ON THE ENTROPY NUMBERS AND THE KOLMOGOROV
WIDTHS

GUERGANA PETROVA AND PRZEMYSLAW WOJTASZCZYK

ABSTRACT. Direct estimates between linear or nonlinear Kolmogorov
widths and entropy numbers are presented. These estimates are derived
using the recently introduced Lipschitz widths.  Applications for m-
term approximation are obtained.

1. INTRODUCTION

We consider a Banach space (X, | - ||x) (or a Hilbert space H) equipped
with a norm || - ||x and a compact subset £ C X of X. Typically, K is a
finite ball in smoothness spaces like the Lipschitz, Sobolev, or Besov spaces.

A well known classical result, called the Carl’s inequality, see [2] or
[8], compares a certain characteristic of the set K, called entropy numbers
erx(K)x, with its approximability by linear spaces, measured by its Kol-
mogorov width di(K)x. The Carl’s inequality states that for each r > 0,
there is a constant C(r) such that for all n € N,

(1.1) 1rgn%xnk exr(K)x < C(r)  ax m Am—1(K) x.

Inequality (1.1) has been generalized in [11], see also [13], §3.5, where
the nonlinear Kolmogorov widths d,,(IC, N)x have been used instead of the
linear Kolmogorov widths d(K)x. More precisely, it has been shown there
that for each r > 0, there is a constant C'(r, \) such that for all n € N,

. T < T _ m
(1.2) 1r§n]?SXnk ex(K)x < C(r,\) | ax m dm—1 (K, A x,

with A > 1 a fixed constant. In addition, it was also proven that for each
r > 0, there is a constant C'(r,a) such that for all n € N,

(1.3)  max Keginriogr(K)x < Cr,a) max m”dm—1(K,m™)x,

where a > 0 is a fixed constant and klog k cannot be replaced by a slower
growing function of k.

All these inequalities are primarily useful when the linear or nonlinear
Kolmogorov widths decay as a power of m. In this paper, we give finer ex-
tensions of the (generalized) Carl’s inequalities (1.1), (1.2) and (1.3), using
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the recently introduced in [9] Lipschitz widths. We start with some defini-
tions, presented in §2, and continue, see §3, with a comparison between the
nonlinear Kolmogorov widths and the Lipschitz widths. Our main results
are presented in §4, where we give a direct comparison between the entropy
numbers of K and its linear and nonlinear Kolmogorov widths. In partic-
ular, we point out Theorems 4.2, 4.3, and 4.9, which give estimates from
below for the linear and nonlinear Kolmogorov widths of a compact set K,
provided we know the behavior from below of the entropy numbers of this
set. These theorems utilize a new technique based on corresponding results
for the newly introduced in [9] Lipschitz widths. Finally, in §5, we derive
what these estimates mean for the m-term approximation in Hilbert spaces.

2. PRELIMINARIES

We start this section with the definition of Kolmogorov widths. If we fix
the value of n > 0, the Kolmogorov n-width d,,(K)x of K is defined as

do(K)x :==sup || fllx, dn(K)x:= inf supdist(f,Xn)x, n>1,

fexk dim(Xn)=n fei

where the infimum is taken over all linear spaces X,, C X of dimension n.
These are the classical Kolmogorov widths introduced in [7], or consult [8]
for their modern exposition. To distinguish them from the introduced later
nonlinear Kolmogorov widths, we call them linear Kolmogorov n-widths.
They describe the optimal performance possible for the approximation of
the model class K using linear spaces of dimension n. However, they do
not tell us how to select a (near) optimal space Y of dimension n for this
purpose. Let us also note that in the definition of Kolmogorov width, we are
not requiring that the mapping which sends f € K into an approximation
to f is a linear map.

A generalization of this concept was introduced in [11], where the so called
nonlinear Kolmogorov (n, N )-width d,,(K, N)x was defined for N > 1 as

do(K; N)x := sup | f]lx,
fekK

do(KC, N)x :=infsup inf dist(f, X,)x, n>1,
( )x inf feg of (f, Xn)x

where the last infimum is over the sets Ly of at most IN linear spaces
X, C X of dimension n. Note that here the choice of the linear subspace
X, € Ly from which we choose the best approximation to f depends on f.
Clearly, d,,(K,1)x = d,,(K)x, and the bigger the N is, the more flexibility
we have to approximate f. These nonlinear Kolmogorov widths are used in
estimating from below the best m-term approximation, see e.g. [4, 11]. The
cases considered in [11] are the cases when N = A", and N = n®", where
A > 1 and a > 0 are fixed constants, respectively. A useful observation that
we are going to utilize is that both Kolmogorov widths are homogenous.
Namely, if £ C X and ¢t € R, we have

(2.1)  dp(tKC,N)x = [t|dn(K, N)x and dn(tK)x = [t]dn(K)x,
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where tKC:= {tf: f € K}.

In going further, we introduce first the minimal e-covering number N¢(K)
of a compact set K C X. A collection {g1,...,9m} C X of elements of X is
called an e-covering of K if

K c | JB(ge). where Blgye)i={feX: |f—glx<e}.
j=1

An e-covering of K whose cardinality is minimal is called minimal e-covering
of K. We denote by N(K) the cardinality of the minimal e-covering of K.
Minimal inner e-covering number N.(K) of a compact set K C X is defined
exactly as N(K) but we additionally require that the centers {gi,...,gm}
of the covering are elements from K.

Entropy numbers e, (K)x, n > 0, of the compact set L C X are defined as
the infimum of all € > 0 for which 2" balls with centers from X and radius
e cover KC. If we put the additional restriction that the centers of these balls
are from /C, then we define the so called inner entropy numbers é,(K)x.
Formally, we write

277.

en(K)x =inf{e >0 : K | JB(gj.e), gj € X, j=1,...,2"},
j=1
2’)1

én(K)x =inf{e>0 : K | JB(hy,e), hj €K, j=1,...,2"}.
j=1

A collection {f1,..., fe} C K of elements from K is called an e-packing of K
if

min || f; — fillx >

7]
An e-packing of I whose size is maximal is called mazimal e-packing of K.

We denote by P,.(K) the cardinality of the maximal e-packing of K. We have
the following inequalities for every e > 0 and every compact set

(2.2) P(K) > N(K) > Py (K),
and
(2.3) en(K)x < En(K)x < 2en(K)x.

Finally, we introduce the Lipschitz widths dp,(K)x, v > 0, n > 1, of the
compact set L C X, see [9]. This width is a modification of the manifold
n-width 0, (IC)x (the latter being asymptotically equivalent to the classical
Alexandroff width, see [3] or [15, Chapter 4]), which is defined as

n(K)x = nfarasupgecllf — M(a(f))llx,

where the infimum is taken over all continuous mappings a : K — R",
M : R" — X. In the case of Lipschitz width, we impose the stronger



4 G. PETROVA AND P. WOJTASZCZYK

Lipschitz condition on the approximation mapping rather than the continu-
ity condition that is used in the definition of the manifold width. Creat-
ing different widths by imposing stronger conditions on the approximation
mapping was used before. For example, in the case of Kolmogorov widths,
imposing linearity of the approximation mapping led to the definition of
linear n-widths, and further taking approximations generated by orthogonal
projections onto n dimensional linear spaces led to the definition of ortho
(Fourier) n-widths, see [14], §2.1.

We denote by (R",|.|ly, ), n > 1, the n-dimensional Banach space with
a fixed norm || - ||y;,. For v > 0, we first define the fized Lipschitz width
d” (’Ca Yn)Xu

d(K,Y,)x :=infsup inf |f— ®n(y)|x,
®n fek yEBy,

where the infimum is taken over all Lipschitz mappings
@y 1 (By,s |- lv.) = X, By, :={yeR": |ylly, <1},
that satisfy the Lipschitz condition

® — D, (v
p 1200 = 20l
yzyleBYn ”y - y HYn

with constant v. We then define the Lipschitz width
d)(K)x := inf inf d"(K,Y:)x,

f— )

k=n|l-llv,
where the infimum is taken over all norms || - ||y, in R* and all k < n. We
observe the following analog to (2.1)
(2.4) 1t (tK) x = d)(K)x, where tK := {tf: f € K}.

3. COMPARISON BETWEEN NONLINEAR KOLMOGOROV WIDTHS AND
LIPSCHITZ WIDTHS

In this section, we derive direct inequalities between the nonlinear Kol-
mogorov widths and the Lipschitz widths. We then use known relations
between entropy numbers and Lipschitz widths to derive improvements of
the (generalized) Carl’s inequalities.

We first note the following comparison between the linear Kolmogorov
widths and the Lipschitz widths, proven in [9], see Corollary 5.2.

Theorem 3.1. For every n > 1 and every compact set K C X we have

d)(K)x < dn(K)x, for every v >2sup | f|x.
feK

We next proceed with estimates between the nonlinear Kolmogorov width
and the Lipschitz widths. Clearly, it follows from the definition that

dn(K,N)x > don(K)x > d) (K)x, 7= QJSCUE £,
S
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where we have used in the last inequality the above theorem. Better es-
timates in the case of K being a subset of a Hilbert space H or a general
Banach space X are described in the following lemmas.

Lemma 3.2. For everyn > 1, N > 1, and every compact K, subset of a
Hilbert space H such that supsex || f|ln = 1, we have

3.1 ATV Or < da(K, N, and &3 g v (K)o < dn(K, N) g

Proof: Let us fix n, N > 1, and consider the n-dimensional linear spaces
Xi,...,Xn, X; CH,i=1,...,N. We define a norm || - ||y, ,, on R"*!,
H(.T, xn-{—l)HYn_H = ma‘X{Hx”fz(R”% ’wn+1|} y L= (1‘1, cyTn),

whose unit ball is

By, =A@, 2ng1) + [[2lleymny <1 and |z | <1}

Clearly
Byn+1 = Bgz(Rn) X [—1, 1], where sz Rn) = {JT e R"” |’$HEQ(R") < 1}
We want to construct a Lipschitz mapping from (By,,,,| - |lv,.,) to H

whose image approximates well . We divide the interval [—1,1] into N
subintervals I, j =0,...,N — 1,

Ij = [aj,aj+1], aj = 2]/N - 1,
with centers c¢; and consider the univariate continuous piecewise linear func-
tions 95, 5 : ([-1,1],|-]) = [0,1], j =0,..., N — 1, whose break points are
{ao,...,aj,¢,a541,...,an—1}, and
Yi(cj) =1, j(ar) =0, k=0,...,N—1.
Let (Bx;, ||-|lz#) be the unit ball of the space X; C H. We fix an orthonormal

basis {cp{, cees <p%} in X; and consider the isometry map 1/71]- from By, gn) onto
BX]‘7
¢ (BZQ(R" H Héz Rn) ) (BX]'7 H ’ HH)a
defined as
n .
(3.2) Yi(x) = Yj(x1,...,2n) = Z T
i=1
We use these mappings to construct ®,1: (By,,, |- [lv,,,) = H as

N—1
Qpt1 (2, Tng) Z Vj(Tni1) - j(x).
J=0

Let us fix (x,2n11), (2, 2],,,) € By,,, and denote by

A= |y (2, 2nq1) — ‘I)n+1($,a 33%+1)HH-

We want to derive an upper bound for A. Note that v¢;(x,41) # 0 if and
only if x,,+1 € I;.We consider the following two cases:
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o if x4 1,2, € I for some j = 0,...,N — 1, then 9j(z,41) # 0,
j(x),,.1) # 0, ¢k(azn+1) V(1) = 0 for all k # j, and therefore
A = (@) (@) — (@l 1) (@) |
[ (@ns)|95(2) — Pj(2") |1
+ (@) — @@l )95 | 1
< lz = 2'lgy@n) + Nl|zng1 — 25,44|
< (N + D@, 2n41) = (@ 2540 Vi

o ifw, 1 €I, €I} for some j,k=0,...,N—1, k # j, we obtain
that

IN

A = [[9(@n )05 (x) — Yre(@r,40)Vr (@) |-
We can assume without loss of generality that
Tny1 < ajp1 < ap <y
Since ¥j(a;1) = Yr(ar) = 0, we have
A < [Y(ns ) i(@) = ()0 (@)l m
1ok (an)or (@) — (@) k(@) | 1
|9 (Tns1) — Tlfj(ajﬂ)!Wj(x)HH
vk (ar) (@) — i 1)vn(@)lla

Nlaji1 — 2| + |2 — 2'llgymn) + Nl2pyq — ar

_l’_

N|$Z+1 — Tpt1| + flz — x/HZQ(Rn)
(N + 1)||(:L’,:L’n+1) - (xlaxiz+1)||yn+17

where we have used arguments similar to the first case.

ININ AN+ IA

In both cases we have that

[@ni1(2, 2ny1) — Prpr (@ 2y )lle < (N + D)z, 2ng1) — (2 2000 1y

and therefore ®,1 is an (N + 1)-Lipschitz mapping.
Since sup sexc || f|lz = 1, the approximant f; to f from X; will belong to
Bx; since f; is the orthogonal projection of f onto X;. Thus, it follows from

the definition of ¢; that there is 27 € By, rn), such that Yi(x?) = f;, and
therefore

P12’ cj) = f5, and |If — fillg = dist(f, X;)m
which gives
AT (K)a < du(K, N)n
To show the second part of (3.1), we determine ¢ € N such that
2=l < N < 2f,

and define a norm | - ||y, ,, on R"** by

1@ )1y = masx { [zl eymeys 19 e ey |
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where
z:=(z1,...,2n), Y= (Y1,---,Y0)
The unit ball with respect to this norm is

BYm—z = {(x,y) € Rn—M : Hbe(R") <1and HyHZOO(]Rl) < 1}'

Like before, we have By, , = By, mn) X [~1,1]°. Next, we consider the
disjoint cubes Q;, j =1,..., 2¢, of side length 1 such that

Y4
[—1,1]" = Ui_1Q;.

We denote by ¢; = (] ...,cz) € R’ the center of Qj, j = 1,...,2¢ and
define the functions ¢; : ([—1,1]%, || - oo (mey) — [0,1] as

1 .
050 =2 (5~ e = vleniz) + 5= 1w 2
Jr

a,nd \I}n_i'_f : (BYn+g7 || : HYn+Z) - H as

22
Upo(z,y) =Y 65(y) - ¥5(x),
j=1

where t; are the mappings defined in (3.2).

Using the fact that for any two numbers a, b, we have |a; —by| < |a — b,
we obtain that

165 (w) — &5 < 2llle; = yllewmey = e = ¥l o) < 201y = ¥ llee ey -

Moreover, the supports of the ¢;’s are disjoint, with ); being the support of
¢j, and |¢;(y)| < 1 for all j. Now, following similar arguments as the ones
for ®,1, and denoting

B = [Ypie(2,y) — Vore(z',y) | 1,
we derive that:
e if y,y/ € Q; for some j =1,...,2°
B = ¢;()¢i(x) — 65"l < 3z, y) — (1) Iy
e if y € Q; and ¥ € Qi, k # j, we consider the line segment
y+ty —y), 0<t<l,
and fix
dj =y +toly' —y) € 0Q;,
and
by =y +t(y —y) € 9Qy.
Clearly to < t1, ¢;(dj) = ¢x(br) =0,

1y = djlloe ey + 1Y = bkllee ey = o+ 1=ty =¥ e ey < 1Y =¥ [l me)s
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and similarly to the estimate for A, one obtains

16 ()05 (x) — oy )n(2") |l

165 (y) — &5 (d) 1 (@) |11 + [l dn (bre)von(x) — or(y")on(2") |
2ldj = ylloo ey + 12 = 2l gy@my + 209" — brllo, re)

2lly = ¥ llewey + 12 — 2l oy mm)

(2, y) = (@, Y)lvre-

Therefore, W, is a 3-Lipschitz mapping. As before, since sup scic || fl|n = 1,
we obtain

B

VAN VAN VAN VAN

Cli—%—flog2 N (K)u < dn(K, N)n,
where we have used the fact that £ = [logy N and ¢j(c;) =1, =0,...,N.
The proof is completed. U
The case of arbitrary Banach space X is based on the following lemma.

Lemma 3.3. Let Y be an n-dimensional subspace of a Banach space X
and (By, || - |ly) be its unit ball. Let (Bz,|| - ||z) be the unit ball in an n-
dimensional subspace Z of a Hilbert space H. Then, there exists a linear
map

V:(Bz, |- llu) =Y,
with Lipschitz constant (i.e. norm ) at most \/n such that By C 1)(Bz). In
addition, if X = Ly, then the Lipschitz constant of 1 is at most nl1/2=1/pl,

Proof: It follows from the Fritz John theorem, see Chapter 3 in [10] or [1],

that there exists an invertible linear operator ¢ : (R", || - [|z,rn)) — Y onto
Y such that

(3.3) ¢(Buywn)) C By C v/ng(By,mn))-

Let us fix an orthonormal basis ¢1, ..., ¢, for Z and consider the coordinate

mapping Kz : Z — R" defined as

n
kz(g) = (x1,...,2y,) =2, where g¢g= Zarjcpj.
j=1

This mapping is isometry when R" is equipped with the norm

n
> 22 =llgllz.
j=1

]|y mny =

We now define the linear mapping
1[}::(;50”2 : (Z’H ’ ”H) —Y,
and notice that ) 3
¢(Bz) C By C vny)(Bz).
The first inclusion gives that ¢ has a norm (Lipschitz constant) < 1, and

thus ¢ := \{FMZJ has a Lipschitz constant /n. The second inclusion shows
that By C 1¢(Byz), and therefore 1 is the desired mapping. It follows from
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6, Cor. 5| that in the case of X = L,, we can replace v/n in (3.3) by
P
n|1/2_1/p| D

Remark 3.4. Note that since 1) is linear, we have that (0) = 0, and for
every z € Bz,

(3.4) [0(2)lly = [¥(2) =¥ (0)lly < Vallzlla < vn,
where we can replace /n by nl'/2=1/Pl in the case when X = L,.

Lemma 3.5. For everyn > 1, N > 1, and every compact set K subset of a
Banach space X with sup e || fllx =1, we have
(3.5)

EPYN ) x < da(K,N)x,  and  d2

n+1 n+[logy N }(IC)X < dn(lcv N)X

When X = L,, we have

6nl1/2-1/p|

N nl1/2=1/p|
2N (K)1, < dn(K,N)p,, and dS% 0 W (K) 1, < do(K,N)y,

n+1

Proof: We fix n, N > 1, and consider the n dimensional linear spaces
X1, XN, X; C X, j=1,...,N, with (Bx,, || - [|x) being the unit ball of
X;. For a fixed j = 1,...,N we apply Lemma 3.3 with Y = X; and Z =
l5(R™) to find an M-Lipschitz mapping ¥;, where M = \/n or n‘l/pfl/m,
depending on whether X is a general Banach space or L,, such that

(36) \I’ (BZQ(Rn H ||g2 R™) ) — Xj, and BXj C \i/j(BgQ(Rn)).

We show (3.5) by proceeding as in the proof of Lemma 3.2 and defining
a mapping ®n+1 : (BYn+l’ H : HYnJrl) — X as

N—-1
Ont1(T, Tny1) =2 Z Vj(Tng1) - W),
7=0

where v; and (By,.,,| - |lv,,,) are as in Lemma 3.2. We fix (z,2,41),
(«', 2], ), denote by
C = ||On41(%, Tn+1) = Ops1 (2, 23 41) Il x,
and show in a similar way that
o if 2,11, € I; for some j =0,...,N — 1,

@) T(@) — ()T (@)

2
< i (@na)[I195(2) — ()| x

+ [ (zng1) — (1)1 (2)]| x
< Mz —2'||y@mny + NM|zpi1 — 2,4

< MN+ D@, 2n1) = (@ 250 0) i

where we have used (3.4).

A
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o if x4y € I, 2], € I} for some j,k=0,...,N -1, k # j,

@) T () — G500 F5 () | x

2
[ (ar) Ok (@) — r(xy,41) a2 x
(1) = j(aze0) |15 () x
[9n(ar) Wk (z) — Yr (), 40) Ok’ x
NMlaji1 = Tny1[+M|lz — 2| gymny + NM|2),q — ag
NM|zy, 1 — 1| +Mllz — 2|, mn)
M(N + D[(z, 2p41) — (2", 201 vy

INININ 4+ IN +

In conclusion,

1©n41(2, Tni1) =Oni1 (2, 2y )l < 2M(N + 1)|[(2, 2ny1)— (@, 2300 Iy

and therefore ©,,41 is a 2M (N + 1)-Lipschitz mapping.
Note that if f; is the approximant to f from X;, then

B0 f = fillx <lfllx = Ifllx <If = Fillx + I llx <20flx <2

where we have used that sup s || fllx = 1. Thus f; € 2Bx;. It follows from
Lemma 3.3 that since By, C W;(By,m®n)), there is ) € By, (wn), such that
U;(27) = 1 f;. Therefore

Ont1(2/,¢j) = fj, and |[|f — fjllx = dist(f, X;)x
which gives
A () x < da(K N x

To show the second part of (3.5), we define =,/ : (By, ., || - [lv,.) = X
as

'—‘n—i-f Y y 22¢]

where ¢; and (By,,, || - lv,,,) are the same as in Lemma 3.2 and U; is
defined in (3.6). For fixed (z,y), («/,%') € By, ,, we denote by

D = |[Eppe(2,y) — Entela’,y)llx
and consider the following cases
o if y,y/ € Q; for some j =1,...,2¢ we have
D

5 <3M|(w,y) = (@ ¢y,
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o if y € Q; and v € Qi, k # j, similarly to the estimate for C, we
obtain

D _ _

5 = l9iy)¥(z) - ok (y ) W2 x
< oi(y) — 6 (@)IP;(@)]Ix + |6k (k) r(2) — ¢r(y') Tr(a')] x
< 2M||dj = ylle rey + Mz — 2| gy@ny +2M ||y — bille mey
< 2M|ly = y'llo wey + Mz — 2" gy (mn)
< 3M|(z,y) — (@, 9) v,

The latter estimate implies that =, ¢ is a 6M-Lipschitz mapping, and since
supserc || fllx = 1, we obtain

d?L]J\fﬂog2 N (’C)X < dn(lcv N)X
The proof is completed. 0

Remark 3.6. Note that Lemma 3.5 with X = Lo can be used instead of
Lemma 3.2. However, we have decided to present both lemmas since better

Lipschitz constants are obtained when working directly with a Hilbert space
H.

Remark 3.7. It follows from (2.1) and (2.4) that lemmas similar to Lemma
3.2 and Lemma 3.5 can be stated in the case when supsei [|fl|ln # 1, or

supsex || fllx # 1, respectively.
4. MAIN RESULTS

In this section, we provide estimates from above and below that connect
the behavior of the linear and nonlinear Kolmogorov widths of K with its
entropy numbers. In what follows we assume that supsei || f||z = 1 in the
case of Hilbert space, or supsexc ||f|lx = 1 in the case of a general Banach
space. Similar results hold if this supremum is not 1.

Our approach of deriving estimates from below utilizes some known results
for Lipschitz widths stated below, see Theorem 4.7 in [9].

Theorem 4.1. Let K C X be a compact subset of a Banach space X,
n € N, and d;,(K)x be the Lipschitz width for K with Lipschitz constant
v > 2rad(K). Then the following holds:

(1) If for « > 0, B € R and a constant C' > 0, we have

1 s 1 B
en(K)x > closanl” o s D (K)x > _llogynl”
na n®[logy n|®

forn=1,2,..., where C' >0 is a fized constant.
(2) If for « > 0 and C > 0, we have
1 c’
en(K)x >Co—-——, n=1,2,..., then d)(K)x > ———,
O = g e

forn=1,2,..., where C' >0 is a fized constant.
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(3) If for 0 < a <1 and C,c > 0, we have
en(K)x >C27"" n=1,2,..., then d)(K)x>C'27¢"

forn=1,2,..., where C',¢ >0, are fized constants.

a/(1-a)

)

4.1. Estimates from below for the linear Kolmogorov width. The
above theorem, combined with Theorem 3.1, gives the following relations
between linear Kolmogorov widths and entropy numbers.

Theorem 4.2. Let K C X be a compact subset of a Banach space X, n € N,
and dn,(KC)x be the n-th linear Kolmogorov width for K. Then the following
holds:

(1) If fora >0, p e R, C >0, we have

1 B 1 p
en(K)x ZCM, n=12,..., then d,(K)x EC'M,
ne n®[logy n|®
form=1,2,..., where C' > 0 is a fized constant.
(2) If fora >0, C > 0, we have
C 1
en(K)x> ———, n=12,..., then dp,(K)x > C'———,
R X = g
forn=1,2,..., where C' >0 is a fized constant.
(3) If for0 < a < 1, C,c > 0 we have
en(K)x >C27"" . n=1,2,...,  then dno(K)x > 27"
forn=1,2,..., where C',¢ > 0 are fized constants.

Proof: The statement follows from Theorem 3.1, Theorem 4.1 and the
inequality sup e || fllx > rad(K). O

4.2. Estimates from below for the nonlinear Kolmogorov width,
the Hilbert space case. Using Lemma 3.2 and Theorem 4.1, we obtain
similar estimates for d,,—1(IC, N) .

Theorem 4.3. Let K C H be a compact subset of a Hilbert space H and
dn(C,N)i, n € N, N > 1, be the nonlinear Kolmogorov width for K. Then
the following holds:

o If for a > 0, B € R, and C > 0 the entropy numbers satisfy
en(K)g > CM, n =1,2,..., then there is a constant C"” > 0

no

such that for every N > lwe have
[logy(n + [logy NT)JP
[n+ [logy NTJ*
o If for a > 0 and C > 0, the entropy numbers satisfy the inequality
en(K)g > [108;2%}‘“ n = 1,2,..., then there is a constant C" > 0

such that for every N > 1 we have

1

[logy(n + [logy N'T)]*”

(4.1) dp_1(K,N)g > C" n=1,2....

(42) dn_l(/C,N)HZC” n:1,2,....
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o If for 0 < a < 1 and C,c > 0, the entropy numbers satisfy the
inequality e, (K)g > C27"", n = 1,2,..., then there are constants
C". " > 0 such that for every N > 1

a/(l—a)
)

(4.3)  dp_1(K,N)g > "2~ (n+[log2 N1) n=1,2,....

Proof: To show (4.1), we apply Lemma 3.2, Theorem 4.1 with a value
v = max{2rad(K), 3}, and use the monotonicity of the Lipschitz width as a
function of « to derive that

dnfl(K'}N)H > d2+[10g2 N (IC)H

log(n + [log, 1)}~
> gy M (K 2 gQ[n + ﬂogg;N 1)

We omit the proof of the rest of the theorem since it is similar to the case
already discussed. O

Note that the above theorem holds for any value of N. In the cases when
N =M with A > 1, or N = n%* with a > 0, we obtain two corollaries.

Corollary 4.4. Let I C H be a compact subset of a Hilbert space H. Then
the following holds:

o Ife,(K)g > s’ =19 then

B—a
dp—1 (K, A\ ) g > C//%, n=23,....
n
o Ife,(K)g > Cm, n=1,2,..., then
1
dp— g >0 —— =2.3,....
1(’C7 )H = C [10g2 TL]O" n 737

o Ife,(K)yg >C27"", n=1,2,..., then

A1 (I, \V) g > O™/ 03

Corollary 4.5. Let KK C H be a compact subset of a Hilbert space H. Then
the following holds:

o Ife,(K)g > C[logn%n]ﬁ, n=1,2,... then

1 B—2«
s () > 00082y
n
o Ife,(K)g > Cm, n=12,..., then
1
dy 1 (K0 > C"'————, n=2,3,....
o0 = g e

o Ife,(K)g >C27", n=1,2,..., then

dn—1(K,n"") g > ¢~ nlogs ”]a/(lia), n=23,....
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Proof: We outline the proof of only the first statement. It follows from
(4.1) with N = n" that

« o

o logy(n + anlogy n)}P~ [logy(n + anlogy n)}P~

dn—1 (K, 0" )y =

>4

[n + anlog, n]® [nlogy n]®

[logy )P~
= [plogon)
where we have used that for n big enough
logy n < logy(n + anlogyn) < 2logsy n.

O
4.2.1. Ezamples. Here, we provide an example which shows that some of

the estimates in Corollary 4.4 are sharp. We consider the Hilbert space

by = {x = (21,29,...) : Z;}il |zj|* < oo} with a standard basis {ej)j’il

and the strictly decreasing sequence o = {Gj};’il of positive numbers o;
which converge to 0 with o7 = 1. We then define the compact set

Ko = {O‘jej}?il @] {0} C ¥y
and prove the following lemma.
Lemma 4.6. Fvery set K, C {3 has inner entropy numbers

en(Ko)e, = m n=12,...,

and nonlinear Kolmogorov width
dnUCg,N)gQ SUnN+1; N > 1, n:1,2,....

Proof: Since

lose; = opeplle, = \Jo? +0% < \Jo? +02,,, forall j'>j+1,

lojes = Olle, = 05 <y /0§ + 0514,

we have that the ball with center o;e; and radius r; := / sz + sz- 1 contains

0 and all points o e; with j* > j, but none of the points o;e; with j' < j.
Thus, if we look for 2" balls with centers in K, covering X,, and with
smallest radius, these are the balls B(ojej,ron), j = 1,2,...,2", with centers
oje; and radius ron. The j-th ball does not contain the first (j — 1) points
ojejr, 1 < j" < j—1, from K,, but contains the rest of the points {aiei};ﬁju
{0}. Therefore, we have that

and

én(lco-)@ = Ton.
To prove the second statement, we define the n-dimensional spaces

Xs = Span{ej}?g—l)n+17 5= 1’2""7N'
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Clearly 0,0e; € Uivzl Xs for j=1,...,nN, and for j > nN we have

N
diSt(O'jej, U Xs)g2 = 0j.
s=1
Thus, d,,(Ks, N)e, < opn+1, and the proof is completed. O

For our particular example we fix o > 0, select the sequence {o; };"’:1 to
be

1
77 Tlogy logy (j + 3)]*
and show in the following lemma that the estimate in Corollary 4.4 cannot
be improved.

(4.4) i=12...,

Lemma 4.7. The set K := K, defined by the sequence (4.4) has the following
properties:

en(KC)e, < (logan)™®, and dp—1(IC,\")g, < (logon)™®, n=2,3,....
Proof: It follows from (2.3) and Lemma 4.6 that

en(K)e, < oan < (loggn) ™,

and that
1
d — IC )\n < _ n -
rot oA S o oga(Gn - v £ 1
C B C
(logy logy A) — (logy 1 + log, logy A)®
C/

(logy n)™

The estimate from below follows from Corollary 4.4. O

4.3. Estimates from below for the nonlinear Kolmogorov width,
the Banach space case. To prove an estimate from below in the Banach
space case, we use the following statement from [9], see Theorem 7.3 in [9].

Theorem 4.8. Let K C X be a compact subset of a Banach space X.
Consider the Lipschitz width dy*(K)x with v, = cn®X", § € R, A > 1, and

¢ > 0. If for some constants c; > 0,a > 0 we have e,(K)x > c1(logyn)™¢,
n=1,2,..., then there exists a constant C > 0 such that

di"(K)x > C(logan)™®, n=1,2,....

We now use Lemma 3.5 and the above statement to prove the following
theorem.

Theorem 4.9. Let  C X be a compact subset of a Banach space X and
do(K,N)x, n € N, N > 1, be the nonlinear Kolmogorov width for K. If
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1

there is « > 0 and C > 0 such that the entropy numbers e, (K)x > CW’

n=1,2,..., then there is an absolute constant C"" > 0 such that
1
[logy n]*’
Proof: We apply Lemma 3.5, Theorem 4.8 with v = 2(\" + 1)y/n and use
the monotonicity of the Lipschitz width as a function of v to derive that
1
[logy ]

dn1 (K, N x > C” n=2....

dp 1 (K, A" x > XXV x > di™ (K)x > ¢
|

4.4. Estimates from above for the entropy numbers. The next propo-
sition provides us with a tool to derive estimates for the entropy numbers of
K if we have a knowledge about the behavior of the nonlinear Kolmogorov
widths d, (K, N)x.

Proposition 4.10. Let K C X with rad(C) < 1 be a compact subset of
a Banach space X and d,(K,N)x, N > 1, n € N, be the nonlinear Kol-
mogorov width for K. If for some 1 > e > 0 we have d,(KC, N)x < €, then
there exists an absolute constant ¢ > 0 such that Ps.(K) < N(c/e)" and

€1og, 1] () x < BeNY" = with = Py (K).

Proof: We omit the proof since it easily follows form (2.2) and the in-
equality
Ne(Bx,) < (¢/e)"

from [8, Chp. 15 Prop.1.3], where ¢ > 0 is an absolute constant and By, is
the unit ball of an n-dimensional Banash space X,. ([

We use Proposition 4.10 to obtain estimates from above for the entropy
numbers e,,(K)x of K. A similar estimate but for a different range of m
and some specific values of NV has been presented in [12], see also [14], §7.4.
More precisely, it was shown in [12], see Theorem 2.1, that if for a compact
set K C X, thereisr > 0, A > 1, and n € N such that

Adpp—1 (K, (An/m)™)x <m™", m<n,

then for m <n

em(K)x < O, \) <1°g2<2mw>

Lemma 4.11. Let K C X be a compact subset of a Banach space X with
rad(K) < 1. If fora >0, B € R, A > 1, and ¢y > 0 we have that

1 B
dp (KK, A") x < co[ogn%ln]7
for some n > ng(co, , 5, ), then
1 atp
em(K)x < CM, with - m = 2anlogy n,

m
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where C is a fized constant depending only on X, a, 3, cg.

Proof: It follows from Proposition 4.10 with € = 60[1(1%1#][3 that
logy 1 < nflogy(Ac) + alogg n — logy co — Blogy(logy n)] < 2amn logy n,
for n > ng where ng depends only ¢, A, @ and 3. For such n’s we have

3co[log, 1]
€2an log, n(IC)X < [na2]-
Setting m = 2anlog, n gives

em(K)x < Cm™[logy n]?+e.

Since for n sufficiently large, 27 'logyn < logym < 3logyn, the proof is

completed. ([
Remark 4.12. Similar statement as Lemma 4.11 holds if
log, n|?
dn(IC,n™) x < Co[ii],

where a > 0 is a positive constant. Note that in this case the corresponding
estimate for the entropy numbers (and in some cases even a better estimate)
can be obtained as a direct corollary of Lemma 2.2 from [11] (or Lemma 3.26
from [13]).

5. APPLICATIONS

In this section, we describe how some of the above results can translate to
estimates about m-term approximation. We follow the framework outlined
in Theorem 4.1 from [11].

We assume that we have a system D = {g;}?2; C X and de la Vallee-
Poussin linear operators Vj, associated with the sequences ny, {(Vi, ni) 172,
satisfying the conditions:

(1) There is a constant Az > 1 such that

9js J=1..n,
Vi(g5) = {0, j > Aoy,
Q595 otherwise, where «y; € R.

(2) The norms of Vj, as operators from X to X are uniformly bounded,
i.e. there is a constant A > 0 such that ||[Vi|lxox < As, k =
1,2,....
We denote by Sy, (f) the best approximation to f € K by elements from
span{gi, ..., 9n, }»

ClyeensCn

En (f,D)x == inf [If = cigillx =IIf = Sn.(F)lx,

J=1
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and by
om(f,D)x = _inf f= > ¢glx

LA A=
{egh AfAl=m jeAnD’

the best m-term approximation of f by a linear combination of m elements
from D', where D’ could be a subset of D or D itself. We also define

E,, (K,D)x :=sup E,, (f,D)x, om(K, D) x :==sup o (f, D) x.
fex fex

Then the following lemma holds.
Lemma 5.1. If the Banach space X admits de la Vallee-Poussin linear

operators Vi, that satisfy (1)-(2), with constants Az > 1, Az > 0, then we
have for 1 <m < Asny,

m

(5.1) dn, (/c, <A2b”’“>m)X < (14 243) max{E, (K, D)x,0m(K,D)x},

where b > 1 is an absolute constant.

Proof: Clearly, we have the inequality
IF=VeNlx < MF = S (Dllx + 150 () = Va(F)llx
(5.2) = En (f,D)x + [[Vi(Sn (f) = Hlix < (14 A3)En, (f, D)x.

If we denote by Dayn,, := {01, -.,94.n, }, then it follows from the properties
of Vj that for any index set A with [A] = m and any coefficients {c;}7,,

Tm(Vi(£): Dagn)x < IIVi(F) = VeQ_cigi)llx < Asllf =) cigsllx,
jEA jEA
and therefore

(5.3) om(Vi(f); Dasny)x < Asom(f,D)x.
Since
Um(f: DAQNk)X < Hf - Vk(f)”X + Um(vk(f)vpz‘bnk)Xa
it follows from (5.2) and (5.3) that
Om(fsDaony)x < (14 A3)E,, (f,D)x + Ason(f,D)x
< (1+42A43)max{E,, (K,D)x,on(K,D)x}.
Taking a supremum over f € K in the latter inequality gives
(5.4) om(K,Dagn,, ) x < (14 2A43) max{E,, (K,D)x,om(K,D)x}.

Note that the total number of m-dimensional subspaces, 1 < m < Asng, of
the linear space span{gi,...,ga,n, } is (A;;”“). Using the Stirling formula,
one can show that there is an absolute constant b > 1 such that

m m
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Then the definition of nonlinear Kolmogorov width and its monotonicity
with respect to N gives

A m A
dm <zc< 2b”“> ) < dp (ic( 2”’“)) < 0 (K, Dagny ) x -
m X m X

The latter inequality combined with (5.4) leads to

dpm <ic, <A2b”k>m>x < (14 243) max{E, (K, D)x,om(K,D)x},

m

where 1 < m < Asny, and the proof is completed. .

We next state a theorem that follows from Lemma 5.1 and our inequalities
for nonlinear Kolmogorov widths in Hilbert spaces. Note that our theorem
does not require the additional assumptions on the error E, (K, D)y that
are needed in Theorem 4.1 from [11] and describes the behavior of the errors
in cases not covered by this theorem.

Theorem 5.2. If the Hilbert space H admits de la Vallee-Poussin linear
operators Vi, that satisfy (1)-(2), then the following holds:

o Ifen, (K)y > 0%7 k = 1,2,..., then there is an absolute
k
constant C" > 0 such that

[logy m(1 + logy(Aang/m)) p-a
m“[l + logQ(Agbnk/m)]a

max{E,, (K,D)yg,om(K,D)g} > C" ,
forl<m<ng, k=1,2,3,....
o Ife, (K)g > Crt—s, k = 1,2,..., then there is an absolute

[logy np ]
constant C" > 0 such that

1
ma'X{ETLk (’Ca D)H) Um(IC, D)H} > C”

[logy m(1 + logy (Agbng/m))]*’

forl<m<ng, k=1,2,3,....
o If e, (K)uy > C2=", k = 1,2,..., then there are absolute con-
stants C" > 0 and ¢’ > 0 such that

max{ B, (K, D)z, 00 (K, D)} > "2~ I Hoga(Aabmy )2/ ()
forl<m<ng, k=1,2,3,....

m
Proof: We use Theorem 4.3 in the case N = (%) , Lemma 5.1 and
the fact that

Asb m Asb m
dm<IC,< ”‘k) ) >dnk_1<lc,( ”‘k) ) S 1<m<ng
m X m X

Note that we have utilized the fact that the constants in Theorem 4.3 do
not depend on V. O

We can derive several corollaries from the above theorem, one of which we
state below. If we take m = ny/2 in Theorem 5.2, we obtain the following
statement.
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Corollary 5.3. If the Hilbert space H admits de la Vallee-Poussin linear
operators Vi, that satisfy (1)-(2), then the following holds:
o Ifen, (K)g > C[logfl#]ﬂ, k = 1,2,..., then there is an absolute
k
constant C" > 0 such that

logy ny )5~
max{ By, (K, D) 11, 0, ;2 (K6, D) i1} > C”[ngjj], k=12,....
k
o Ifen, (K)g > Cm, k = 1,2,..., then there is an absolute
constant C" > 0 such that
C/I
maX{Enk(IC,D)H,Unk/Q(’C,D)H}Zm, k’:l,2,

o Ifen, (K)g > C27", k = 1,2,..., then there are absolute con-
stants C" > 0, ¢’ > 0 such that

a/(1-a)
k

max{Ep, (KK, D) g, 0, o (KK, D)pr} > C"27¢" k=1,2,....

Note that since As > 1, we can take m = n; in Lemma 5.1, use the fact
that

Enk (IC7 D)H Z Unk (IC, D)Ha
and obtain from this lemma that if the Banach space X admits de la Vallee-
Poussin linear operators satisfying (1)-(2), then

i, (K. (A2b)™) < (1+243)Ey, (K, D).

We can now use Corollary 4.4 and the monotonicity of the nonlinear Kol-
mogorov width with respect to IV to conclude that

dny, (IC, (A2b)™*1) < di, (K, (A2D)™) .
and derive the following statement.

Corollary 5.4. If the Hilbert space H admits de la Vallee-Poussin linear
operators Vj, that satisfy (1)-(2), then the following holds:

s
o Ifen,1(K)g > C%, k=1,2,..., then there is an absolute
constant C" > 0 such that

1 f-a
Ep, (K, D) > C”[ng’gj}, k=1,2,....
k
o Ifen, 1(K)g > CW, k =1,2,..., then there is an absolute
constant C" > 0 such that
C//
E, (KDygy>—-——— k=12 ....
nk( ) )H = [10g2 7’Lk]a7 y &y

o Ifen +1(K)g > C27"%, k=1,2,..., then there are absolute con-
stants C" > 0, ¢’ > 0, such that

11,0/ (1—a)
k

En (K, D)y > C"27"" . k=1,2,....
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