X , (2.1)

where the infimum is taken over all Lipschitz mappings

Φn : (BYn , ‖ · ‖Yn) → X, BYn := {y ∈ R
n : ‖y‖Yn ≤ 1},

that satisfy the Lipschitz condition

sup
y,y′∈BYn

‖Φn(y) − Φn(y′)‖X
‖y − y′‖Yn

≤ γ, (2.2)

with constant γ. Next, we define the Lipschitz width

dγn(K)X := inf
‖·‖Yn

dγ(K, Yn)X , (2.3)

where the infimum is taken over all norms ‖ · ‖Yn in R
n. Clearly, we have that for every norm

‖ · ‖Yn on R
n,

dγn(K)X ≤ dγ(K, Yn)X , n ≥ 1. (2.4)

Before going further, let us recall the definition of a diameter and radius of a bounded set
M ⊂ X,

diam(M) := sup
f,g∈M

‖f − g‖X ≤ 2 inf
g∈X

sup
f∈M

‖f − g‖X =: 2 rad(M).

From (2.2) we see that a 0-Lipschitz function is simply the constant function. Thus, for any Yn we
get

radK = d0n(K, Yn)X = d0n(K)X . (2.5)

We next list some elementary properties of the Lipschitz widths dγn(K)X that we gather in the
following remark.

3



Remark 2.1. For any bounded subset K ⊂ X of a Banach space X, any n ∈ N, and any γ > 0,
we have

(i) The Lipschitz width dγn(K)X satisfies the relation

dγn(K)X = inf
k≤n

inf
‖·‖Yk

dγ(K, Yk)X . (2.6)

(ii) The space (Rn, ‖ · ‖Yn) in (2.1) and (2.3) can be replaced by any normed space (Xn, ‖ · ‖Xn)
of dimension n, that is

dγn(K)X = inf
‖·‖Xn

dγ(K, Xn)X , where dγ(K, Xn)X = inf
Φn

sup
f∈K

inf
x∈BXn

‖f − Φn(x)‖X , (2.7)

with BXn := {x ∈ Xn : ‖x‖Xn ≤ 1}.

(iii) dγn(K)X is a monotone decreasing function of γ and n. More precisely,

• If γ1 ≤ γ2 then dγ2n (K)X ≤ dγ1n (K)X ;

• If n1 ≤ n2 then dγn2(K)X ≤ dγn1(K)X .

(iv) For every fixed n ∈ N and γ ≥ 0, we have dγn(K)X ≤ rad(K) < ∞.

(v) For every fixed n ∈ N and γ ≥ 0, we have dγn(K)X = dγn(K̄)X where K̄ denotes the closure of
K.

Proof: We discuss only (i) and leave the proof of the rest of the remark to the reader. Since

inf
k≤n

inf
‖·‖Yk

dγ(K, Yk)X ≤ dγn(K)X ,

to show (i), it suffices to show that for every norm ‖ · ‖Yk
with 1 ≤ k < n, there exists a norm ‖ · ‖Yn

on R
n such that

dγ(K, Yn)X ≤ dγ(K, Yk)X . (2.8)

Indeed, let us fix a γ-Lipschitz map Φk : (BYk
, ‖ · ‖Yk

) → X which achieves dγ(K, Yk)X (if such map
does not exist, we can use limiting arguments). We then define the norm ‖ · ‖Yn as

‖(y, y′)‖Yn := ‖y‖Yk
+ ‖y′‖Rn−k ,

where ‖.‖Rn−k is any norm in R
n−k, and the γ-Lipschitz mapping Φn : (BYn , ‖ · ‖Yn) → X as

Φn((y, y′)) := Φk(y),

which proves (2.8). ✷

The requirement that Φn is Lipschitz on the unit ball BYn rather than on the whole R
n is

necessary for a meaningful definition in the case of a separable Banach space X. If we assume for
a moment that the Lipschitz width were defined via Lipschitz mappings on the whole R

n, we can
prove an analogue of Remark 2.1 (iii) and therefore focus on the one dimensional case which would
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provide an upper bound for dγn(K)X . For the separable Banach space X, we consider a countable
dense set {ϕ1, ϕ2, . . . , } ⊂ X. For any fixed γ > 0, we define the points {tj} on the real line by

t0 = 0, t1 = γ−1‖ϕ1‖X , tj+1 = tj + γ−1‖ϕj+1 − ϕj‖X , j = 1, . . . ,

and the mapping Φ1 : R → X as the continuous piecewise linear function of t with values in X
with the property

Φ1(t) =

{
0, t ≤ t0,

ϕj , t = tj .

Clearly, Φ1(R) is dense in X and Φ1 is a γ-Lipschitz mapping. Thus, for every set K ⊂ X the one
dimensional Lipschitz width dγ1(K)X would be zero.

Lemma 2.2. For any bounded subset K ⊂ X of a Banach space X, any n ∈ N, and any γ > 0,
we can restrict the infimum in (2.3) only to normed spaces (Rn, ‖.‖Yn) with the additional property
that the norm ‖ · ‖Yn satisfies the condition

‖y‖ℓn∞ := max
j

|yj | ≤ ‖y‖Yn ≤
n∑

j=1

|yj | =: ‖y‖ℓn1 , y = (y1, y2, . . . , yn) ∈ R
n. (2.9)

Proof: Let (Rn, ‖ · ‖Yn) be any normed space. It follows from the Auerbach lemma (see e.g. [4,
p.43] or [15, II.E.11]), that we can find vectors (v̄j)

n
j=1 ⊂ Rn and linear functionals (fj)

n
j=1 on the

space (Rn, ‖ ‖Yn) such that

‖v̄j‖Yn = ‖fj‖Y ∗
n

= 1, j = 1, . . . , n, (2.10)

and

fi(v̄j) = δi,j =

{
1, i = j,

0, i 6= j.
(2.11)

We define a new norm ‖.‖Yn on R
n as

‖y‖Yn := ‖
n∑

j=1

yj v̄j‖Yn , y = (y1, . . . , yn) ∈ R
n,

which, using the triangle inequality and (2.10), satisfies the inequality

‖y‖Yn ≤
n∑

j=1

|yj |‖v̄j‖Yn =
n∑

j=1

|yj |. (2.12)

On the other hand, using (2.10) and (2.11), we have

‖y‖Yn = ‖
n∑

j=1

yj v̄j‖Yn = sup
f : ‖f‖Y ∗

n
=1

|f(

n∑

j=1

yj v̄j)| ≥ |fi(
n∑

j=1

yj v̄j)| = |yi|, i = 1, . . . , n. (2.13)

Therefore, it follows from (2.12) and (2.13) that the newly defined norm satisfies (2.9). If we
consider the mapping φ0 defined as

φ0(y) :=
n∑

j=1

yj v̄j , y = (y1, . . . , yn) ∈ Rn,
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one can show that φ0 : (BYn , ‖ · ‖Yn) → (BYn , ‖ · ‖Yn) and that φ0(BYn) = BYn . Now, for any
γ-Lipschitz mapping Φn : (BYn , ‖ · ‖Yn) → X, we define the map Φ̃n : (BYn , ‖ · ‖Yn) → X as

Φ̃n := Φn ◦ φ0.

Note that Φ̃n is γ-Lipschitz since

‖Φ̃n(y′) − Φ̃n(y)‖X = ‖Φn ◦ φ0(y
′) − Φn ◦ φ0(y)‖X ≤ γ‖φ0(y

′) − φ0(y)‖Yn

= γ‖
n∑

j=1

(y′j − yj)v̄j‖Yn = γ‖y′ − y‖Yn .

In addition, Φ̃n(BYn) = Φn(BYn), and the proof is completed. ✷

2.1 Packing, covering and entropy numbers

Before going further, we recall in this section the well known concepts of packing, covering, and
entropy numbers for compact sets M, which we will use in our study of Lipschitz widths. The
reader may find a more detailed exposition of those concepts in many books, see, for example,
[4, 14, 12].

Minimal ε-covering number Nε(M) of a compact set M ⊂ X:

A collection {g1, . . . , gm} ⊂ X of elements of X is called an ε-covering of M if

M ⊂
m⋃

j=1

B(gj , ε), where B(gj , ε) := {f ∈ X : ‖f − gj‖X ≤ ε}.

An ε-covering of M whose cardinality is minimal is called minimal ε-covering of M. We denote
by Nε(M) the cardinality of the minimal ε-covering of M.

Minimal inner ε-covering number Ñε(M) of a compact set M ⊂ X:

It is defined exactly as Nε(M) but we additionally require that the centers {g1, . . . , gm} of the
covering are elements from M.

Entropy numbers εn(M)X of a compact set M ⊂ X:

For every fixed n ≥ 0, the entropy number εn(M)X is the infimum of all ε > 0 for which 2n balls
with centers from X and radius ε cover M. If we put the additional restriction that the centers of
these balls are from M, then we define the so called inner entropy number ε̃n(M)X . Formally, we
write

εn(M)X = inf{ε > 0 : M ⊂
2n⋃

j=1

B(gj , ε), gj ∈ X, j = 1, . . . , 2n},

ε̃n(M)X = inf{ε > 0 : M ⊂
2n⋃

j=1

B(hj , ε), hj ∈ M, j = 1, . . . , 2n}.

Maximal ε-packing number Pε(M) of a compact set M ⊂ X:

A collection {f1, . . . , fℓ} ⊂ M of elements from M is called an ε-packing of M if

min
i 6=j

‖fi − fj‖X > ε.
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An ε-packing of M whose size is maximal is called maximal ε-packing of M. We denote by Pε(M)
the cardinality of the maximal ε-packing of M.

We have the following inequalities for every ε > 0 and every compact set M

Pε(M) ≥ Ñε(M) ≥ P2ε(M), (2.14)

εn(M)X ≤ ε̃n(M)X ≤ 2εn(M)X . (2.15)

Remark 2.3. Let us recall the classical relations between those concepts and compactness. We call
the set M totally bounded if for every ε > 0 we have Nε(M) < ∞. This is equivalent to the fact
that limn→∞ εn(M)X = 0. Each compact set is totally bounded. Actually, a subset M of a Banach
space is compact if and only if it is totally bounded and closed. The interested reader will find a
detailed study on the topic in many books on functional analysis or metric topology.

Remark 2.4. In what follows later, we will use the fact that the Lipschitz widths and the entropy
numbers are invariant with respect to translation, that is, for any n ∈ N, γ ≥ 0, and any f ∈ X we
have

dγn(K)X = dγn(K − f)X , εn(K)X = εn(K − f)X .

We want to mention the following remark that shows the behavior of the entropy numbers of
an image of a γ-Lipschitz mapping.

Remark 2.5. For the two normed spaces (X0, ‖ · ‖X0) and (X1, ‖ · ‖X1), and the γ-Lipschitz map
Φ : (K0, ‖ · ‖X0) → (K1, ‖ · ‖X1), where K0 ⊂ X0, K1 ⊂ X1, we have that:

• If Φ(K0) = K1, then the inner entropy numbers ε̃k(K1)X1 ≤ γε̃k(K0)X0 for k = 1, 2, . . .. To
see this, we take a minimal inner ε-covering number of K0 and look at its image by Φ.

• If Φ : (BYn , ‖ · ‖Yn) → (BZm , ‖ · ‖Zm) is a γ-Lipschitz map from the unit ball BYn onto the
unit ball BZm, then n ≥ m. This follows from the inequality above and the fact that (see e.g.
(1.1.10) in [4]) for any unit ball B of any Banach space (Xℓ, ‖ · ‖Xℓ

) of dimension ℓ we have
4 · 2−k/ℓ ≥ εk(B)Xℓ

≥ 2−k/ℓ, k = 1, 2, . . . .

• If Φ(K0) approximates K1 with accuracy ε2 and A ⊂ K0 approximates K0 with accuracy
ε1, then Φ(A) approximates K1 with accuracy γε1 + ε2. To see this, we take f ∈ K1, the
corresponding g ∈ K0 such that ‖Φ(g) − f‖X1 ≤ ε2 and g0 ∈ A such that ‖g0 − g‖X0 ≤ ε1.

2.2 Dependence of dγn(K)X on γ

We start this section by proving the fact that the Lipschitz width dγn(K)X is a continuous function
of γ. To do that, we first prove the following lemma.

Lemma 2.6. For every n ≥ 1, every γ > 0, and every norm ‖ · ‖Yn in R
n, the fixed Lipschitz width

dγ(K, Yn)X satisfies the inequality

rad(K) − γ ≤ dγ(K, Yn)X ≤ rad(K). (2.16)
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Proof: The right hand-side follows from (2.5) and Remark 2.1, (iii). To show the left hand-side
inequality in (2.16), we notice that for any γ-Lipschitz map Φ, every f ∈ K and y ∈ BYn we have

‖f − Φ(y)‖X ≥ ‖f − Φ(0)‖X − ‖Φ(0) − Φ(y)‖X ≥ ‖f − Φ(0)‖X − γ,

since ‖Φ(0) − Φ(y)‖X ≤ γ‖y‖Yn ≤ γ. Therefore we obtain the inequality

sup
f∈K

inf
y∈BYn

‖f − Φ(y)‖ ≥ sup
f∈K

‖f − Φ(0)‖ − γ,

which gives
dγ(K, Yn)X ≥ inf

Φ
sup
f∈K

‖f − Φ(0)‖X − γ. (2.17)

Note now that for every Φ,

sup
f∈K

‖f − Φ(0)‖X ≥ inf
g∈X

sup
f∈K

‖f − g‖X = rad(K),

and thus it follows from (2.17) that

dγ(K, Yn)X ≥ rad(K) − γ,

and the proof is completed. ✷

Theorem 2.7. For every compact subset K ⊂ X of a Banach space X and any n ∈ N, the Lipschitz
width dγn(K)X is a continuous function of γ ≥ 0.

Proof: We first show the continuity of the Lipschitz width at γ = 0. It follows from Lemma 2.6
that

rad(K) − γ ≤ dγn(K)X ≤ rad(K).

We let γ → 0 and obtain
lim
γ→0

dγn(K)X = rad(K) = d0n(K)X ,

which proves the continuity at γ = 0, see (2.5).
To show that the Lipschitz width is continuous for γ > 0, we fix n ∈ N and denote by

h(γ) := dγn(K)X .

According to Remark 2.1 (iv), h(γ) < ∞ for every γ > 0. Let us assume that h is not a continuous
function. Then, there exist γ0 > 0, δ > 0, and a sequence of positive numbers εk → 0, such that

h(γ0 + εk) + δ ≤ h(γ0 − εk), for every k. (2.18)

We fix ε := εk < γ0. From the definition of Lipschitz widths, there exists a (γ0 + ε)-Lipschitz map
Φn : (BYn , ‖ · ‖Yn) → X such that

h(γ0 + ε) ≤ sup
f∈K

inf
y∈BYn

‖f − Φn(y)‖X ≤ h(γ0 + ε) + ε. (2.19)
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Now we define the mapping

Φ̃n := ξΦn, where ξ :=
γ0 − ε

γ0 + ε
and 0 < ξ < 1.

Clearly, Φ̃n is a (γ0 − ε)-Lipschitz mapping, and therefore

h(γ0 − ε) ≤ sup
f∈K

inf
y∈BYn

‖f − Φ̃n(y)‖X = sup
f∈K

inf
y∈BYn

‖ξ(f − Φn(y)) + (1 − ξ)f‖X

≤ sup
f∈K

inf
y∈BYn

(ξ‖f − Φ(y)‖X + (1 − ξ)‖f‖X)

≤ ξ sup
f∈K

inf
y∈BYn

‖f − Φn(y)‖X + (1 − ξ) sup
f∈K

‖f‖X

≤ ξ(h(γ0 + ε) + ε) + (1 − ξ)C,

where we have used (2.19) and the fact that supf∈K ‖f‖X = C < ∞ (since K is compact). The
latter inequality and (2.18) give

h(γ0 + ε) + δ ≤ h(γ0 − ε) ≤ ξ(h(γ0 + ε) + ε) + (1 − ξ)C

which is a contradiction for a sufficiently small ε = εk since ξ → 1 as εk → 0. ✷

We finish the investigation of the behavior of the Lipschitz width with respect to γ with the
following lemma.

Lemma 2.8. For any K ⊂ X, the set K is totally bounded iff for every n ≥ 1

lim
γ→∞

dγn(K)X = 0.

Proof: Assume that K is totally bounded. From the monotonicity of the Lipschitz width with
respect to n, see Remark 2.1 (iii), it suffices to consider only the case n = 1. For δ > 0, we fix a

minimal delta covering (fj)
Nδ(K)
j=1 of K and choose γ such that

2γ≥ diamK · (Nδ(K) − 1).

We consider the points

tj := −1 + 2
j − 1

Nδ(K) − 1
, j = 1, . . . ,Nδ(K),

in the unit ball of (R, |.|), that is ([−1, 1], | · |), and define Φ : [−1, 1] → X as the continuous
piecewise linear function such that

Φ(tj) = fj , j = 1, . . . ,Nδ(K).

Its Lipschitz constant is no more than

max
j=1,...,Nδ(K)−1

‖fj+1 − fj‖X
|tj+1 − tj |

≤ diamK · (Nδ(K) − 1)

2
≤ γ.
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and we have
sup
f∈K

inf
y∈[−1,1]

‖f − Φ(y)‖X ≤ δ.

This gives
dγ1(K)X ≤ δ,

and therefore limγ→∞ dγ1(K)X = 0.
To prove the converse, we take arbitrary ǫ > 0. Since limγ→∞ dγn(K)X = 0, there exist a norm

‖ · ‖Yn and a γ-Lipschitz map Φn such that

sup
f∈K

inf
g∈BYn

‖f − Φn(g)‖X < ǫ/2. (2.20)

We fix {g1, . . . , gN} ⊂ BYn such that
⋃N

j=1B(gj , ǫ/2γ) ⊃ BYn From (2.20) we infer that for every
f ∈ K we can find gf ∈ BYn such that ‖f − Φn(gf )‖X ≤ ǫ/2. Therefore, there exists j0 such that
gf ∈ B(gj0 , ǫ/2γ), and then

‖f − Φn(gj0)‖X ≤ ‖f − Φn(gf )‖X + ‖Φn(gf ) − Φn(gj0)‖X ≤ ǫ,

which gives that Nǫ(K) ≤ N < ∞. Since ǫ is arbitrary, K is totally bounded. ✷

Remark 2.9. It follows from Lemma 2.8, using Remark 2.1 (iii), that if K is not totally bounded
then there exists δ > 0 such that

inf
γ>0,n>0

dγn(K)X ≥ δ.

Remark 2.10. Note that all statements in this paper are valid for sets K whose closures are compact
rather than sets K that are compact. Therefore, since we work in Banach spaces, all statements are
valid for K being only a totally bounded set rather than a compact set.

2.3 Dependence of the Lipschitz width dγn(K)X on n.

In this section, we discuss the behavior of the Lipschitz width with respect to n. The following
Lemma holds.

Lemma 2.11. Let K ⊂ X be a subset of a Banach space X. If for every ǫ > 0 there exist n ∈ N

and γ > 0 such that dγn(K)X < ǫ, then K is totally bounded (i.e. its closure is compact).

Proof: To prove the lemma, we fix η > 0 and show that K is contained in the union of a finite
collection of balls with radius η. It follows from the conditions of the lemma that we can find an
integer n0 and a parameter γ > 0 such that

dγn0
(K)X < η/2.

Therefore there exists a norm ‖ · ‖Yn0
in R

n0 and a γ-Lipschitz map Φ : (BYn0
, ‖ · ‖Yn0

) → X such
that

sup
f∈K

inf
y∈BYn0

‖f − Φ(y)‖ < η/2.

More precisely, for every f ∈ K, we can find y ∈ BYn0
such that

‖f − Φ(y)‖X < η/2. (2.21)
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Let {yj}Nj=1 ⊂ BYn0
be an η/(2γ)-covering for the compact set BYn0

, that is

BYn0
⊂

N⋃

n=1

B(yj , η/(2γ)),

and therefore for every y ∈ BYn0
we can find yj , j ∈ {1, 2, . . . , N}, such that ‖y − yj‖Yn0

≤ η/(2γ).
Thus we have

‖Φ(y) − Φ(yj)‖X ≤ γ‖y − yj‖Yn0
≤ η/2,

and

Φ(BYn0
) ⊂

N⋃

n=1

B(Φ(yj), η/2).

From the latter result and (2.21) it follows that K ⊂ ⋃N
n=1B(φ(yj), η), and the proof is completed.

✷

Remark 2.12. Note that Lemma 2.11 states in particular that a subset K ⊂ X of a Banach space
X is totally bounded if there exists γ > 0 such that limn→∞ dγn(K)X = 0. The converse statement
is also true, see Corollary 3.4 and Corollary 4.3.

2.4 A single norm defines the Lipschitz width

In this section, we extend Lemma 2.2 and show that in the definition of Lipschitz width the
infimum over all norms ‖ · ‖Yn is achieved for some norm that satisfies (2.9). While this fact may
not be very useful in practical applications, it has a certain theoretical merit. In our argument,
we use the following version of Ascoli’s theorem, whose proof can be found in [5], and which we
state below.

Lemma 2.13. Let (X, d) be a separable metric space and (Y, ρ) be a metric space for which every
closed ball is compact. Let Fj : X → Y be a sequence of γ-Lipschitz maps for which there exists
a ∈ X and b ∈ Y such that Fj(a) = b for j = 1, 2, . . . . Then, there exists a subsequence Fjk , k ≥ 1,
which is point-wise convergent to a function F : X → Y and F is γ-Lipschitz. If (X, d) is also
compact, then the convergence is uniform.

Now we are ready to state and prove the following fact.

Theorem 2.14. For any n ∈ N, any compact set K ⊂ X, and any constant γ > 0 there is a norm
‖ · ‖Y on R

n satisfying (2.9) such that

dγn(K)X = dγn(K, Y )X .

Proof: It follows from Lemma 2.2 that we can find a sequence (Ψj)∞j=1 of γ-Lipschitz maps

Ψj : (BYj , ‖ · ‖Yj ) → X, where the norms ‖.‖Yj on R
n satisfy (2.9), such that

dj := sup
f∈K

inf
y∈BYj

‖f − Ψj(y)‖X → dγn(K) as j → ∞.
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There is a subsequence ‖.‖Yjk
of the sequence of norms ‖.‖Yj that converges pointwise on R

n and
uniformly on Bℓn∞ to a norm ‖.‖Y on R

n satisfying (2.9). Indeed, one can check that the functions
Fj : (Rn, ‖ · ‖ℓn1 ) → R, defined as Fj(y) := ‖y‖Yj satisfy Fj(0) = 0, and

|Fj(y
′) − Fj(y)| = |‖y′‖Yj − ‖y‖Yj | ≤ ‖y′ − y‖Yj ≤ ‖y′ − y‖ℓn1 ,

where we have used (2.9). Thus, the sequence (Fj)
∞
j=1 satisfies the conditions of Lemma 2.13 with

γ = 1, a = b = 0, and so we can find a subsequence Fjk that converges point-wise on R
n and

uniformly on Bℓn∞ . In fact, the limit function F of this subsequence is a norm, which we denote by
‖ · ‖Y . Clearly, this norm satisfies inequalities (2.9).

Now, passing to a subsequence, we will assume that ‖.‖Yj converge uniformly on Bℓn∞ to the
function ‖.‖Y . Thus, there is j0 ∈ N such that for any j ≥ j0 there is εj with the properties
0 < εj < 1 , limj→∞ εj = 0 and

‖y‖Yj − εj ≤ ‖y‖Y ≤ ‖y‖Yj + εj , for all ‖y‖ℓn∞ ≤ 1.

For example, we can take
εj := sup

y:‖y‖ℓn∞≤1
|‖y‖Yj − ‖y‖Y |,

and j0 big enough. Since BYj ⊂ Bℓn∞ , j = 1, 2, . . ., and BY ⊂ Bℓn∞ , we have for all y ∈ BYj ∪BY

‖y‖Yj − εj ≤ ‖y‖Y ≤ ‖y‖Yj + εj . (2.22)

The latter inequality gives that for y ∈ BY we have

‖y‖Yj ≤ 1 + εj ⇒ y ∈ (1 + εj)BYj ,

and so
BY ⊂ (1 + εj)BYj . (2.23)

Next, let j ≥ j0. For any y with ‖y‖Yj ≤ 1 − εj < 1, we have from (2.22) that

‖y‖Y ≤ 1 ⇒ y ∈ BY ,

and therefore
(1 − εj)

−1BYj ⊂ BY . (2.24)

It follows from (2.23) and (2.24) that

(1 − εj)
−1BYj ⊂ BY ⊂ (1 + εj)BYj , j ≥ j0. (2.25)

Let us now define the mapping Ψ̃j : (1 + εj)BYj → X, as

Ψ̃j(y) := Ψj((1 + εj)
−1y).

Note that

‖Ψ̃j(y′) − Ψ̃j(y)‖X ≤ γ

1 + εj
‖y′ − y‖Yj < γ‖y′ − y‖Yj , y′, y ∈ (1 + εj)BYj ,

where we have used that Ψj is γ-Lipschitz. We denote by Ψ̄j the restriction of Ψ̃j on BY , see (2.25).
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Now we fix f ∈ K and j ≥ j0. For every ε > 0, we can find y = y(f, j, ε) ∈ BYj such that
‖f − Ψj(y)‖X < dj + ε. We set

z := y/(1 − εj) ∈ (1 − εj)
−1BYj ⊂ BY ,

and observe that

inf
x∈BY

‖f − Ψ̄j(x)‖X ≤ ‖f − Ψ̄j(z)‖X = ‖f − Ψ̃j(z)‖X = ‖f − Ψj((1 + εj)
−1z)‖X

= ‖f − Ψj((1 − ε2j )
−1y)‖X ≤ ‖f − Ψj(y)‖X + ‖Ψj(y) − Ψj((1 − ε2j )

−1y)‖X

< dj + ε + γ
ε2j

1 − ε2j
‖y‖Yj ≤ dj + ε + γ

ε2j
1 − ε2j

.

By letting ε → 0 and taking supremum over f ∈ K, we obtain

dγ(K, Y )X ≤ sup
f∈K

inf
x∈BY

‖f − Ψ̄j(x)‖X ≤ dj + γ
ε2j

1 − ε2j
.

Since dj → dγn(K)X and εj → 0 as j → ∞, we derive that dγ(K, Y )X ≤ dγn(K)X , and the proof is
completed. ✷

3 Lipschitz widths and entropy numbers

In this section, we study the relation between the Lipschitz widths dγn(K)X and the entropy numbers
εn(K)X of a compact set K. We look at widely used in the literature assumptions on the asymptotic
decay of εn(K)X and show how it relates to dγn(K)X . This is rather technical, so we state here
the main result in the section, which is in fact a corollary of Theorem 3.3, see (3.2) with k = 1,
Theorem 3.9. and Remark 2.1 (iii).

Theorem 3.1. Let K ⊂ X be a compact subset of a Banach space X, n ∈ N, and dγn(K)X be the
Lipschitz width for K with Lipschitz constant γ ≥ 2 rad(K). Then the following holds:

(i) For α > 0, β ∈ R, we have

εn(K)X ≤ C
[log2 n]β

nα
, n = 1, 2, . . . , ⇒ dγn(K)X ≤ C ′ [log2 n]β

nα
, n = 1, 2, . . . ,

εn(K)X ≥ C
[log2 n]β

nα
, n = 1, 2, . . . , ⇒ dγn(K)X ≥ C ′ [log2 n]β

nα[log2 n]α
, , n = 1, 2, . . . .

(ii) For α > 0, we have

εn(K)X ≍ 1

[log2 n]α
, n = 1, 2, . . . , ⇒ dγn(K)X ≍ 1

[log2 n]α
, n = 1, 2, . . . . (3.1)

(iii) For 0 < α < 1, we have

εn(K)X ≤ C2−cnα
, n = 1, 2, . . . , ⇒ dγn(K)X ≤ C ′2−cnα

, n = 1, 2, . . . ,

εn(K)X ≥ C2−cnα
, n = 1, 2, . . . , ⇒ dγn(K)X ≥ C ′2−c′nα/(1−α)

, n = 1, 2, . . . .

We conclude our study with various examples showing the sharpness of our estimates.
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3.1 Lipschitz widths are smaller than entropy numbers

We start with the construction of a particular Lipschitz function that can be viewed as a sum of
‘bumps’, each one supported on a closed ball from a Banach space Y . We use this function to show
that the Lipschitz widths of a compact set K ⊂ X are smaller than the entropy numbers of that
set.

Lemma 3.2. If (Bj) := (B(yj , ρj)) is a family of disjoint open balls in a Banach space Y , then
for every sequence (ϕj) of γj-Lipschitz mappings ϕj : Y → X, j = 1, 2, . . ., with the property that
ϕj ≡ 0 on the complement of Bj, the mapping Φ : Y → X, defined as Φ0 =

∑
j ϕj is a Lipschitz

map with Lipschitz constant supjγj. In particular, for any sequence (fj) of elements fj ∈ X with
‖fj‖X = 1 and any sequence (σj) of real numbers, the mappings φj : Y → X, j = 1, 2, . . ., defined
as

φj(y) = σj

(
1 − ‖yj − y‖Y

ρj

)

+

· fj , where (t)+ := max{0, t}, t ∈ R,

are |σj |/ρj-Lipschitz mappings. Their sum, the mapping Φ :=
∑

j φj, is a Lipschitz mapping with
Lipschitz constant sup

j
|σj |/ρj and Φ(yj) = σjfj, j = 1, 2, . . ..

Proof: The proof follows from the observation that the sum of Lipschitz mappings with disjoint
supports is again a Lipschitz mapping with a Lipschitz constant bounded by the supremum of the
Lipschitz constants of these mappings and we omit the details. ✷

We use the Lipschitz function Φ, constructed in Lemma 3.2 to prove the following theorem.

Theorem 3.3. For any compact subset K ⊂ X of a Banach space X and any n ≥ 1 we have that

d2
k rad(K)

n (K)X ≤ εkn(K)X , k = 1, 2, . . . . (3.2)

In particular, when k = n, we have

d2
n rad(K)

n (K)X ≤ εn2(K)X , n = 1, 2, . . . . (3.3)

Proof: We fix k ∈ N . Let K ⊂ X be a compact set in a Banach space X, let η > 0, and let

Xkn := {f ′
1, . . . , f

′
2kn} ⊂ K

be the set such that for every f ∈ K we can find f ′
j ∈ Xkn such that

‖f − f ′
j‖X ≤ εkn(K)X + η. (3.4)

Since K is bounded, we can assume that K ⊂ BX(0, r) for some r > 0. Let us divide the unit ball
(Bn, ‖ · ‖ℓn∞) = [−1, 1]n ⊂ R

n into 2kn non-overlapping open balls Bj , each of side length 21−k. Let
us denote by yj the center of Bj and define a map φj : Rn → X as

φj(y) =
(

1 − 2k‖yj − y‖ℓn∞
)

+
· f ′

j ∈ X, j = 1, . . . , 2kn,

and

Φ :=

2kn∑

j=1

φj .
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We apply Lemma 3.2 with σj = ‖f ′
j‖X , fj = 1

‖f ′
j‖X

f ′
j , ρj = 2−k, Y = (Rn, ‖ · ‖ℓn∞) and conclude

that Φ : Y → X is a map with Lipschitz constant γ := 2k maxj ‖f ′
j‖X ≤ 2kr, and Φ(yj) = f ′

j .

Therefore, we have d2
kr

n (K)X ≤ εkn(K)X + η, and taking η → 0, we obtain

d2
kr

n (K)X ≤ εkn(K)X , n ≥ 1. (3.5)

Now, for any ε > 0 we can find g = g(ε) ∈ X such that

sup
f∈K

‖f − g‖X < rad(K) + ε2−k,

We apply (3.5) for the set (K − g) with r = rad(K) + ε2−k and using Remark 2.4, we arrive at

d2
k rad(K)+ε

n (K)X ≤ εkn(K)X .

The statement (3.2) of the theorem is obtained from the latter inequality using the continuity of
the Lipschitz width dγn(K)X with respect to γ, see Theorem 2.7. ✷

Corollary 3.4. For every compact subset K ⊂ X of a Banach space X and every γ ≥ 2 rad(K) we
have

lim
n→∞

dγn(K)X = 0.

Proof: This follows from Theorem 3.3, Remark 2.1 (iii) and the fact that limn→∞ εn(K)X = 0 for
compact sets K, see Remark 2.3. ✷

Example 3.5. We want to point out that for some cases of K and values of n the estimate (3.2)
in Theorem 3.3 cannot be improved. We consider the Hilbert space H which we identify with the
sequence space

ℓ2 := {x = (x1, . . . , xj , . . .) : ‖x‖2ℓ2 = ‖x‖2H =
∞∑

j=1

x2j < ∞, xj ∈ R}.

For each n = 1, 2, . . . , we construct the compact set Kn,

Kn := {e1, e2, . . . , e2n , e2n+1} ⊂ ℓ2,

where (ej) is the standard basis in ℓ2, that is, all coordinate components of ej are 0’s, except the
j-th, which is 1. Then we have

ε̃n(Kn)H ≤ 3d
2 diam(Kn)
n/7 (Kn)H .

Indeed, since ‖ei − ej‖H =
√

2, i 6= j, it follows that ε̃k(Kn)H =
√

2, k ≤ n. Now suppose that we
have dγs (Kn)H <

√
2/3 for some s and γ. This means that there exists a norm ‖ · ‖Ys on R

s and
a γ-Lipschitz map φ, φ : (BYs , ‖ · ‖Ys) → H, defined on the unit ball BYs , with the property that
‖φ(yj) − ej‖H <

√
2/3, j = 1, . . . , 2n + 1, yj ∈ BYs , j = 1, . . . , 2n + 1. Since for i 6= j,

γ‖yj −yi‖Ys ≥ ‖φ(yj)−φ(yi)‖H = ‖(φ(yj)− ej) + (ej − ei) + (ei−φ(yi))‖H >
√

2−2
√

2/3 =
√

2/3,
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we have that {yj}2n+1
j=1 is

√
2/(3γ) packing of BYs . Using (2.14), we obtain that

Ñ√
2/(6γ)(BYs) ≥ 2n + 1 ⇒ ε̃n(BYs)H ≥

√
2/(6γ).

On the other hand, it follows from [4] that 4 · 2−n/s ≥ εn(BYs)H ≥ 2−1ε̃n(BYs)H , and therefore,
√

2/(12γ) ≤ 4 · 2−n/s.

Thus, for any pair (γ, s) such that
√

2/(12γ) > 4 · 2−n/s we get 3dγs (Kn)H ≥
√

2 = ε̃n(Kn)H . This
holds, for example, when γ = 2 diam(Kn) = 2

√
2 and s = n/7.

3.2 Estimates for Lipschitz widths from below

We start this section with a lower bound on the Lipschitz constant γ in dγn(K)X . The following
proposition holds.

Proposition 3.6. If dγn(K)X < ε for a compact subset K ⊂ X of a Banach space X, then

γ ≥ 1

3
εN

1/n
2ε (K), (3.6)

where Nε(K) is the ε-covering number of K. In particular, if dγn(BZm)X < ε, then

γ ≥ 1

3
2−m/nε1−m/n. (3.7)

Proof: If dγn(K) < ε, then there is a γ-Lipschitz map Φ and a norm ‖ · ‖Yn , Φ : (BYn , ‖ · ‖Yn) → X
such that Φ(BYn) approximates K up to accuracy ε. Let us consider Φ(BYn) and let {yj}Nj=1 ⊂ BYn

be such that {Φ(yj)}Nj=1 is a maximal ε-packing of Φ(BYn). Then, we have

ε < ‖Φ(yj) − Φ(yj′)‖X ≤ γ‖yj − yj′‖Yn ,

and thus
‖yj − yj′‖Yn > εγ−1, j 6= j′, j, j′ = 1, . . . , N.

Therefore, see e.g. [12, Chp. 15 Prop. 1.3],

N ≤ Pεγ−1(BYn) ≤ 3n(εγ−1)−n =

(
3

ε

)n

γn. (3.8)

For every z ∈ K, we can find Φ(y), y ∈ BYn such that ‖z−Φ(y)‖X < ε since Φ(BYn) approximates
K up to accuracy ε. Since the set {Φ(y),Φ(y1), . . . ,Φ(yN )} is not an ε-packing for Φ(BYn), there
is index j0, 1 ≤ j0 ≤ N , such that ‖Φ(y) − Φ(yj0)‖X ≤ ε. Then,

‖z − Φ(yj0)‖X ≤ ‖z − Φ(y)‖X + ‖Φ(y) − Φ(yj0)‖X < 2ε,

and thus {Φ(yj)}Nj=1 is a 2ε-covering of K, which gives

N ≥ N2ε(K).

Combining the latter estimate with (3.8) gives (3.6). In particular, when K = BZm , we know that

N2ε(BZm) ≥ (2ε)−m,

and therefore we obtain (3.7). The proof is completed. ✷
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Lemma 3.7. Let K ⊂ X be a compact set and γ > 0 be a fixed constant. If there is n > n0,
n0 = n0(c0, α, β) such that

dγn(K)X < c0
[log2 n]β

nα
, with α > 0, and β ∈ R,

then

εm(K)X < C
[log2m]α+β

mα
, with m = cn log2 n, (3.9)

where C, c are fixed constants, depending only on γ, c0, α and β.

Proof: We use Proposition 3.6 with ε = c0[log2 n]βn−α to obtain that

N2ε(K) ≤
(

3γ

ε

)n

= (3γc−1
0 [log2 n]−βnα)n < 2n(log2(3γc

−1
0 )+α log2 n−β log2(log2 n)) < 2cn log2 n,

and therefore
εcn log2 n(K)X ≤ 2c0[log2 n]βn−α.

If we set m = cn log2 n > cn, then n = m/c log2 n and we get

εm(K)X ≤ 2c0[log2 n]β [m/c log2 n]−α = 2c0c
αm−α[log2 n]β+α. (3.10)

Since
log2m = log2 c + log2 n + log2 log2 n,

for n sufficiently big we have
2−1 log2 n < log2m < 3 log2 n,

and the statement follows from (3.10). ✷

Lemma 3.7 is similar to the classical Carl’s inequalities [3], traditionally used to provide lower
bounds. However, there is an important difference. Note that Lemma 3.7 works for each n sepa-
rately, whenever the Carl’s inequality requires an assumption for all j ≤ n. On the other hand the
Carl’s inequality gives the upper bound for εn not εm.

Next, we continue with a series of results presenting lower bounds for the Lipschitz widths of
compact sets, provided we have information about the entropy numbers of these sets. We start
with a natural consequence of Proposition 3.6.

Proposition 3.8. Let K ⊂ X be a compact set and let

εn(K)X > ηn, n = 1, 2, . . . ,

where (ηn)∞n=1 is a sequences of real numbers decreasing to zero. Let for some m ∈ N and some
δ > 0

dγm(K)X < δ.

Then we have
ηm log2(3γδ

−1)<2δ. (3.11)
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Proof: We apply Proposition 3.6 with ε = δ and obtain

N2δ(K) ≤
(

3γ

δ

)m

= 2m log2(3γδ
−1).

Using our assumptions and the definition of entropy numbers, we derive

2δ ≥ εm log2(3γδ
−1)(K)X > ηm log2(3γδ

−1).

✷

The next theorem discusses lower bounds of the Lipschitz widths dγn(K)X in the case when
γ > 0 is a fixed constant.

Theorem 3.9. For any compact set K ⊂ X the following holds:

(i) If for some constants c1 > 0, α > 0 and β ∈ R we have

εn(K)X > c1
(log2 n)β

nα
, n = 1, 2, . . . ,

then for each γ > 0 there exists a constant C > 0 such that

dγn(K)X ≥ C
(log2 n)β−α

nα
, n = 1, 2, . . . . (3.12)

(ii) If for some constants c1 > 0, α > 0 we have

εn(K)X > c1(log2 n)−α, n = 1, 2, . . . ,

then for each γ > 0 there exists a constant C such that

dγn(K)X ≥ C(log2 n)−α, n = 1, 2, . . . . (3.13)

(iii) If for some constants c1, c > 0 and 1 > α > 0 we have

εn(K)X > c12
−cnα

, n = 1, 2, . . . ,

then for each γ ≥ 2 rad(K) we have

dγn(K)X ≥ C2−c2nα/(1−α)
, n = 1, 2, . . . , (3.14)

where C, c2 > 0 are constants depending on γ, c, and α.

Proof: We prove (i) by contradiction. If (3.12) does not hold for some constant C, then there
exists a strictly increasing sequence of integers (nk)∞k=1, such that

ak :=
dγnk(K)Xnα

k

(log2 nk)β−α
→ 0 as k → ∞.

Thus, we can write

dγnk
(K)X =

ak [log2 nk]β−α

nα
k

<
2ak [log2 nk]β−α

nα
k

=: δk for k = 1, 2, . . . . (3.15)
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Now we apply Proposition 3.8 with ηn = c1
(log2 n)

β

nα and obtain

c1
[
log2(nk log2(3γδ

−1
k ))

]β
nk

−α
[
log2(3γδ

−1
k )
]−α ≤ 4

ak [log2 nk]β−α

nk
α

,

which we rewrite as

[
log2 nk + log2(log2(3γδ

−1
k ))

]β [
log2(3γδ

−1
k )
]−α ≤ C1ak [log2 nk]β−α , where C1 = 4/c1. (3.16)

Observe that

log2(3γδ
−1
k ) = log2 (1.5γ) + log2 a

−1
k + α log2 nk + (α− β) log2(log2 nk),

and therefore for k big enough we obtain

log2(3γδ
−1
k ) ≤ 2

[
log2(a

−1
k ) + α log2 nk

]
. (3.17)

The latter inequality and (3.16) give

2−α
[
log2 nk + log2(log2(3γδ

−1
k ))

]β [
log2(a

−1
k ) + α log2 nk

]−α ≤ C1ak [log2 nk]β−α ,

which is equivalent to

a−1
k

[
log2 nk + log2(log2(3γδ

−1
k ))

]β ≤ 2αC1

[
log2(a

−1
k )

log2 nk
+ α

]α
[log2 nk]β . (3.18)

Note that since δk → 0 as k → 0, we have that for k big enough log2(log2(3γδ
−1
k )) > 0. Now we

consider several cases.
Case 1: β ≥ 0. In this case we have for k big enough

[log2 nk]β ≤
[
log2 nk + log2(log2(3γδ

−1
k ))

]β
,

and therefore it follows from (3.18) that

a−1
k ≤ 2αC1

[
log2(a

−1
k )

log2 nk
+ α

]α
< C[log2(a

−1
k )]α,

which contradicts the fact that ak → 0 (and thus a−1
k → ∞).

Case 2: β < 0. In this case we have

[
log2 nk + log2(3γδ

−1
k )
]β

<
[
log2 nk + log2(log2(3γδ

−1
k ))

]β
, (3.19)

and therefore it follows from (3.18) that

a−1
k

[
log2 nk + log2(3γδ

−1
k )
]β ≤ 2αC1

[
log2(a

−1
k )

log2 nk
+ α

]α
[log2 nk]β .
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This gives, using (3.17)

a−1
k ≤ 2αC1

[
log2(a

−1
k )

log2 nk
+ α

]α [
1 +

log2(3γδ
−1
k )

log2 nk

]−β

≤ 2αC1

[
log2(a

−1
k )

log2 nk
+ α

]α [
1 + 2α + 2

log2(a
−1
k )

log2 nk

]−β

< C[log2(a
−1
k )]α−β ,

which also contradicts the fact that ak → 0 (and thus a−1
k → ∞).

To prove (ii), we repeat the argument for (i), namely, we assume that (ii) does not hold.
Therefore there exists a strictly increasing sequence of integers (nk)∞k=1, such that

bk := dγnk
(K)X [log2 nk]α → 0 as k → ∞.

We write
dγnk

(K)X = bk[log2 nk]−α < 2bk[log2 nk]−α =: δk for k = 1, 2, . . . , (3.20)

and use Proposition 3.8 with ηn = c1(log2 n)−α to derive

c1
[
log2(nk log2(3γδ

−1
k ))

]−α ≤ 4bk[log2 nk]−α.

The latter inequality is equivalent to

[log2 nk + log2(log2(3γδ
−1
k ))]−α ≤ C1bk(log2 nk)−α, C1 := 4/c1, (3.21)

which, after using (3.19) with β = −α gives

[log2 nk + log2(3γδ
−1
k )]−α ≤ C1bk [log2 nk]−α .

We continue by writing the above inequality as

b−1
k ≤ C1

[
1 +

log2(3γδ
−1
k )

log2 nk

]α
≤
[

1 + 2α + 2
log2(b

−1
k )

log2 nk

]α
≤ C[log2(b

−1
k )]α,

where we have used (3.17). The latter inequality contradicts the fact that bk tends to zero, and the
proof of (ii) is completed.

We now prove (iii). To simplify the notation, we denote by dn := dγn(K)X and observe that,
according to Corollary 3.4, dn → 0 for n → ∞ when γ ≥ rad(K). We use Proposition 3.8 with
δ = 2dn and ηn = c12

−cnα
to obtain the inequality

4dn ≥ c12
−c[n log2(3γd

−1
n )]α , (3.22)

which can be rewritten as

2c[n log2(3γd
−1
n )]α ≥ c1

4
d−1
n ⇔ 2c[n(log2 ξn)]

α ≥ c1
12γ

ξn =: Aξn, where ξn := 3γd−1
n → ∞ as n → ∞.

Taking logarithm on both sides of the inequality and using the fact that ξn → ∞ we obtain for n
big enough

log2 ξn ≤ cnα(log2 ξn)α − log2A ≤ 2cnα(log2 ξn)α, (3.23)

and therefore log2 ξn ≤ (2c)1/(1−α)nα/(1−α). Returning back to the notation for the Lipschitz width,
we obtain

3γ2−(2c)1/(1−α)nα/(1−α) ≤ dγn(K)X

for n big enough. This completes the proof of (iii) by choosing the constants appropriately so that
the above inequality holds for all n. ✷
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3.2.1 Sharpness of the results

In this section, we provide examples which show that some of the results in Theorem 3.9 cannot
be improved. We start with the following remark.

Remark 3.10. The requirement α < 1 in Theorem 3.9 (iii), and therefore in Theorem 3.1 (iii),
is necessary. The simplest example is K = [0, 1] ⊂ R, where we have ǫn(K)R = 2−(n+1) and

dγn(K)R = 0 when γ ≥ 1
2 and n ≥ 1. The Lipschitz width is zero because dγn(K)R ≤ d

1/2
1 (K)R for the

discussed range of n and γ, and d
1/2
1 (K)R = 0. The latter holds since the mapping Φ1 : [−1, 1] → R,

defined as Φ1(t) = 1
2(t + 1) is a 1/2-Lipschitz mapping for which Φ1([−1, 1]) = K. This shows that

an estimate for dγn(K)X in terms of n is not possible.

Next, we provide an example of a compact set K for which the the entropy numbers behave like
n−1, while the Lipschitz width behaves as [n log2(n + 1)]−1.

We consider the Banach space X = c0 of all sequences that converge to 0, equipped with the
ℓ∞ norm and its compact subset

K(σ) := {σjej}∞j=1 ∪ {0} ⊂ c0, (3.24)

determined by the strictly decreasing converging to 0 sequence σ := (σj)
∞
j=1, where (ej)

∞
j=1 are the

standard basis in c0. Since

‖σjej − σj′ej′‖ℓ∞ = σj , for all j′ > j,

it follows that the ball with center σjej and radius σj contains all points σj′ej′ with j′ > j and
none with j′ < j. Thus, if we look for 2n balls with centers in K(σ) covering K(σ) with smallest
radius, we take the balls B(σjej , σ2n), j = 1, 2, . . . , 2n, with centers σjej and radius σ2n . Each of
the first 2n − 1 balls contain only one point from K(σ), while the last ball B(σ2ne2n , σ2n) contains
the rest of the points {σjej}∞j=2n ∪ {0}, which gives

ε̃n(K(σ))X = σ2n . (3.25)

We investigate the behavior of dγn(K(σ))X . We shall use the following lemma which gives upper
bounds for the Lipschitz widths for the sets K(σ).

Lemma 3.11. Consider the strictly decreasing sequence σ := (σj)
∞
j=1, σj → 0 as j → ∞, and the

set K(σ), defined in (3.24). If σ1 ≤ γ/2 and we can find N (finite or infinite) such that

N∑

j=1

σn
j ≤ (γ/2)n, (3.26)

then dγn(K(σ))X ≤ σN .

Proof: We consider the case when N is finite. Similar arguments hold in the infinite case. For
every σj , j = 1, . . . , N , we define ℓj ∈ N ∪ {0} as

2−ℓj−1 < 2
σj
γ

≤ 2−ℓj . (3.27)
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Then it follows from (3.26) that

N∑

j=1

2−nℓj ≤
N∑

j=1

(4σj/γ)n ≤ 2n. (3.28)

Since (σj)
∞
j=1 is a decreasing sequence, we have that 2−ℓ1 ≥ 2−ℓ2 ≥ 2−ℓ3 ≥ · · · ≥ 2−ℓN . Note that

some of the ℓj ’s can be equal to each other. Let k1, k2, . . . , ks = N , be the indices such that

ℓ1 = . . . = ℓk1 < ℓk1+1 = . . . = ℓk2 < ℓk2+1 = . . . = ℓks = ℓN .

We set k0 = 0 and rewrite inequality (3.28) as

2n ≥
N∑

j=1

2−nℓj =
s∑

j=1

(kj − kj−1)2
−nℓkj . (3.29)

Observe that the volume of a cube with side length 2
−ℓkj is 2

−nℓkj , while the volume of [−1, 1]n is
2n. It follows from simple volumetric considerations, that we can divide naturally the cube [−1, 1]n

into k1 open non-overlaping cubes each with side length 2−ℓk1 , (k2−k1) open non-overlaping cubes
each with side length 2−ℓk2 , . . ., (ks − ks−1) open non-overlaping cubes each with side length 2−ℓks ,
since, according to (3.29), the sum of the total volumes of these cubes does not exceed the total
volume of [−1, 1]n. Thus, there exists a sequence of non-overlapping open cubes Bj ,

Bj := Bj(yj , 2
−ℓj−1) ⊂ (Bℓn∞ , ‖ · ‖ℓn∞) := [−1, 1]n, j = 1, . . . , N,

with side length 2−ℓj . Then, according to Lemma 3.2, the mapping Φ : (Bℓn∞ , ‖ · ‖ℓn∞) → c0, defined
as

Φ(y) :=

N∑

j=1

σj(1 − 2ℓj+1‖yj − y‖ℓn∞)+ · ej

is a Lipschitz mapping. Its Lipschitz constant is sup
j=1,...,N

{2ℓj+1σj} and Φ(yj) = σjej , j = 1, . . . , N .

It follows from (3.27) that
sup

j=1,...,N
2ℓj+1σj ≤ γ,

and therefore Φ is a γ-Lipschitz mapping. On the other hand, since

sup
j′≥1

inf
y∈Bn

‖σj′ej′ − Φ(y)‖ℓ∞ ≤ sup
j′≥1

inf
j=1,...,N

‖σj′ej′ − Φ(yj)‖ℓ∞ = sup
j′≥1

inf
j=1,...,N

‖σj′ej′ − σjej‖ℓ∞ = σN ,

and
inf

y∈Bn

‖0 − Φ(y)‖ℓ∞ ≤ inf
j=1,...,N

‖Φ(yj)‖ℓ∞ = inf
j=1,...,N

‖σjej‖ℓ∞ = σN ,

it follows that dγn(K(σ))X ≤ σN and the proof is completed. ✷

Now, we are ready to state the main theorem in this section.

Theorem 3.12. The compact set K(σ) ⊂ c0, defined in (3.24), with σ = (σj)
∞
j=1 being the sequence

σj = 1/ log2(j + 1) has inner entropy numbers

ε̃n(K(σ)) ≍ 1

n
,
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and Lipschitz width

dγn(K(σ)) ≍ 1

n log2(n + 1)

for any for γ > 2.

Proof: The behavior of the entropy follows from (3.25) and the estimate from below for the
Lipschitz widths follows from Theorem, 3.9, (i). We are only left to prove the upper estimate for
the width. If we show that (3.26) holds for the choice of σj = [log2(j + 1)]−1, j = 1, 2, . . ., and
N = (n + 1)n, where γ > 2 and n is sufficiently large, since σ1 = 1 ≤ γ/2, we can use Lemma 3.11
to conclude that dγn(K(σ)) ≤ σN = (n log2(n + 1))−1, for n ≥ n0, depending only on γ. This could
conclude the proof.

We now concentrate on proving (3.26) with N = (n+ 1)n for n sufficiently large. We start with
defining J = J(n) as

2J−1 ≤ (n + 1)n < 2J ,

and estimate

(n+1)n∑

j=1

σn
j ≤

J−1∑

k=0

2k+1−1∑

j=2k

σn
j ≤ 1 +

J−1∑

k=1

2kk−n =: 1 +

J−1∑

k=1

q(k), where q(t) := 2tt−n, t ≥ 1. (3.30)

Simple calculation shows that q(t) is decreasing on [1, n/ ln 2] and increasing on [n/ ln 2,∞). More-
over, we have that

2e−n/t <
q(t + 1)

q(t)
=

2(
1 + 1

t

)n < 2e−n/(t+1) ≤ 1/2 for t ≤ n

ln 4
− 1. (3.31)

It follows from (3.30) that for n ≥ 3,

(n+1)n∑

j=1

σn
j ≤ 1 +

∑

1≤k≤n/ ln 4

q(k) +
∑

n/ ln 4<k≤n/ ln 2

q(k) +
∑

n/ ln 2<k≤J−1

q(k) =: S1(n) + S2(n) + S3(n).

(3.32)
We will provide upper bounds for each of S1, S2 and S3. Clearly

S1(n) = 1 +
∑

1≤k≤n/ ln 4

q(k) < 1 + q(1) ·
∑

1≤k≤n/ ln 4

2−k+1 < 1 + 2 ·
∞∑

k=1

2−k+1 = 5,

since for this range of k’s we have q(k + 1) < 1
2q(k), see (3.31).

Next, note that q is a decreasing function for the range of k in S2, and therefore

S2(n) ≤
( n

ln 2
− n

ln 4

)
· 2n/ ln 4

( n

ln 4

)−n
< n

(
21/ ln 4 ln 4

)n
n−n < n

(
2.3

n

)n

,

since (n/ ln 2 − n/ ln 4) = n/(2 ln 2) < n and 21/ ln 4 ln 4 < 2.3. For n ≥ 5

2.3n1/n < 2.3(1 +
1√
2

) < n ⇒ S2(n) < n

(
2.3

n

)n

= n

(
2.3n1/n

n · n1/n

)n

< 1.
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So, we obtain
S2(n) < 1 for n ≥ 5.

To estimate S3, we notice that the biggest summand is the last one,

S3(n) ≤ J · 2J−1(J − 1)−n < (n log2(n + 1) + 1)(n + 1)n(n log2(n + 1) − 1)−n

= n

[
1 +

1

n

]n [
log2(n + 1) +

1

n

] [
log2(n + 1) − 1

n

]−n

< 2en

[
log2(n + 1) − 1

n

] [
log2(n + 1) − 1

n

]−n

= 2en

[
log2(n + 1) − 1

n

]1−n

.

Let us now consider the functions

ℓ(x) := x1/(x−1), r(x) := log2(x + 1) − 1

x
.

One can show that ℓ is a decreasing function on the interval [5,∞), while r is increasing function
on the same interval. Therefore, for every n ≥ 5

n1/(n−1) = ℓ(n) ≤ ℓ(5) = 51/4 < log2 6 − 1

5
= r(5) ≤ r(n) = log2(n + 1) − 1

n
,

and so

n <

(
log2(n + 1) − 1

n

)n−1

⇒ n

(
log2(n + 1) − 1

n

)1−n

< 1.

The latter inequality combined with the estimate for S3 gives that

S3(n) < 2e, for n ≥ 5.

Finally, combining (3.32) with all estimates for S1, S2 and S3, we obtain that

(n+1)n∑

j=1

σn
j < S1(n) + S2(n) + S3(n) < 6 + 2e ≤ (γ/2)n, provided n ≥ max

{
5,

ln(6 + 2e)

ln γ − ln 2

}
.

The proof is completed. ✷

4 Comparison between Lipschitz and Kolmogorov widths

If we fix the value of n ≥ 0, the Kolmogorov n-width of K is defined as

d0(K)X = sup
f∈K

‖f‖X , dn(K)X := inf
dim(Xn)=n

sup
f∈K

dist(f,Xn)X , n ≥ 1. (4.1)

It tells us the optimal performance possible for the approximation of the model class K using linear
spaces of dimension n. However, it does not tell us how to select a (near) optimal space Y of
dimension n for this purpose. Let us note that in the definition of Kolmogorov width, we are not
requiring that the mapping which sends f ∈ K into an approximation to f is a linear map. There
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is a concept of linear width which requires the linearity of the approximation map. Namely, given
n ≥ 0 and a model class K ⊂ X, its linear width dLn(K)X is defined as

dL0 (K)X = sup
f∈K

‖f‖X , dLn(K)X := inf
L∈Ln

sup
f∈K

‖f − L(f)‖X , n ≥ 1, (4.2)

where the infimum is taken over the class Ln of all continuous linear maps from X into itself with
rank at most n.

We prove in the next theorem the intuitive fact that the Lipschitz width is smaller than the
Kolmogorov width.

Theorem 4.1. For every compact set K ⊂ X and every n ≥ 1, we have

dγn(K)X ≤ dn(K)X ≤ dLn(K)X , for γ = dn(K)X + rad(K). (4.3)

Proof: It is clear that dn(K)X ≤ dLn(K)X for every n ≥ 0 since we can take Xn to be the n-
dimensional linear space containing L(X) when L ∈ Ln, so we concentrate on the first inequality.
We start with γ > dn(K)X + rad(K), denote

η := γ − dn(K)X − rad(K) > 0,

and choose η1 to be such that 0 < η1 < η. Let Xn ⊂ X be an n-dimensional linear subspace in X
such that,

sup
f∈K

inf
g∈Xn

‖f − g‖X < dn(K)X + η1.

For every f ∈ K, we denote by g = g(f) the element in Xn for which

‖f − g(f)‖X < dn(K)X + η1, (4.4)

and the collection of all such elements are denoted by

A = {g(f) : f ∈ K} ⊂ Xn.

Let us fix g0 ∈ X such that supf∈K ‖f − g0‖X < radK + η − η1. Then, for every f ∈ K,

‖g(f) − g0‖X ≤ ‖g(f) − f‖X + ‖f − g0‖X < dn(K)X + rad(K) + η = γ,

and therefore

rad(A) < γ, and A ⊂ B(g0, γ) := {g ∈ Xn : ‖g − g0‖X ≤ γ}.
We now define the mapping Φ : (BXn , ‖ · ‖X) → X from the unit ball BXn := ‖g ∈ Xn : ‖g‖X ≤ 1}
in Xn as Φ(g) = g0 + γg. Clearly Φ is a γ-Lipschitz map. Moreover, since Φ(BXn) = B(g0, γ) and
A ⊂ B(g0, γ), we have that

sup
f∈K

inf
g∈BXn

‖f − Φ(g)‖X ≤ sup
f∈K

inf
g∈A

‖f − g‖ < dn(K)X + η1,

where we have used (4.4) in the last inequality. Thus, using Remark 2.1 (iii), we obtain

dγn(K)X ≤ dn(K)X + η1,

and letting η1 → 0 gives

dγn(K)X ≤ dn(K)X , for any γ > dn(K)X + rad(K).

Now (4.3) follows from Theorem 2.7 by taking γ → dn(K)X + rad(K). ✷
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Corollary 4.2. For every n ≥ 1 and every compact set K ⊂ X we have

dγn(K)X ≤ dn(K)X , γ = 2 sup
f∈K

‖f‖X . (4.5)

Proof: The inequality follows from Theorem 4.1, Remark 2.1 (iii), and the fact that for every
n ≥ 1

dn(K)X + rad(K) ≤ 2 sup
f∈K

‖f‖X .

✷

As a result of this section, we can give the following improvement of Corollary 3.4.

Corollary 4.3. If K ⊂ X is compact, then for every n0 ∈ N∪{0} and every γ ≥ dn0(K)X +rad(K),
we have

lim
n→∞

dγn(K)X = 0.

Proof: The statement follows from Theorem 4.1, Remark 2.1 (iii) and the fact that the sequence
of Kolmogorov widths (dn(K)X) of a compact set K is a non-increasing sequence of non-negative
numbers that tends to zero, see e.g.[14, Prop 1.2]. ✷

4.1 Examples of different behavior of the Lipschitz and Kolmogorov widths

It is intuitively clear that the Lipschitz widths could be much smaller than the Kolmogorov widths.
We illustrate this observation by discussing the following two examples.

Example 4.4. This example, borrowed from Albert Cohen, arises in some partial differential
equations. We denote by χa the characteristic function of [a, a + 1], a ∈ [0, 1] and consider the
univariate linear transport equation

∂tua + a∂xua = 0, (4.6)

with constant velocity a ∈ [0, 1] and initial condition

u0(x) = ua(x, 0) = χ0(x). (4.7)

We denote by
H := {χa : a ∈ [0, 1]} ≡ {ua(x, 1) : a ∈ [0, 1]}

the solution manifold to (4.6)-(4.7) evaluated at time t = 1. We prove the following lemma for the
set H.

Lemma 4.5. The Kolmogorov width of H ⊂ L1[0, 2] satisfies

(n + 1)−1 ≤ dn(H)L1[0,2] ≤ 4n−1, (4.8)

while its inner entropy numbers are given by

ε̃n(H)L1[0,2] = 2−n+1. (4.9)
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Proof: We first observe that ‖χa − χb‖L1[0,2] = 2|a− b|. If we define

tj := (2j + 1)2−n−1, j = 0, 1, . . . , 2n − 1,

to be the centers of the intervals [j2−n, (j + 1)2−n]⊂ [0, 1], we have

χa ∈ B(χtj , 2
−n+1) ⇔ ‖χa − χtj‖L1[0,2] ≤ 2−n+1 ⇔ |a− tj | ≤ 2−n,

where B(χtj , 2
−n+1) is the closed ball in L1[0, 2] with center χtj and radius 2−n+1. So, those balls

cover H. This calculation also shows that if we have 2n balls covering H and one of them has radius
strictly smaller than 2−n+1 then some other one must have a radius strictly bigger than 2−n+1.
This proves (4.9).

To show (4.8), we first observe that the n-dimensional space

Vn := span{χ̄j , j = 0, . . . , n− 1},

where χ̄j is the characteristic function of the interval [2j/n, 2(j + 1)/n] provides an error at most
4n−1 for the elements from H. Indeed, for each χa ∈ H, we have

‖χa −
j2∑

j=j1

χ̄j‖L1[0,2] ≤ 4n−1,

where j1 = j1(a) and j2 = j2(a) are defined as

j1(a) = max{j : 2j/n ≤ a, 0 ≤ j ≤ n− 1}, j2(a) = max{j : 2j/n ≤ a + 1, 0 ≤ j ≤ n− 1},

and therefore dn(H)L1[0,2] ≤ 4n−1. To prove the lower bound in (4.8), we use a well known result,
see e.g. [14, Chap. II, Prop 1.3 ], which states that for any unit ball U in a Banach space X and
any finite dimensional space Vn+1 of dimension n + 1, the Kolmogorov width

dn(U ∩ Vn+1)X = 1. (4.10)

We apply this result for the Banach space X = L1[0, 2], the unit ball U in L1[0, 2], and the linear
space Vn+1 ⊂ Lp[0, 1], defined as

Vn+1 = span{ϕ0, . . . , ϕn}, ϕj := χj/(n+1) − χ(j+1)/(n+1), j = 0, . . . , n.

Another representation for the ϕj ’s is

ϕj := χ[j/(n+1),(j+1)/(n+1)] − χ[1+j/(n+1),1+(j+1)/(n+1)], j = 0, . . . , n,

and since they have disjoint supports, every ϕ =
∑n

j=0 αjϕj ∈ Vn+1 has norm

‖ϕ‖L1[0,2] = ‖
n∑

j=0

αjϕj‖L1[0,2] = 2(n + 1)−1
n∑

j=0

|αj |. (4.11)

Therefore

ϕ =
n∑

j=0

αjϕj ∈ U ∩ Vn+1 ⇔
n∑

j=0

|αj | ≤
1

2
(n + 1). (4.12)
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Let us fix an n dimensional subspace Vn and let vj ∈ Vn be such that

dist(χj/(n+1), Vn)L1[0,2] = ‖χj/(n+1) − vj‖L1[0,2], j = 0, . . . , n.

Then, for every ϕ ∈ U ∩ Vn+1, we have

dist(ϕ, Vn)L1[0,2] ≤ ‖
n∑

j=0

αjϕj −
n∑

j=0

αj(vj − vj+1)‖L1[0,2]

= ‖
n∑

j=0

αj(χj/(n+1) − vj) −
n∑

j=0

αj(χ(j+1)/(n+1) − vj+1)‖L1[0,2]

≤ 2 dist(H, V )L1[0,2]

n∑

j=0

|αj | ≤ (n + 1) dist(H, Vn)L1[0,2],

where we have used (4.12). Therefore, it follows from (4.10) and the latter estimate that

1 = dn(U ∩ Vn+1)L1[0,2] = inf
Vn

sup
ϕ∈U∩Vn+1

dist(ϕ, Vn)L1[0,2]

≤ (n + 1) inf
Vn

dist(H, Vn)L1[0,2] = (n + 1)dn(H)L1[0,2],

and the proof is completed. ✷

It follows then from Lemma 4.5 and Theorem 3.3 that the Lipschitz width of H decays expo-
nentially, while its Kolmogorov width decays like n−1. While this is a good example, one may argue
that this different behavior is due to the fact that H is not convex. It is a well known fact that for
every compact set K we have

dn(K)X = dn(Kc)X , where Kc = conv(K ∪ (−K))

is the minimal convex centrally symmetric set that contains K. Therefore, a more suitable example
would be one when K is a convex, centrally symmetric set. We discuss such case in Example 4.6.

Example 4.6. Consider the sequence σ = (σj)
∞
j=1, with σj = (log2(j + 1))−1/2, and the corre-

sponding linear map on sequences, Dσ : ℓ1 → ℓ2, ℓ1 := {x = (x1, x2, . . .) :
∑∞

j=1 |xj | < ∞}, defined
as

Dσ(x) = y, where yj = σjxj , j = 1, 2, . . . .

Let us denote by Kσ ⊂ ℓ2 the image of the unit ball in ℓ1 under this map, namely,

Kσ := {y ∈ ℓ2 : yj = σjxj , where
∞∑

j=1

|xj | ≤ 1} = {y ∈ ℓ2 :
∞∑

j=1

|yj |
√

log2(j + 1) ≤ 1}. (4.13)

The set Kσ is a convex, centrally symmetric subset of ℓ2 for which

{
±ej√

log2(j + 1)

}∞

j=1

⊂ Kσ.
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It follows from Proposition 3.1 in [11] that

εn(Kσ)ℓ2 ≍ n−1/2, n = 1, 2, . . . , (4.14)

which combined Theorem 3.3 shows that dγn(Kσ)ℓ2 ≤ Cn−1/2 with γ = 2 rad(Kσ) = 2. On the
other hand, we show in the next lemma that its Kolmogorov width dn(Kσ)ℓ2 behaves as dn(Kσ)ℓ2 ≍
(log2 n)−1/2.

Lemma 4.7. The Kolmogorov width of the compact set Kσ defined in (4.13) is

dn(Kσ)ℓ2 ≍ (log2 n)−1/2, n = 2, 3, . . . .

Proof: Clearly,

dn(Kσ)ℓ2 ≤ sup
x∈Kσ

dist(x, span{ej}nj=1)ℓ2 =
1√

log2(n + 2)
.

To prove the inequality from below, we fix ǫ > 0 and denote by Xn the n dimensional subspace for
which

sup
x∈Kσ

dist(x,Xn)ℓ2 ≤ (1 + ǫ)dn(Kσ)ℓ2 .

If P is the orthogonal projection onto ℓ2n2 := span{ej}2nj=1 and X̃n := P (Xn), then

dn(P (Kσ))ℓ2 ≤ sup
x∈P (Kσ)

dist(x, X̃n)ℓ2 ≤ (1 + ǫ)dn(Kσ)ℓ2 . (4.15)

Since Pn := 1√
log2(2n+1)

conv{±ej}2nj=1 ⊂ P (Kσ), we have

dn(Pn)ℓ2 ≤ dn(P (Kσ))ℓ2 , (4.16)

and from Stechkin’s theorem [12, Ch. 13 Th.3.3] we know that

dn(Pn)ℓ2 =
1√
2

(log2(2n + 1))−1/2 . (4.17)

Combining (4.15), (4.16) and (4.17) gives

1√
2(1 + ε)

(log2(2n + 1))−1/2 ≤ dn(Kσ)ℓ2 .

Since ǫ > 0 is arbitrary, we obtain

C(log2 n)−1/2 ≤ dn(Kσ)ℓ2 ,

which completes the proof. ✷
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5 Comparison between Lipschitz and stable manifold widths

Let us recall the definition of manifold width δn(K)X for the compact set K ⊂ X, see [7, 8],

δn(K)X := inf
a,M

sup
f∈K

‖f −M(a(f))‖X , (5.1)

where the infimum is taken over all mappings a : K → R
n and M : Rn → X with a continuous on

K and M continuous on R
n. A comparison between manifold widths and other types of nonlinear

widths was given in [8]. There is also another concept, called stable manifold width δ∗n,γ(K)X of
the compact set K ⊂ X, see [5], defined as

δ∗n,γ(K)X := inf
a,M,‖·‖Yn

sup
f∈K

‖f −M(a(f))‖X , (5.2)

where now the infimum is taken over all maps a : K → (Rn, ‖ · ‖Yn), M : (Rn, ‖ · ‖Yn) → X, and
norms ‖ · ‖Yn on R

n, with a,M being γ-Lipschitz. We discuss in this section the relation between
stable manifold widths and the Lipschitz widths. The next theorem shows that for any compact
set K ⊂ X, the Lipschitz widths are smaller than the stable manifold widths.

Theorem 5.1. For every compact set K ⊂ X, every n ≥ 1, and every γ > 0, we have

dγ
2diam(K)

n (K)X ≤ δ∗n,γ(K)X . (5.3)

Proof: We choose ǫ > 0, and let a : K → (Rn, ‖ ·‖Yn) and M : (Rn, ‖ ·‖Yn) → X be two γ-Lipschitz
mappings with respect to a norm ‖ · ‖Yn in R

n such that for every f ∈ K,

‖f −M ◦ a(f)‖X ≤ δ∗n,γ(K)X + ǫ. (5.4)

For every f1, f2 ∈ K we have

‖a(f1) − a(f2)‖Yn ≤ γ‖f1 − f2‖X ,

which implies
diam(A) ≤ γ diam(K), where A := a(K).

We fix an element f0 ∈ K and define the mapping Φ : (BYn , ‖ · ‖Yn) → X as

Φ(y) := M(a(f0) + γ diam(K)y), a(f0) ∈ R
n.

Note that Φ is a γ2 diam(K)-Lipschitz mapping. For each f ∈ K we define

y(f) :=
1

γ diam(K)
(a(f) − a(f0)) ∈ BYn .

An easy calculation shows that Φ(y(f)) = M ◦ a(f), so

‖f − Φ(y(f))‖X = ‖f −M ◦ a(f)‖X ≤ δ∗n,γ(K)X + ǫ,

where we have used (5.4). Therefore we obtain

sup
f∈K

inf
y∈BYn

‖f − Φ(y)‖X ≤ δ∗n,γ(K)X + ǫ ⇒ dγ
2 diam(K)

n (K)X ≤ δ∗n,γ(K)X + ǫ.

Since ǫ is arbitrary, (5.3) holds and the proof is completed. ✷
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Remark 5.2. It was shown in [5] that in the case of Hilbert space H

δ∗26n,2(K)H ≤ 3εn(K)H .

Thus, the above result and Theorem 5.1 lead to the inequality

d
4diam(K)
26n (K)H ≤ 3εn(K)H ,

which is an estimate in the spirit of Theorem 3.3. Note that direct estimates between stable manifold
widths and entropy numbers are known only in the Hilbert space case, while direct estimates between
Lipschitz widths and entropy numbers, as seen from Theorem 3.3, hold for any Banach space.

Theorem 5.3. For every Banach space X and for every n ∈ N, there exist compact sets K ⊂ X
such that for every γ > 0,

δ∗n,γ(K)X ≥ δn(K)X ≥ 1, while lim
γ→∞

dγn(K)X = 0.

Proof: Let us fix n ∈ N and consider the compact set

K := Sn+1 ⊂ Xn+1 ⊂ X,

where Sn+1 is the boundary of the unit sphere of an (n + 1)-dimensional subspace (Xn+1, ‖ · ‖X)
of X. By the Borsuk theorem, see [2, 12], we have that for any continuous map a : K → R

n,
there exists f0 ∈ K such that a(f0) = a(−f0), and thus for any map M : R

n → X we have
M(a(f0)) = M(a(−f0)). Then, since ‖f0‖X = 1 and f0,−f0 ∈ K, we have the inequality

2 = ‖f0 − (−f0)‖X = ‖f0 −M(a(f0)) + (M(a(−f0)) − (−f0)‖X (5.5)

≤ ‖f0 −M(a(f0))‖X + ‖M(a(−f0)) − (−f0)‖X ≤ 2 sup
f∈K

‖f −M(a(f))‖X

for all mappings a : K → R
n and M : Rn → X with a continuous on K and M continuous on R

n.
So δn(K)X ≥ 1, and therefore δ∗n,γ(K)X ≥ δn(K)X ≥ 1 for any γ > 0. On the other hand, since K
is compact (and thus totally bounded), we have that limγ→∞ dγn(K)X = 0 because of Lemma 2.8.
✷

Probably one of the main differences between stable manifold widths and the Lipschitz widths
is how they depend on the Lipschitz constant γ. Even though we touch upon this in the above
theorem, we will present a simple example where this difference will be seen quite clearly.

Example 5.4. We consider the set K ⊂ R
2 to be the Euclidean unit ball K = {(x, y) : x2+y2 ≤ 1}.

• Manifold widths: it follows from Borsuk’s theorem applied to the restriction of the mapping
a on ∂K (which is a continuous function) that there exists a point (x∗, y∗) ∈ ∂K such that
a(x∗, y∗) = a(−x∗,−y∗). Then, no matter what the size of γ is, the fact that M(a(x∗, y∗)) =
M(a(−x∗,−y∗)) =: (x̂, ŷ) implies that we can not approximate both (x∗, y∗) and (−x∗,−y∗)
by (x̂, ŷ) with accuracy better than 1.
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• Lipschitz widths: we fix k and find an upper bound for dγ1(K)R2 with γ = (k + 1)π. For that
purpose, we consider the mapping Φ1 : [−1, 1] → R

2, defined as

Φ1(t) =

(
1

2
(t + 1) cos(kπ(t + 1)),

1

2
(t + 1) sin(kπ(t + 1))

)T

, t ∈ [−1, 1].

Clearly, Φ1([−1, 1]) is a spiral (an Archimedean spiral) starting at Φ1(−1) = (0, 0)T and
ending at Φ1(1) = (1, 0)T . A ray r(cos(kπ(t∗ + 1)), sin(kπ(t∗ + 1)))T from the origin with
fixed t∗ ∈ [−1,−1 + 2

k ] intersects successive turnings of the spiral in points with a constant
separation distance 1

k . Therefore, Φ1([−1, 1]) approximates K with accuracy at most 1
k . Note

that Φ1 is a γ-Lipschitz mapping, which gives the upper bound dγ1(K)R2 ≤ 1
k . Thus, because

of monotonicity, dγn(K)R2 ≤ 1
k , and we see that as k → ∞, we have dγn(K)R2 → 0 when γ → ∞.

6 Relation to neural networks

In this section, we discuss deep neural network approximation (DNNA) by feed-forward ReLU
neural networks (NN) of constant width W > 2 and depth n, whose parameters have absolute
values bounded by 1. We will show that the approximation tools provided by these NNs are in fact
Lipschitz mappings

Φ : (Bℓñ∞
, ‖ · ‖ℓñ∞) → C(Ω), Ω = [0, 1]d, ñ = Cn, C = C(W ),

with Lipschitz constant γ(n) = C ′nWn. It follows from Remark 2.1 (iii) that

dγ̃nñ (K)X ≤ d
γ(n)
ñ (K)X ≤ dγ̂nñ (K)X , with γ̃n = C ′W 2n, γ̂n = C ′Wn. (6.1)

Therefore, a theoretical benchmark for the performance of the DNNA for a class K ⊂ X is given
by the Lipschitz width dγnñ (K)X with γn = C ′λn, where C ′ > 0 and λ > 2 are fixed constants.
This observation motivates our investigation of Lipschitz widths whose Lipschitz constant depends
on n.

6.1 Deep neural networks as Lipschitz mappings

Let us first recall that a DNNA of a function f ∈ C(Ω), Ω ⊂ R
d, via feed-forward NN with

activation function σ : R → R, constant width W and depth n is in fact an approximation to f by
the family of functions

Σn := {Φ(y) : y ∈ R
ñ, ñ = ñ(W,n) = Cn} ⊂ C(Ω).

For each y ∈ R
ñ, Φ(y) ∈ C(Ω) is a continuous function Φ(y) : Ω → R of the form

Φ(y) := A(n) ◦ σ̄ ◦A(n−1) ◦ . . . ◦ σ̄ ◦A(0), (6.2)

with A(0) : R
d → R

W , A(ℓ) : R
W → R

W , ℓ = 1, . . . , n − 1, and A(n) : R
W → R being affine

mappings, and σ̄ : RW → R
W given by

σ̄(xj+1, . . . , xj+W ) = (σ(xj+1), . . . , σ(xj+W )).
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The argument y of Φ is a vector in R
ñ that consists of the entries of the matrices and offset vectors

(biases) of the affine mappings A(ℓ), ℓ = 0, . . . , n. We order these entries in such a way that the
entries of A(ℓ) appear before those of A(ℓ+1) and the ordering for each A(ℓ) is done in the same way.
Before going further, we need to specify a norm ‖ · ‖Yñ to be used for R

ñ. We take this norm to be
the ℓñ∞ := ℓ∞(Rñ) norm, that is, ‖y‖ℓñ∞ := max1≤i≤ñ |yi|. This choice is not optimal for obtaining
the best constants in our estimates but it will simplify the exposition that follows. Also, when
considering vector functions g = (g1, . . . , gW ) from C(Ω), we use the notation

‖g‖ := max
1≤i≤W

‖gi‖C(Ω).

It was proven in [6] that if B is any finite ball in ℓ∞(Rñ) and σ(t) = ReLU(t) = max{t, 0} = t+,
then Φ : B → C(Ω) is a γ-Lipschitz mapping with γ depending only on B,W, n, and d. In fact, Φ
is a γ-Lipschitz map on any bounded set. Here, we will investigate in detail the Lipschitz constant
γ in the case when B is the unit ball (Bℓñ∞

, ‖ · ‖ℓñ∞). More precisely, the following theorem holds.

Theorem 6.1. The mapping Φ : (Bℓñ∞
, ‖ · ‖ℓñ∞) → C(Ω), with Ω = [0, 1]d ⊂ R

d, defined in (6.2)
with σ = ReLU is a C ′nWn-Lipschitz mapping, that is

‖Φ(y) − Φ(y′)‖C(Ω) ≤ C ′nWn‖y − y′‖ℓñ∞ , y, y′ ∈ Bℓñ∞
,

where C ′ = C ′(d) is a constant depending on d.

Proof: Let y and y′ be the entries of the affine mappings A(j)(·) := Aj(·) + b(j), j = 0, . . . , n, and
A′(j)(·) := A′

j(·) + b′(j), j = 0, . . . , n, respectively, ordered in a predetermined way. We fix x ∈ Ω
and denote by

η(0)(x) := ReLU(A0x + b(0)), η′(0)(x) := ReLU(A′
0x + b′(0)),

η(j) := ReLU(Ajη
(j−1) + b(j)), η′(j) := ReLU(A′

jη
′(j−1) + b′(j)), j = 1, . . . , n− 1,

where Aj , A
′
j , b

(j), b′(j), j = 1, . . . , n − 1, are the respective W × W matrices and bias vectors,
associated to y and y′, and

η(n) := Anη
(n−1) + b(n), η′(n) := A′

nη
′(n−1) + b′(n).

Note that since ‖y‖ℓñ∞ ≤ 1,

‖η′(0)‖ ≤ (d+ 1)‖y‖ℓñ∞ ≤ d+ 1, ‖η′(j)‖ ≤ (W‖η′(j−1)‖+ 1)‖y‖ℓñ∞ ≤ W‖η′(j−1)‖+ 1, j = 1, . . . , n.

One can show by induction that for j = 1, . . . , n,

‖η′(j)‖ ≤ W jd +

j∑

k=0

W k ≤ (d + 2)W j . (6.3)

Note that the above inequality also holds for j = 0. Next, since ReLU is a Lip 1 function, we have

‖η(0)(x) − η
′(0)(x)‖ ≤ ‖(A0 −A′

0)x‖ + ‖b(0) − b′(0)‖ ≤ (d + 1)‖y − y′‖ℓñ∞ =: C0‖y − y′‖ℓñ∞ ,
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and therefore ‖η(0) − η
′(0)‖ ≤ C0‖y − y′‖ℓñ∞ . Suppose we have proved that

‖η(j−1) − η′(j−1)‖ ≤ Cj−1‖y − y′‖ℓñ∞ .

It follows that

‖η(j)(x) − η′(j)(x)‖ ≤ ‖Ajη
(j−1)(x) + b(j) −A′

jη
′(j−1)(x) − b′(j)‖

≤ ‖Aj(η
(j−1)(x) − η′(j−1)(x))‖ + ‖(Aj −A′

j)η
′(j−1)(x)‖ + ‖b(j) − b′(j)‖

≤ W‖y‖ℓñ∞‖η(j−1) − η′(j−1)‖ + W‖y − y′‖ℓñ∞‖η′(j−1)‖ + ‖y − y′‖ℓñ∞
≤ (WCj−1 + (d + 2)W j + 1)‖y − y′‖ℓñ∞
=: Cj‖y − y′‖ℓñ∞ ,

where we have used the induction hypothesis, the fact that ‖y‖ℓñ∞ ≤ 1, and the bound (6.3) for

‖η′(j)‖. Thus, we have obtained that ‖η(j) − η′(j)‖ ≤ Cj‖y − y′‖ℓñ∞ , and therefore the following
recursive relation

Cj = WCj−1 + (d + 2)W j + 1, j = 1, . . . , n,

between the constants Cj , j = 1, . . . , n, where C0 = d + 1. We then obtain

Cn < (n + 1)(d + 2)Wn +
n−1∑

k=0

W k < C ′nWn, with C ′ = C ′(d).

Finally, we write

‖Φ(y) − Φ(y′)‖C(Ω) = ‖η(n) − η′(n)‖ ≤ Cn‖y − y′‖ℓñ∞ < C ′nWn‖y − y′‖ℓñ∞ ,

and the proof is completed. ✷

We next discuss a Carl’s type inequality that is similar to Lemma 3.7, but is for the case when
the Lipschitz constant γ depends on n.

Remark 6.2. If one follows the proof of Lemma 3.7 with the condition that γ is not a constant,
but γ = γn = C ′λn, where C ′ > 0 and λ > 1, one can show that

dγnn (K)X < c0
[log2 n]β

n2α
, β ∈ R, α > 0 ⇒ εm(K)X < C

[log2m]β

mα
, where m = cn2,

and C, c are fixed constants, depending only on c0, β, α, λ and C ′. Indeed, the proof follows from
the fact that for ε = c0[log2 n]βn−2α we have

N2ε(K) ≤
(

3γ

ε

)n

= (3C ′c−1
0 λn[log2 n]−βn2α)n < 2cn

2
,

and therefore
εcn2(K)X < 2c0[log2 n]βn−2α.

Setting m = cn2 i.e. n =
√

m/c gives

εm(K)X ≤ 2c0[log2
√

m/c]β(m/c)−α = 2c0c
α2−β [log2m− log2 c]

β

mα
< C ′′ [log2m]β

mα
,

which is what we wanted to show.
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6.2 Lower bound for dγnn (K)X

Now that we know that DNNA is an approximation to a function f by a particular γ(n)-Lipschitz
mapping with γ(n) = C ′nWn, we can ask the question what are the limits of such approximation.
This question is answered by providing a lower bound for the Lipschitz width dγnn (K)X , γn =
C ′W 2n, see (6.1), via the next theorem which is a modification of Theorem 3.9.

Theorem 6.3. For any compact set K ⊂ X we consider the Lipschitz width dγnn (K)X with Lipschitz
constant γn = C ′λn, λ > 1 and C ′ > 0 being fixed constants. Then the following holds:

(i) if for some constants c1 > 0, α > 0 and β ∈ R we have

εn(K)X > c1
(log2 n)β

nα
, n = 1, 2, . . . ,

then there exists a constant C > 0 such that

dγnn (K)X ≥ C
(log2 n)β

n2α
, n = 1, 2, . . . . (6.4)

(ii) if for some constants c1 > 0, α > 0 we have

εn(K)X > c1(log2 n)−α, n = 1, 2, . . . ,

then there exists a constant C > 0 such that

dγnn (K)X ≥ C(log2 n)−α, n = 1, 2, . . . . (6.5)

Proof: We prove the theorem by contradiction. We first concentrate on the proof of (i). If (6.4)
does not hold for some constant C, then there exists a strictly increasing sequence of integers
(nk)∞k=1, such that

pk :=
d
γnk
nk (K)n2α

k

(log2 nk)β
→ 0 as k → ∞.

Thus we can write

d
γnk
nk (K) =

pk [log2 nk]β

n2α
k

<
2pk [log2 nk]β

n2α
k

=: δk, k = 1, 2, . . . .

Now we apply Proposition 3.8 with ηn = c1(log2 n)βn−α and obtain

c1
[
log2(nk log2(3γnk

δ−1
k ))

]β
nk

−α
[
log2(3γnk

δ−1
k )
]−α ≤ 4

pk [log2 nk]β

nk
2α

,

which we rewrite as

p−1
k

[
log2 nk + log2 log2(3γnk

δ−1
k )
]β [

log2(3γnk
δ−1
k )
]−α ≤ C1 [log2 nk]β n−α

k , C1 = 4/c1. (6.6)

Observe that

log2(3γnk
δ−1
k ) = log2 (1.5γnk

) + log2(p
−1
k ) + 2α log2 nk − β log2(log2 nk)

= log2 (1.5C ′λnk) + log2(p
−1
k ) + 2α log2 nk − β log2(log2 nk) ,
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and therefore for k big enough we obtain

log2(3γnk
δ−1
k ) ≤ 2

[
log2(p

−1
k ) + Ank

]
. (6.7)

The latter inequality and (6.6) give

p−1
k

[
log2 nk + log2(log2(3γnk

δ−1
k ))

]β [
log2(p

−1
k ) + Ank

]−α ≤ 2αC1 [log2 nk]β n−α
k ,

which is equivalent to

p−1
k

[
log2 nk + log2(log2(3γnk

δ−1
k ))

]β ≤ 2αC1

[
log2 (p−1

k )

nk
+ A

]α
[log2 nk]β . (6.8)

Case 1: β ≥ 0.
Note that since δk → 0 and γnk

→ ∞, for k big enough we have log2(log2(3γnk
δ−1
k )) > 0. Since

β ≥ 0, we have

[log2 nk]β ≤
[
log2 nk + log2(log2(3γnk

δ−1
k ))

]β
,

and therefore it follows from (6.8) that

p−1
k ≤ 2αC1

[
log2(p

−1
k )

nk
+ A

]α
< C[log2(p

−1
k )]α,

which contradicts the fact that pk tends to zero (and thus p−1
k → ∞).

Case 2: β < 0.
In this case we rewrite (6.8) and use (6.7) to obtain

p−1
k ≤ 2αC1

[
log2(p

−1
k )

nk
+ A

]α [
1 +

log2(log2(3γnk
δ−1
k ))

log2 nk

]−β

≤ 2αC1

[
log2(p

−1
k )

nk
+ A

]α [
1 +

log2(2Ank + 2 log2(p
−1
k ))

log2 nk

]−β

.

Next, we consider the following 2 cases.
Case 2.1: If for infinitely many values of k we have p−1

k ≤ cnk, then the above inequality
becomes

p−1
k ≤ C,

which contradicts with the fact that p−1
k → ∞ as k → ∞.

Case 2.2: If for infinitely many values of k we have p−1
k ≥ cnk, then the above inequality

becomes
p−1
k ≤ C

[
log2(p

−1
k )
]α [

log2(log2(p
−1
k ))

]−β
,

which also contradicts with the fact that p−1
k → ∞ as k → ∞.

To prove (ii) we repeat the argument for (i), namely, we assume that (ii) does not hold. Therefore
there exists a strictly increasing sequence of integers (nk)∞k=1, such that

ek := dγnnk
(K)[log2 nk]α → 0 as k → ∞.
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We write
d
γnk
nk (K) = ek[log2 nk]−α < 2ek[log2 nk]−α =: δk, k = 1, 2, . . . , (6.9)

and use Proposition 3.8 with ηn = c1(log2 n)−α to derive

c1
[
log2(nk log2(3γnk

δ−1
k ))

]−α ≤ 4ek[log2 nk]−α.

The latter inequality is equivalent to

e−1
k ≤ C1

[
1 +

log2(log2(3γnk
δ−1
k ))

log2 nk

]α
≤ C1

[
1 + c

log2(nk + log2(e
−1
k ))

log2 nk

]α
, C1 = 4/c1, (6.10)

where we have used inequality similar to (6.7).
Case 1: If for infinitely many values of k we have e−1

k ≤ cnk, then the above inequality becomes

e−1
k ≤ C,

which contradicts with the fact that e−1
k → ∞ as k → ∞.

Case 2: If for infinitely many values of k we have e−1
k ≥ cnk, then the above inequality becomes

e−1
k ≤ C

[
log2(e

−1
k )
]α

,

which also contradicts with the fact that e−1
k → ∞ as k → ∞. ✷

6.3 Summary

In this section we summarize our results for the Lipschitz widths dγnn (K)X and give several examples.
The following corollary holds.

Corollary 6.4. Let K ⊂ X be a compact subset of a Banach space X, n ∈ N, and dγnn (K)X be the
Lipschitz width for K with Lipschitz constant γn = C ′λn, where C ′ > 0 and λ > 2.

(i) For α > 0, β ∈ R, we have

εn(K)X ≍ [log2 n]β

nα
⇒ dγnn (K)X ≍ [log2 n]β

n2α
; (6.11)

(ii) For α > 0, we have

εn(K)X ≍ 1

[log2 n]α
⇒ dγnn (K)X ≍ 1

[log2 n]α
. (6.12)

Proof: We first prove (i). Let us assume that

εn(K)X ≤ C
[log2 n]β

nα
,

holds. After using (3.3) from Theorem 3.3, we obtain

d2
n rad(K)

n (K)X ≤ 2βC
[log2 n]β

n2α
. (6.13)
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We now fix n0 such that C ′λn ≥ 2n rad(K) for all n ≥ n0 (recall that λ > 2). We apply Remark
2.1 (iii) to derive

dγnn (K)X ≤ d2
n rad(K)

n (K)X , n ≥ n0. (6.14)

Finally, it follows from (6.13) and (6.14) that

dγnn (K)X ≤ C ′ [log2 n]β

n2α
, for all n,

provided the constant C ′ is chosen appropriately. The other direction in (6.11) is the statement of
Theorem 6.3, (i). The proof of (ii) is similar and we omit it. ✷

Corollary 6.4 provides a tool for giving lower bounds on how well a compact set (model class)
K can be approximated by a DNN that has the additional restriction that all weights and biases
are from the unit ball of some norm ‖ · ‖Yñ . A standard technique to obtain lower bounds is using
the VC dimension, see [6], §5.9, and the references therein, which is restricted to the case when
approximation error is measured in the norm ‖ · ‖C(Ω). Note that Corollary 6.4 can be applied in

the case of Lp approximation when p 6= ∞. For example, if Bs
q(Lτ (Ω)), Ω = [0, 1]d, is any Besov

space that lies above the Sobolev embedding line for Lp(Ω), then it is proven in [9] that

εn(U(Bs
q(Lτ (Ω))))Lp(Ω) ≍ n−s/d,

where U(Bs
q(Lτ (Ω))) is the unit ball of Bs

q(Lτ (Ω)). Then, according to Theorem 6.1 and Corollary
6.4, we have

dist(U(Bs
q(Lτ (Ω))),Σn)Lp(Ω) ≥ dγnñ (U(Bs

q(Lτ (Ω))))Lp(Ω) ≥ Cn−2s/d.

In particular, we derive the estimate

dist(U(Bs
q(L∞(Ω))),Σn)C(Ω) ≥ Cn−2s/d,

which was proved in [6], see (5.18), in the case of general DNN. Note that here Σn is the family
of functions that is generated by a DNN for which the parameters are from the unit ball of some
norm ‖ · ‖Yñ . This is the main difference between the framework considered here and the results
in [16] or [13], which give upper bounds O(n−2s/d) (modulo logarithmic factors in some cases) for
the error of approximation of the unit ball of Cs([0, 1]d) ⊂ C([0, 1]d), s > 0, by ReLU DNN with
no restrictions on the parameters used in the network. These upper bounds are optimal (up to
logarithmic factor in some cases), see [6], section 8.7.1. It would be interesting to obtain upper
bounds for the DNN approximation when there are restrictions imposed on its parameters. We
are currently working on estimates from below on the Lipschitz widths associated with DNN whose
parameters are allowed to grow as we increase the depth of the network.

Lastly, we want to mention that, in contrast to stable manifold widths, the Lipschitz widths
do not shed a light on the numerical aspect of this approximation, that is, they do not give even a
theoretical algorithm of how to design the approximant.

Acknowledgment: We would like to thank the referee for the essential remarks and suggestions
which helped improve the quality and readability of the paper. Among other things, the referee
pointed out to us a simpler proof of Lemma 2.8 and a simpler example that is discussed in Remark
3.9.
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