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Abstract. Direct estimates between linear or nonlinear Kolmogorov
widths and entropy numbers are presented. These estimates are derived
using the recently introduced Lipschitz widths. Applications for m-
term approximation are obtained.

1. Introduction

We consider a Banach space (X, ‖ · ‖X) (or a Hilbert space H) equipped
with a norm ‖ · ‖X and a compact subset K ⊂ X of X. Typically, K is a
finite ball in smoothness spaces like the Lipschitz, Sobolev, or Besov spaces.

A well known classical result, called the Carl’s inequality, see [2] or
[8], compares a certain characteristic of the set K, called entropy numbers
ek(K)X , with its approximability by linear spaces, measured by its Kol-
mogorov width dk(K)X . The Carl’s inequality states that for each r > 0,
there is a constant C(r) such that for all n ∈ N,

(1.1) max
1≤k≤n

krek(K)X ≤ C(r) max
1≤m≤n

mrdm−1(K)X .

Inequality (1.1) has been generalized in [11], see also [13], §3.5, where
the nonlinear Kolmogorov widths dn(K, N)X have been used instead of the
linear Kolmogorov widths dk(K)X . More precisely, it has been shown there
that for each r > 0, there is a constant C(r, λ) such that for all n ∈ N,

(1.2) max
1≤k≤n

krek(K)X ≤ C(r, λ) max
1≤m≤n

mrdm−1(K, λm)X ,

with λ > 1 a fixed constant. In addition, it was also proven that for each
r > 0, there is a constant C(r, a) such that for all n ∈ N,

(1.3) max
1≤k≤n

kre(a+r)k log k(K)X ≤ C(r, a) max
1≤m≤n

mrdm−1(K,mam)X ,

where a > 0 is a fixed constant and k log k cannot be replaced by a slower
growing function of k.

All these inequalities are primarily useful when the linear or nonlinear
Kolmogorov widths decay as a power of m. In this paper, we give finer ex-
tensions of the (generalized) Carl’s inequalities (1.1), (1.2) and (1.3), using
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the recently introduced in [9] Lipschitz widths. We start with some defini-
tions, presented in §2, and continue, see §3, with a comparison between the
nonlinear Kolmogorov widths and the Lipschitz widths. Our main results
are presented in §4, where we give a direct comparison between the entropy
numbers of K and its linear and nonlinear Kolmogorov widths. In partic-
ular, we point out Theorems 4.2, 4.3, and 4.9, which give estimates from
below for the linear and nonlinear Kolmogorov widths of a compact set K,
provided we know the behavior from below of the entropy numbers of this
set. These theorems utilize a new technique based on corresponding results
for the newly introduced in [9] Lipschitz widths. Finally, in §5, we derive
what these estimates mean for the m-term approximation in Hilbert spaces.

2. Preliminaries

We start this section with the definition of Kolmogorov widths. If we fix
the value of n ≥ 0, the Kolmogorov n-width dn(K)X of K is defined as

d0(K)X := sup
f∈K

‖f‖X , dn(K)X := inf
dim(Xn)=n

sup
f∈K

dist(f,Xn)X , n ≥ 1,

where the infimum is taken over all linear spaces Xn ⊂ X of dimension n.
These are the classical Kolmogorov widths introduced in [7], or consult [8]
for their modern exposition. To distinguish them from the introduced later
nonlinear Kolmogorov widths, we call them linear Kolmogorov n-widths.
They describe the optimal performance possible for the approximation of
the model class K using linear spaces of dimension n. However, they do
not tell us how to select a (near) optimal space Y of dimension n for this
purpose. Let us also note that in the definition of Kolmogorov width, we are
not requiring that the mapping which sends f ∈ K into an approximation
to f is a linear map.

A generalization of this concept was introduced in [11], where the so called
nonlinear Kolmogorov (n,N)-width dn(K, N)X was defined for N ≥ 1 as

d0(K, N)X := sup
f∈K

‖f‖X ,

dn(K, N)X := inf
LN

sup
f∈K

inf
Xn∈LN

dist(f,Xn)X , n ≥ 1,

where the last infimum is over the sets LN of at most N linear spaces
Xn ⊂ X of dimension n. Note that here the choice of the linear subspace
Xn ∈ LN from which we choose the best approximation to f depends on f .
Clearly, dn(K, 1)X = dn(K)X , and the bigger the N is, the more flexibility
we have to approximate f . These nonlinear Kolmogorov widths are used in
estimating from below the best m-term approximation, see e.g. [4, 11]. The
cases considered in [11] are the cases when N = λn, and N = nan, where
λ > 1 and a > 0 are fixed constants, respectively. A useful observation that
we are going to utilize is that both Kolmogorov widths are homogenous.
Namely, if K ⊂ X and t ∈ R, we have

(2.1) dn(tK, N)X = |t|dn(K, N)X and dn(tK)X = |t|dn(K)X ,
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where tK := {tf : f ∈ K}.
In going further, we introduce first the minimal ǫ-covering number Nǫ(K)

of a compact set K ⊂ X. A collection {g1, . . . , gm} ⊂ X of elements of X is
called an ǫ-covering of K if

K ⊂
m⋃

j=1

B(gj , ǫ), where B(gj , ǫ) := {f ∈ X : ‖f − gj‖X ≤ ǫ}.

An ǫ-covering of K whose cardinality is minimal is called minimal ǫ-covering
of K. We denote by Nǫ(K) the cardinality of the minimal ǫ-covering of K.

Minimal inner ǫ-covering number Ñǫ(K) of a compact set K ⊂ X is defined
exactly as Nǫ(K) but we additionally require that the centers {g1, . . . , gm}
of the covering are elements from K.

Entropy numbers en(K)X , n ≥ 0, of the compact set K ⊂ X are defined as
the infimum of all ǫ > 0 for which 2n balls with centers from X and radius
ǫ cover K. If we put the additional restriction that the centers of these balls
are from K, then we define the so called inner entropy numbers ẽn(K)X .
Formally, we write

en(K)X = inf{ǫ > 0 : K ⊂
2n⋃

j=1

B(gj , ǫ), gj ∈ X, j = 1, . . . , 2n},

ẽn(K)X = inf{ǫ > 0 : K ⊂
2n⋃

j=1

B(hj , ǫ), hj ∈ K, j = 1, . . . , 2n}.

A collection {f1, . . . , fℓ} ⊂ K of elements from K is called an ǫ-packing of K
if

min
i 6=j

‖fi − fj‖X > ǫ.

An ǫ-packing of K whose size is maximal is called maximal ǫ-packing of K.
We denote by P̃ǫ(K) the cardinality of the maximal ǫ-packing of K. We have
the following inequalities for every ǫ > 0 and every compact set K
(2.2) P̃ǫ(K) ≥ Ñǫ(K) ≥ P̃2ǫ(K),

and

(2.3) en(K)X ≤ ẽn(K)X ≤ 2en(K)X .

Finally, we introduce the Lipschitz widths dγn(K)X , γ ≥ 0, n ≥ 1, of the
compact set K ⊂ X, see [9]. This width is a modification of the manifold
n-width δn(K)X (the latter being asymptotically equivalent to the classical
Alexandroff width, see [3] or [15, Chapter 4]), which is defined as

δn(K)X = infM,asupf∈K‖f −M(a(f))‖X ,
where the infimum is taken over all continuous mappings a : K → R

n,
M : R

n → X. In the case of Lipschitz width, we impose the stronger
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Lipschitz condition on the approximation mapping rather than the continu-
ity condition that is used in the definition of the manifold width. Creat-
ing different widths by imposing stronger conditions on the approximation
mapping was used before. For example, in the case of Kolmogorov widths,
imposing linearity of the approximation mapping led to the definition of
linear n-widths, and further taking approximations generated by orthogonal
projections onto n dimensional linear spaces led to the definition of ortho
(Fourier) n-widths, see [14], §2.1.

We denote by (Rn, ‖.‖Yn), n ≥ 1, the n-dimensional Banach space with
a fixed norm ‖ · ‖Yn . For γ ≥ 0, we first define the fixed Lipschitz width
dγ(K, Yn)X ,

dγ(K, Yn)X := inf
Φn

sup
f∈K

inf
y∈BYn

‖f − Φn(y)‖X ,

where the infimum is taken over all Lipschitz mappings

Φn : (BYn , ‖ · ‖Yn) → X, BYn := {y ∈ R
n : ‖y‖Yn ≤ 1},

that satisfy the Lipschitz condition

sup
y,y′∈BYn

‖Φn(y)− Φn(y
′)‖X

‖y − y′‖Yn

≤ γ,

with constant γ. We then define the Lipschitz width

dγn(K)X := inf
k≤n

inf
‖·‖Yk

dγ(K, Yk)X ,

where the infimum is taken over all norms ‖ · ‖Yk
in R

k and all k ≤ n. We
observe the following analog to (2.1)

(2.4) |t|dγ|t|n (tK)X = dγn(K)X , where tK := {tf : f ∈ K}.

3. Comparison between nonlinear Kolmogorov widths and

Lipschitz widths

In this section, we derive direct inequalities between the nonlinear Kol-
mogorov widths and the Lipschitz widths. We then use known relations
between entropy numbers and Lipschitz widths to derive improvements of
the (generalized) Carl’s inequalities.

We first note the following comparison between the linear Kolmogorov
widths and the Lipschitz widths, proven in [9], see Corollary 5.2.

Theorem 3.1. For every n ≥ 1 and every compact set K ⊂ X we have

dγn(K)X ≤ dn(K)X , for every γ ≥2 sup
f∈K

‖f‖X .

We next proceed with estimates between the nonlinear Kolmogorov width
and the Lipschitz widths. Clearly, it follows from the definition that

dn(K, N)X ≥ dnN (K)X ≥ dγnN (K)X , γ = 2 sup
f∈K

‖f‖,



ON THE ENTROPY NUMBERS AND THE KOLMOGOROV WIDTHS 5

where we have used in the last inequality the above theorem. Better es-
timates in the case of K being a subset of a Hilbert space H or a general
Banach space X are described in the following lemmas.

Lemma 3.2. For every n ≥ 1, N > 1, and every compact K, subset of a
Hilbert space H such that supf∈K ‖f‖H = 1, we have

(3.1) d
(N+1)
n+1 (K)H ≤ dn(K, N)H , and d3n+⌈log2 N⌉(K)H ≤ dn(K, N)H .

Proof: Let us fix n,N ≥ 1, and consider the n-dimensional linear spaces
X1, . . . , XN , Xi ⊂ H, i = 1, . . . , N . We define a norm ‖ · ‖Yn+1 on R

n+1,

‖(x, xn+1)‖Yn+1 := max
{
‖x‖ℓ2(Rn), |xn+1|

}
, x := (x1, . . . , xn),

whose unit ball is

BYn+1 := {(x, xn+1) : ‖x‖ℓ2(Rn) ≤ 1 and |xn+1| ≤ 1}.
Clearly

BYn+1 = Bℓ2(Rn) × [−1, 1], where Bℓ2(Rn) := {x ∈ R
n : ‖x‖ℓ2(Rn) ≤ 1}.

We want to construct a Lipschitz mapping from (BYn+1 , ‖ · ‖Yn+1) to H
whose image approximates well K. We divide the interval [−1, 1] into N
subintervals Ij , j = 0, . . . , N − 1,

Ij := [aj , aj+1], aj := 2j/N − 1,

with centers cj and consider the univariate continuous piecewise linear func-
tions ψj , ψj : ([−1, 1], | · |) → [0, 1], j = 0, . . . , N − 1, whose break points are
{a0, . . . , aj , cj , aj+1, . . . , aN−1}, and

ψj(cj) = 1, ψj(ak) = 0, k = 0, . . . , N − 1.

Let (BXj , ‖·‖H) be the unit ball of the spaceXj ⊂ H. We fix an orthonormal

basis {ϕj
1, . . . , ϕ

j
n} inXj and consider the isometry map ψ̄j from Bℓ2(Rn) onto

BXj ,

ψ̄j : (Bℓ2(Rn), ‖ · ‖ℓ2(Rn)) → (BXj , ‖ · ‖H),

defined as

(3.2) ψ̄j(x) = ψ̄j(x1, . . . , xn) :=
n∑

i=1

xiϕ
j
i .

We use these mappings to construct Φn+1 : (BYn+1 , ‖ · ‖Yn+1) → H as

Φn+1(x, xn+1) :=

N−1∑

j=0

ψj(xn+1) · ψ̄j(x).

Let us fix (x, xn+1), (x
′, x′n+1) ∈ BYn+1 and denote by

A := ‖Φn+1(x, xn+1)− Φn+1(x
′, x′n+1)‖H .

We want to derive an upper bound for A. Note that ψj(xn+1) 6= 0 if and
only if xn+1 ∈ Ij .We consider the following two cases:
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• if xn+1, x
′
n+1 ∈ Ij for some j = 0, . . . , N − 1, then ψj(xn+1) 6= 0,

ψj(x
′
n+1) 6= 0, ψk(xn+1) = ψk(x

′
n+1) = 0 for all k 6= j, and therefore

A = ‖ψj(xn+1)ψ̄j(x)− ψj(x
′
n+1)ψ̄j(x

′)‖H
≤ |ψj(xn+1)|‖ψ̄j(x)− ψ̄j(x

′)‖H
+ |ψj(xn+1)− ψj(x

′
n+1)|‖ψ̄j(x

′)‖H
≤ ‖x− x′‖ℓ2(Rn) +N |xn+1 − x′n+1|
≤ (N + 1)‖(x, xn+1)− (x′, x′n+1)‖Yn+1 .

• if xn+1 ∈ Ij , x
′
n+1 ∈ Ik for some j, k = 0, . . . , N −1, k 6= j, we obtain

that

A = ‖ψj(xn+1)ψ̄j(x)− ψk(x
′
n+1)ψ̄k(x

′)‖H .
We can assume without loss of generality that

xn+1 ≤ aj+1 ≤ ak ≤ x′n+1.

Since ψj(aj+1) = ψk(ak) = 0, we have

A ≤ ‖ψj(xn+1)ψ̄j(x)− ψj(aj+1)ψ̄j(x)‖H
+ ‖ψk(ak)ψ̄k(x)− ψk(x

′
n+1)ψ̄k(x

′)‖H
≤ |ψj(xn+1)− ψj(aj+1)|‖ψ̄j(x)‖H
+ ‖ψk(ak)ψ̄k(x)− ψk(x

′
n+1)ψ̄k(x

′)‖H
≤ N |aj+1 − xn+1|+ ‖x− x′‖ℓ2(Rn) +N |x′n+1 − ak|
≤ N |x′n+1 − xn+1|+ ‖x− x′‖ℓ2(Rn)

≤ (N + 1)‖(x, xn+1)− (x′, x′n+1)‖Yn+1 ,

where we have used arguments similar to the first case.

In both cases we have that

‖Φn+1(x, xn+1)− Φn+1(x
′, x′n+1)‖H ≤ (N + 1)‖(x, xn+1)− (x′, x′n+1)‖Yn+1 ,

and therefore Φn+1 is an (N + 1)-Lipschitz mapping.
Since supf∈K ‖f‖H = 1, the approximant fj to f from Xj will belong to

BXj since fj is the orthogonal projection of f onto Xj . Thus, it follows from

the definition of ψ̄j that there is xj ∈ Bℓ2(Rn), such that ψ̄j(x
j) = fj , and

therefore

Φn+1(x
j , cj) = fj , and ‖f − fj‖H = dist(f,Xj)H ,

which gives

d
(N+1)
n+1 (K)H ≤ dn(K, N)H .

To show the second part of (3.1), we determine ℓ ∈ N such that

2ℓ−1 < N ≤ 2ℓ,

and define a norm ‖ · ‖Yn+ℓ
on R

n+ℓ by

‖(x, y)‖Yn+ℓ
:= max

{
‖x‖ℓ2(Rn), ‖y‖ℓ∞(Rℓ)

}
,
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where

x := (x1, . . . , xn), y := (y1, . . . , yℓ).

The unit ball with respect to this norm is

BYn+ℓ
:= {(x, y) ∈ R

n+ℓ : ‖x‖ℓ2(Rn) ≤ 1 and ‖y‖ℓ∞(Rℓ) ≤ 1}.

Like before, we have BYn+ℓ
= Bℓ2(Rn) × [−1, 1]ℓ. Next, we consider the

disjoint cubes Qj , j = 1, . . . , 2ℓ, of side length 1 such that

[−1, 1]ℓ = ∪2ℓ

j=1Qj .

We denote by cj := (cj1, . . . , c
j
ℓ) ∈ R

ℓ the center of Qj , j = 1, . . . , 2ℓ, and

define the functions φj : ([−1, 1]ℓ, ‖ · ‖ℓ∞(Rℓ)) → [0, 1] as

φj(y) := 2

(
1

2
− ‖cj − y‖ℓ∞(Rℓ)

)

+

, j = 1, . . . , 2ℓ,

and Ψn+ℓ : (BYn+ℓ
, ‖ · ‖Yn+ℓ

) → H as

Ψn+ℓ(x, y) :=
2ℓ∑

j=1

φj(y) · ψ̄j(x),

where ψ̄j are the mappings defined in (3.2).
Using the fact that for any two numbers a, b, we have |a+ − b+| ≤ |a− b|,

we obtain that

|φj(y)− φj(y
′)| ≤ 2|‖cj − y‖ℓ∞(Rℓ) − ‖cj − y′‖ℓ∞(Rℓ)| ≤ 2‖y − y′‖ℓ∞(Rℓ).

Moreover, the supports of the φj ’s are disjoint, with Qj being the support of
φj , and |φj(y)| ≤ 1 for all j. Now, following similar arguments as the ones
for Φn+1, and denoting

B := ‖Ψn+ℓ(x, y)−Ψn+ℓ(x
′, y′)‖H ,

we derive that:

• if y, y′ ∈ Qj for some j = 1, . . . , 2ℓ,

B = ‖φj(y)ψ̄j(x)− φj(y
′)ψ̄j(x

′)‖H ≤ 3‖(x, y)− (x′, y′)‖Yn+ℓ
.

• if y ∈ Qj and y′ ∈ Qk, k 6= j, we consider the line segment

y + t(y′ − y), 0 ≤ t ≤ 1,

and fix

dj := y + t0(y
′ − y) ∈ ∂Qj ,

and

bk := y + t1(y
′ − y) ∈ ∂Qk.

Clearly t0 ≤ t1, φj(dj) = φk(bk) = 0,

‖y−dj‖ℓ∞(Rℓ)+‖y′−bk‖ℓ∞(Rℓ) = (t0+1− t1)‖y−y′‖ℓ∞(Rℓ) ≤ ‖y−y′‖ℓ∞(Rℓ),
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and similarly to the estimate for A, one obtains

B = ‖φj(y)ψ̄j(x)− φk(y
′)ψ̄k(x

′)‖H
≤ |φj(y)− φj(dj)|‖ψ̄j(x)‖H + ‖φk(bk)ψ̄k(x)− φk(y

′)ψ̄k(x
′)‖H

≤ 2‖dj − y‖ℓ∞(Rℓ) + ‖x− x′‖ℓ2(Rn) + 2‖y′ − bk‖ℓ∞(Rℓ)

≤ 2‖y − y′‖ℓ∞(Rℓ) + ‖x− x′‖ℓ2(Rn)

≤ 3‖(x, y)− (x′, y′)‖Yn+ℓ
.

Therefore, Ψn+ℓ is a 3-Lipschitz mapping. As before, since supf∈K ‖f‖H = 1,
we obtain

d3n+⌈log2 N⌉(K)H ≤ dn(K, N)H ,

where we have used the fact that ℓ = ⌈log2N⌉ and φj(cj) = 1, j = 0, . . . , N .
The proof is completed. �

The case of arbitrary Banach space X is based on the following lemma.

Lemma 3.3. Let Y be an n-dimensional subspace of a Banach space X
and (BY , ‖ · ‖Y ) be its unit ball. Let (BZ , ‖ · ‖H) be the unit ball in an n-
dimensional subspace Z of a Hilbert space H. Then, there exists a linear
map

ψ̄ : (BZ , ‖ · ‖H) → Y,

with Lipschitz constant (i.e. norm ) at most
√
n such that BY ⊂ ψ̄(BZ). In

addition, if X = Lp, then the Lipschitz constant of ψ̄ is at most n|1/2−1/p|.

Proof: It follows from the Fritz John theorem, see Chapter 3 in [10] or [1],
that there exists an invertible linear operator φ : (Rn, ‖ · ‖ℓ2(Rn)) → Y onto
Y such that

(3.3) φ(Bℓ2(Rn)) ⊂ BY ⊂ √
nφ(Bℓ2(Rn)).

Let us fix an orthonormal basis ϕ1, . . . , ϕn for Z and consider the coordinate
mapping κZ : Z → R

n defined as

κZ(g) = (x1, . . . , xn) = x, where g =
n∑

j=1

xjϕj .

This mapping is isometry when R
n is equipped with the norm

‖x‖ℓ2(Rn) =

√√√√
n∑

j=1

x2j = ‖g‖Z .

We now define the linear mapping

ψ̃ := φ ◦ κZ : (Z, ‖ · ‖H) → Y,

and notice that
ψ̃(BZ) ⊂ BY ⊂ √

nψ̃(BZ).

The first inclusion gives that ψ̃ has a norm (Lipschitz constant) ≤ 1, and

thus ψ̄ :=
√
nψ̃ has a Lipschitz constant

√
n. The second inclusion shows

that BY ⊂ ψ̄(BZ), and therefore ψ̄ is the desired mapping. It follows from
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[6, Cor. 5] that in the case of X = Lp, we can replace
√
n in (3.3) by

n|1/2−1/p|. �

Remark 3.4. Note that since ψ̄ is linear, we have that ψ̄(0) = 0, and for
every z ∈ BZ ,

(3.4) ‖ψ̄(z)‖Y = ‖ψ̄(z)− ψ̄(0)‖Y ≤ √
n‖z‖H ≤ √

n,

where we can replace
√
n by n|1/2−1/p| in the case when X = Lp.

Lemma 3.5. For every n ≥ 1, N > 1, and every compact set K subset of a
Banach space X with supf∈K ‖f‖X = 1, we have
(3.5)

d
2(N+1)

√
n

n+1 (K)X ≤ dn(K, N)X , and d
6
√
n

n+⌈log2 N⌉(K)X ≤ dn(K, N)X .

When X = Lp, we have

d
2(N+1)n|1/2−1/p|

n+1 (K)Lp ≤ dn(K, N)Lp , and d6n
|1/2−1/p|

n+⌈log2 N⌉(K)Lp ≤ dn(K, N)Lp .

Proof: We fix n, N > 1, and consider the n dimensional linear spaces
X1, . . . , XN , Xj ⊂ X, j = 1, . . . , N , with (BXj , ‖ · ‖X) being the unit ball of
Xj . For a fixed j = 1, . . . , N , we apply Lemma 3.3 with Y = Xj and Z =

ℓ2(R
n) to find an M -Lipschitz mapping Ψ̄j , where M =

√
n or n|1/p−1/2|,

depending on whether X is a general Banach space or Lp, such that

(3.6) Ψ̄j : (Bℓ2(Rn), ‖ · ‖ℓ2(Rn)) → Xj , and BXj ⊂ Ψ̄j(Bℓ2(Rn)).

We show (3.5) by proceeding as in the proof of Lemma 3.2 and defining
a mapping Θn+1 : (BYn+1 , ‖ · ‖Yn+1) → X as

Θn+1(x, xn+1) := 2
N−1∑

j=0

ψj(xn+1) · Ψ̄j(x),

where ψj and (BYn+1 , ‖ · ‖Yn+1) are as in Lemma 3.2. We fix (x, xn+1),
(x′, x′n+1), denote by

C := ‖Θn+1(x, xn+1)−Θn+1(x
′, x′n+1)‖X ,

and show in a similar way that

• if xn+1, x
′
n+1 ∈ Ij for some j = 0, . . . , N − 1,

C

2
= ‖ψj(xn+1)Ψ̄j(x)− ψj(x

′
n+1)Ψ̄j(x

′)‖X
≤ |ψj(xn+1)|‖Ψ̄j(x)− Ψ̄j(x

′)‖X
+ |ψj(xn+1)− ψj(x

′
n+1)|‖Ψ̄j(x

′)‖X
≤ M‖x− x′‖ℓ2(Rn) +NM |xn+1 − x′n+1|
≤ M(N + 1)‖(x, xn+1)− (x′, x′n+1)‖Yn+1 ,

where we have used (3.4).
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• if xn+1 ∈ Ij , x
′
n+1 ∈ Ik for some j, k = 0, . . . , N − 1, k 6= j,

C

2
≤ ‖ψj(xn+1)Ψ̄j(x)− ψj(aj+1)Ψ̄j(x)‖X
+ ‖ψk(ak)Ψ̄k(x)− ψk(x

′
n+1)Ψ̄k(x

′)‖X
≤ |ψj(xn+1)− ψj(aj+1)|‖Ψ̄j(x)‖X
+ ‖ψk(ak)Ψ̄k(x)− ψk(x

′
n+1)Ψ̄k(x

′)‖X
≤ NM |aj+1 − xn+1|+M‖x− x′‖ℓ2(Rn) +NM |x′n+1 − ak|
≤ NM |x′n+1 − xn+1|+M‖x− x′‖ℓ2(Rn)

≤ M(N + 1)‖(x, xn+1)− (x′, x′n+1)‖Yn+1 .

In conclusion,

‖Θn+1(x, xn+1)−Θn+1(x
′, x′n+1)‖H ≤ 2M(N + 1)‖(x, xn+1)−(x′, x′n+1)‖Yn+1 ,

and therefore Θn+1 is a 2M(N + 1)-Lipschitz mapping.
Note that if fj is the approximant to f from Xj , then

(3.7) ‖f − fj‖X ≤ ‖f‖X ⇒ ‖fj‖X ≤ ‖f − fj‖X + ‖f‖X ≤ 2‖f‖X ≤ 2,

where we have used that supf∈K ‖f‖X = 1. Thus fj ∈ 2BXj . It follows from

Lemma 3.3 that since BXj ⊂ Ψ̄j(Bℓ2(Rn)), there is xj ∈ Bℓ2(Rn), such that

Ψ̄j(x
j) = 1

2fj . Therefore

Θn+1(x
j , cj) = fj , and ‖f − fj‖X = dist(f,Xj)X ,

which gives

d
2M(N+1)
n+1 (K)X ≤ dn(K, N)X .

To show the second part of (3.5), we define Ξn+ℓ : (BYn+ℓ
, ‖ · ‖Yn+ℓ

) → X
as

Ξn+ℓ(x, y) := 2

2ℓ∑

j=1

φj(y) · Ψ̄j(x),

where φj and (BYn+ℓ
, ‖ · ‖Yn+ℓ

) are the same as in Lemma 3.2 and Ψ̄j is
defined in (3.6). For fixed (x, y), (x′, y′) ∈ BYn+ℓ

, we denote by

D := ‖Ξn+ℓ(x, y)− Ξn+ℓ(x
′, y′)‖X

and consider the following cases

• if y, y′ ∈ Qj for some j = 1, . . . , 2ℓ, we have

D

2
≤ 3M‖(x, y)− (x′, y′)‖Yn+ℓ

.



ON THE ENTROPY NUMBERS AND THE KOLMOGOROV WIDTHS 11

• if y ∈ Qj and y′ ∈ Qk, k 6= j, similarly to the estimate for C, we
obtain

D

2
= ‖φj(y)Ψ̄j(x)− φk(y

′)Ψ̄k(x
′)‖X

≤ |φj(y)− φj(dj)|‖Ψ̄j(x)‖X + ‖φk(bk)ψ̄k(x)− φk(y
′)Ψ̄k(x

′)‖X
≤ 2M‖dj − y‖ℓ∞(Rℓ) +M‖x− x′‖ℓ2(Rn) + 2M‖y′ − bk‖ℓ∞(Rℓ)

≤ 2M‖y − y′‖ℓ∞(Rℓ) +M‖x− x′‖ℓ2(Rn)

≤ 3M‖(x, y)− (x′, y′)‖Yn+ℓ
.

The latter estimate implies that Ξn+ℓ is a 6M -Lipschitz mapping, and since
supf∈K ‖f‖X = 1, we obtain

d6Mn+⌈log2 N⌉(K)X ≤ dn(K, N)X .

The proof is completed. �

Remark 3.6. Note that Lemma 3.5 with X = L2 can be used instead of
Lemma 3.2. However, we have decided to present both lemmas since better
Lipschitz constants are obtained when working directly with a Hilbert space
H.

Remark 3.7. It follows from (2.1) and (2.4) that lemmas similar to Lemma
3.2 and Lemma 3.5 can be stated in the case when supf∈K ‖f‖H 6= 1, or
supf∈K ‖f‖X 6= 1, respectively.

4. Main results

In this section, we provide estimates from above and below that connect
the behavior of the linear and nonlinear Kolmogorov widths of K with its
entropy numbers. In what follows we assume that supf∈K ‖f‖H = 1 in the
case of Hilbert space, or supf∈K ‖f‖X = 1 in the case of a general Banach
space. Similar results hold if this supremum is not 1.

Our approach of deriving estimates from below utilizes some known results
for Lipschitz widths stated below, see Theorem 4.7 in [9].

Theorem 4.1. Let K ⊂ X be a compact subset of a Banach space X,
n ∈ N , and dγn(K)X be the Lipschitz width for K with Lipschitz constant
γ ≥ 2rad(K). Then the following holds:

(1) If for α > 0, β ∈ R and a constant C > 0, we have

en(K)X ≥ C
[log2 n]

β

nα
, n = 1, 2, . . . , then dγn(K)X ≥ C ′ [log2 n]

β

nα[log2 n]
α
,

for n = 1, 2, . . ., where C ′ > 0 is a fixed constant.
(2) If for α > 0 and C > 0, we have

en(K)X ≥ C
1

[log2 n]
α
, n = 1, 2, . . . , then dγn(K)X ≥ C ′

[log2 n]
α
,

for n = 1, 2, . . ., where C ′ > 0 is a fixed constant.
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(3) If for 0 < α < 1 and C, c > 0, we have

en(K)X ≥ C2−cnα
, n = 1, 2, . . . , then dγn(K)X ≥ C ′2−c′nα/(1−α)

,

for n = 1, 2, . . ., where C ′, c′ > 0, are fixed constants.

4.1. Estimates from below for the linear Kolmogorov width. The
above theorem, combined with Theorem 3.1, gives the following relations
between linear Kolmogorov widths and entropy numbers.

Theorem 4.2. Let K ⊂ X be a compact subset of a Banach space X, n ∈ N,
and dn(K)X be the n-th linear Kolmogorov width for K. Then the following
holds:

(1) If for α > 0, β ∈ R, C > 0, we have

en(K)X ≥ C
[log2 n]

β

nα
, n = 1, 2, . . . , then dn(K)X ≥ C ′ [log2 n]

β

nα[log2 n]
α
,

for n = 1, 2, . . ., where C ′ > 0 is a fixed constant.
(2) If for α > 0, C > 0, we have

en(K)X≥ C

[log2 n]
α
, n = 1, 2, . . . , then dn(K)X ≥ C ′ 1

[log2 n]
α
,

for n = 1, 2, . . ., where C ′ > 0 is a fixed constant.
(3) If for 0 < α < 1, C, c > 0 we have

en(K)X ≥ C2−cnα
, n = 1, 2, . . . , then dn(K)X ≥ C ′2−c′nα/(1−α)

,

for n = 1, 2, . . ., where C ′, c′ > 0 are fixed constants.

Proof: The statement follows from Theorem 3.1, Theorem 4.1 and the
inequality supf∈K ‖f‖X ≥ rad(K). �

4.2. Estimates from below for the nonlinear Kolmogorov width,

the Hilbert space case. Using Lemma 3.2 and Theorem 4.1, we obtain
similar estimates for dn−1(K, N)H .

Theorem 4.3. Let K ⊂ H be a compact subset of a Hilbert space H and
dn(K, N)H , n ∈ N, N > 1, be the nonlinear Kolmogorov width for K. Then
the following holds:

• If for α > 0, β ∈ R, and C > 0 the entropy numbers satisfy

en(K)H ≥ C [log2 n]
β

nα , n = 1, 2, . . ., then there is a constant C ′′ > 0
such that for every N > 1we have

dn−1(K, N)H ≥ C ′′ [log2(n+ ⌈log2N⌉)]β−α

[n+ ⌈log2N⌉]α , n = 1, 2, . . . .(4.1)

• If for α > 0 and C > 0, the entropy numbers satisfy the inequality
en(K)H ≥ C

[log2 n]
α , n = 1, 2, . . ., then there is a constant C ′′ > 0

such that for every N > 1 we have

(4.2) dn−1(K, N)H ≥ C ′′ 1

[log2(n+ ⌈log2N⌉)]α , n = 1, 2, . . . .
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• If for 0 < α < 1 and C, c > 0, the entropy numbers satisfy the
inequality en(K)H ≥ C2−cnα

, n = 1, 2, . . ., then there are constants
C ′′, c′′ > 0 such that for every N > 1

dn−1(K, N)H ≥ C ′′2−c′′(n+⌈log2 N⌉)α/(1−α)
, n = 1, 2, . . . .(4.3)

Proof: To show (4.1), we apply Lemma 3.2, Theorem 4.1 with a value
γ = max{2rad(K), 3}, and use the monotonicity of the Lipschitz width as a
function of γ to derive that

dn−1(K, N)H ≥ d3n+⌈log2 N⌉(K)H

≥ dγn+⌈log2 N⌉(K)H ≥ C
[log2(n+ ⌈log2N⌉)]β−α

[n+ ⌈log2N⌉]α .

We omit the proof of the rest of the theorem since it is similar to the case
already discussed. �

Note that the above theorem holds for any value of N . In the cases when
N = λn, with λ > 1, or N = nan, with a > 0, we obtain two corollaries.

Corollary 4.4. Let K ⊂ H be a compact subset of a Hilbert space H. Then
the following holds:

• If en(K)H ≥ C [log2 n]
β

nα , n = 1, 2, . . ., then

dn−1(K, λn)H ≥ C ′′ [log2 n]
β−α

nα
, n = 2, 3, . . . .

• If en(K)H ≥ C 1
[log2 n]

α , n = 1, 2, . . ., then

dn−1(K, λn)H ≥ C ′′ 1

[log2 n]
α
, n = 2, 3, . . . .

• If en(K)H ≥ C2−cnα
, n = 1, 2, . . ., then

dn−1(K, λn)H ≥ C ′′2−c′′nα/(1−α)
, n = 2, 3, . . . .

Corollary 4.5. Let K ⊂ H be a compact subset of a Hilbert space H. Then
the following holds:

• If en(K)H ≥ C [log2 n]
β

nα , n = 1, 2, . . . then

dn−1(K, nan)H ≥ C ′′ [log2 n]
β−2α

nα
, n = 2, 3, . . . .

• If en(K)H ≥ C 1
[log2 n]

α , n = 1, 2, . . ., then

dn−1(K, nan)H ≥ C ′′ 1

[log2 n]
α
, n = 2, 3, . . . .

• If en(K)H ≥ C2−cnα
, n = 1, 2, . . ., then

dn−1(K, nan)H ≥ C ′′2−c′′[n log2 n]
α/(1−α)

, n = 2, 3, . . . .
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Proof: We outline the proof of only the first statement. It follows from
(4.1) with N = nan that

dn−1(K, nan)H ≥ C ′′ [log2(n+ an log2 n)]
β−α

[n+ an log2 n]
α

≥ C1
[log2(n+ an log2 n)]

β−α

[n log2 n]
α

≥ C2
[log2 n]

β−α

[n log2 n]
α
,

where we have used that for n big enough

log2 n ≤ log2(n+ an log2 n) ≤ 2 log2 n.

�

4.2.1. Examples. Here, we provide an example which shows that some of
the estimates in Corollary 4.4 are sharp. We consider the Hilbert space
ℓ2 := {x = (x1, x2, . . .) :

∑∞
j=1 |xj |2 < ∞} with a standard basis {ej)∞j=1

and the strictly decreasing sequence σ = {σj}∞j=1 of positive numbers σj
which converge to 0 with σ1 = 1. We then define the compact set

Kσ := {σjej}∞j=1 ∪ {0} ⊂ ℓ2

and prove the following lemma.

Lemma 4.6. Every set Kσ ⊂ ℓ2 has inner entropy numbers

ẽn(Kσ)ℓ2 =
√
σ22n + σ22n+1, n = 1, 2, . . . ,

and nonlinear Kolmogorov width

dn(Kσ, N)ℓ2 ≤ σnN+1, N > 1, n = 1, 2, . . . .

Proof: Since

‖σjej − σj′ej′‖ℓ2 =
√
σ2j + σ2j′ ≤

√
σ2j + σ2j+1, for all j′ ≥ j + 1,

and

‖σjej − 0‖ℓ2 = σj <
√
σ2j + σ2j+1,

we have that the ball with center σjej and radius rj :=
√
σ2j + σ2j+1 contains

0 and all points σj′ej′ with j
′ > j, but none of the points σj′ej′ with j

′ < j.
Thus, if we look for 2n balls with centers in Kσ, covering Kσ, and with
smallest radius, these are the balls B(σjej , r2n), j = 1, 2, . . . , 2n, with centers
σjej and radius r2n . The j-th ball does not contain the first (j − 1) points
σj′ej′ , 1 ≤ j′ ≤ j−1, from Kσ, but contains the rest of the points {σiei}∞i=j∪
{0}. Therefore, we have that

ẽn(Kσ)ℓ2 = r2n .

To prove the second statement, we define the n-dimensional spaces

Xs := span{ej}sn(s−1)n+1, s = 1, 2, . . . , N.
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Clearly 0, σjej ∈
⋃N

s=1Xs for j = 1, . . . , nN , and for j > nN we have

dist(σjej ,

N⋃

s=1

Xs)ℓ2 = σj .

Thus, dn(Kσ, N)ℓ2 ≤ σnN+1, and the proof is completed. �

For our particular example we fix α > 0, select the sequence {σj}∞j=1 to
be

(4.4) σj =
1

[log2 log2(j + 3)]α
, j = 1, 2, . . . ,

and show in the following lemma that the estimate in Corollary 4.4 cannot
be improved.

Lemma 4.7. The set K := Kσ defined by the sequence (4.4) has the following
properties:

en(K)ℓ2 ≍ (log2 n)
−α, and dn−1(K, λn)ℓ2 ≍ (log2 n)

−α, n = 2, 3, . . . .

Proof: It follows from (2.3) and Lemma 4.6 that

en(K)ℓ2 ≍ σ2n ≍ (log2 n)
−α,

and that

dn−1(K, λn)ℓ2 ≤ σ(n−1)λn+1 =
1

[log2 log2((n− 1)λn + 1)]α

≤ C

(log2 log2 λ
n)α

=
C

(log2 n+ log2 log2 λ)
α

≤ C ′

(log2 n)
α
.

The estimate from below follows from Corollary 4.4. �

4.3. Estimates from below for the nonlinear Kolmogorov width,

the Banach space case. To prove an estimate from below in the Banach
space case, we use the following statement from [9], see Theorem 7.3 in [9].

Theorem 4.8. Let K ⊂ X be a compact subset of a Banach space X.
Consider the Lipschitz width dγnn (K)X with γn = cnδλn, δ ∈ R, λ > 1, and
c > 0. If for some constants c1 > 0, α > 0 we have en(K)X > c1(log2 n)

−α,
n = 1, 2, . . . , then there exists a constant C > 0 such that

dγnn (K)X ≥ C(log2 n)
−α, n = 1, 2, . . . .

We now use Lemma 3.5 and the above statement to prove the following
theorem.

Theorem 4.9. Let K ⊂ X be a compact subset of a Banach space X and
dn(K, N)X , n ∈ N, N > 1, be the nonlinear Kolmogorov width for K. If
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there is α > 0 and C > 0 such that the entropy numbers en(K)X ≥ C 1
[log2 n]

α ,

n = 1, 2, . . . , then there is an absolute constant C ′′ > 0 such that

dn−1(K, λn)X ≥ C ′′ 1

[log2 n]
α
, n = 2, . . . .

Proof: We apply Lemma 3.5, Theorem 4.8 with γ = 2(λn + 1)
√
n and use

the monotonicity of the Lipschitz width as a function of γ to derive that

dn−1(K, λn)X ≥ d2(λ
n+1)

√
n

n (K)X ≥ dc
√
nλn

n (K)X ≥ C ′ 1

[log2 n]
α
.

�

4.4. Estimates from above for the entropy numbers. The next propo-
sition provides us with a tool to derive estimates for the entropy numbers of
K if we have a knowledge about the behavior of the nonlinear Kolmogorov
widths dn(K, N)X .

Proposition 4.10. Let K ⊂ X with rad(K) < 1 be a compact subset of
a Banach space X and dn(K, N)X , N > 1, n ∈ N, be the nonlinear Kol-
mogorov width for K. If for some 1 > ǫ > 0 we have dn(K, N)X < ǫ, then

there exists an absolute constant c > 0 such that P̃3ǫ(K) ≤ N(c/ǫ)n and

e⌈log2 µ⌉(K)X ≤ 3cN1/nµ−1/n, with µ = P̃3ǫ(K).

Proof: We omit the proof since it easily follows form (2.2) and the in-
equality

Ñǫ(BXn) ≤ (c/ǫ)n

from [8, Chp. 15 Prop.1.3], where c > 0 is an absolute constant and BXn is
the unit ball of an n-dimensional Banash space Xn. �

We use Proposition 4.10 to obtain estimates from above for the entropy
numbers em(K)X of K. A similar estimate but for a different range of m
and some specific values of N has been presented in [12], see also [14], §7.4.
More precisely, it was shown in [12], see Theorem 2.1, that if for a compact
set K ⊂ X, there is r > 0, λ > 1, and n ∈ N such that

dm−1(K, (λn/m)m)X ≤ m−r, m ≤ n,

then for m ≤ n

ǫm(K)X ≤ C(r, λ)

(
log2(2n/m)

m

)r

.

Lemma 4.11. Let K ⊂ X be a compact subset of a Banach space X with
rad(K) < 1. If for α > 0, β ∈ R, λ > 1, and c0 > 0 we have that

dn(K, λn)X ≤ c0
[log2 n]

β

nα
,

for some n > n0(c0, α, β, λ), then

em(K)X < C
[log2m]α+β

mα
, with m = 2αn log2 n,
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where C is a fixed constant depending only on λ, α, β, c0.

Proof: It follows from Proposition 4.10 with ǫ = c0
[log2 n]

β

nα that

log2 µ ≤ n[log2(λc) + α log2 n− log2 c0 − β log2(log2 n)] ≤ 2αn log2 n,

for n > n0 where n0 depends only c0, λ, α and β. For such n’s we have

e2αn log2 n(K)X ≤ 3c0[log2 n]
β

nα
.

Setting m = 2αn log2 n gives

em(K)X ≤ Cm−α[log2 n]
β+α.

Since for n sufficiently large, 2−1 log2 n < log2m < 3 log2 n, the proof is
completed. �

Remark 4.12. Similar statement as Lemma 4.11 holds if

dn(K, nan)X ≤ c0
[log2 n]

β

nα
,

where a > 0 is a positive constant. Note that in this case the corresponding
estimate for the entropy numbers (and in some cases even a better estimate)
can be obtained as a direct corollary of Lemma 2.2 from [11] (or Lemma 3.26
from [13]).

5. Applications

In this section, we describe how some of the above results can translate to
estimates about m-term approximation. We follow the framework outlined
in Theorem 4.1 from [11].

We assume that we have a system D = {gj}∞j=1 ⊂ X and de la Vallee-

Poussin linear operators Vk associated with the sequences nk, {(Vk, nk)}∞k=1,
satisfying the conditions:

(1) There is a constant A2 > 1 such that

Vk(gj) =





gj , j = 1, . . . , nk,

0, j > A2nk,

αk,jgj , otherwise, where αk,j ∈ R.

(2) The norms of Vk as operators from X to X are uniformly bounded,
i.e. there is a constant A3 > 0 such that ‖Vk‖X→X ≤ A3, k =
1, 2, . . ..

We denote by Snk
(f) the best approximation to f ∈ K by elements from

span{g1, . . . , gnk
},

Enk
(f,D)X := inf

c1,...,cnk

‖f −
nk∑

j=1

cjgj‖X = ‖f − Snk
(f)‖X ,
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and by

σm(f,D′)X := inf
{cj},Λ: |Λ|=m

‖f −
∑

j∈Λ∩D′

cjgj‖X

the best m-term approximation of f by a linear combination of m elements
from D′, where D′ could be a subset of D or D itself. We also define

Enk
(K,D)X := sup

f∈K
Enk

(f,D)X , σm(K,D′)X := sup
f∈K

σm(f,D′)X .

Then the following lemma holds.

Lemma 5.1. If the Banach space X admits de la Vallee-Poussin linear
operators Vk that satisfy (1)-(2), with constants A2 > 1, A3 > 0, then we
have for 1 < m < A2nk,

(5.1) dm

(
K,

(
A2bnk
m

)m)

X

≤ (1 + 2A3)max{Enk
(K,D)X , σm(K,D)X},

where b > 1 is an absolute constant.

Proof: Clearly, we have the inequality

‖f − Vk(f)‖X ≤ ‖f − Snk
(f)‖X + ‖Snk

(f)− Vk(f)‖X
= Enk

(f,D)X + ‖Vk(Snk
(f)− f)‖X ≤ (1 +A3)Enk

(f,D)X .(5.2)

If we denote by DA2nk
:= {g1, . . . , gA2nk

}, then it follows from the properties
of Vk that for any index set Λ with |Λ| = m and any coefficients {cj}mj=1,

σm(Vk(f),DA2nk
)X ≤ ‖Vk(f)− Vk(

∑

j∈Λ
cjgj)‖X ≤ A3‖f −

∑

j∈Λ
cjgj‖X ,

and therefore

(5.3) σm(Vk(f),DA2nk
)X ≤ A3σm(f,D)X .

Since

σm(f,DA2nk
)X ≤ ‖f − Vk(f)‖X + σm(Vk(f),DA2nk

)X ,

it follows from (5.2) and (5.3) that

σm(f,DA2nk
)X ≤ (1 +A3)Enk

(f,D)X +A3σm(f,D)X

≤ (1 + 2A3)max{Enk
(K,D)X , σm(K,D)X}.

Taking a supremum over f ∈ K in the latter inequality gives

(5.4) σm(K,DA2nk
)X ≤ (1 + 2A3)max{Enk

(K,D)X , σm(K,D)X}.
Note that the total number of m-dimensional subspaces, 1 < m < A2nk, of
the linear space span{g1, . . . , gA2nk

} is
(
A2nk
m

)
. Using the Stirling formula,

one can show that there is an absolute constant b > 1 such that
(
A2nk
m

)
≤

(
A2bnk
m

)m

.
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Then the definition of nonlinear Kolmogorov width and its monotonicity
with respect to N gives

dm

(
K,

(
A2bnk
m

)m)

X

≤ dm

(
K,

(
A2nk
m

))

X

≤ σm(K,DA2nk
)X .

The latter inequality combined with (5.4) leads to

dm

(
K,

(
A2bnk
m

)m)

X

≤ (1 + 2A3)max{Enk
(K,D)X , σm(K,D)X},

where 1 < m < A2nk, and the proof is completed. �.
We next state a theorem that follows from Lemma 5.1 and our inequalities

for nonlinear Kolmogorov widths in Hilbert spaces. Note that our theorem
does not require the additional assumptions on the error En(K,D)H that
are needed in Theorem 4.1 from [11] and describes the behavior of the errors
in cases not covered by this theorem.

Theorem 5.2. If the Hilbert space H admits de la Vallee-Poussin linear
operators Vk that satisfy (1)-(2), then the following holds:

• If enk
(K)H ≥ C [log2 nk]

β

nα
k

, k = 1, 2, . . ., then there is an absolute

constant C ′′ > 0 such that

max{Enk
(K,D)H , σm(K,D)H} ≥ C ′′ [log2m(1 + log2(A2nk/m))]β−α

mα[1 + log2(A2bnk/m)]α
,

for 1 < m < nk, k = 1, 2, 3, . . ..
• If enk

(K)H ≥ C 1
[log2 nk]α

, k = 1, 2, . . ., then there is an absolute

constant C ′′ > 0 such that

max{Enk
(K,D)H , σm(K,D)H} ≥ C ′′ 1

[log2m(1 + log2(A2bnk/m))]α
,

for 1 < m < nk, k = 1, 2, 3, . . ..
• If enk

(K)H ≥ C2−cnα
k , k = 1, 2, . . ., then there are absolute con-

stants C ′′ > 0 and c′′ > 0 such that

max{Enk
(K,D)H , σm(K,D)H} ≥ C ′′2−c′′[m(1+log2(A2bnk/m))]α/(1−α)

,

for 1 < m < nk, k = 1, 2, 3, . . ..

Proof: We use Theorem 4.3 in the case N =
(
A2bnk

m

)m
, Lemma 5.1 and

the fact that

dm

(
K,

(
A2bnk
m

)m)

X

≥ dnk−1

(
K,

(
A2bnk
m

)m)

X

, 1 < m < nk.

Note that we have utilized the fact that the constants in Theorem 4.3 do
not depend on N . �

We can derive several corollaries from the above theorem, one of which we
state below. If we take m = nk/2 in Theorem 5.2, we obtain the following
statement.
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Corollary 5.3. If the Hilbert space H admits de la Vallee-Poussin linear
operators Vk that satisfy (1)-(2), then the following holds:

• If enk
(K)H ≥ C [log2 nk]

β

nα
k

, k = 1, 2, . . ., then there is an absolute

constant C ′′ > 0 such that

max{Enk
(K,D)H , σnk/2(K,D)H} ≥ C ′′ [log2 nk]

β−α

nαk
, k = 1, 2, . . . .

• If enk
(K)H ≥ C 1

[log2 nk]α
, k = 1, 2, . . ., then there is an absolute

constant C ′′ > 0 such that

max{Enk
(K,D)H , σnk/2(K,D)H} ≥ C ′′

[log2 nk]
α
, k = 1, 2, . . . .

• If enk
(K)H ≥ C2−cnα

k , k = 1, 2, . . ., then there are absolute con-
stants C ′′ > 0, c′′ > 0 such that

max{Enk
(K,D)H , σnk/2(K,D)H} ≥ C ′′2−c′′n

α/(1−α)
k , k = 1, 2, . . . .

Note that since A2 > 1, we can take m = nk in Lemma 5.1, use the fact
that

Enk
(K,D)H ≥ σnk

(K,D)H ,

and obtain from this lemma that if the Banach space X admits de la Vallee-
Poussin linear operators satisfying (1)-(2), then

dnk
(K, (A2b)

nk)H ≤ (1 + 2A3)Enk
(K,D)H .

We can now use Corollary 4.4 and the monotonicity of the nonlinear Kol-
mogorov width with respect to N to conclude that

dnk

(
K, (A2b)

nk+1
)
H

≤ dnk
(K, (A2b)

nk)H ,

and derive the following statement.

Corollary 5.4. If the Hilbert space H admits de la Vallee-Poussin linear
operators Vk that satisfy (1)-(2), then the following holds:

• If enk+1(K)H ≥ C [log2 nk]
β

nα
k

, k = 1, 2, . . ., then there is an absolute

constant C ′′ > 0 such that

Enk
(K,D)H ≥ C ′′ [log2 nk]

β−α

nαk
, k = 1, 2, . . . .

• If enk+1(K)H ≥ C 1
[log2 nk]α

, k = 1, 2, . . ., then there is an absolute

constant C ′′ > 0 such that

Enk
(K,D)H ≥ C ′′

[log2 nk]
α
, k = 1, 2, . . . .

• If enk+1(K)H ≥ C2−cnα
k , k = 1, 2, . . ., then there are absolute con-

stants C ′′ > 0, c′′ > 0, such that

Enk
(K,D)H ≥ C ′′2−c′′n

α/(1−α)
k , k = 1, 2, . . . .
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