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Abstract

This paper introduces a measure, called Lipschitz widths, of the optimal performance pos-
sible of certain nonlinear methods of approximation. Notably, those Lipschitz widths provide
a theoretical benchmark for the approximation quality achieved via deep neural networks. The
paper also discusses basic properties of the Lipschitz widths and their relation to entropy num-
bers and other well known widths such as the Kolmogorov and the stable manifold widths.
We show that Lipschitz widths with fixed Lipschitz constant and entropy numbers decay very
similar, while when the Lipschitz constant grows with n, the Lipschitz width could be much
smaller than the entropy numbers.
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1 Introduction

Nonlinear methods of approximation provide reliable and efficient ways of investigating the under-
lying phenomena in many application areas. Despite of their extensive usage however, there is still
a lack of comprehensive understanding of the intrinsic limitations of these nonlinear methods, even
on a purely theoretical level. Several mathematical concepts, called widths, have been established
to access numerous aspects of the quality of linear and nonlinear approximations. As such, we men-
tion the classical by now Kolmogorov, linear, manifold, Gelfand widths, which give a theoretical
benchmark on what is the best possible performance of particular methods of approximation. We
refer the reader to [8], where a summary of different nonlinear widths and their relations to one
another is discussed.

Recently, Deep Neural Networks (DNN) have been used extensively as a method of choice for
variety of machine learning problems and as a computational platform in many other areas. Despite
of their empirical successes, the explanation of the reasons behind their stellar performance is still
in its infancy. On mathematical level, DNN can be viewed as a method of nonlinear approximation
of an underlying function f, where the approximant ®(y) ~ f is a continuous function, generated
by a DNN with parameters y. It can be shown that the mapping which to every choice of param-
eters y of the DNN assigns ®(y) is in fact a Lipschitz mapping. Thus, DNN approximation is a
particular case of a nonlinear approximation of a function f, or a compact class IC, by the images of
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Lipschitz mappings. Then, the question of DNN optimal performance is intimately related to the
quantification of the optimal performance of such nonlinear methods and to the introduction and
study of corresponding ways to measure it. A width, called stable manifold width, was presented
in [5], with the sole purpose to determine the optimal performance of such nonlinear methods in
the context of numerical computation, where the stability plays an essential role. In this paper, we
take a slightly different point of view and introduce the concept of Lipschitz widths, where we are
not so concerned about the numerical stability of the method, but , like in the case of DNN, rather
about the best possible performance of these nonlinear methods of approximation.

Our setting is a Banach space X equipped with a norm || - | x, where we wish to approximate
the elements f of a compact subset K C X of X with error measured in this norm. For every
fixed n € N and every v > 0, the approximants to K will come from the images ®(y) € X of all
possible y-Lipschitz maps ® : (By,,, | - |ly,) — X, where By, is the unit ball in R"™ with respect to
some norm || - ||y, in R™. The quality of this approximation is a critical element in the design and
analysis of various numerical methods, among which are DNNs. Note that any numerical method
based on Lipschitz mappings will have performance no better than the optimal performance of this
approximation method. On the other hand, it may not be easy to actually design a numerical
method for a particular application that achieves this optimal performance.

In our analysis, we examine model classes I C X, i.e., compact subsets K of X, that summarize
what we know about the target function f. Classical model classes K are finite balls in smoothness
spaces like the Lipschitz, Sobolev, or Besov spaces. The Lipschitz widths d;,(K)x then quantify the
best possible performance of the above approximation methods on a given model class K.

The paper is organized as follows. Some of the basic properties of Lipschitz widths are discussed
in §2, where we present many elementary but very useful properties of d,,(K)x, such as, for
example, the fact that for a fixed n € N, d,,(K)x is a continuous function of v > 0, see Theorem
2.7. We also prove the statements

lim d)(K)x =0, and lim d}(K)x =0,

n—00 y—00
each of which characterizes the set K as a totally bounded set, see Lemma 2.8 and Lemma 2.11.
We also show that in the definition of Lipschitz width the infimum over all norms is achieved for
some special norm, see Theorem 2.14. While this observation may not be very useful in practical
applications, it can be helpful in theoretical considerations.

The relation between Lipschitz widths and entropy numbers €, (K) x is investigated in §3, where

among other things we prove that, see Theorem 3.3, for any compact subset K C X of a Banach
space X we have

2R () x <en(K)x, n=1,2,....

Examples are given to show that this inequality is almost optimal. We also discuss in this section
estimates from below and above for the Lipschitz width d;,(K)x, provided bounds for the entropy
numbers &, (K)x are available. These are stated in Theorem 3.1, where we prove that when the
Lipschitz constant « is fixed, both the entropy numbers and the Lipschitz width have a similar
decay. Some of our estimates are optimal, as demonstrated in Theorem 3.12, where we show that
the Lipschitz widths could be smaller than the entropy numbers for certain compact classes K.
Since the Lipschitz width is a new concept of width, we compare it with some of the well known
classical widths. We show that for appropriate values of the parameter v, Lipschitz widths are
smaller than the Kolmogorov widths, see §4, Theorem 4.1. They are also smaller than the stable



manifold widths, see §5, Theorem 5.1. However, as demonstrated by the provided Examples, in
both cases, their actual behavior may be very different.

At last, in §6, we discuss the Lipschitz widths )" (K)x, where the parameter 7, = C'A\", with
C’ > 0 and A > 2 being fixed constants, and show that they provide a theoretical benchmark for
the performance of certain DNN approximation, see Theorem 6.1. The analysis of these widths is
performed in Theorem 6.3 and Corollary 6.4, where it is demonstrated that there is indeed a gain
in the performance of the Lipschitz width d," (K) x when compared to the entropy numbers &, (K) x
in the following sense

[log, n]’B

na

- [log, n]ﬁ

if 6n(IC)X = = d;yl" (’C)X =

n2a

This estimate, when applied in the case of I being the unit ball of certain Besov spaces, extends
some results from [6] to the case when error is measured in Ly, p # oo.

2 Definition and basic properties

We are mainly interested in compact sets, however we define the basic concepts for bounded sets.

We consider a bounded subset £ C X of a Banach space (X, | - ||x) with norm || - ||x and denote
by (R™,|.]ly,), n > 1 the n-dimensional Banach space with a fixed norm || - ||y,. For v > 0, we
define the fized Lipschitz width

dV(K,Y,)x :=infsup inf ||f — ®,(y)|x, (2.1)

®n feky€By,
where the infimum is taken over all Lipschitz mappings
@ (By,, || [lv.) = X, By, :={yeR": [jyly, <1},

that satisfy the Lipschitz condition
[Pn(y) — Pn(y)llx

sup <=, (2.2)
yzyleBYn Hy - y/HYn
with constant . Next, we define the Lipschitz width
d)(K)x = ”ir‘lf (K, Y,)x, (2.3)
Ny
where the infimum is taken over all norms || - ||y, in R™. Clearly, we have that for every norm
I [ly, on R™,
d(K)x <d(K,Yn)x, n>1. (2.4)

Before going further, let us recall the definition of a diameter and radius of a bounded set
McC X,
diam(M) := sup ||f —gllx <2 inf sup | f —gl|x =: 2rad(M).
f.9eM 9€X feM
From (2.2) we see that a 0-Lipschitz function is simply the constant function. Thus, for any Y,, we
get
rad K = d2(K, Y;) x = do(K)x. (2.5)

We next list some elementary properties of the Lipschitz widths d;,(K)x that we gather in the
following remark.



Remark 2.1. For any bounded subset K C X of a Banach space X, any n € N, and any v > 0,
we have

(i) The Lipschitz width d;,(K)x satisfies the relation

d(K)x = inf inf d'(K,Y})x. (2.6)

k=n |||y,

(ii) The space (R, - |ly,) in (2.1) and (2.3) can be replaced by any normed space (X, || - |x,)
of dimension n, that is

dI(K)x = inf dV(K,X,)x, where d'(K,X,)x =infsup inf |f— ®,(x)|x, (2.7)
””Xn Pn, fex xEBXn

with Bx, = {x € Xy, : ||z]|x, <1}.
(iii) d)(K)x is a monotone decreasing function of v and n. More precisely,

o If y1 <o then di? (K)x < di' (K)x;
o If ni S n9 then d%z (K)X S d;yll (/C)X

(iv) For every fized n € N and v > 0, we have d}}(K)x < rad(K) < oo.

(v) For every fivzed n € N and v > 0, we have d}(K)x = dp(K)x where K denotes the closure of
K.

Proof: We discuss only (i) and leave the proof of the rest of the remark to the reader. Since

inf inf d7(K,Y:)x < dl(K)x,

k<n |||l

to show (i), it suffices to show that for every norm || - ||y, with 1 < k < n, there exists a norm || - ||y,
on R” such that
d(K,Yn)x <d'(K,Ye)x. (2.8)

Indeed, let us fix a y-Lipschitz map @y, : (By,, || - |ly,) = X which achieves d” (K, Y}) x (if such map
does not exist, we can use limiting arguments). We then define the norm || - ||y, as

1 9O llys, = yllys, + 11y lgn—

where ||.||gn—+ is any norm in R"~* and the v-Lipschitz mapping ®, : (By,, | - |lv,) — X as

q>n((yv y,)) = (I)k(y)7

which proves (2.8). O

The requirement that ®,, is Lipschitz on the unit ball By, rather than on the whole R" is
necessary for a meaningful definition in the case of a separable Banach space X. If we assume for
a moment that the Lipschitz width were defined via Lipschitz mappings on the whole R™, we can
prove an analogue of Remark 2.1 (iii) and therefore focus on the one dimensional case which would



provide an upper bound for d;,(K)x. For the separable Banach space X, we consider a countable
dense set {¢1,p2,...,} C X. For any fixed v > 0, we define the points {t;} on the real line by

to=0, ti=7eillx, tix1=t; +7 o1 —illx, i=1,...,

and the mapping ®; : R — X as the continuous piecewise linear function of ¢ with values in X

with the property
0, t<t
@1(t) — ? — 07
Pjs t= tj.

Clearly, ®1(R) is dense in X and ®; is a y-Lipschitz mapping. Thus, for every set K C X the one
dimensional Lipschitz width d] (K)x would be zero.

Lemma 2.2. For any bounded subset IC C X of a Banach space X, any n € N, and any v > 0,
we can restrict the infimum in (2.3) only to normed spaces (R",||.||y, ) with the additional property
that the norm || - ||y, satisfies the condition

n
I9len, = maxly;| < llylly, < S lyil =t lylleys v = (1,92, yn) €R™ (2.9)
j=1
Proof: Let (R™,|| - |ly;,) be any normed space. It follows from the Auerbach lemma (see e.g. [4,

p-43] or [15, IL.E.11]), that we can find vectors (v;)7_; C R" and linear functionals (f;)}_; on the
space (R™, || ||y;) such that

19illv,, = I fillvy =1, G=1,...,m, (2.10)

and

Lo
e (2.11)
0, i#j.

We define a new norm ||.||y, on R" as
n
ylly, = 1> y0illve, y= (1, yn) €R",
j=1
which, using the triangle inequality and (2.10), satisfies the inequality

n n
lylly, < D lyilllzsllv, = > lyil. (2.12)
j=1

J=1

On the other hand, using (2.10) and (2.11), we have

n n n
Ylye = 1) y0illve = sup FO_wop)l 2 1HQ o) = lwl, i=1,...,n.  (2.13)
j=1 j=1

j=1 follfllyz=1

Therefore, it follows from (2.12) and (2.13) that the newly defined norm satisfies (2.9). If we
consider the mapping ¢g defined as

¢0(y) ::Zyj@ﬁ y:(yla"'vyn) eRn’
j=1

5



one can show that ¢o : (By,, |l - [ly.) = (By,, | - llv,) and that ¢o(By,) = By,. Now, for any
~-Lipschitz mapping ®,, : (By,, | - |lv,) — X, we define the map ®,, : (By,,| - [|y,) — X as

®, =, o ¢y.
Note that ®,, is ~-Lipschitz since

1Pn(¥) = 2n(W)llx = [®nodo(y)) — nodo()llx < lldo() — b0 )y,

n
= DW= v)villv, =Y = lly,-
j=1

In addition, ®,(By,) = ®,(By, ), and the proof is completed. O

2.1 Packing, covering and entropy numbers

Before going further, we recall in this section the well known concepts of packing, covering, and
entropy numbers for compact sets M, which we will use in our study of Lipschitz widths. The
reader may find a more detailed exposition of those concepts in many books, see, for example,
[4, 14, 12].

Minimal e-covering number N.(M) of a compact set M C X:
A collection {g1,...,9m} C X of elements of X is called an e-covering of M if

M cC | JB(gj,e), where B(gj,e):={feX:|f—gjllx <c}
j=1

An e-covering of M whose cardinality is minimal is called minimal e-covering of M. We denote
by N:(M) the cardinality of the minimal e-covering of M.

Minimal inner e-covering number N.(M) of a compact set M C X:
It is defined exactly as N.(M) but we additionally require that the centers {gi,...,gm} of the
covering are elements from M.

Entropy numbers ¢,(M)x of a compact set M C X:
For every fixed n > 0, the entropy number £,(M)x is the infimum of all € > 0 for which 2" balls
with centers from X and radius € cover M. If we put the additional restriction that the centers of
these balls are from M, then we define the so called inner entropy number &,(M)x. Formally, we

write
27L

en(M)x =inf{e >0 : M C | JB(gje), g €X, j=1,...,2"},
j=1
2n
En(M)x =inf{e >0 : M C | JB(hj,e), hje M, j=1,...,2"}.
j=1
Maximal e-packing number P.(M) of a compact set M C X:
A collection {fi,..., fr} € M of elements from M is called an e-packing of M if

min || f; — fillx > e.
]



An e-packing of M whose size is maximal is called mazimal e-packing of M. We denote by P.(M)
the cardinality of the maximal e-packing of M.
We have the following inequalities for every £ > 0 and every compact set M

Po(M) = N(M) > Pye(M), (2.14)

en(M)x <&,(M)x <2ep(M)x. (2.15)

Remark 2.3. Let us recall the classical relations between those concepts and compactness. We call
the set M totally bounded if for every e > 0 we have N.(M) < oo. This is equivalent to the fact
that lim, o0 en (M) x = 0. Each compact set is totally bounded. Actually, a subset M of a Banach
space is compact if and only if it is totally bounded and closed. The interested reader will find a
detailed study on the topic in many books on functional analysis or metric topology.

Remark 2.4. In what follows later, we will use the fact that the Lipschitz widths and the entropy
numbers are invariant with respect to translation, that is, for anyn € N,y >0, and any f € X we
have

dy(K)x = dp(K = f)x,  en(K)x =en(L = fx-

We want to mention the following remark that shows the behavior of the entropy numbers of
an image of a «-Lipschitz mapping.

Remark 2.5. For the two normed spaces (Xo, | - ||x,) and (X1,] - ||x,), and the v-Lipschitz map
D (Ko, - llxy) = Kyl - [|x,), where Ko C Xo, K1 C X1, we have that:

o If ®(Ky) = K1, then the inner entropy numbers £(K1)x, < véx(Ko)x, for k=1,2,.... To
see this, we take a minimal inner e-covering number of Ko and look at its image by P.

o If ® : (By,,| - llv,) = (Bz,, |l - |z,.) is a ~y-Lipschitz map from the unit ball By, onto the
unit ball Bz, , then n > m. This follows from the inequality above and the fact that (see e.g.
(1.1.10) in [4]) for any unit ball B of any Banach space (Xy, | - ||x,) of dimension ¢ we have
4-27F > ¢ (B)x, > 2% k=1,2,....

o If ®(Ky) approzimates K1 with accuracy €2 and A C Ko approximates Ko with accuracy
1, then ®(A) approzimates K1 with accuracy ye1 + 2. To see this, we take f € Ky, the
corresponding g € Ko such that ||®(g) — fllx, < e2 and go € A such that ||go — g/ x, < €1.

2.2 Dependence of d)(K)x on ~

We start this section by proving the fact that the Lipschitz width d;,(K)x is a continuous function
of 7. To do that, we first prove the following lemma.

Lemma 2.6. For everyn > 1, every v > 0, and every norm || - ||y, in R"™, the fized Lipschitz width
dV(IC,Yy) x satisfies the inequality

rad(K) — v < (K, Y,)x < rad(K). (2.16)



Proof: The right hand-side follows from (2.5) and Remark 2.1, (iii). To show the left hand-side
inequality in (2.16), we notice that for any ~-Lipschitz map ®, every f € K and y € By, we have

If = 2@llx = If = 20)[[x = [I2(0) = 2(y)llx = [lf — 2O)]x —,

since ||®(0) — ®(y)||x < vllylly,, <. Therefore we obtain the inequality

sup inf ||f = ®(y)|| = sup || f = L(0)] -,
fek vEBy, fex

which gives
dV(K,Y,)x > infsup || f — ®(0)||x — 7. (2.17)
P fex

Note now that for every &,

sup || f — @(0)[|x > inf sup || f — g|x = rad(K),
fek 9€X feK

and thus it follows from (2.17) that
d(K,Y,)x > rad(K) — 7,

and the proof is completed. O

Theorem 2.7. For every compact subset K C X of a Banach space X and anyn € N, the Lipschitz
width d)(K)x is a continuous function of v > 0.

Proof: We first show the continuity of the Lipschitz width at v = 0. It follows from Lemma 2.6
that

rad(K) —v < d}(K)x < rad(K).
We let v — 0 and obtain

lim d)(K)x = rad(K) = d°(K)x,

v—0

which proves the continuity at v = 0, see (2.5).
To show that the Lipschitz width is continuous for v > 0, we fix n € N and denote by

According to Remark 2.1 (iv), h(y) < oo for every v > 0. Let us assume that h is not a continuous
function. Then, there exist v9 > 0, § > 0, and a sequence of positive numbers €, — 0, such that

h(vo +ek) +6 < h(yo — k), for every k. (2.18)

We fix € := ¢ < 9. From the definition of Lipschitz widths, there exists a (7o + ¢)-Lipschitz map
®,, : (By,, | - |ly,) = X such that

h(vo+¢) <sup inf [ f—®,(y)llx <h(yo+e)+e. (2.19)
fek v€By;,



Now we define the mapping

®, := (D, where £:= JH—f
Y+ ¢

and 0<¢<1.

Clearly, ®,, is a (o — €)-Lipschitz mapping, and therefore

h(yo—¢) < ?‘é,‘éyei%fy If = @n(y)llx = f}ggyéni 1E(f — Pn(y) + (1 — ) fllx
< sup inf (&[[f — @(y)llx + (1= fllx)
fek y€By,
< &sup inf [[f —@n(y)llx + (1 =& sup|fllx
fek yE€By, fek
< &(h(yo+e)+e)+(1-6)C,

where we have used (2.19) and the fact that sup;ci [|fl|x = C < oo (since K is compact). The
latter inequality and (2.18) give

h(yo+¢e)+0 < h(y —¢e) <&h(yo+e)+e)+(1-¢C
which is a contradiction for a sufficiently small € = ¢, since & — 1 as g — 0. a

We finish the investigation of the behavior of the Lipschitz width with respect to v with the
following lemma.

Lemma 2.8. For any K C X, the set K is totally bounded iff for everyn > 1

lim d)(K)x = 0.

y—+00

Proof: Assume that K is totally bounded. From the monotonicity of the Lipschitz width with

respect to n, see Remark 2.1 (iii), it suffices to consider only the case n = 1. For 6 > 0, we fix a
N (K)

minimal delta covering (f;) ;=1 of K and choose 7 such that

2y>diam K - (NV5(K) — 1).

We consider the points

j—1 )
ti=—-14+2—— =1,... K
J + NJ(IC) o 17 ] 9 7'/\/5( )7

in the unit ball of (R,|.|]), that is ([—=1,1],] - |), and define ® : [-1,1] — X as the continuous
piecewise linear function such that

O(tj) =fj, j=1,...,.Ns(K).
Its Lipschitz constant is no more than

e M= fillx o diam K- (Ws(K) — 1)
J=1 Ns(K) =1 |tjs1 — t5] 2

<7



and we have

sup inf |[f —®(y)|x < 6.
fek ye[-1,1]

This gives
di(K)x <6,

and therefore lim,_, d] (K)x = 0.
To prove the converse, we take arbitrary € > 0. Since lim, o d?l(IC) x = 0, there exist a norm
Il - ||y, and a y-Lipschitz map ®,, such that

sup inf |/ — @a(g)]lx < /2. (2.20)
fek 9€By,

We fix {g1,...,9n} C By, such that Ujvzl B(g;,€/2v) D By, From (2.20) we infer that for every
f € K we can find g5 € By, such that ||f — ®,(g7)||x < €/2. Therefore, there exists jo such that
g5 € B(gj,,€/27), and then

1 = @nlgio)lx <N = Paulgp)llx + 1®nlgr) = Pulgi)lx <

which gives that N.(K) < N < oco. Since € is arbitrary, K is totally bounded. O

Remark 2.9. [t follows from Lemma 2.8, using Remark 2.1 (iii), that if K is not totally bounded
then there exists § > 0 such that

inf d > 4.
onf di(K)x =

Remark 2.10. Note that all statements in this paper are valid for sets K whose closures are compact
rather than sets IC that are compact. Therefore, since we work in Banach spaces, all statements are
valid for K being only a totally bounded set rather than a compact set.

2.3 Dependence of the Lipschitz width d)(K)x on n.

In this section, we discuss the behavior of the Lipschitz width with respect to n. The following
Lemma holds.

Lemma 2.11. Let K C X be a subset of a Banach space X. If for every e > 0 there exist n € N
and v > 0 such that d,(K)x < €, then K is totally bounded (i.e. its closure is compact).

Proof: To prove the lemma, we fix n > 0 and show that K is contained in the union of a finite
collection of balls with radius n. It follows from the conditions of the lemma that we can find an
integer ng and a parameter v > 0 such that

dy (K)x <mn/2.

Therefore there exists a norm || - ||y,, in R™ and a -Lipschitz map ® : (By,, || - [l,,) — X such
that

sup inf |[f —@(y)| <n/2.
fek yE€Byy,

More precisely, for every f € K, we can find y € By, such that

If = @)llx <n/2. (2.21)

10



Let {yj}ﬁvzl C By,, be an n/(27y)-covering for the compact set By, , that is

N
By,, < | Blyj,n/(2v)),

n=1

and therefore for every y € By, we can find y;, j € {1,2,..., N}, such that ||y — y;lv,, <n/(27).
Thus we have

12(y) — 2(y;)llx < vlly — yillv, <n/2,

and
N

®(By,,) C | B(®(y;).n/2).
n=1
From the latter result and (2.21) it follows that IC C ngl B(¢(y;),n), and the proof is completed.
O

Remark 2.12. Note that Lemma 2.11 states in particular that a subset K C X of a Banach space
X s totally bounded if there exists v > 0 such that lim, . d}(K)x = 0. The converse statement
is also true, see Corollary 3.4 and Corollary 4.3.

2.4 A single norm defines the Lipschitz width

In this section, we extend Lemma 2.2 and show that in the definition of Lipschitz width the
infimum over all norms || - ||y, is achieved for some norm that satisfies (2.9). While this fact may
not be very useful in practical applications, it has a certain theoretical merit.  In our argument,
we use the following version of Ascoli’s theorem, whose proof can be found in [5], and which we
state below.

Lemma 2.13. Let (X, d) be a separable metric space and (Y, p) be a metric space for which every
closed ball is compact. Let Fj : X — 'Y be a sequence of y-Lipschitz maps for which there exists
a€ X and b e Y such that Fj(a) =0b for j =1,2,.... Then, there exists a subsequence Fj, , k > 1,

which is point-wise convergent to a function F : X — Y and F is vy-Lipschitz. If (X,d) is also
compact, then the convergence is uniform.

Now we are ready to state and prove the following fact.

Theorem 2.14. For any n € N, any compact set KK C X, and any constant v > 0 there is a norm
| - ly on R™ satisfying (2.9) such that

d(K)x = dl(K,Y)x.

Proof: It follows from Lemma 2.2 that we can find a sequence (U7 );";1 of ~-Lipschitz maps
Wi (By,, | - lly;) = X, where the norms |||y, on R satisfy (2.9), such that

dj:=sup inf ||f— W (y)|x = dl(K) as j— oo.
fek yEBy,

11



There is a subsequence |||, of the sequence of norms ||.[|3, that converges pointwise on R" and
uniformly on Byn to a norm ||.|ly on R" satisfying (2.9). Indeed, one can check that the functions
Fy (R - [[en) — R, defined as Fj(y) := ||y[|y, satisfy F;(0) =0, and

1E5 (") = F)l = 1y'lly, = lylly, ] < 1Y = vlly, <y = yllep,

where we have used (2.9). Thus, the sequence (F})72, satisfies the conditions of Lemma 2.13 with
7 =1,a =b =0, and so we can find a subsequence Fj, that converges point-wise on R" and
uniformly on Byn . In fact, the limit function F' of this subsequence is a norm, which we denote by
|| - ly. Clearly, this norm satisfies inequalities (2.9).

Now, passing to a subsequence, we will assume that ||.||y; converge uniformly on Bgn to the
function ||.|ly. Thus, there is jo € N such that for any j > jo there is €; with the properties
0<egj<1,limje; =0 and

lylly, =5 < llwlly <llylly, +&5, forall [yl <1.
For example, we can take

gj=sup |ylly, — llyllyl,
yillyllen, <1

and jo big enough. Since By, C By , j = 1,2,..., and By C Byn , we have for all y € By, U By
lylly, — &5 < llylly < llylly; + ;- (2.22)
The latter inequality gives that for y € By we have
lylly, <1+e; = ye(l+¢g;)By,

and so
By C (1 + Ej)Byj. (2.23)

Next, let j > jo. For any y with [|y|ly, <1—¢; <1, we have from (2.22) that
lylly <1 = yé€ By,

and therefore
(1—¢;) "By, C By. (2.24)

It follows from (2.23) and (2.24) that
(1—¢;) "By, C By C (1+¢;)By,, j=> jo. (2.25)
Let us now define the mapping Ui - (1+ €j)Byj — X, as
W (y) = W ((L+e5) " 1y).

Note that

v

W (y) — @I <
%7 (y") (W)llx < T3

1y" = ylly, <y =ylly,, vy e(l+e)By,
where we have used that U/ is y-Lipschitz. We denote by U7 the restriction of U/ on By, see (2.25).
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Now we fix f € K and j > jo. For every € > 0, we can find y = y(f,j,€) € By, such that
If— 9 (y)|lx <dj+e. We set

z:=y/(1—¢5) e (l— Sj)_lByj C By,
and observe that
xggy If =W (@)x < If=W(E)lx=If-Y()lx=If-Y(1+e) "2)x

= f =¥ =) ylx < If = W @)lx + 19 (y) — (1~ ) y)lx

2 2
5 <d %)
1_€?‘|y||yj— j+5+71_6j2-

< dj—|—€+’Y

By letting e — 0 and taking supremum over f € IC, we obtain

2

— IS
d'(K,Y)x <sup inf |[f = W (x)llx <dj+y7—
fek z€By 1-—

8?'
Since d; — d}(K)x and £; — 0 as j — oo, we derive that d?(K,Y)x < d}(K)x, and the proof is
completed. O

3 Lipschitz widths and entropy numbers

In this section, we study the relation between the Lipschitz widths d;,(K)x and the entropy numbers
en(K) x of a compact set L. We look at widely used in the literature assumptions on the asymptotic
decay of ,(K)x and show how it relates to d;,(K)x. This is rather technical, so we state here
the main result in the section, which is in fact a corollary of Theorem 3.3, see (3.2) with k = 1,
Theorem 3.9. and Remark 2.1 (iii).

Theorem 3.1. Let K C X be a compact subset of a Banach space X, n € N, and d,(K)x be the
Lipschitz width for IC with Lipschitz constant v > 2rad(KC). Then the following holds:

(i) For a >0, B € R, we have

[log n)” [logy n)?
6n(/C)X§Cn27a, n=12,..., = d%(’c)xﬁcliia, n=12,...,
[logy n]ﬁ , [logy ”]'B
K)x >C—=— =1,2,... = d(K)x >C"———— =1,2,....
5n( )X = no y N 3 4y ) n( )X = na[10g2 n}cw y )
(ii) For o > 0, we have
1 1
Kx < —— =1,2,... = dIK)x <x ——- =12,... . (3.1
E’n( )X [10g2 n]a b n y < b n( )X [10g2 n]a b n » < ( )
(11i) For 0 < a < 1, we have
n(K)x <027 n=1,2,..., = d(K)x<C2 n=12...,
eK)x > 027" n=1,2,..., = dK)x>c27"""" n=12....

We conclude our study with various examples showing the sharpness of our estimates.
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3.1 Lipschitz widths are smaller than entropy numbers

We start with the construction of a particular Lipschitz function that can be viewed as a sum of
‘bumps’, each one supported on a closed ball from a Banach space Y. We use this function to show
that the Lipschitz widths of a compact set K C X are smaller than the entropy numbers of that
set.

Lemma 3.2. If (B?) := (B(y;,p;)) is a family of disjoint open balls in a Banach space Y, then
for every sequence (@;) of v;-Lipschitz mappings ¢; : Y — X, j =1,2,..., with the property that
wj = 0 on the complement of BJ, the mapping ® : Y — X, defined as &g = Zj @j 1s a Lipschitz
map with Lipschitz constant supjy;. In particular, for any sequence (f;) of elements f; € X with
| fillx =1 and any sequence (o;) of real numbers, the mappings ¢; 1Y — X, j =1,2,..., defined
as

¢i(y) = oj <1 - HyJ;yHY> - f;,  where (t)4 := max{0,t}, t € R,
J +

are |o;|/pj-Lipschitz mappings. Their sum, the mapping ® = Ej ¢j, is a Lipschitz mapping with
Lipschitz constant sup |o;|/p; and ®(y;) =0;f;, 1 =1,2,....
J

Proof: The proof follows from the observation that the sum of Lipschitz mappings with disjoint
supports is again a Lipschitz mapping with a Lipschitz constant bounded by the supremum of the
Lipschitz constants of these mappings and we omit the details. |

We use the Lipschitz function ®, constructed in Lemma 3.2 to prove the following theorem.
Theorem 3.3. For any compact subset K C X of a Banach space X and any n > 1 we have that
42 AR () v < en(K)x, k=1,2,.... (3.2)
In particular, when k = n, we have
2 redR) (K x <e2(K)x, n=1,2,.... (3.3)
Proof: We fix k € N. Let £ C X be a compact set in a Banach space X, let > 0, and let
X :={fl,-- s fon} CK

be the set such that for every f € K we can find f]' € Xy, such that

If = fillx <ern(K)x +n. (3.4)
Since K is bounded, we can assume that K C Bx(0,r) for some r > 0. Let us divide the unit ball
(Bns ||+ len.) = [~1,1]" C R™ into 2*" non-overlapping open balls B, each of side length 2!7%. Let

us denote by y; the center of B/ and define a map ¢; : R” — X as

and
an

P = Z (]5]‘.
j=1
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We apply Lemma 3.2 with o; = || fil|lx, f; = W fopi =25 Y = (R, || [len,) and conclude
J

that ® : Y — X is a map with Lipschitz constant v := 2% max; 1fillx < 2y, and ®(y;) = i

Therefore, we have d%kT(’C)X < ekn(K)x + 1, and taking n — 0, we obtain

27 (K)x < epn(K)x, n>1. (3.5)
Now, for any € > 0 we can find g = g(¢) € X such that

sup ||f — gllx < rad(K) + 52_k,
fex

We apply (3.5) for the set (K — g) with 7 = rad(K) 4+ £27% and using Remark 2.4, we arrive at
d%zk rad(IC)Jrs(,C)X < Ekn(’C)X-

The statement (3.2) of the theorem is obtained from the latter inequality using the continuity of
the Lipschitz width d;,(K)x with respect to 7, see Theorem 2.7. O

Corollary 3.4. For every compact subset I C X of a Banach space X and every v > 2rad(K) we

have

lim d)(K)x = 0.

n—oo
Proof: This follows from Theorem 3.3, Remark 2.1 (iii) and the fact that lim,,_ £,(K)x = 0 for
compact sets K, see Remark 2.3. O

Example 3.5. We want to point out that for some cases of K and values of n the estimate (3.2)
in Theorem 3.3 cannot be improved. We consider the Hilbert space H which we identify with the
sequence space

o0
by ={z=(21,....25,..): |zlj, =llz|f =D 2} < oo, z; €R}.
j=1
For each n =1,2,..., we construct the compact set IC,,
K, = {61, €2,...,69n, €2n+1} C 52,

where (e;) is the standard basis in fo, that is, all coordinate components of e; are 0’s, except the
j-th, which is 1. Then we have

Indeed, since |le; — e;||g = V2, i # j, it follows that &,(K,,)y = V2, k < n. Now suppose that we
have dJ(K,)g < v/2/3 for some s and 7. This means that there exists a norm || - ||y, on R® and
a 7y-Lipschitz map ¢, ¢ : (By.,|| - ||lv.) = H, defined on the unit ball By,, with the property that
lo(y) —ejllm < V2/3,j=1,...,2" + 1,47 € By,, j=1,...,2" + 1. Since for i # j,

Wy’ =9l 2 o) = o)l = 11(6(57) — e5) + (e — ea) + (ei — Syl > V2-2V2/3 = V2/3,
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we have that {yj}?:fl is v/2/(3v) packing of By,. Using (2.14), we obtain that
N\/ﬁ/(ﬁfy)(BYs) >2"+1 = &(By,)m > V2/(6).
On the other hand, it follows from [4] that 4 - 2=/* > ¢,,(By, )y > 2~ '&,(By.)n, and therefore,
V2/(127) < 4-27"5,
Thus, for any pair (v,s) such that v/2/(12y) > 4 - 27/ we get 3dJ(K,)g > V2 = é,(Kp) . This
holds, for example, when v = 2diam(K,,) = 2v/2 and s = n/7.
3.2 Estimates for Lipschitz widths from below

We start this section with a lower bound on the Lipschitz constant v in d,,(K)x. The following
proposition holds.

Proposition 3.6. If d),(K)x < & for a compact subset K C X of a Banach space X, then
12 2eN(K), (3.6)
where N¢(K) is the e-covering number of K. In particular, if d)(Bz, )x < €, then
v %Q—m/nglfm/n' (3.7)

Proof: If d},(K) < ¢, then there is a y-Lipschitz map ® and a norm | - ||y,, ® : (By,, || - [lv,) = X
such that ®(By, ) approximates K up to accuracy €. Let us consider ®(By;, ) and let {yj}évzl C By,
be such that {@(yj)}j-v:l is a maximal e-packing of ®(By, ). Then, we have

e < ||®(y;) — @(yi)llx < vlly; — vjrllvas

and thus
”yj_yj/HYn>€’7_17 j?éj/> jvj,:L"'?N'
Therefore, see e.g. [12, Chp. 15 Prop. 1.3],

N < Pa(Br) <3 = (2) o (33)

For every z € K, we can find ®(y), y € By, such that ||z — ®(y)||x < ¢ since ®(By, ) approximates
KC up to accuracy . Since the set {®(y), ®(y1),...,P(yn)} is not an e-packing for ®(By;, ), there
is index jo, 1 < jo < N, such that ||®(y) — ®(yj,)|lx < e. Then,

12 = @(yjo)llx < llz — 2(y)llx + |2(y) — L(yjo) |l x < 2e,
and thus {@(yj)}é-v:l is a 2e-covering of K, which gives
N > No.(K).
Combining the latter estimate with (3.8) gives (3.6). In particular, when K = By, , we know that
Noo(Bz,,) > (22)™,

and therefore we obtain (3.7). The proof is completed. O
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Lemma 3.7. Let K C X be a compact set and v > 0 be a fixed constant. If there is n > ng,
ng = no(co, o, B) such that

1 B
D (K)x < COM, with a>0, and BER,
then s
1 «
em(K)x < C[mgﬁ) with m = cnlogy n, (3.9)

where C, ¢ are fized constants, depending only on vy, ¢y, a and 5.

Proof: We use Proposition 3.6 with & = co[logy n]°n~? to obtain that

NQ&‘(]C) < <3Q/> — (37061[10g2 n]fﬁna)n < 2n(10g2(3'ycal)+alog2nfﬁlogg(loan)) < QCnloan7

and therefore
Eenlogyn()x < 2¢p[logy n)Pn=2.

If we set m = enlogyn > cn, then n = m/clogyn and we get
em(K)x < 2¢ollogy n]P[m/clogy n] = = 2coc®m ™ [logy n]? 2. (3.10)

Since
logy m = logy ¢ + logy 1 + logy logsy n,

for n sufficiently big we have
27 ogy n < logy m < 3logy n,

and the statement follows from (3.10). O

Lemma 3.7 is similar to the classical Carl’s inequalities [3], traditionally used to provide lower
bounds. However, there is an important difference. Note that Lemma 3.7 works for each n sepa-
rately, whenever the Carl’s inequality requires an assumption for all j < n. On the other hand the
Carl’s inequality gives the upper bound for €, not &,,.

Next, we continue with a series of results presenting lower bounds for the Lipschitz widths of
compact sets, provided we have information about the entropy numbers of these sets. We start
with a natural consequence of Proposition 3.6.

Proposition 3.8. Let K C X be a compact set and let
en(K)x >nn, n=12...,

where (n,)22, is a sequences of real numbers decreasing to zero. Let for some m € N and some
0>0
) (K)x < 0.

Then we have
nmlog2(376—1)<25' (3.11)
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Proof: We apply Proposition 3.6 with ¢ = § and obtain

Nas(K) < (35’Y>m — gmlogy(33071)

Using our assumptions and the definition of entropy numbers, we derive

20 > 5m10g2(375*1)(lc)X > Nmlogy(3v6—1)-

a
The next theorem discusses lower bounds of the Lipschitz widths d},(K)x in the case when
v > 0 is a fixed constant.

Theorem 3.9. For any compact set KK C X the following holds:

(1) If for some constants ¢y > 0,0 > 0 and 5 € R we have

(logy n)ﬁ

en(K)x > o =12,...,
then for each v > 0 there exists a constant C > 0 such that

(logy )7~
na

d1(K)x > C L n=1,2.... (3.12)

(11) If for some constants ¢y > 0, > 0 we have
en(K)x > c1(logan)™%, n=12,...,
then for each v > 0 there exists a constant C' such that

Q(K)x > Cllogyn)™, n=1,2,.... (3.13)

wi) If for some constants c1,¢ >0 and 1 > a > 0 we have
(iii) ;
en(K)x > 127", n=1,2 ...,
then for each v > 2rad(K) we have
QD (K)x > 02" =12, (3.14)
where C,co > 0 are constants depending on -y, ¢, and .

Proof: We prove (i) by contradiction. If (3.12) does not hold for some constant C, then there
exists a strictly increasing sequence of integers (ny)72, such that

dy, () xn&
ak::%%o as k — oo.
(logy 1)
Thus, we can write
1 Fre gail pre
&y (K)x = 2% [ nglf’“] < 2 Oiza”k] — g fork=1,2,.... (3.15)
k k
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(logy n)
n(l

8
Now we apply Proposition 3.8 with 7, = ¢; and obtain

ay, [logy my)

ng®

[0

c1 [logQ(nk log2(376,;1))]6 ng @ [log2(375kfl)] <4

which we rewrite as
[logy nu, + 10g2(10g2(375];1))]ﬁ [log2(3v5,;1)] "% < Chag [logang)? ™, where Cy =4/cy. (3.16)
Observe that
logy (370, 1) = logy (1.57) + logy a; ' + alogy ny, + (a — ) logs (logy ),
and therefore for k big enough we obtain
logy (378, 1) < 2 [logy(a; ') + alogy ny] - (3.17)

The latter inequality and (3.16) give

27 [logz ng + 10%‘2(108;2(3751;1))} ’ [108;2(@1;1) + alogy nk] - < Chag [10g2 nk]ﬁ_a )

which is equivalent to

[0}

M log, k)’ . (3.18)

. —1\\18 a
ay, [logy ny + logy(logy(3yd, 1))]" < 2°C) log, 1y,

+

Note that since 6 — 0 as k — 0, we have that for k big enough log,(logy (375, ')) > 0. Now we
consider several cases.
Case 1: 5 > 0. In this case we have for k big enough

llogy ni)? < [logy i + log, (logs (375;))]”,

and therefore it follows from (3.18) that

67

10%2(611: 1)

a,;l < 2°Ch
logy 1

+al < C[logQ(alzl)]a,

which contradicts the fact that a;, — 0 (and thus a; ' — 00).
Case 2: $ < 0. In this case we have

_1\18 - B
[10g2 ny + logy (376, 1)] < [logz ny, + logy(logy (374, 1))} ) (3.19)
and therefore it follows from (3.18) that
-1 —1y18 a logy(ay, 1) * B
ay, ' [logy i + logy (376, 1)]” < 2%Cy Tom e +a| [logyng]”.
082 Tk
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This gives, using (3.17)

log, 1, logy nu,

8
log, (a7t “ 1 -1
< gy | () +a] !1 . 0g2<375k>]
logy ng logy ng
8
log, (a! “ log,(a; "
< 200y logQ(ak) tal [142a+ 20g2(ak)] < Cllogy(a )],

which also contradicts the fact that a;, — 0 (and thus a;* — 00).
To prove (ii), we repeat the argument for (i), namely, we assume that (ii) does not hold.
Therefore there exists a strictly increasing sequence of integers (ny)72 ;, such that
b :=dy, (K)x[loggng]* =0 as k — oo.
We write
dy, (K)x = b[logy ng] ™ < 2bg[logg ng] ™ =: 0y for k =1,2,..., (3.20)

and use Proposition 3.8 with 7, = ¢;(logyn)~* to derive

c1 [logy(ng logo (378, 1))] ™ < 4bg[logy ng] .
The latter inequality is equivalent to
logy 1y, + log, (logy (370, 1))~ < Chby(logy ni) ™%, Cy = 4/cy, (3.21)
which, after using (3.19) with 8 = —« gives
[logs ny, + 1oga (376, )]~ < Ciby [logy ]~

We continue by writing the above inequality as

log2(37(5,€_1)] : < (b 1) )

]
1+2q+22820% )

by' <Cy |1+ 1
082 T

< Cllog, (b7 )]
logy 1k < Cllogy (b))%,

where we have used (3.17). The latter inequality contradicts the fact that by tends to zero, and the
proof of (ii) is completed.

We now prove (iii). To simplify the notation, we denote by d,, := d;,(K)x and observe that,
according to Corollary 3.4, d, — 0 for n — oo when v > rad(K). We use Proposition 3.8 with
§ = 2d,, and 1, = 127" to obtain the inequality

Ad, > 012_C[n logz(SvdZI)}o‘7 (3.22)

which can be rewritten as

C1

gelnlogy (3ydy )] > 1 d;l & ocn(logz &) > lchfn =: A&, where &, := 3fyd;1 — 00 as n — 00.
Y

Taking logarithm on both sides of the inequality and using the fact that &, — co we obtain for n
big enough

logy & < en®(logs &) — logy A < 2en®(logy &), (3.23)
and therefore log, &, < (20)1/ (1—a)pe/(1=a) " Returning back to the notation for the Lipschitz width,
we obtain

372_(26)1/<1—a)na/(1—a> < d(K)x

for n big enough. This completes the proof of (iii) by choosing the constants appropriately so that
the above inequality holds for all n. O
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3.2.1 Sharpness of the results

In this section, we provide examples which show that some of the results in Theorem 3.9 cannot
be improved. We start with the following remark.

Remark 3.10. The requirement o < 1 in Theorem 3.9 (iii), and therefore in Theorem 3.1 (iii),
is necessary. The simplest example is K = [0,1] C R, where we have €,(K)g = 2= and
d3(K)r =0 when~y > 1 andn > 1. The Lipschitz width is zero because & (K)r < di/Z(lC)R for the
discussed range ofn cmd v, and dl/ (K)r = 0. The latter holds since the mapping ®1 : [-1,1] — R,
defined as ®1(t) = 1(t+1) is a 1/2 Lipschitz mapping for which ®1([—1,1]) = K. This shows that
an estimate for d;YL(IC)X in terms of n is not possible.

Next, we provide an example of a compact set I for which the the entropy numbers behave like

! while the Lipschitz width behaves as [nlogy(n + 1)] 71

We consider the Banach space X = ¢g of all sequences that converge to 0, equipped with the
f~ norm and its compact subset

K(o) := {oje;}72, U{0} C co, (3.24)

determined by the strictly decreasing converging to 0 sequence o := (o)
standard basis in cg. Since

oo
721, where (e;)72, are the

Hojej — O'j/ej/”goo = 0y, for all j, > 7,

it follows that the ball with center oje; and radius o; contains all points o e with j > j and
none with j/ < j. Thus, if we look for 2" balls with centers in k(o) covering (o) with smallest
radius, we take the balls B(oje;,09n), 7 = 1,2,...,2", with centers oje; and radius ggn. Each of
the first 2" — 1 balls contain only one point from K (o), while the last ball B(oanean, o9n) contains
the rest of the points {o;e;}72,, U {0}, which gives

En(K(0))x = oon. (3.25)

We investigate the behavior of d,,(K(c))x. We shall use the following lemma which gives upper
bounds for the Lipschitz widths for the sets k(o).

Lemma 3.11. Consider the strictly decreasing sequence o := (Uj)?ip o; — 0 as j — 0o, and the
set K(o), defined in (3.24). If o1 < /2 and we can find N (finite or infinite) such that

N
Z < (y/2)" (3.26)

then dp(K(o))x < on.

Proof: We consider the case when NV is finite. Similar arguments hold in the infinite case. For
every oj, j =1,..., N, we define £; € NU {0} as

9=ti—1 < 971 < 9=t;, (3.27)
v
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Then it follows from (3.26) that

N

N
> ol 24%/7 <, (3.28)

J=1

Since (0])] | is a decreasing sequence, we have that 274 > 27% > 276 > ... > 27N Note that
some of the £;’s can be equal to each other. Let ki1, ka,...,ks = IN, be the indices such that

61:...:&31<£k1+1:...:£k2<€k2+1:...:€k5:€]\].

We set kg = 0 and rewrite inequality (3.28) as

S

2" > Zz-nf Sk — kja)2 " (3.29)

j=1

Observe that the volume of a cube with side length 27%; is 27" while the volume of [—1,1]"

2™, Tt follows from simple volumetric considerations, that we can divide naturally the cube [—1, 1]
into k1 open non-overlaping cubes each with side length 2tk | (ko — k1) open non-overlaping cubes
each with side length 27tk (ks — ks—1) open non-overlaping cubes each with side length 2= ths |
since, according to (3.29), the sum of the total volumes of these cubes does not exceed the total
volume of [—1,1]". Thus, there exists a sequence of non-overlapping open cubes B/,

B = Bj(yj72_Zj_1) - (Bfgoa || ’ ”EQO) = [71’1]’”" J=1...,N,

with side length 27%. Then, according to Lemma 3.2, the mapping ® : (B , || - [len.) — co, defined

as
N

O(y) =Y oy(1 =25y —yllen )+ - ¢
j=1
is a Lipschitz mapping. Its Lipschitz constant is sup {25j+1aj} and ®(y;) =oje5,j=1,...,N.
j=1,..,N
It follows from (3.27) that
sup 2€j+1aj <7,
j=1,esN

and therefore ® is a -Lipschitz mapping. On the other hand, since

sup Jof llojey = 2)lle < Sulfi]_ilr} ylloer = ®)lle. = Sulij_iﬁl ylloieir = aieille. = on,
and

yleannHO DY)l < i 17 " 2@ less —j_ilfl.f’NHUj@ijoo =on,
it follows that d;,(K(0))x < on and the proof is completed. O

Now, we are ready to state the main theorem in this section.
Theorem 3.12. The compact set K(o) C co, defined in (3.24), with o = ()72, being the sequence

oj = 1/logy(j + 1) has inner entropy numbers

En(K(o)) <

1
na
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and Lipschitz width
1

dy(K(o)) = m

for any for v > 2.

Proof: The behavior of the entropy follows from (3.25) and the estimate from below for the
Lipschitz widths follows from Theorem, 3.9, (i). We are only left to prove the upper estimate for
the width. If we show that (3.26) holds for the choice of o; = [logy(j + 1)]71, j = 1,2,..., and
N = (n+1)", where v > 2 and n is sufficiently large, since 01 =1 < /2, we can use Lemma 3.11
to conclude that dy,(K(0)) < on = (nlogy(n + 1))~L, for n > ng, depending only on 5. This could
conclude the proof.

We now concentrate on proving (3.26) with N = (n+1)" for n sufficiently large. We start with
defining J = J(n) as

2]—1 S (n+ l)n < 2]7

and estimate

(n+1)"™ J—12k+t1 1 J—1 J—-1
Y o< of <1+ 2"k =1+ q(k), where q(t):=2¢", t>1. (3.30)
j=1 k=0 j=2k k=1 k=1

Simple calculation shows that ¢(t) is decreasing on [1,n/In 2] and increasing on [n/In2, 00). More-
over, we have that

pen/t < AU+ 21 S <2 ) <179 for t< L 1. (3.31)
q(t) (1+1) In4
It follows from (3.30) that for n > 3,
(n+1)"
doop<i+ Y ak+ D g+ D> q(k) = Si(n) + Sa(n) + Ss(n).
j=1 1<k<n/In4 n/lnd4<k<n/In2 n/In2<k<Jj-1

(3.32)
We will provide upper bounds for each of Sy, Sy and S3. Clearly

o0
Sin)=1+ > qlk)<l+q1) Y 27Ml<i42.) 27 Ml=5
1<k<n/In4 1<k<n/In4 k=1

since for this range of k’s we have q(k 4+ 1) < 3q(k), see (3.31).
Next, note that ¢ is a decreasing function for the range of k in S5, and therefore

So(n) < (1:2—lnn4>-2”/1’“4(1:4)_R<n(21/1n41n4)nn_”<n<27'13>n’

since (n/In2—n/ln4) =n/(2In2) <n and 2/"%In4 < 2.3. Forn>5

1 2.3\" 2.3n1/m !
1/n —
2.3n/ <231+ )<n = Sz(n)<n<n> _n<nn1/n> <l
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So, we obtain
Sa(n) <1 for n>5.

To estimate S3, we notice that the biggest summand is the last one,
Sz(n) < J-277HJ —1)7" < (nlogy(n+1) + 1)(n+ 1)"(nlogy(n + 1) — 1)™"

= n [1 + Hn [logz(n +1) + i] [10g2(” +1) - H

-n

1-n

1 17 " 1
< 2en [logQ(n +1)— ] [logg(n +1)— ] = 2en [log2(n +1)— ]
n n n
Let us now consider the functions
1
z) = ACaDN r(x) :=logy(x + 1) — —.
T

One can show that ¢ is a decreasing function on the interval [5,00), while r is increasing function
on the same interval. Therefore, for every n > 5

1 1
n'/=1) = p(n) < £(5) = 5'/* < log, 6 — = =r(5) <r(n) =logy(n+1) - —,

and so

1 n—1 1 1-n
n < <log2(n +1)— n) = n <log2(n +1)— n) < 1.

The latter inequality combined with the estimate for Ss gives that
S3(n) < 2e, for n>5.

Finally, combining (3.32) with all estimates for Sy, So and Ss, we obtain that
(nt1)"

In(6 + 2
Z of < S1(n) + S2(n) + S3(n) <6+ 2e < (v/2)", provided n > max {5, M} .
j=1

The proof is completed. O

4 Comparison between Lipschitz and Kolmogorov widths
If we fix the value of n > 0, the Kolmogorov n-width of K is defined as

do(K)x =sup||fllx, dn(K)x:= inf supdist(f,X,)x, n>1. (4.1)
fek dim(Xn)=n fek

It tells us the optimal performance possible for the approximation of the model class K using linear
spaces of dimension n. However, it does not tell us how to select a (near) optimal space Y of
dimension n for this purpose. Let us note that in the definition of Kolmogorov width, we are not
requiring that the mapping which sends f € K into an approximation to f is a linear map. There
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is a concept of linear width which requires the linearity of the approximation map. Namely, given
n >0 and a model class K C X, its linear width d%(K)x is defined as

d§(K)x =sup || flx, dy(K)x = inf sup|f—L(f)|x, n>1, (4.2)
fek LeLln feic

where the infimum is taken over the class £,, of all continuous linear maps from X into itself with
rank at most n.

We prove in the next theorem the intuitive fact that the Lipschitz width is smaller than the
Kolmogorov width.

Theorem 4.1. For every compact set K C X and everyn > 1, we have
4} (K)x <dn(K)x <d(K)x, for v =dn(K)x +rad(K). (4.3)

Proof: It is clear that d,(K)x < d%(K)x for every n > 0 since we can take X,, to be the n-
dimensional linear space containing L(X) when L € £, so we concentrate on the first inequality.
We start with v > d,,(K) x + rad(K), denote

n:=v—dn(K)x —rad(K) > 0,

and choose 771 to be such that 0 < n; <n. Let X,, C X be an n-dimensional linear subspace in X
such that,

sup inf ||f —gllx < dn(K)x +m.
fek 9€Xn
For every f € K, we denote by g = ¢g(f) the element in X, for which
1f = 9(f)llx < dn(K)x + m1, (4.4)
and the collection of all such elements are denoted by
A={g(f): f €K} C Xn.
Let us fix go € X such that supscic [|f — gollx <rad K +n —n1. Then, for every f € K,
l9(f) = gollx < lg(f) = flIx +1If — gollx < dn(K)x +rad(K) +n =1,
and therefore
rad(A) <v, and AC B(go,7) :={9 € Xn:llg—gollx <~}

We now define the mapping ® : (Bx,, || -||x) — X from the unit ball By, :=|lg € X,, : |lgllx <1}
in X,, as ®(g) = go + vg. Clearly ® is a y-Lipschitz map. Moreover, since ®(Byx, ) = B(go,7) and
A C B(go,7), we have that

sup inf |[f — ®(g)||x < sup inf [|f — gl < dn(K)x +m1,
fek 9€Bx, fek 9eA

where we have used (4.4) in the last inequality. Thus, using Remark 2.1 (iii), we obtain
dy(K)x < dn(K)x +m1,
and letting 1 — 0 gives
d)(K)x <dn(K)x, foranyy>d,(K)x + rad(K).
Now (4.3) follows from Theorem 2.7 by taking v — d,,(K)x + rad(K). O
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Corollary 4.2. For every n > 1 and every compact set K C X we have

dy(K)x < dn(K)x, 7= 2?“}2 1f1lx- (4.5)
€

Proof: The inequality follows from Theorem 4.1, Remark 2.1 (iii), and the fact that for every
n>1
dn(K)x +rad(K) < 2sup || fx-
fex

As a result of this section, we can give the following improvement of Corollary 3.4.

Corollary 4.3. If K C X is compact, then for every ng € NU{0} and every v > dy,(K)x +rad(K),
we have

lim d)(K)x = 0.

n—o0

Proof: The statement follows from Theorem 4.1, Remark 2.1 (iii) and the fact that the sequence
of Kolmogorov widths (d,,(K)x) of a compact set K is a non-increasing sequence of non-negative
numbers that tends to zero, see e.g.[14, Prop 1.2]. O

4.1 Examples of different behavior of the Lipschitz and Kolmogorov widths

It is intuitively clear that the Lipschitz widths could be much smaller than the Kolmogorov widths.
We illustrate this observation by discussing the following two examples.

Example 4.4. This example, borrowed from Albert Cohen, arises in some partial differential
equations. We denote by x, the characteristic function of [a,a + 1], a € [0,1] and consider the
univariate linear transport equation

Org + adzug = 0, (4.6)
with constant velocity a € [0,1] and initial condition
up(x) = ug(x,0) = xo(z). (4.7)

We denote by
H:={xs: a€l0,1]} ={us(z,1): a €l0,1]}

the solution manifold to (4.6)-(4.7) evaluated at time ¢ = 1. We prove the following lemma for the
set H.

Lemma 4.5. The Kolmogorov width of H C L1[0,2] satisfies
(n + 1)_1 < dn(H>L1[O,2] < 41’L_1, (48)
while its inner entropy numbers are given by

En(H) i =21 (4.9)
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Proof: We first observe that ||Xa — Xbll1,[0,2] = 2|a — b|. If we define
ti=(2j+1)27" 1 j=0,1,...,2" — 1,
to be the centers of the intervals [j27", (5 + 1)27"|C [0, 1], we have
Xa € B(xt;:27"™) & xa—xt;llpg <277 & Ja—t] <27,

where B(x,,27 ") is the closed ball in L;[0,2] with center x;, and radius 27"*1. So, those balls
cover H. This calculation also shows that if we have 2™ balls covering ‘H and one of them has radius
strictly smaller than 27"*! then some other one must have a radius strictly bigger than 27"+,
This proves (4.9).

To show (4.8), we first observe that the n-dimensional space

Vp :=span{y;, j=0,...,n—1},

where x; is the characteristic function of the interval [2j/n,2(j 4+ 1)/n| provides an error at most
4n~! for the elements from #. Indeed, for each x, € H, we have

J2
1Xa — Z Xillzio2 < an~t,
J=
where j; = ji(a) and js = jo(a) are defined as

ji(a) =max{j: 2j/n<a, 0<j<n-1}, ja(a)=max{j: 2j/n<a+1,0<j<n-1},

and therefore dy,(H) 1, (0,9 < 4n~'. To prove the lower bound in (4.8), we use a well known result,
see e.g. [14, Chap. II, Prop 1.3 |, which states that for any unit ball U in a Banach space X and
any finite dimensional space V1 of dimension n + 1, the Kolmogorov width

dn(U N Vn+1)X =1. (4.10)

We apply this result for the Banach space X = L]0, 2], the unit ball U in L]0, 2], and the linear
space Vp41 C Lp[0, 1], defined as

Vi1 = span{@o, .- -s@n}s @5 = Xj/(nt1) = X(j+1)/(n+1)y J = 0,000ym.

Another representation for the ¢;’s is

i 1= X[/ ), G+ /(0 D)] T X145/ (A D 4G+ D)l T = O m

and since they have disjoint supports, every ¢ = Z?:o a;jp; € Vpy1 has norm

n n
H‘P||L1[O,2] = | Z%@j”Ll[w] =2(n+ 1)71 Z | (4.11)
j=0 =0
Therefore
n n 1
wzzgajcpj €EUNV1 <« Z;|aj| < 5 +1). (4.12)
J= =
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Let us fix an n dimensional subspace V;, and let v; € V;, be such that

dist(X;/(n+1), Va)£i0,20 = X5/ (m+1) — Villao2y 7 =10,... 7.

Then, for every ¢ € U NV, 41, we have

dist(p, V)02 < ||Zay% Za] —vi+1)|| 10,2

n

= | Z i (Xj/(n+1) — Vj) — Z @i (X(j+1)/(n+1) — Vi+1) 10,2
- =

S 2 dlSt(H, V)Ll[[),?] Z ‘Oé]‘ S (TL -+ 1) dlSt(H, Vn)L1[0,2]7
§=0
where we have used (4.12). Therefore, it follows from (4.10) and the latter estimate that

L = do(UNVay1)r,00,2) —mf sup  dist(, Vi) (0,2
Vn eeUNVp41

< (n+1) igf dist(H, Vi), 0,20 = (n + 1)dn(H) L1025

and the proof is completed. O

It follows then from Lemma 4.5 and Theorem 3.3 that the Lipschitz width of H decays expo-
nentially, while its Kolmogorov width decays like n~!. While this is a good example, one may argue
that this different behavior is due to the fact that H is not convex. It is a well known fact that for
every compact set I we have

dn(K)x = dn(Ke)x, where K. = conv(KU(=K))

is the minimal convex centrally symmetric set that contains K. Therefore, a more suitable example
would be one when K is a convex, centrally symmetric set. We discuss such case in Example 4.6.

Example 4.6. Consider the sequence o = (0;)52,, with o; = (logy(j + 1))~'/2, and the corre-

sponding linear map on sequences, D, : {1 — b9, {1 := {x = (x1,22,...) : Z;’il |zj| < oo}, defined
as
Dy(z) =y, where y; =052, j=1,2,....

Let us denote by K, C fo the image of the unit ball in #; under this map, namely,

Ks :={y€ty: yj =o0jxj, where Z lzj| <1} ={y €ty : Z lyjlv/1ogo(j +1) <1} (4.13)
j=1

j=1

The set K, is a convex, centrally symmetric subset of ¢, for which

i C K:a_.
logy(j + 1) =1
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It follows from Proposition 3.1 in [11] that
en(Ko)ey =n™ Y2 n=1,2..., (4.14)

which combined Theorem 3.3 shows that dy,(Ky)e, < Cn~1/2 with 4 = 2rad(K,) = 2. On the
other hand, we show in the next lemma that its Kolmogorov width d,,(K, )¢, behaves as d,,(Ky)e, <
(logy n)~ 2.

Lemma 4.7. The Kolmogorov width of the compact set K, defined in (4.13) is
dn(Ko)e, = (logyn)™V2, n=23,....

Proof: Clearly,
. . 1
dn(Ks)e, < sup dist(z,span{e;}7_;)s, =

e, V lOgQ (n + 2) ‘
To prove the inequality from below, we fix € > 0 and denote by X,, the n dimensional subspace for
which
sup dist(z, Xn)e, < (14 €)dn(Ks)e,-
{L’GICU

If P is the orthogonal projection onto /3" := spabn{ej}ﬁi1 and X,, := P(X,,), then

dn(P(Kg))e, < sup  dist(z, Xn)e, < (14 €)dn(Ko)e,- (4.15)
J?GP(’CG)
; R 1 12n
Since Py, := logz(%ﬂ)conv{ie]}]:1 C P(K,), we have
dn(Pn)ey < dn(P(Ko))es (4.16)

and from Stechkin’s theorem [12, Ch. 13 Th.3.3] we know that

dn(Pn)ey = —= (logy(2n + 1)) ~1/2. (4.17)

N

Combining (4.15), (4.16) and (4.17) gives

B Y
Va1t o) (logy(2n + 1)) 2 < dp(Ko)e,-

Since € > 0 is arbitrary, we obtain
C(logyn)~1/? < dn(Ko)es,

which completes the proof. O
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5 Comparison between Lipschitz and stable manifold widths

Let us recall the definition of manifold width 6,,(KC)x for the compact set K C X, see [7, §],

on(K)x = inf Sup I1f = M(a(f))llx, (5.1)

where the infimum is taken over all mappings a : £ — R" and M : R” — X with a continuous on
K and M continuous on R™. A comparison between manifold widths and other types of nonlinear
widths was given in [8]. There is also another concept, called stable manifold width 6, . (K)x of
the compact set L C X, see [5], defined as

on (K0 i= _int  sup | = M{a() . (5.2
aM|llv,, fek

where now the infimum is taken over all maps a : K — (R™, || - ||v,,), M : (R™,]| - |ly;) = X, and

norms || - ||y, on R", with a, M being ~-Lipschitz. We discuss in this section the relation between

stable manifold widths and the Lipschitz widths. The next theorem shows that for any compact

set K C X, the Lipschitz widths are smaller than the stable manifold widths.

Theorem 5.1. For every compact set K C X, everyn > 1, and every v > 0, we have

2di *
dy B (K) x < 67 (K)x (5.3)
Proof: We choose € > 0, and let a : £ — (R"™,||-||y;,) and M : (R™,||-|ly;,) — X be two ~-Lipschitz
mappings with respect to a norm || - ||y, in R™ such that for every f € K,
If = Moa(f)llx <6,,(K)x +e (5.4)

For every fi, fo € K we have
la(f1) — a(fo)llv., < vIlf1 = fallx

which implies
diam(A) < ydiam(K), where A :=a(K).

We fix an element fy € K and define the mapping ® : (By,, || - |ly,) = X as
O(y) := M(a(fo) + v diam(K)y), a(fo) € R™.

Note that @ is a 2 diam(K)-Lipschitz mapping. For each f € K we define

1
y(f) = 7 diam(KC)

An easy calculation shows that ®(y(f)) = M oa(f), so
1f = @@)llx = If = Mea(f)lx <6,,(K)x +e

where we have used (5.4). Therefore we obtain

(a(f) = a(fo)) € By,.

sup inf [|f —@(y)|x <05, (K)x +e = d) PE 0y <55 (K)x +e.
fek y€By, ’ '

Since € is arbitrary, (5.3) holds and the proof is completed. O
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Remark 5.2. It was shown in [5] that in the case of Hilbert space H

05602 (K) i < 3en(K)m.

Thus, the above result and Theorem 5.1 lead to the inequality
dogn ™ ()11 < 360 (K) 1,

which is an estimate in the spirit of Theorem 3.3. Note that direct estimates between stable manifold
widths and entropy numbers are known only in the Hilbert space case, while direct estimates between
Lipschitz widths and entropy numbers, as seen from Theorem 3.3, hold for any Banach space.

Theorem 5.3. For every Banach space X and for every n € N, there exist compact sets K C X
such that for every v >0,
On(K)x > 0n(K)x > 1, while lim d)(K)x = 0.

Y—00

Proof: Let us fix n € N and consider the compact set
K:= 541 C Xnt1 C X,

where S,,41 is the boundary of the unit sphere of an (n + 1)-dimensional subspace (Xp41, || - ||x)
of X. By the Borsuk theorem, see [2, 12], we have that for any continuous map a : K — R,
there exists fy € K such that a(fy) = a(—fo), and thus for any map M : R® — X we have
M(a(fo)) = M(a(—fp)). Then, since ||fol|x =1 and fy, —fo € K, we have the inequality

2 = |lfo—(=fo)llx = llfo = M(a(fo)) + (M(a(=fo)) — (—fo)llx (5.5)
< lfo = M(a(fo)llx + [[M(a(=fo)) — (= fo)llx<2§up||f M (a(f))llx

for all mappings a : K — R and M : R™” — X with a continuous on K and M continuous on R".
So 0,(K)x > 1, and therefore d;, . (K)x > 6,(K)x > 1 for any v > 0. On the other hand, since K
is compact (and thus totally bounded), we have that lim,_,s d})(K)x = 0 because of Lemma 2.8.
g

Probably one of the main differences between stable manifold widths and the Lipschitz widths
is how they depend on the Lipschitz constant . Even though we touch upon this in the above
theorem, we will present a simple example where this difference will be seen quite clearly.

Example 5.4. We consider the set K C R? to be the Euclidean unit ball K = {(z,y) : 2?+y? < 1}.

e Manifold widths: it follows from Borsuk’s theorem applied to the restriction of the mapping
a on OK (which is a continuous function) that there exists a point (z*,y*) € JK such that
a(z*, y*) a(—z*, —y*). Then, no matter what the size of ~ is, the fact that M (a(z*,y*)) =
M(a(—z*,—y*)) =: (&,7) implies that we can not approximate both (z*,y*) and (—z*, —y*)
by (Z,9) with accuracy better than 1.
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e Lipschitz widths: we fix k& and find an upper bound for d] (K)ge with v = (k + 1)m. For that
purpose, we consider the mapping @1 : [-1,1] — R?, defined as

T
<I>1(t):(;(t—l—l)cos(km(t—kl)),;(t—i—l)sin(kw(t—kl))) L tel-11].

Clearly, ®1([—1,1]) is a spiral (an Archimedean spiral) starting at ®;(—1) = (0,0)7 and
ending at ®1(1) = (1,0). A ray r(cos(kn(t* + 1)),sin(kr(t* + 1)))¥ from the origin with
fixed t* € [-1,—1+ %] intersects successive turnings of the spiral in points with a constant
separation distance % Therefore, ®;([—1,1]) approximates K with accuracy at most % Note
that ®; is a y-Lipschitz mapping, which gives the upper bound d (K)gz < % Thus, because
of monotonicity, &} (K)g2 < 7, and we see that as k — oo, we have d} (K)gz — 0 when v — oc.

6 Relation to neural networks

In this section, we discuss deep neural network approximation (DNNA) by feed-forward ReLU
neural networks (NN) of constant width W > 2 and depth n, whose parameters have absolute
values bounded by 1. We will show that the approximation tools provided by these NNs are in fact
Lipschitz mappings

©: By, -llew) = CQ), @=1[0,1% a=Cn, C=CW),
with Lipschitz constant ~(n) = C'nW™. It follows from Remark 2.1 (iii) that
a7 ()x < d{(K)x <dl(K)x, with 5 =C'W, 5, =C'W™. (6.1)

Therefore, a theoretical benchmark for the performance of the DNNA for a class K C X is given
by the Lipschitz width d}"(K)x with v, = C’'A", where C’ > 0 and X > 2 are fixed constants.
This observation motivates our investigation of Lipschitz widths whose Lipschitz constant depends
on n.

6.1 Deep neural networks as Lipschitz mappings

Let us first recall that a DNNA of a function f € C(), Q C RY, via feed-forward NN with
activation function o : R — R, constant width W and depth n is in fact an approximation to f by
the family of functions

Y, ={®(y): yeR", 7 =n(W,n)=Cn} C C(Q).
For each y € R, ®(y) € C(Q) is a continuous function ®(y) : Q — R of the form
d(y) =AM o504 Vo, 050A0, (6.2)

with A® : R — RW A@ . RW 5 RW ¢ =1,....,n—1, and A®™ : RV — R being affine
mappings, and & : RW — R"W given by

F(Tjt1s - Tjrw) = (0(T541), -, 0 (T54w))-
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The argument y of ® is a vector in R™ that consists of the entries of the matrices and offset vectors
(biases) of the affine mappings A ¢ =0,...,n. We order these entries in such a way that the
entries of A appear before those of A+ and the ordering for each A® is done in the same way.
Before going further, we need to specify a norm || - ||y, to be used for R”. We take this norm to be
the (% := (. (R™) norm, that is, [yllgn, := maxi<i<q |y;|. This choice is not optimal for obtaining
the best constants in our estimates but it will simplify the exposition that follows. Also, when

considering vector functions g = (g1, ..., gw) from C(£2), we use the notation
lgll = max_llgillc).

It was proven in [6] that if B is any finite ball in £s(R?) and o(t) = ReLU(t) = max{t,0} = ¢,
then ® : B — C(Q) is a y-Lipschitz mapping with v depending only on B, W,n, and d. In fact, ®
is a y-Lipschitz map on any bounded set. Here, we will investigate in detail the Lipschitz constant
7 in the case when B is the unit ball (Bya , || - [[¢a ). More precisely, the following theorem holds.

Theorem 6.1. The mapping @ : (B , | - [len ) — C(2), with Q =0, 1]¢ ¢ RY, defined in (6.2)
with o = ReLU is a C'nW™"-Lipschitz mapping, that is

1@(y) = 2 )l <CnW"ly =yl 9,9 € B,
where C" = C'(d) 1is a constant depending on d.

Proof: Let y and 3/ be the entries of the affine mappings AW () := Aji(-) + b9, j=0,...,n, and
AW () = A%() + Y@, j =0,...,n, respectively, ordered in a predetermined way. We fix z € Q
and denote by
0O (x) = ReLU(Aoz + b)), 7 ©(z) := ReLU(Afa + '),
n\) = ReLU(Ajn(jfl) +o0)y, 0) = ReLU(A;-n’(jfl) +v9)), j=1,...,n—1,

where Aj,A;,b(j),b’(j), j =1,...,n — 1, are the respective W x W matrices and bias vectors,
associated to y and 3/, and

™ = A=) 45 )= A (D) )
Note that since [|y[l;» <1,

17O < @+ Dlylleg, <d+1, 79D < WO+ Dlgleg, < W9V +1, j=1,....n.

One can show by induction that for j =1,...,n,
I/ < Wid+> W < (d+2)W. (6.3)
k=0

Note that the above inequality also holds for j = 0. Next, since ReLU is a Lip 1 function, we have

In* (@) =1’ @ (@) < [I(Ao — Ap)ell + 60 =¥l < (d+ Dlly — 'llex, = Colly — ¥/l
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and therefore ||n(®) — 7' ©)|| < Colly — Y'[l¢z - Suppose we have proved that
In =1 =G < Cially — ¢/ llen-

It follows that

InP@) D@ < NAnI (@) 459 A=)~y
< A0 (@) = 0D @) + (145 — AU D (@) + oY) — 69|
< Wiyl IV = /G + Wily = o/ llea 791+ lly = o/ len.
< (WO + (d+2)W + Dy — ¢/l ez,

= Cilly —vllen,
where we have used the induction hypothesis, the fact that ||y[[;» < 1, and the bound (6.3) for
|79)||. Thus, we have obtained that |79 —7/D| < Cj|ly — Y'll¢n , and therefore the following
recursive relation A
Cj:Wijl—i-(d—i-Q)W]—l-l, j=1...,n,
between the constants Cj, j = 1,...,n, where Cy = d + 1. We then obtain

n—1
Co<(n+1)(d+2W"+ > WF<CnW", with C' = C'(d).
k=0

Finally, we write
12(y) — 21 )@ = 1™ = '™ < Cully = ¥ llen. < CnW™ |y — y/'l|a .

and the proof is completed. O
We next discuss a Carl’s type inequality that is similar to Lemma 3.7, but is for the case when
the Lipschitz constant v depends on n.

Remark 6.2. If one follows the proof of Lemma 3.7 with the condition that v is not a constant,
but v =y, = C'\", where C' >0 and X\ > 1, one can show that
1 B 1 A
d"(K)x < co[oigan], BER, a>0 = ,(K)x< C[Ogniam], where m = cn?,
and C, ¢ are fized constants, depending only on co, B, o, X\ and C'. Indeed, the proof follows from
the fact that for € = co[logs n]Pn =2 we have

3 n
Nae(K) < (g) — (3C"c; A" [logy ] Pn2e)" < 27,

and therefore
eenz(K)x < 2co[logy n]Pn=2%,

Setting m = cn? i.e. n = m/c gives
_ _s[log, m — log, c|? logy m]?
em(K)x < 2cllogy V/m/c)P (m/)c)™® = 2¢0c*2 g llos — 82" _ ol gnia] :

which is what we wanted to show.
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6.2 Lower bound for d)"(K)x

Now that we know that DNNA is an approximation to a function f by a particular ~(n)-Lipschitz
mapping with v(n) = C'nW", we can ask the question what are the limits of such approximation.
This question is answered by providing a lower bound for the Lipschitz width d}*(K)x, v, =

C'W?" see (6.1), via the next theorem which is a modification of Theorem 3.9.

Theorem 6.3. For any compact set K C X we consider the Lipschitz width d;" (K)x with Lipschitz

constant v, = C'’A\", A > 1 and C' > 0 being fized constants. Then the following holds:

(i) if for some constants ¢; > 0,0 > 0 and B € R we have

log, n)?
en(K)x > Cl(i?a)’ n=12 ...,
then there exists a constant C > 0 such that
1 B
D)y > oo

n2a
(i) if for some constants ¢; > 0, > 0 we have
en(K)x > ci(logyn)™®, n=12,...,
then there exists a constant C > 0 such that

d"(K)x > C(loggn)™®, n=12,....

(6.5)

Proof: We prove the theorem by contradiction. We first concentrate on the proof of (i). If (6.4)
does not hold for some constant C, then there exists a strictly increasing sequence of integers

(ng)72,, such that

Tn
= dna” (E)nic? (i —0 as k— oo
T (logy me)? |

Thus we can write

n log,, ng? 2pz. [log, ny]?
am (i) = Belloga il 2pellogymil” g oy
'I'Lk nk

Now we apply Proposition 3.8 with 7, = ¢;(logy n)’n~® and obtain

B
B a Ca—a i [logy n
1 [logz(”k logs (37, 0y, 1))]5 T [10g2(37nk5k 1)] <4 : [nkga g ’

which we rewrite as

ot [logy ny, + logy log2(37nk5k_1)]ﬂ [log2(3’ynk5,;1)]_a < €} [logy ng)? n,, Cr=4/c.

Observe that

logy (37n, 05 1) = logy (1.59,,) + logy(py ') + 2alogy ni — Blogy (logy 1)
= logy (L5C'A™) + logy(p;, ') + 2arlogy ny — Blogy(logy n) |
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and therefore for k£ big enough we obtain
1085 (37, 07, 1) < 2 [loga(py 1) + Ang] . (6.7)

The latter inequality and (6.6) give

P " (1085 1 + 10gs (10gs (37,85 )] [loga(py ) + Ang] ™ < 2°Cy [logy i) i,

which is equivalent to

[0}

logy (p; ')
ny,

P [logs . + log, (logy 3y, 1))]” < 290 +A| [logy ]’ (6.8)

Case 1: 3> 0.
Note that since d;; — 0 and v, — oo, for k big enough we have log2(10g2(37nk5k_1)) > (. Since

8 >0, we have

lloga 1)’ < [logy ik + logs (1082 (37,07 ))]” |

and therefore it follows from (6.8) that

_ @
logy(py ')

pp ! <2°Cy o

+A| < Cllogy(p; )%,

which contradicts the fact that pg tends to zero (and thus p,;l — 00).
Case 2: 3 <0.
In this case we rewrite (6.8) and use (6.7) to obtain

1+

logy 1y,

] -1 “
p.t < 20Cy [ng(p’“ )+A
Nk

_ —B
1085 (1085 (37, 05 1))]

logy (py, ')
ny,

a _ -B
al s log, (2Any, + 2logy (py, 1))] .

logy 1

Next, we consider the following 2 cases.
Case 2.1: If for infinitely many values of k we have p,;l < cng, then the above inequality
becomes
P <C,

which contradicts with the fact that pgl — 00 as k — oo.
Case 2.2: If for infinitely many values of k we have p,?l > cny, then the above inequality

becomes 5
P! < C [logy(p")]” [loga(loga(p')] ",

which also contradicts with the fact that pgl — 00 as k — oo.
To prove (ii) we repeat the argument for (i), namely, we assume that (ii) does not hold. Therefore
there exists a strictly increasing sequence of integers (ny)72 ,, such that

e = dy (K)[loggng]* — 0 as k — oo.
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We write
d?{;’“ (K) = ex[logg ni] ™ < 2ex[loggng] ™ =: 0, k=1,2,..., (6.9)

and use Proposition 3.8 with 7, = ¢1(logy )~ to derive

c1 [logz(nk log2(3fynk5,;1))]7a < deg[logy ngl ™.

The latter inequality is equivalent to

« «

logy (ng + logsy (61;1)) Cy=4/c (6.10)

logy n,

log (logs (37,67, 1))

e’;lgcl L+ logs Ny,
2

<Ci|l+c

where we have used inequality similar to (6.7).
Case 1: If for infinitely many values of k we have e;l < cng, then the above inequality becomes

e, ! <C,

which contradicts with the fact that e,;l — o0 as k — oo.
Case 2: If for infinitely many values of k we have egl > cny, then the above inequality becomes

e,;l <C [logQ(e,;l)}a,

which also contradicts with the fact that e,;l — 00 as k — oo. O

6.3 Summary

In this section we summarize our results for the Lipschitz widths d}* (K) x and give several examples.
The following corollary holds.

Corollary 6.4. Let K C X be a compact subset of a Banach space X, n € N, and d;)"(K)x be the
Lipschitz width for K with Lipschitz constant ~, = C'\", where C' > 0 and X > 2.

(i) For >0, B € R, we have

1 B 1 B
en()x = 2820 ey o M; (6.11)
ne nee
(i1) For o > 0, we have
n(K)x = — o () = (6.12)
XX ) x <X . :
" [logy n]® [logy n]®
Proof: We first prove (i). Let us assume that
1 B
en(K)x < o082
n
holds. After using (3.3) from Theorem 3.3, we obtain
B
27 rad (K 8 [logy 1]
2" () <2 C—2 (6.13)
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We now fix ng such that C’A"™ > 2"rad(K) for all n > ng (recall that A > 2). We apply Remark
2.1 (iii) to derive
d(K)x < d2' (K x, n > ne. (6.14)

Finally, it follows from (6.13) and (6.14) that

d"(K)x < C”[loigf]ﬂ, for all n,

provided the constant C” is chosen appropriately. The other direction in (6.11) is the statement of
Theorem 6.3, (i). The proof of (ii) is similar and we omit it. O

Corollary 6.4 provides a tool for giving lower bounds on how well a compact set (model class)
KC can be approximated by a DNN that has the additional restriction that all weights and biases
are from the unit ball of some norm || - ||y, . A standard technique to obtain lower bounds is using
the VC dimension, see [6], §5.9, and the references therein, which is restricted to the case when
approximation error is measured in the norm || - |[¢(q). Note that Corollary 6.4 can be applied in
the case of L, approximation when p # oo. For example, if B;(L-(£2)), 2 = [0, 1]¢, is any Besov
space that lies above the Sobolev embedding line for L,(€2), then it is proven in [9] that

en(U (B} (L ()1, 0) = n "/,

where U (Bg(L-(2))) is the unit ball of By(L-(£2)). Then, according to Theorem 6.1 and Corollary
6.4, we have

Aist(U(B3(Le (). Zn)iy (@) > 7" (U(B3(Le (€)1 (0) > O~
In particular, we derive the estimate

dist(U(B:(Loo())), X)) = Cn 2/,

which was proved in [6], see (5.18), in the case of general DNN. Note that here ¥, is the family
of functions that is generated by a DNN for which the parameters are from the unit ball of some
norm || - |ly,. This is the main difference between the framework considered here and the results
in [16] or [13], which give upper bounds O(n~2%/%) (modulo logarithmic factors in some cases) for
the error of approximation of the unit ball of C*([0,1]¢) c C([0,1]¢), s > 0, by ReLU DNN with
no restrictions on the parameters used in the network. These upper bounds are optimal (up to
logarithmic factor in some cases), see [6], section 8.7.1. It would be interesting to obtain upper
bounds for the DNN approximation when there are restrictions imposed on its parameters. We
are currently working on estimates from below on the Lipschitz widths associated with DNN whose
parameters are allowed to grow as we increase the depth of the network.

Lastly, we want to mention that, in contrast to stable manifold widths, the Lipschitz widths
do not shed a light on the numerical aspect of this approximation, that is, they do not give even a
theoretical algorithm of how to design the approximant.

Acknowledgment: We would like to thank the referee for the essential remarks and suggestions
which helped improve the quality and readability of the paper. Among other things, the referee
pointed out to us a simpler proof of Lemma 2.8 and a simpler example that is discussed in Remark
3.9.
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