Insights into the Ultrafast Photodissociation Dynamics of

2	Isoprene Derived Criegee Intermediates					
3	Ernest Antwi, Niamh A. Packer, Jordyn M. Ratliff, Barbara Marchetti, and Tolga N. V. Karsili					
4	University of Louisiana at Lafayette, Lafayette, Louisiana, 70503, USA					
5						
6	*Corresponding author contact details: tolga.karsili@louisiana.edu					
7	*Author contributed as an undergraduate research assistant					
8	Abstract					
9	Isoprene is the most abundant non-methane volatile organic compound emitted into the					
10	troposphere by terrestrial vegetation. Reaction with ozone represents an important isoprene					
11	removal process from the troposphere and is a well-known source of Criegee intermediates (CIs)					
12	which are reactive carbonyl oxides. Three CIs, formaldehyde oxide (CH2OO), methyl vinyl					
13	ketone oxide (MVK-oxide), and methacrolein oxide (MACR-oxide) are formed during isopre					
14	ozonolysis. All three CIs contain strongly absorbing $\pi\pi^*$ states, electronic excitation to which					
15	leads to dissociation to form aldehyde/ketone + oxygen products. Here, we compare the excited					
16	state chemistry of CH2OO, MVK-oxide and MACR-oxide in order to ascertain how increasing					
17	molecular complexity affects their photodynamics.					
18	In CH ₂ OO, vertical excitation to the S ₂ state leads to prompt O-O bond fission with a unity					
19	quantum yield. Branching into both the O (^{1}D) + $H_{2}CO$ (S_{0}) and O (^{3}P) + $H_{2}CO$ (T_{1}) product					
20	channels is predicted, with 80% of trajectories dissociating to form the former product pair.					
21	Analogous vertical excitation of the lowest energy conformers of MVK-oxide and MACR-oxide					
22	also undergoes O-O bond fission to form O + MVK/MACR products – albeit with a non-unity					
23	quantum yield. In the latter case, ca. 10% and 20 % of trajectories remain as the parent MVK-					
24	oxide and MACR-oxide molecule, respectively. Additionally, at most only 5% of the					
25	dissociating trajectories form O (3P) + MVK/MACR (T1) products, with a greater fraction					
26	forming O (¹ D) + MVK/MACR (S ₀) products (cf. CH ₂ OO). This latter observation coupled with					
27	the greater fraction of undissociated trajectories aligns with the bathochromic shift in the					
28	electronic absorption of the MACR-oxide and MVK-oxide (cf. CH ₂ OO). We discuss the					

implications of the results in a broader context, including those that are relevant to the atmosphere.

Introduction

Isoprene is the second most abundant volatile organic compound emitted into the troposphere by terrestrial vegetation. It has an annual emission rate of ca. 500 Tg yr⁻¹ and is particularly localized over deeply forested areas, such as the Amazon rainforest.(1, 2)

Reaction with the hydroxyl radical or ozone, represents two important sinks for the removal of isoprene from the troposphere. Reaction with ozone makes up 10% of the removal of isoprene and proceeds via a cycloaddition reaction of ozone across one of the two double bonds of the isoprene molecule, forming two distinct primary ozonides as shown in Fig. 1.(1) The resulting primary ozonide undergoes unimolecular decay to form ketone/aldehyde + carbonyl oxide products; the latter molecule is known as the Criegee intermediate (henceforth CI).

Figure 1: Ozonolysis reaction of isoprene for forming the three distinct CIs – formaldehyde oxide (CH₂OO), methyl vinyl ketone oxide (MVK-oxide) and methacrolein oxide (MACR-oxide). These CIs (displayed in orange) will be the focus on this study.

47 48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

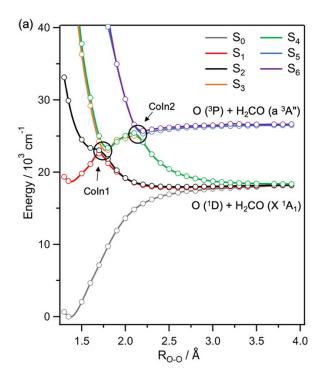
64

65

66

67

68


44

45

46

As Fig. 1 shows, isoprene ozonolysis proceeds via a [3+2]-cycloaddition of ozone across either one of two C=C double bonds of isoprene, forming two distinct primary ozonides. The nascent ozonides undergo unimolecular decay to form three distinct CIs – formaldehyde oxide (CH₂OO), methyl vinyl ketone oxide (MVK-oxide) and methacrolein oxide (MACR-oxide). The electronic absorption spectra of CH₂OO, MVK-oxide and MACR-oxide has attracted vast attention, from both an experimental (3-15) and computational (16-21) perspective. In all cases, the electronic absorption spectrum is dominated by a strongly absorbing ${}^1\pi\pi^*$ state, formed via an $\pi^* \leftarrow \pi$ electron promotion. In CH2OO, the onset of its electronic absorption is at ca. 420 nm, peaking at ca. 340 nm, and extending to ca. 280 nm.(4, 6, 22) Within this wavelength range, the tropospherically relevant solar actinic flux is minimal, with an average value of ca. 2×10^{14} photons cm⁻² s⁻¹ nm⁻¹.(4) MVK-oxide and MACR-oxide represent an increase in molecular complexity (cf. CH₂OO) and have extended π -conjugation. As such, both molecules show a bathochromic shift in the electronic absorption profile relative to CH₂OO which overlaps with the higher intensity edge of the tropospherically relevant solar actinic flux. (12, 15, 23) Additionally, the absolute absorption cross sections of both molecules are measured to be ca. 3-fold larger than CH₂OO.(15, 24) The associated bathochromic shift, coupled with the 3-fold increase in absorption cross section is expected to result in a higher solar photolysis rate for MVK-oxide and MACRoxide (cf. CH₂OO) – potentially implicating solar photolysis as a tropospheric removal that is competitive with ground state unimolecular decay and bimolecular chemistry. While the latter two processes have been experimentally measured and theoretically characterized, (11, 25–29) the excited state dynamics of MVK-oxide and MACR-oxide has received comparatively little

attention. It should also be noted that the lowest energy conformers of MVK-oxide and MACR-oxide are long-lived under high-humidity conditions,(11, 27) implying that they may survive in the atmosphere and undergo photoexcitation.

Figure 2: PE Profiles of the lowest seven electronic states of CH₂OO along the O-O stretch coordinate. This figure is reproduced from reference (30).

Following electronic excitation, velocity map imaging (VMI) experiments have shown that CH₂OO, MVK-oxide and MACR-oxide undergo O-O bond fission, forming oxygen atom + carbonyl compound products.(22, 23, 30, 31) Upon excitation at $\lambda_{phot} \leq 350$ nm, CH₂OO undergoes photodissociation to form two spin-allowed product channels corresponding to H₂CO (S₀) + O (¹D) and H₂CO (T₁) + O (³P) products. Dissociation to form H₂CO + O products can be understood by considering the potential energy (PE) profiles of CH₂OO along the O-O stretch (R_{OO}) coordinate (reproduced in Fig. 2) – wherein the bright S₂ ($\pi\pi^*$) state is dissociative with respect to R_{OO} and adiabatically correlates with the O (¹D) + H₂CO (S₀) products. Our recent MS-

CASPT2 surface hopping study on CH₂OO following vertical excitation to the S₂ ($^{1}\pi\pi^{*}$) state showed unity quantum yield for O-O bond fission – forming $H_2CO(S_0) + O(^1D)$ and $H_2CO(T_1)$ + O (³P) products with an 80:20 branching in favor of the former products.(32) As Fig. 2 shows, formation of the higher energy $H_2CO(T_1) + O(^3P)$ product asymptote requires energies that are higher than that needed to populate the S₂ minimum energy geometry and involves internal conversion at two conical intersections (labeled Coln1 and CoIn2 in Fig. 2) located at $R_{OO} \sim 1.8 \text{ Å}$ and $R_{\rm OO} \sim 2.2$ Å. These CoIns influence branching into the asymptotes corresponding to H₂CO $(S_0) + O(^1D)$ and $H_2CO(T_1) + O(^3P)$ products when nuclear motions traverse these regions of degeneracy. In addition, branching into the two asymptote channels may be influenced by CO stretch and HCO scissoring nuclear motions of the H2CO fragment that lead to degeneracies at asymptotic O-O bond distances.(32) The topologies of the PE profiles along R_{OO} in MVK-oxide and MACR-oxide mirror those of CH₂OO (shown Fig. 2), with the exception that the S₃ state in MVK-oxide and MACR-oxide is bound at the Franck-Condon region. (23, 31) This latter observation is due to a second $^{1}\pi\pi^{*}$ state in MVK-oxide and MACR-oxide localized on the C=C moiety. This second ${}^1\pi\pi^*$ state has been experimentally and theoretically characterized for MVK-oxide and has its onsets of absorption that is well outside of the tropospherically relevant solar irradiance. (12, 23, 31) Following electronic excitation to the first ${}^{1}\pi\pi^{*}$ state of MVK-oxide and MACR-oxide, VMI experiments have measured O atom + methyl vinyl ketone (MVK) and O atom + methacrolein (MACR) products, respectively, indicating that both molecules also undergo O-O bond fission following electronic excitation to the bright S₂ state.(23, 31)

84

85

86

87

88

89

90

91

92

93

94

95

96

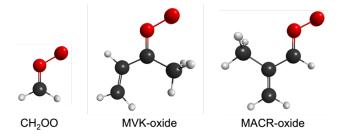
97

98

99

100

101


102

103

In this study we have undertaken a comparative computational study aimed at comparing the dynamics of CH₂OO, MVK-oxide and MACR-oxide following excitation to the bright S₂ state. In the latter two molecules, we focus only on the lowest energy conformer.

Results and Discussion

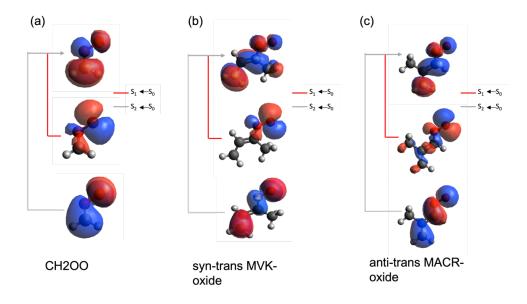

The ground state minimum energy geometries of CH₂OO, *syn-trans*-MVK-oxide and *anti-trans*-MACR-oxide are displayed in Fig. 3. *Syn-trans* and *anti-trans* represent the lowest energy conformer of MVK-oxide and MACR-oxide, respectively. Although the structures (and conformer energies) of these molecules are now well-known,(12, 25) their description and depictions are important for the ensuing description of the dynamics.

Figure 3: Ground state minimum energy structures of CH₂OO (left), as well as the lowest energy – *syn-trans* and *anti-trans* – conformers of MVK-oxide and MACR-oxide, respectively.

In all cases, the ground state minimum energy geometry is with the C and O atoms in a common plane. MVK-oxide and MACR-oxide contain four conformers, distinguishable by rotation about the C=O and C=C bonds. Here we focus on the lowest energy *syn-trans* and *anti-trans* conformers of MVK-oxide and MACR-oxide, respectively. We note that the ozonolysis process will prepare the nascent MVK-oxide and MACR-oxide CIs with high internal energy, which may result in a non-equilibrium distribution of conformers. That said, experimental and computational studies have shown that their electronic absorption spectra are dominated by the

syn-MVK-oxide and *anti*-MACR-oxide conformers.(11, 33, 34) Moreover, we do not expect the photochemistry of the higher energy conformers to differ substantially from that of the lowest energy conformer.

Figure 4: Orbitals and orbital promotions associated with the preparation of the S₁ and S₂ states of (a) CH₂OO, (b) *syn-trans*-MVK-oxide, and (c) *anti-trans*-MACR-oxide.

Table 1: Vertical excitation energies of the various CIs studied in the present study, calculated at the CASPT2/aug-cc-pVTZ level of theory. Minimum-to-minimum (D_e) and anharmonic zeropoint corrected (D_0) bond dissociation energies of the two product channels are calculated at the CCSD(T)-F12b/cc-pVTZ-F12 level of theory.

Criegee intermediate	Vertical Excitation Energy (¹ ππ*-S ₀) / eV (nm)	O(1D) + R'R"CO (S ₀) / eV		O(³ P) + R'I / e	` ,
		$\mathbf{D_e}$	$\mathbf{D_0}$	$\mathbf{D_e}$	$\mathbf{D_0}$
CH ₂ OO	3.91 (317)	2.51	2.39	3.58	3.37
MVK-oxide	3.50 (355)	2.74	2.65	3.74	3.56
MACR-oxide	3.29 (376)	2.55	2.45	3.59	3.39

Fig. 4 presents the orbitals and orbital promotions associated with forming the S_1 and S_2 states of CH₂OO, MVK-oxide and MACR-oxide. Following vertical excitation, the S_1 and S_2 states in CH₂OO, MVK-oxide, and MACR-oxide are of $n\pi^*$ and $\pi\pi^*$ character, respectively. The former

 1 n π^{*} state is formed via an $\pi^{*} \leftarrow$ n electron promotion, wherein the participating orbitals show poor spatial overlap. This manifests in a weak absorption cross section for excitation to the $^{1}n\pi^{*}$ state. In contrast, the S₂ ($^1\pi\pi^*$) state is formed via a $\pi^* \leftarrow \pi$ electron promotion, wherein the participating orbitals show appreciable spatial overlap. This manifests in the characteristically high absorption cross section for excitation to the ${}^1\pi\pi^*$ state. As Table 1 shows, The S₂ \leftarrow S₀ vertical excitation energies of MVK-oxide and MACR-oxide are bathochromic with respect to the equivalent electronic transition in CH₂OO. This is a manifestation of the extended π conjugations in MVK-oxide and MACR-oxide (cf. CH₂OO). The $S_2 \leftarrow S_0$ vertical excitation energies of MACR-oxide is bathochromic with respect to MVK-oxide, which is in excellent agreement with the experimentally measured electronic absorption spectrum of MVK-oxide and MACR-oxide. Upon electronic excitation to the $^{1}\pi\pi^{*}$ state, experiments conclude that CH₂OO, MVK-oxide and MACR-oxide undergo O-O bond fission. At selected wavelengths, CH₂OO forms both O (1 D) + H₂CO (S₀) and O (3 P) + H₂CO (T₁) products. As Fig. 2 demonstrates, the former set of products arise via dissociation on the S₀, S₁, S₂, S₃, S₄ and S₅ states, while the latter products arise via dissociation on the S₆ and S₇ states – which requires internal conversion at both CoIn1 and CoIn2. The correlation of these various states one or the two asymptotes may be understood by considering the electronic configurations of S₀-S₆ states at long R₀₀, which is given in Fig. 5. As Fig. 5 shows, the electronic configurations of the S_0 - S_4 states at long R_{OO} are distinguishable by five distinct (but degenerate) arrangements of the 2p electrons that give rise to the ¹D electronic term of the departing O atom – indicating that the S₀-S₄ states converge to the same O (1 D) + H₂CO/MVK/MACR (S₀) limit. Similarly, the S_5 and S_6 states at long R_{OO} are distinguishable by two distinct arrangements of the 2p electrons that return the ³P electronic term of the terminal O atom. In addition, both S₅ and S₆

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

states show the $H_2CO/MVK/MACR$ counter-fragment in its T_1 electronic configuration. As such, the S_5 and S_6 states converge to the same $O\left(^3P\right) + H_2CO/MVK/MACR\left(T_1\right)$ limit.

In the case of CH₂OO, recent trajectory surface hopping studies have shown that the O (1 D) + H₂CO (S₀) products are favored over the higher energy O (3 P) + H₂CO (T₁) products. As Table 1 shows, the zero-point energy corrected (D₀) and non-zero-point energy corrected (D_e) bond dissociation energies for forming the O (1 D) + H₂CO/MVK/MACR (S₀) product channel is energetically accessible following vertical excitation to the S₂ state of CH₂OO/MVK-oxide/MACR-oxide. In CH₂OO, the D_e and D₀ values for forming the O (3 P) + H₂CO (T₁) products are also below the S₂ state vertical excitation energies, indicating that the higher energy asymptote is also accessible following vertical excitation to the S₂ state. In contrast, the D₀ and D_e values associated with forming the O (3 P) + MVK (T₁) and O (3 P) + MACR (T₁) products are

above the predicted S₂ vertical excitation energy of MVK-oxide and MACR-oxide, respectively.

Figure 5: The electronic configurations associated with the seven electronic states of (a) CH₂OO, (b) MVK-oxide and (c) MACR-oxide, at long O-O distances corresponding to the two asymptotic product channels.

In order to characterize and compare the excited state dynamics of CH₂OO, MVK-oxide and MACR-oxide, we have undertaken MS-CASPT2 trajectory surface hopping (TSH) studies by vertically projecting the initially prepared trajectories to the S₂ state (see methodology section). Fig. 6 presents the normalized populations in the S₀, S₁, S₂, S₃, S₄, S₅ and S₆ states as a function of time for (a) CH₂OO, (b) syn-trans-MVK-oxide, and (c) anti-trans-MACR-oxide. The data associated with CH₂OO are reproduced from reference (30). As Fig. 6(a) shows, the pre-excited S₂ state of CH₂OO undergoes depopulation after ca. 10 fs – wherein ca. 80 % of the final population at 50 fs partitions across the S₀-S₅ states, while the remaining ca. 20% is distributed amongst the S₅ and S₆ state. As Fig. 7(a) shows, the fate of these trajectories following vertical excitation to the S₂ state is O-O bond elongation, thus leading to photodissociation to form O + H₂CO products. This latter observation, coupled with the state populations at 50 fs, implies an electronic state branching ratio of 80:20 in the O (1 D) + H₂CO (S₀) and O (3 P) + H₂CO (T₁) products, respectively. Figs. 6(b) and 6(c) present the variations in the S₀-S₆ population as a function of time for the more complex CIs, MVK-oxide and MACR-oxide. As these figures show, the S2 state is depopulated slower than CH₂OO with a substantially smaller fraction of the total population internally converting to the S_5 and S_6 states. This latter observation implies that the asymptotic limit for forming the O (3 P) + H₂CO (T₁) products is less important in the cases of MVK-oxide and MACR-oxide (cf. CH₂OO). To check if a greater population undergoes internal conversion to the S₅ and S₆ states at later time, we continued our TSH simulations for MVK-oxide and MACR-oxide for an additional 50 fs, giving a total propagation time of 100 fs (see Fig S1 of the supporting information). As Fig. S1 shows, the population in the S_5 and S_6 states remain constant beyond 50 fs.

181

182

183

184

185

186

187

188

189

190

191

192

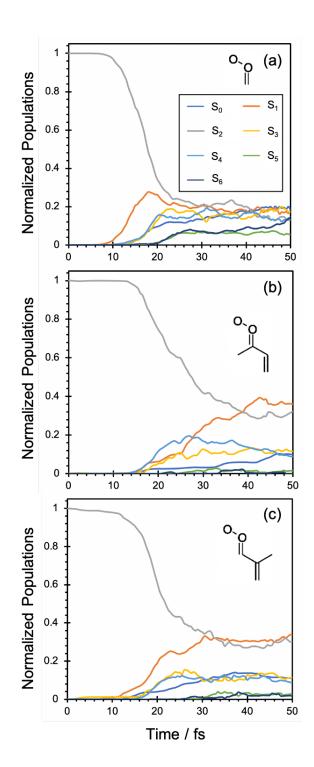
193

194

195

196

197


198

199

200

201

202

Figure 6: Populations as a function of time for (a) CH₂OO, and the lowest energy conformer of (b) MVK-oxide and (c) MACR-oxide.

Figure 7: Fraction of trajectories that undergo O-O bond fission versus remain as parent molecules following excitation to the S_2 state.

Inspection of trajectories reveals that all S₂ vertically excited CH₂OO trajectories undergo O-O bond fission to form O + CH₂O products with unity quantum yield. As fig. 7 (a) and (b) shows, the S2 vertically excited MVK-oxide and MACR-oxide molecules undergo O-O bond fission with non-unity quantum yields of 89% and 75%, respectively. The remaining quantum yield is partitioned in undissociated parent molecules in either the S₂ or the S₁ state (following internal conversion). This implies that fewer MVK-oxide and MACR-oxide trajectories contain the required energy to traverse regions beyond the S₂ Franck-Condon region and undergo dissociation to form O + MVK/MACR products (cf. CH₂OO). This latter statement is supported by the vertical excitation energies and bond dissociation energies listed in Table 1, which shows that the S₂ vertical excitation energies of MVK-oxide and MACR-oxide are bathochromic with respect to that of CH₂OO. This observation is due to the extended π -conjugation in MVK-oxide and MACR-oxide. In addition, while the bond dissociation energies of CH2OO and MACRoxide are similar, those of MVK-oxide are ca. 0.15 eV higher than CH2OO and MACR-oxide. This can be understood by recognizing that the lowest energy syn-trans conformer of MVKoxide is weakly hydrogen-bonded – between the methyl centered H-atom and the terminal oxygen atom. This weak hydrogen bonding affords additional stabilization for MVK-oxide and thus a higher bond dissociation energy for form O + MVK products. The stronger bond dissociation energy for MVK-oxide is however offset by the larger bathochromic shift in the S₂ absorption in MACR-oxide. As Table 1 shows, the energy difference between the S₂ VEE and the D_e (for forming $O(^1D) + MVK/MACR$ (S₀) products) for MACR-oxide is less exothermic than that for MVK-oxide – which might support the observation that fewer trajectories dissociate in the case of MACR-oxide.

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

Conclusions

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

In this article we have undertaken a MS-CASPT2 surface hopping study of the excited state dynamics of the isoprene derived CIs: CH2OO, MVK-oxide and MACR-oxide, following vertical excitation to the S2 state. Vertical excitation of CH2OO leads to O-O bond fission with unity quantum yield, and an 80:20 branching into the $H_2CO(S_0) + O(^1D)$ and $H_2CO(T_1) + O(T_2)$ (³P) product channels. Dissociation to form the analogous two asymptotic products is also observed in the case of photoexcited MVK-oxide and MACR-oxide – albeit with a non-unity quantum yield and a greater preference for forming MVK/MACR (S₀) + O (¹D) products. The results highlight the variations in the photochemistry of a CI upon increasing molecular complexity, with the results of potential significance for larger CIs that are derived from carbene oxidation. Given the bathochromic shift in the electronic absorption, coupled with the increase absorption cross section, MVK-oxide and MACR-oxide are expected to have an enhanced photolysis rate compared to smaller CIs.(34) This may have implications on the tropospheric budget of O(¹D), which is dominantly formed from the photodissociation of O₃. While we expect unimolecular decay to play a significant role in limiting the atmospheric lifetimes of MVK-oxide and MACR-oxide, we also note that the lower energy conformers of both are substantially longer-lived than CH₂OO.(35, 36) Moreover, the fraction of S₂ excited MVK-oxide and MACRoxide that survives and remains as parent molecules may undergo internal conversion to the S₁ and S₀ states on longer timescales, as well as undergoing intersystem crossing to triplet states; the latter was deemed to be insignificant in our previous work on CH₂OO.(37) Moving forward, we plan to extend this body of work by comparing the photochemistry of the present isoprene derived CIs to those derived from α-pinene ozonolysis, as well as those derived from carbene precursors that are relevant to synthetic chemistry.

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

Computational Methodology

The ground state minimum energy geometry of syn-trans-MVK-oxide and anti-trans-MACRoxide was optimized at the B2PLYP-D3/cc-pVTZ level of theory.(38, 39) This level of theory has been previously shown to perform well for determining geometries and normal modes wavenumbers of CIs. (20, 25, 30, 31) Its use also allows for consistency when comparing the present simulations with prior work. (30, 40) Trajectory surface hopping (TSH) simulations were performed using the Newton-X computational package. (41, 42) Initial positions and momenta were sampled using a Wigner distribution; these were based on the B2PLYP-D3/cc-pVTZ ground state minimum energy geometry and its associated harmonic normal mode wavenumbers. In the TSH simulations, the nuclear coordinates were propagated by integrating Newton's equation using the velocity Verlet method, while the electronic coordinates were propagated by numerically solving the time-dependent Schrödinger equation using Butcher's fifth-order Runge-Kutta method in steps of 0.025 fs.(43) Trajectories were initiated in the S₂ state and the energies and gradients of the seven lowest singlet states were calculated "on-the-fly" using the SS-SR-CASPT2 method in coupled with the cc-pVDZ basis set.(44) SS-SR-CASPT2 enables the computation of energies and analytical gradients at MS-CASPT2 quality, at a reduced computational cost; it also performs well near electronic state degeneracies. The SS-SR-CASPT2 calculations were based on a state-averaged complete active space self-consistent field (CASSCF) method reference wavefunction and an active space comprising 10 electrons in 8 orbitals as depicted in Fig. S2-S4 of the supporting information. These were performed via the BAGEL interface to Newton-X.(45) The state hopping probabilities were evaluated by calculating the non-adiabatic coupling matrix elements from the SS-SR-CASPT2 computations.

280 89 and 93 trajectories were propagated in time with a step size of 0.5 fs for MVK-oxide and 281 MACR-oxide, respectively. 282 Additional calculation at the B2PLYP-D3/cc-pVTZ level of theory were carried out on the 283 H₂CO, MVK and MACR counter-fragments formed via O-O bond fission of their starting parent 284 molecule. Single-point energy calculates were performed on the resulting optimized structure of 285 the H₂CO, MVK and MACR products, as well as the starting CH₂OO, MVK-oxide, and MACRoxide, at the explicitly correlated CCSD(T)-F12b/cc-pVTZ-F12 level of theory. Vertical 286 excitation energies of the B2PLYP-D3/cc-pVTZ optimized CH2OO, MVK-oxide, and MACR-287 288 oxide molecules were calculated at the single-state CASPT2/aug-cc-pVTZ level of theory. The 289 same 10/8 active space as the trajectory simulations was used in these latter CASPT2 290 calculations. 291 The CCSD(T)-F12b and CASPT2 calculations were performed using Molpro, (46, 47) while the 292 Density Functional Theory computations were carried out using Gaussian 16.(48) 293 294 Acknowledgements 295 The work reported in this article is supported by the National Science Foundation, under grant 296 no. 2003422. Portions of this research were conducted with high performance computational 297 resources provided by the Louisiana Optical Network Infrastructure (http://www.loni.org). 298 299 Reference 300 1. Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J. F., Kuhn, U., Stefani, P. and Knorr, W. (2014) Global data set of biogenic VOC emissions 301 302 calculated by the MEGAN model over the last 30 years. Atmos. Chem. Phys. 14, 9317–9341.

- 303 https://doi.org/10.5194/acp-14-9317-2014.
- 2. Nguyen, T. B., Tyndall, G. S., Crounse, J. D., Teng, A. P., Bates, K. H., Schwantes, R. H.,
- Coggon, M. M., Zhang, L., Feiner, P., Milller, D. O., Skog, K. M., Rivera-Rios, J. C., Dorris, M.,
- Olson, K. F., Koss, A., Wild, R. J., Brown, S. S., Goldstein, A. H., de Gouw, J. A., Brune, W. H.,
- Keutsch, F. N., Seinfeld, J. H. and Wennberg, P. O. (2016) Atmospheric fates of Criegee
- intermediates in the ozonolysis of isoprene. *Phys. Chem. Chem. Phys.* **18**, 10241–10254.
- 309 https://doi.org/10.1039/C6CP00053C.
- 3. Chang, Y. P., Li, Y. L., Liu, M. L., Ou, T. C. and Lin, J. J. M. (2018) Absolute Infrared
- 311 Absorption Cross Section of the Simplest Criegee Intermediate Near 1285.7 cm-1. *J. Phys.*
- 312 *Chem. A* **122**, 8874–8881. https://doi.org/10.1021/acs.jpca.8b06759.
- 4. Ting, W. L., Chen, Y. H., Chao, W., Smith, M. C. and Lin, J. J. M. (2014) The UV absorption
- spectrum of the simplest Criegee intermediate CH 200. Phys. Chem. Chem. Phys. 16, 10438–
- 315 10443. https://doi.org/10.1039/c4cp00877d.
- 5. Sheps, L., Scully, A. M. and Au, K. (2014) UV absorption probing of the conformer-
- dependent reactivity of a Criegee intermediate CH3CHOO. Phys. Chem. Chem. Phys. 16,
- 318 26701–26706. https://doi.org/10.1039/C4CP04408H.
- 6. Sheps, L. (2013) Absolute Ultraviolet Absorption Spectrum of a Criegee Intermediate CH
- 320 2OO. J. Phys. Chem. Lett. 4, 4201–4205. https://doi.org/10.1021/jz402191w.
- 7. Caravan, R. L., Vansco, M. F., Au, K., Khan, A. A. H., Li, Y. L., Winiberg, F. A. F., Zuraski,
- 322 K., Lin, Y. H., Chao, W., Trongsiriwat, N., Walsh, P. J., Osborn, D. L., Percival, C. J., Lin, J.
- 323 M., Shallcross, D. E., Sheps, L., Klippenstein, S. J., Taatjes, C. A. and Lester, M. I. (2020) Direct
- kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate.
- 325 *Proc. Natl. Acad. Sci. U. S. A.* **117**, 9733–9740. https://doi.org/10.1073/pnas.1916711117.

- 8. Ting, A. W.-L. and Lin, J. J.-M. (2017) UV Spectrum of the Simplest Deuterated Criegee
- 327 Intermediate CD2OO. *J. Chinese Chem. Soc.* **64**, 360–368.
- 328 https://doi.org/10.1002/jccs.201700049.
- 9. Smith, M. C., Ting, W. L., Chang, C. H., Takahashi, K., Boering, K. A. and Lin, J. J. M.
- 330 (2014) UV absorption spectrum of the C2 Criegee intermediate CH3CHOO. J. Chem. Phys. 141,
- 331 074302. https://doi.org/10.1063/1.4892582.
- 10. Chang, Y.-P., Chang, C.-H., Takahashi, K. and Lin, J. J.-M. (2016) Absolute UV absorption
- cross sections of dimethyl substituted Criegee intermediate (CH3)2COO. Chem. Phys. Lett. 653,
- 334 155–160. https://doi.org/https://doi.org/10.1016/j.cplett.2016.04.082.
- 11. Lin, Y.-H., Yin, C., Takahashi, K. and Lin, J. J.-M. (2021) Surprisingly long lifetime of
- methacrolein oxide, an isoprene derived Criegee intermediate, under humid conditions. *Commun.*
- 337 *Chem.* **4**, 12. https://doi.org/10.1038/s42004-021-00451-z.
- 12. Vansco, M. F., Marchetti, B. and Lester, M. I. (2018) Electronic spectroscopy of methyl
- vinyl ketone oxide: A four-carbon unsaturated Criegee intermediate from isoprene ozonolysis. J.
- 340 *Chem. Phys.* **149**, 244309. https://doi.org/10.1063/1.5064716.
- 13. Mir, Z. S., Lewis, T. R., Onel, L., Blitz, M. A., Seakins, P. W. and Stone, D. (2020) CH2OO
- 342 Criegee intermediate UV absorption cross-sections and kinetics of CH2OO + CH2OO and
- 343 CH2OO + I as a function of pressure. Phys. Chem. Chem. Phys. 22, 9448–9459.
- 344 https://doi.org/10.1039/d0cp00988a.
- 14. Foreman, E. S. and Murray, C. (2015) Kinetics of IO Production in the CH2I + O2 Reaction
- 346 Studied by Cavity Ring-Down Spectroscopy. J. Phys. Chem. A 119, 8981–8990.
- 347 https://doi.org/10.1021/acs.jpca.5b05058.
- 15. Lin, Y.-H., Takahashi, K. and Lin, J. J.-M. (2022) Absolute photodissociation cross sections

- of thermalized methyl vinyl ketone oxide and methacrolein oxide. *Phys. Chem. Chem. Phys.*
- 350 https://doi.org/10.1039/D2CP00476C.
- 16. Sršeň, Hollas, D. and Slavíček, P. (2018) UV absorption of Criegee intermediates:
- Quantitative cross sections from high-level: Ab initio theory. Phys. Chem. Chem. Phys. 20,
- 353 6421–6430. https://doi.org/10.1039/c8cp00199e.
- 17. Dawes, R., Jiang, B. and Guo, H. (2015) UV Absorption Spectrum and Photodissociation
- Channels of the Simplest Criegee Intermediate (CH2OO). J. Am. Chem. Soc. 137, 50–53.
- 356 https://doi.org/10.1021/ja510736d.
- 18. Aplincourt, P., Henon, E., Bohr, F. and Ruiz-López, M. F. (2002) Theoretical study of
- 358 photochemical processes involving singlet excited states of formaldehyde carbonyl oxide in the
- atmosphere. Chem. Phys. **285**, 221–231. https://doi.org/10.1016/S0301-0104(02)00804-2.
- 360 19. Foreman, E. S., Kapnas, K. M., Jou, Y. T., Kalinowski, J., Feng, D., Gerber, R. B. and
- 361 Murray, C. (2015) High resolution absolute absorption cross sections of the B1A'-X1A'
- transition of the CH2OO biradical. *Phys. Chem. Chem. Phys.* 17, 32539–32546.
- 363 https://doi.org/10.1039/c5cp04977f.
- 20. McCoy, J. C., Marchetti, B., Thodika, M. and Karsili, T. N. V (2021) A Simple and Efficient
- 365 Method for Simulating the Electronic Absorption Spectra of Criegee Intermediates:
- 366 Benchmarking on CH2OO and CH3CHOO. J. Phys. Chem. A.
- 367 https://doi.org/10.1021/acs.jpca.1c01074.
- 368 21. McCoy, J. C., Leger, S. J., Frey, C. F., Vansco, M. D., Marchetti, B. and Karsili, T. N. V.
- 369 (2022) Modeling the Conformer-Dependent Electronic Absorption Spectra and Photolysis Rates
- of Methyl Vinyl Ketone Oxide and Methacrolein Oxide. J. Phys. Chem. A
- 371 10.1021/acs.jpca.1c08381. https://doi.org/10.1021/acs.jpca.1c08381.

- 372 22. Beames, J. M., Liu, F., Lu, L. and Lester, M. I. (2012) Ultraviolet Spectrum and
- Photochemistry of the Simplest Criegee Intermediate CH2OO. J. Am. Chem. Soc. 134, 20045–
- 374 20048. https://doi.org/10.1021/ja310603j.
- 375 23. Vansco, M. F., Marchetti, B., Trongsiriwat, N., Bhagde, T., Wang, G., Walsh, P. J.,
- 376 Klippenstein, S. J. and Lester, M. I. (2019) Synthesis, Electronic Spectroscopy, and
- 377 Photochemistry of Methacrolein Oxide: A Four-Carbon Unsaturated Criegee Intermediate from
- 378 Isoprene Ozonolysis. *J. Am. Chem. Soc.* **141**, 15058–15069.
- 379 https://doi.org/10.1021/jacs.9b05193.
- 24. Karsili, T. N. V, Marchetti, B., Lester, M. I. and Ashfold, M. N. R. (2022) Electronic
- 381 Absorption Spectroscopy and Photochemistry of Criegee Intermediates. *Photochem. Photobiol.*
- 382 **n/a**. https://doi.org/https://doi.org/10.1111/php.13665.
- 383 25. Barber, V. P., Pandit, S., Green, A. M., Trongsiriwat, N., Walsh, P. J., Klippenstein, S. J. and
- Lester, M. I. (2018) Four-Carbon Criegee Intermediate from Isoprene Ozonolysis: Methyl Vinyl
- 385 Ketone Oxide Synthesis, Infrared Spectrum, and OH Production. J. Am. Chem. Soc. 140, 10866—
- 386 10880. https://doi.org/10.1021/jacs.8b06010.
- 26. Hansen, A. S., Liu, Z., Chen, S., Schumer, M. G., Walsh, P. J. and Lester, M. I. (2020)
- 388 Unraveling Conformer-Specific Sources of Hydroxyl Radical Production from an Isoprene-
- Derived Criegee Intermediate by Deuteration. J. Phys. Chem. A 124, 4929–4938.
- 390 https://doi.org/10.1021/acs.jpca.0c02867.
- 391 27. Caravan, R. L., Vansco, M. F., Au, K., Khan, M. A. H., Li, Y.-L., Winiberg, F. A. F.,
- Zuraski, K., Lin, Y.-H., Chao, W., Trongsiriwat, N., Walsh, P. J., Osborn, D. L., Percival, C. J.,
- Lin, J. J.-M., Shallcross, D. E., Sheps, L., Klippenstein, S. J., Taatjes, C. A. and Lester, M. I.
- 394 (2020) Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee

- 395 intermediate. *Proc. Natl. Acad. Sci.* **117**, 9733 LP 9740.
- 396 https://doi.org/10.1073/pnas.1916711117.
- 397 28. Vansco, M. F., Caravan, R. L., Zuraski, K., Winiberg, F. A. F., Au, K., Trongsiriwat, N.,
- Walsh, P. J., Osborn, D. L., Percival, C. J., Khan, M. A. H., Shallcross, D. E., Taatjes, C. A. and
- 399 Lester, M. I. (2020) Experimental Evidence of Dioxole Unimolecular Decay Pathway for
- 400 Isoprene-Derived Criegee Intermediates. J. Phys. Chem. A 124, 3542–3554.
- 401 https://doi.org/10.1021/acs.jpca.0c02138.
- 402 29. Vansco, M. F., Zuraski, K., Winiberg, F. A. F., Au, K., Trongsiriwat, N., Walsh, P. J.,
- Osborn, D. L., Percival, C. J., Klippenstein, S. J., Taatjes, C. A., Lester, M. I. and Caravan, R. L.
- 404 (2021) Functionalized Hydroperoxide Formation from the Reaction of Methacrolein-Oxide, an
- 405 Isoprene-Derived Criegee Intermediate, with Formic Acid: Experiment and Theory. *Molecules*
- **26**. https://doi.org/10.3390/molecules26103058.
- 407 30. Esposito, V. J., Tianlin, L., Wang, G., Caracciolo, A., Vansco, M. F., Marchetti, B., Karsili,
- 408 T. N. V. and Lester, M. I. (2021) Photodissociation Dynamics of CH2OO on Multiple Potential
- 409 Energy Surfaces: Experiment and Theory. J. Phys. Chem. A.
- 410 https://doi.org/10.1021/acs.jpca.1c03643.
- 411 31. Wang, G., Liu, T., Caracciolo, A., Vansco, M. F., Trongsiriwat, N., Walsh, P. J., Marchetti,
- 412 B., Karsili, T. N. V and Lester, M. I. (2021) Photodissociation dynamics of methyl vinyl ketone
- oxide: A four-carbon unsaturated Criegee intermediate from isoprene ozonolysis. *J. Chem. Phys.*
- 414 **155**, 174305. https://doi.org/10.1063/5.0068664.
- 415 32. Antwi, E., Bush, R., Marchetti, B. and Karsili, T. (2022) A direct dynamics study of the
- exotic photochemistry of the simplest Criegee intermediate, CH2OO. Phys. Chem. Chem. Phys.
- **24**, 16724–16731. https://doi.org/10.1039/d2cp01860h.

- 418 33. Caravan, R. L., Vansco, M. F., Au, K., Khan, A. A. H., Li, Y.-L. L., Winiberg, F. A. F. F.,
- Zuraski, K., Lin, Y.-H. H., Chao, W., Trongsiriwat, N., Walsh, P. J., Osborn, D. L., Percival, C.
- 420 J., Lin, J. J.-M. M., Shallcross, D. E., Sheps, L., Klippenstein, S. J., Taatjes, C. A., Lester, M. I.,
- 421 Khan, M. A. H., Li, Y.-L. L., Winiberg, F. A. F. F., Zuraski, K., Lin, Y.-H. H., Chao, W.,
- 422 Trongsiriwat, N., Walsh, P. J., Osborn, D. L., Percival, C. J., Lin, J. J.-M. M., Shallcross, D. E.,
- Sheps, L., Klippenstein, S. J., Taatjes, C. A. and Lester, M. I. (2020) Direct kinetic
- measurements and theoretical predictions of an isoprene-derived Criegee intermediate. *Proc.*
- 425 *Natl. Acad. Sci.* **117**, 9733 LP 9740. https://doi.org/10.1073/pnas.1916711117.
- 426 34. Lin, Y. H., Takahashi, K. and Lin, J. J. M. (2022) Absolute photodissociation cross sections
- of thermalized methyl vinyl ketone oxide and methacrolein oxide. *Phys. Chem. Chem. Phys.* 24,
- 428 10439–10450. https://doi.org/10.1039/d2cp00476c.
- 429 35. Zhong, J., Kumar, M., Zhu, C. Q., Francisco, J. S. and Zeng, X. C. (2017) Surprising
- 430 Stability of Larger Criegee Intermediates on Aqueous Interfaces. Angew. Chemie Int. Ed. 56,
- 431 7740–7744. https://doi.org/10.1002/anie.201702722.
- 432 36. Lin, Y. H., Yin, C., Takahashi, K. and Lin, J. J. M. (2021) Surprisingly long lifetime of
- 433 methacrolein oxide, an isoprene derived Criegee intermediate, under humid conditions. *Commun*.
- 434 *Chem.* 4, 1–20. https://doi.org/10.1038/s42004-021-00451-z.
- 435 37. Esposito, V. J., Werba, O., Bush, S. A., Marchetti, B. and Karsili, T. N. V (2021) Insights
- into the Ultrafast Dynamics of CH2OO and CH3CHOO Following Excitation to the Bright $1\pi\pi^*$
- 437 State: The Role of Singlet and Triplet States. *Photochem. Photobiol.* **n/a**.
- 438 https://doi.org/https://doi.org/10.1111/php.13560.
- 439 38. Grimme, S. (2006) Semiempirical hybrid density functional with perturbative second-order
- 440 correlation. J. Chem. Phys. 124, 34108. https://doi.org/10.1063/1.2148954.

- 39. Dunning, T. H. (1989) Gaussian basis sets for use in correlated molecular calculations. I. The
- atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023.
- 443 https://doi.org/10.1063/1.456153.
- 40. Antwi, E., Bush, R., Marchetti, B. and Karsili, T. (2022) Climbing up Conical Intersections:
- A Direct Dynamics Study of the Exotic Photochemistry of Criegee Intermediates. *Phys. Chem.*
- 446 *Chem. Phys.* https://doi.org/10.1039/D2CP01860H.
- 41. Barbatti, M., Granucci, G., Persico, M., Ruckenbauer, M., Vazdar, M., Eckert-Maksić, M.
- and Lischka, H. (2007) The on-the-fly surface-hopping program system Newton-X: Application
- to ab initio simulation of the nonadiabatic photodynamics of benchmark systems. *J. Photochem.*
- 450 *Photobiol. A Chem.* **190**, 228–240.
- 451 https://doi.org/https://doi.org/10.1016/j.jphotochem.2006.12.008.
- 42. Barbatti, M., Ruckenbauer, M., Plasser, F., Pittner, J., Granucci, G., Persico, M. and Lischka,
- 453 H. (2013) Newton-X: a surface-hopping program for nonadiabatic molecular dynamics. *Wiley*
- 454 *Interdiscip. Rev. Comput. Mol. Sci.* **4**, 26–33. https://doi.org/doi:10.1002/wcms.1158.
- 43. Butcher, J. C. (1965) A Modified Multistep Method for the Numerical Integration of
- 456 Ordinary Differential Equations. J. ACM 12, 124–135. https://doi.org/10.1145/321250.321261.
- 44. Park, J. W. and Shiozaki, T. (2017) Analytical Derivative Coupling for Multistate CASPT2
- 458 Theory. *J. Chem. Theory Comput.* **13**. https://doi.org/10.1021/acs.jctc.7b00018.
- 45. Shiozaki, T. (2018) BAGEL: Brilliantly Advanced General Electronic-structure Library.
- 460 *WIREs Comput. Mol. Sci.* **8**, e1331. https://doi.org/10.1002/wcms.1331.
- 46. Werner, H.-J., Knowles, P. J., Knizia, G., Manby, F. R., Schütz, M., Celani, P., Györffy, W.,
- Kats, D., Korona, T., Lindh, R., Mitrushenkov, A., Rauhut, G., Shamasundar, K. R., Adler, T. B.,
- 463 Amos, R. D., Bennie, S., Bernhardsson, A., Berning, A., Cooper, D. L., Deegan, M. J. O.,

- Dobbyn, A. J., Eckert, F., Goll, E., Hampel, C., Hesselmann, A., Hetzer, G., Hrenar, T., Jansen,
- 465 G., Köppl, C., Lee, S. J. R., Liu, Y., Lloyd, A. W., Ma, Q., Mata, R. A., May, A. J., McNicholas,
- 466 S. J., Meyer, W., III, T. F. M., Mura, M. E., Nicklass, A., O'Neill, D. P., Palmieri, P., Peng, D.,
- 467 Pflüger, K., Pitzer, R., Reiher, M., Shiozaki, T., Stoll, H., Stone, A. J., Tarroni, R.,
- Thorsteinsson, T., Wang, M. and Welborn, M. (2018) MOLPRO, version 2018.1, a package of
- ab initio programs.
- 47. Werner, H.-J., Knowles, P. J., Knizia, G., Manby, F. R. and Schütz, M. (2012) Molpro: a
- 471 general-purpose quantum chemistry program package. WIREs Comput. Mol. Sci. 2, 242–253.
- 472 https://doi.org/10.1002/wcms.82.
- 48., M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman,
- G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J.
- 475 Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V, and D. J. F. (2016)
- 476 Gaussian 16, Revision C.01. Gaussian Inc. Wallingford CT.