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ABSTRACT

We apply the clustering algorithm HDBSCAN on the Gaia early third data release astrometry combined
with the Gaia second data release radial velocity measurements of almost 5.5 million stars to identify
the local stellar kinematic substructures in the solar neighborhood. Understanding these structures
helps build a more complete picture of the formation of the Milky Way, as well as an empirical
phase space distribution of dark matter that would inform detection experiments. The main goal of
this study is to provide a list of the most stable clusters, by taking into account the measurement
uncertainties and studying the stability of the clustering results. We apply the clustering algorithm in
two spaces, in velocity space in order to study recently accreted structures, and in action-angle space
to find phase-mixed structures. We find 1405 (497) stars in 23 (6) robust clusters in velocity space
(action-angle space) that are consistently not associated with noise. They are attributed to the known
structures: the Gaia Sausage-Enceladus, the Helmi Stream, and globular cluster NGC 3201 are found
in both spaces, while NGC 104 and the thick disk (Sequoia) are identified in velocity space (action-
angle space). We discuss the kinematic properties of these structures, and cross match them with
APOGEE DR17 and LAMOST DR6 to study whether many of the small clusters belong to a similar
larger cluster based on their chemical abundances. Although we do not identify any new structures, we
find that the HDBSCAN member selection of already known structures is unstable to input kinematics
of the stars when resampled within their uncertainties. We therefore present the most stable subset of
local kinematic structures, which are consistently identified by the clustering algorithm, and emphasize
the need to take into account error propagation during both the manual and automated identification
of stellar structures, both for existing ones as well as future discoveries.

Keywords: Galactic archaeology — Milky Way dynamics — Milky Way dark matter halo

1. INTRODUCTION

In the most popular cosmological structure formation
model, typical spiral galaxies, like our Milky Way, form
hierarchically through many mergers with less massive
galaxies (see e.g. White & Rees 1978; Frenk & White
2012; Wechsler & Tinker 2018; Behroozi et al. 2019).
Theories and simulations predict that most of the merg-
ing stellar populations are tidally disrupted during in-
fall, and form various structures in today’s Milky Way
stellar halo (Zolotov et al. 2009; Cooper et al. 2010).
These accreted stars appear in large all-sky surveys as
spatially coherent kinematic structures (“streams”), as
well as mere overdensities in orbital energy and angu-
lar momenta after phase mixing (“tidal debris”) (for
a review see e.g., Helmi (2020)). Studying these ac-
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creted stars allows us to estimate properties of their pro-
genitors (e.g., mass, age, infall time, and kinematics).
The stellar chemical signatures of such structures, such
as metallicity and α-element abundances (Freeman &
Bland-Hawthorn 2002; Frebel & Norris 2015; Maiolino &
Mannucci 2019; Sestito et al. 2019; Fattahi et al. 2020),
and kinematic properties (Johnston et al. 1996; John-
ston 1998; Helmi et al. 1999; Bullock & Johnston 2005;
Johnston et al. 2008) thus provide unique information
about the formation history of the Milky Way.

Understanding the merger history of the Milky Way
and the properties of the accreted and merged progen-
itors galaxies can help us learn about near-field cos-
mology and provide constraints on structure formation
and galaxy evolution in the late time universe (see e.g.,
Myeong et al. (2019); Mackereth et al. (2019); Belokurov
et al. (2020); Feuillet et al. (2022)). At the same time,
Herzog-Arbeitman et al. (2018a,b); Necib et al. (2019a)
found that the stellar component of the accreted sys-
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tems may be used as a tracer of the accompanying dark
matter (DM) accreted along with the system. The DM
distribution in the Milky Way, especially near the so-
lar neighborhood, is one of the key ingredients towards
uncovering the particle nature of DM. Direct detection
rates of DM particles rely on the proper modeling of
the local DM density and velocity distributions, which
translates discoveries as well as null results into a DM
mass and DM-nucleon scattering cross section (Good-
man & Witten 1985; Drukier et al. 1986; Jungman et al.
1996).

Using accreted stars to answer near-field cosmology
questions and as DM tracers relies on efficiently and
accurately identifying them in the local solar neighbor-
hood. Since our solar system resides in the thin disk
of the Milky Way, the local stellar population is domi-
nated by in-situ stars formed in the thin disk (Soubiran
et al. 2003). Thus, while earlier discoveries and studies
(see e.g., Ibata et al. (1994); Belokurov et al. (2006);
Schlaufman et al. (2009)) were carried out with chemi-
cal abundance measurements and small kinematic data
sets, identifying some of the more elusive accreted stel-
lar populations, such as Thamnos and the metal-weak
Atari disk, on top of this in-situ background relies on
obtaining 6D kinematic information for a large data set
of local stars. Large kinematics data sets are powerful in
identifying intact satellites that are in the early stage of
accretion, diffuse satellites that have phase-mixed into
the environment, as well as those that are in the process
of transitioning from the former to the latter via tidal
disruption. This can now be done with large photomet-
ric and astrometric surveys such as the Gaia mission
(Gaia Collaboration et al. 2016, 2018, 2021).

Many studies have already used these data to iden-
tify numerous substructures that merged into the Milky
Way in the past (Belokurov et al. 2018; Helmi et al.
2018; Myeong et al. 2018; Koppelman et al. 2019a; Necib
et al. 2019a; Helmi 2020). Among these local structures,
the Gaia-Enceladus/Sausage (GSE) is the most recent
major merger event experienced by the Milky Way (Be-
lokurov et al. 2018; Helmi et al. 2018). Additionally,
Koppelman et al. (2019a) discovered the Thamnos struc-
ture in the Gaia second data release (DR2) as part of
the local retrograde halo. Sequoia, a high energy ret-
rograde structure originally attributed to being part of
the GSE by Helmi et al. (2018), was found to be most
likely coming from a separate accretion event in Myeong
et al. (2019) with Gaia DR2 data. Sharing similar kine-
matic properties, Arjuna and I’itoi were discovered in
Naidu et al. (2020) as distinct accretion debris given
their metallicity differences after combining data from
the Gaia DR2 and the H3 survey(Gaia Collaboration
et al. 2018; Conroy et al. 2019). Wukong and Aleph, two
prograde structures, were found similarly by Naidu et al.
(2020): Aleph is a highly prograde structure with circu-
lar orbits and a significant vertical motion, as well as a
metal-rich and relatively alpha-poor chemistry. Wukong

is also a prograde structure lining the margin of the GSE
in the Etot vs. Lz plane, shown as two over-densities at
Ez ∼ −1.1 and −1.3 × 105 km2 s−2. Spatially coherent
streams such as S1, Icarus, and Nyx, to name a few, are
also identified (Myeong et al. 2018; Meingast et al. 2019;
Re Fiorentin et al. 2020). They are associated to either
past merger events or disk clusters.

Past discoveries of local over-densities such as the
Helmi stream (Helmi & White 1999) have also been fur-
ther studied with Gaia data (Koppelman et al. 2019b).
The long known “metal weak thick disk” (Norris et al.
1985; Morrison 1990; Chiba & Beers 2000) has recently
been postulated to be likely the result of a merger, rather
than part of the canonical thick disk. Mardini et al.
(2022) confirmed such origin with photometric metallic-
ities from the SkyMapper survey (Keller et al. 2007; Wolf
et al. 2018; Chiti et al. 2021) and kinematics from Gaia .
Using machine learning techniques trained on simula-
tions (Wetzel et al. 2016; Hopkins et al. 2018; Sanderson
et al. 2020), and labeling the Gaia DR2 data set, Ost-
diek et al. (2020) built an accreted star catalog (Ostdiek
et al. 2019) from which multiple structures were iden-
tified (Necib et al. 2020a), including Nyx (Necib et al.
2020b), a stream within the thick disk with a highly
eccentric orbit.

These studies use the fact that accreted substructures
emerge as overdensities in the 6D phase space. The key,
thus, is extracting such overdensities effectively and ro-
bustly from the data. Current studies mostly rely on two
main methods in identifying overdensities and selecting
their constituents: manual selection (Helmi et al. 2018;
Lee et al. 2019; Naidu et al. 2020; Carollo & Chiba 2021)
and clustering algorithms (Helmi et al. 2017; Necib et al.
2019a,b; Yang et al. 2019; Wu et al. 2022; Sofie Lövdal
et al. 2022), or some combination of both (Koppelman
et al. 2019a; Bird et al. 2021) (see Buder et al. (2022)
Table A.1 for a review of techniques).

For manual selection, overdensities in phase space are
identified based on physical intuition gained from past
discoveries (Naidu et al. 2020) or statistical comparisons
with some reference random data set (Helmi et al. 2018).
They are then characterized based on their phase space
properties. Potential background contamination is re-
moved by examining stellar population properties, such
as age and metallicity distributions. This method re-
lies on the fact that an overdensity is located in phase
space where the background contamination level is low,
either because the substructures themselves have pecu-
liar properties which set them apart from the majority of
the in-situ Milky Way stars, or because astronomers are
able to apply well-informed cuts on the data set to re-
move most of the background. For structures that reside
within or close to the Milky Way background, manual
selection becomes difficult and tricky.

For machine learning-focused methods, structures are
picked out directly from the data sample with minimum
preprocessing by various algorithms. The results are,
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in general, more consistent between works, for exam-
ple, especially when using the same algorithm. Natu-
rally, this is not frequently true for manual selections.
In most cases, however, the final results need to be
further examined, combined with additional less com-
plete information such as metallicity and chemical abun-
dances, to remove unphysical structures such as back-
ground noise and data artifacts. Brauer et al. (2022)
tested kinematic-based clustering algorithms on simula-
tions and showed that they generally lack efficiency and
accuracy in identifying structures resulting from now-
dissolved ultra faint dwarf galaxies.

Despite the difficulties mentioned above, both meth-
ods have yielded many new structures in the solar neigh-
borhood that have been extensively studied and val-
idated. Yet, it is still often the case that the stel-
lar membership of any of these structures has to be
confirmed with archive/follow-up spectroscopic observa-
tions if they were initially discovered based on kinematic
information only. Even with the best informed physical
expectation and/or the most sophisticated algorithms,
the kinematic selection alone is typically not enough to
robustly determine the constituent stars, even when the
overdensities/structures are principally well-established.
This is due not only to the background-dominated signal
search (i.e., the in-situ population) but also, and more
importantly, due to our inability to measure the stellar
kinematics infinitely precisely. Despite the recent ad-
vancement in astrometric survey precision, uncertainties
still play a large role that affects stellar membership as-
signments. For practical reasons, uncertainties are often
left out in kinematic structure studies, either because
the machine learning algorithm inherently does not sup-
port uncertainties or because the process becomes too
computationally intensive. This lack continues to ham-
per the robustness of identifying additional structures
to eventually identify all progenitors of the Milky Way.

In this paper, we aim to incorporate uncertainties for
the first time into an unsupervised machine learning al-
gorithm to search for Milky Way substructures in Gaia.
The goal is to select a robust sample of star members
present in clusters/overdensities purely based on kine-
matic inputs. We use the Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN)
(McInnes et al. 2017), an unsupervised learning algo-
rithm, to identify clusters in the 6D phase space with
data from the Gaia eDR3 data set (Gaia Collaboration
et al. 2021). We combine Monte Carlo resampling and
Jaccard coefficients to estimate the robustness of the
HDBSCAN clusters. Doing so currently leads us to identify
only the most robust clusters and their member stars.
We recover the GSE, Sequoia, the Helmi Stream, and
globular clusters NGC 3201 and NGC 104, but do not
Thamnos and Nyx due to an initial cut on the maxi-
mum orbital vertical distance Zmax, or Arjuna and I’itoi
which could be a subset of Sequoia in our analysis, or
Aleph and Wukong that we expect to be either unsta-

ble, or dominant further away from the disk than our
sample. Our results demonstrate the importance of in-
corporating uncertainties in machine learning, especially
unsupervised clustering, for astronomy studies, and how
this approach affects our interpretation of the clustering
results and the constituent stars within the clusters.

This paper is structured as follows: We discuss the
data sample used for this study in Section 2. The clus-
tering algorithm is discussed in Section 3. We present
the clustering results in Section 4 and discuss their in-
terpretations in Section 5.

2. DATA SET

2.1. Quality Cuts

We first apply quality cuts on Gaia eDR3
stars, combined with the radial velocity measure-
ments from Gaia DR2. Based on recommen-
dations from Lindegren et al. (2021a), we se-
lect sources with good astrometric solutions by
requiring parallax over error > 5, ruwe < 1.4,
astrometric excess noise < 2, duplicated source
= 0, G < 19, and visibility periods used
>= 10. We also perform the cut on color C =
phot bp rp excess factor with the prescription de-
scribed by Riello et al. (2021) to remove faint sources
in close proximity to bright sources. We then correct
for the zero point bias in the parallaxes as described in
Lindegren et al. (2021b).

The data sample size, after applying the quality
cuts mentioned above, and removing high-velocity stars
(|vi| > 1000 km s−1 where i = r, z, φ), is 5, 557, 670.
More cuts are applied to the sample before going
through the clustering algorithm, which are described
in the following sections.

2.2. Crossmatched Data Sets

For extra chemical information, we crossmatch the
sample with the spectroscopic surveys LAMOST DR6
(632,223 matches) (Cui et al. 2012; Zhao et al. 2012)
and APOGEE DR17 (211,798 matches) (Majewski et al.
2017; Abdurro’uf et al. 2022). We focus mainly on
the metallicity measurements from these two surveys,
as LAMOST provides the most matching sources and
APOGEE provides the most α-abundances.

Chemical abundance information is used for charac-
terization of individual clusters, comparison between
clusters, and comparison with literature. To avoid sys-
tematic differences across data sets, we limit metallicity
characterizations of our identified clusters to one sur-
vey at any given time. Unless otherwise noted, we use
APOGEE metallicities and α abundances in summary
plots for characterizing individual clusters as APOGEE
chemical abundances are derived from high-resolution
spectra than those from LAMOST (medium-resolution
spectra only). However, for examining relationships be-
tween the final clusters in this study and for a com-
parison with known structures’ metallicities from the
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literature, we instead use metallicities from LAMOST
that are available for more of our cluster stars and thus
provide better statistics. We discuss more details in Sec-
tion 5.

2.3. Zmax Cuts

It is extremely difficult, if not impossible, for most
clustering algorithms to identify substructure signals
over a strong background. The majority of our sam-
ple is made up of in-situ thin disk stars, which, if not
removed in some way, will flood all signals and prevent
detecting any meaningful clustering. To remove the thin
disk contamination, a standard practice in the field has
been to perform a velocity cut in the local standard of
rest (LSR) velocity (see e.g., Helmi et al. (2018); Sofie
Lövdal et al. (2022)). Where spectral information is
available, velocity cuts are also combined with metallic-
ity cuts to exclude metal-rich disk stars (see e.g., Myeong
et al. (2018)). This method is the most successful in
completely removing stars with thin disk-like kinemat-
ics, thus leaving behind a sample comprised primarily
of halo stars and some hot thick disk stars. However,
the disadvantages of this method are that it might bias
the overall velocity distribution of the resulting sam-
ple, or drop some of the prograde structures (e.g., Nyx
(Necib et al. 2020b)). Since our goal is to identify veloc-
ity structures and eventually their impact on the local
DM velocity distributions in future work, we here opt for
the least kinematically biased sample possible by instead
placing a Zmax cut rather than using a direct velocity
cut.

Specifically, we apply a cut at Zmax> 2.5 kpc to re-
move the thin disk, and to keep the possibility of study-
ing potential prograde structures with high vertical mo-
tion. The left panel of Fig. 1 shows the Toomre plot of
our initial sample, where stars in the thin disk (V ∼ 220
km s−1) dominate by orders of magnitude over the rest
of the stars, which would also include any prograde kine-
matic substructures.

Our Zmax is calculated through orbit integration, as
detailed in Section 2.5. We expect most in-situ stars to
have Zmax no higher than 2.5 kpc, especially with a thin
disk scale height approximately at 300 pc (Jurić et al.
2008). Thus, this cut will serve the purpose of remov-
ing the thin disk, similar to the LSR velocity cut, but at
the same time it will allow potential prograde structures
with high vertical motion to remain in the final sample.
As shown in Figure 2, the vφ distribution of stars at
higher Zmax interval shows a clear transition from the
expected rotational velocity of the disk of −220 km s−1

towards 0 km s−1, the average rotational velocity of the
stellar halo. Figure 1 also indicates a significant portion
of the stars that would have been removed by an LSR
velocity cut (red dashed line) remaining in the post-cut
sample. Our Zmax cut is not as clean as a LSR veloc-
ity cut, by design, as even at vertical distances a few
times above the scale height of the thin disk, the expo-

nential tail of the thin disk is still comparable in size to
the slower rotating prograde halo, and retrograde halo
populations. Jurić et al. (2008) measured the local halo-
to-thin disk stellar number density ratio of 0.5%. In
addition to that, the uncertainty in our distance mea-
surements unavoidably creates a systematically puffed-
up thin disk, causing a significant amount of prograde
stars with kinematics very similar to that of the thin disk
even at Zmax greater than 3 kpc. Yet, doing so gives us
the opportunity to study potential overdensities in the
high vertical motion tail of the thin disk.

More specifically, in terms of potential velocity biases,
while this cut still poses an implicit bias on the distri-
bution of the velocity in the z direction, it is neverthe-
less much less restrictive than the LSR cut. Again, this
leaves space for prograde accreted stars to be part of
the clustering sample. Following this reasoning, we re-
quire Zmax> 2.5 kpc, as well as that the mean value
of Zmax has to be larger than two standard deviations
above the cut when taking into account the errors in the
measurements.

2.4. Coordinate Transformations

After sample selection, we compute the galactocentric
coordinates and velocities assuming the Astropy galac-
tocentric frame with default parameters adopted in As-
tropy v4.0 (Astropy Collaboration et al. 2013, 2018).
The galactic center coordinate is at ra=266.4051◦ and
dec=-28.936175◦(Reid & Brunthaler 2004). The right-
handed coordinate system is defined such that the x-axis
points from the Sun to the galactic center and the y-axis
points in the direction of local disk rotation. The dis-
tance to the galactic center is assumed to be 8.122 kpc
(Gravity Collaboration et al. 2018), with the Sun mov-
ing with velocity (12.9, 245.6, 7.78) km s−1 and located
20.8 pc above the midplane (Drimmel & Poggio 2018;
Bennett & Bovy 2019).

Uncertainties on the galactocentric velocities and po-
sitions are propagated from uncertainties in parallax,
proper motion, and radial velocities. We take into ac-
count covariances between Gaia measured parallax and
proper motions. As a result, there exist non-trivial co-
variances between the transformed galactocentric veloc-
ities, which we will take into account in the orbit inte-
gration. Radial velocities are measured from Gaia DR2
and have no provided covariances with other Gaia EDR3
astrometry measurements.

2.5. Orbit Integration

We integrate the orbits for our final sample backward
in time for 2.5 Gyr with 1 Myr steps using the Python
agama package (Vasiliev 2019). We set up the potential
to be the default MilkyWayPotential from gala v1.4.1,
which is a four-component potential model consisting of
a bulge and nucleus with Hernquist profile Hernquist
(1990), a disk with Miyamoto-Nagai profile Miyamoto
& Nagai (1975), and a halo following the NFW profile
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Figure 1. Toomre plots for the full sample (left) and the subsample with Zmax cut at 2500 pc, as indicated at the bottom-left

of each panel. The red dashed line indicates a probable LSR velocity cut at 210 km s−1, with VLSR = 232 km s−1.
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Navarro et al. (1997). The disk model is taken from
Bovy (2015) and the rest are fixed by fitting to a com-
pilation of mass measurements of the Milky Way. More
details on the parameters can be found in the gala doc-
umentation (Price-Whelan 2017). Orbital parameters
including energy, angular momenta, eccentricity, maxi-
mum galactic Zmax, apogalacticon, perigalacticon, and
actions are derived from the integrated orbits.

For each star, we estimate the uncertainties for the
orbital parameters by resampling the initial positions
and velocities 100 times with their respective uncertain-
ties (assuming the uncertainties are inherently Gaus-
sian) and including the covariances between the veloc-
ities. Actions are calculated using the ActionFinder

routine provided by agama. We note that while their
effect is minimal, we include the covariance between the
positions and velocities to compute the uncertainties in
the orbital parameters. We then record the mean and
standard deviation of these parameters as the final val-
ues and corresponding uncertainties.

3. CLUSTERING ALGORITHM

The main goal of this study is to identify kinematic
clusters, from machine learning algorithms, which are
stable under resampling within the uncertainties of the
stellar kinematics inputs. Our method thus focuses on
ensuring that the members of the extracted clusters are
stable against being assigned as noise or as parts of
different clusters as can occur when uncertainties are
not taken into account. Consequently, stars we assign
as cluster members are very stable against any split-
ting/merging of their apparent host clusters; splitting
refers to a cluster breaking into smaller clusters, and
merging refers to multiple clusters merging into one sin-
gle cluster.

Given the complexity of this section, we summarize
the main points here. We apply the clustering algorithm
HDBSCAN (defined with its parameters in Section 3.1) on
two separate spaces: The 3-dimensional cylindrical ve-
locity space, and the 3-dimensional action space with
total energy as an additional axis (see Section 3.2). In
order to incorporate the uncertainties, we first define a
high-stability sample by only selecting the stars that get
clustered more than N cut

stack times (defined in Section 3.4)
when applying HDBSCAN over 100 realizations, as shown
in Section 3.3. We then cluster the high-stability stars,
and define the Jaccard coefficient as a measure of the
stability of clusters (Section 3.5).

3.1. Choice of Algorithm
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We adopt HDBSCAN1 as a clustering algorithm for iden-
tifying the kinematic substructures in the Gaia data
(McInnes et al. 2017). The choice of the clustering al-
gorithm depends on the particularity of the data set.
Specifically, we do not know a prior total number of
clusters, the clusters could be of various shapes, and the
data inherently has stars that are not part of a cluster,
and would therefore need to be treated as noise. Ideally,
the required algorithm would address the specifics of the
data above, and potentially it would incorporate mea-
surement uncertainties. Given the difficulty in finding
an algorithm that has a standard treatment of measure-
ment errors, a stability study of the resulting clusters is
required, as we will discuss in Section 3.5.
HDBSCAN stands out to be the most ideal choice for our

study. The algorithm transforms the space according to
the density of points, and performs single linkage clus-
tering on the transformed space. HDBSCAN assumes dense
regions as clusters and thus makes no assumption about
the intrinsic distribution or total number of clusters. It
also does not require every data point to be assigned
to a cluster, allowing the presence of noise. It builds
a merger tree, where one can cut at variable heights to
decide the smallest sized cluster based on a few hyperpa-
rameters, mostly min cluster size, which determines
whether a split of the tree should be treated as two new
clusters or one cluster losing noise points. The result-
ing clusters can thus have varying densities as long as
they are stable against further splitting. Additionally,
the clusters found are deterministic with the same input
data and hyperparameters setting. Brauer et al. (2022)
examined the performance of a suite of clustering algo-
rithms on the Caterpillar cosmological simulation (Grif-
fen et al. 2016) while trying to recover substructures
left behind by accreted ultra-faint dwarf galaxies. Their
result demonstrates that HDBSCAN has the best perfor-
mance among all algorithms, albeit not powerful enough
to identify all subtle, long-accreted clusters.

The parameters of the algorithm are set to de-
fault with the exception of min cluster size, which
is set to 20 to capture the smallest substructure, and
cluster selection method, which is set to leaf to
track the leaf nodes of the clustering tree. As described
in Section 3.5, the merging of these smaller homoge-
neous clusters along the hierarchical tree can be altered
significantly due to uncertainties. Instead of having
HDBSCAN decide how the leaf nodes should be merged,
it is more consistent to first examine the stability of the
leaf nodes individually (and how they change with un-
certainties folded in), as shown in Section 3.5. We then
considered separately if and how they may be merged,
as shown in Section 4.3.

3.2. Clustering Spaces

1 https://hdbscan.readthedocs.io/

In this work, we apply HDBSCAN to two separate spaces:
The 3-dimensional cylindrical velocity space and the 3-
dimensional action space with total energy as an ad-
ditional axis. First, the cylindrical velocity clustering
space is chosen as it will identify stellar kinematic sub-
structures, which might correlate with DM velocity sub-
structures. As shown in Necib et al. (2019b), the stellar
velocity distribution of debris flows would be correlated
with the velocity distribution of DM, which is key in
studying DM direct detection rates.

Second, we also perform clustering in the integrals of
motion space for accreted structures that have phase-
mixed since their accretion. In particular, we perform
clustering on the total energy and the 3D action space.
Previous works have discussed the fact that accreted
stellar populations remain clustered in such integral of
motion space long after the merger, given a slowly vary-
ing potential, from both theory (Binney & Spergel 1982)
and simulation (Helmi et al. 1999; Knebe et al. 2005;
Gómez et al. 2010) perspectives. While these structures
may no longer show a coherent velocity distribution,
they are nonetheless important sources of accreted DM
and would affect the local DM velocity distribution.

For the reasons mentioned above, we do not expect a
one-to-one correspondence between the clusters identi-
fied in one space and those from the other. Nonethe-
less, we compare the clustering results from these two
spaces in Section 4 as these results complement each
other. Moreover, they allow us to study, in future work,
the local DM velocity distribution from both coherent
and phase-mixed accreted structures.

3.3. Uncertainties: Random Realizations and Stacking

HDBSCAN, similarly to most clustering algorithms, is
not designed for handling data with uncertainties. Pre-
vious work (see e.g., Koppelman et al. 2019a) that had
used HDBSCAN for cluster identification, did not take un-
certainties into account when applying the algorithm to
kinematic data. Other works have included measure-
ment uncertainties on a much smaller scale, typically on
the order of thousands of stars; for example, Limberg
et al. (2021); Gudin et al. (2021); Shank et al. (2022)
used HDBSCAN to identify dynamically tagged groups
for very metal-poor stars. Limberg et al. (2021) pro-
posed estimating the confidence level of the clusters via
feeding Monte Carlo generated perturbed data sets into
the HDBSCAN hierarchical tree generated from the nom-
inal values. The cluster membership assignment is re-
evaluated using the prediction method provided by the
HDBSCAN package.2 As pointed out by the authors of

2 This procedure provides estimates on the probability of a given
star being the member of a cluster, considering uncertainties on
the kinematic properties, which indirectly evaluates the robust-
ness of the clusters themselves. All probabilities are based on
the hierarchical tree generated by HDBSCAN from the nominal (or
mean) kinematic properties of the sample stars.

https://hdbscan.readthedocs.io/
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HDBSCAN, the algorithm is a transductive method, mean-
ing new/perturbed data points can and should alter the
underlying clustering (McInnes et al. 2017). This is es-
pecially the case if one attempts to predict the mem-
bership assignment of an entire perturbed data set with
a size identical to the original nominal data set used
to generate the tree. The membership assignments for
the perturbed data sets are thus inherently inconsistent
with the hierarchical tree.

In this work, we adopt a self-consistent method of si-
multaneously evaluating the robustness of the clusters
themselves and the membership of the stars within the
clusters by regenerating the hierarchical clustering tree
for each Monte Carlo resampled data set. Specifically,
uncertainties are incorporated by repeating the cluster-
ing process with input parameters resampled from their
respective uncertainties for 100 times. We repeat the
clustering procedure with 100 realizations, sampled from
the error bars on each of the variables included. The
clustering results from each random realization are then
combined together in order to establish the stability of
the clusters. We find that, while the general clustering
results may appear similar by eye in various spaces, the
exact stellar membership could differ significantly be-
tween realizations. Clusters that are in close proximity
to other clusters often exchange members due to the ex-
istence of noise and background. Such behavior results
in the clusters themselves shifting around in the cluster-
ing space, and sometimes merging and splitting between
different realizations. It is thus extremely difficult to di-
rectly quantify the stability of the clusters.

To overcome this challenge, instead of directly evalu-
ating the stability of individual clusters, we first focus
our attention on the stars themselves. We stack the
clustering results from all 100 realizations, and instead
of recording the membership of the stars to specific clus-
ters (or noise), we simply record whether or not the stars
are identified to be part of some cluster at all. The re-
sult is a distribution of the number of times a given star
is clustered to be non-noise. Stars that are consistently
clustered can then be selected by making a cut on the
number of times the star has been clustered; we call this
variable Nstack. An N cut

stack allows us to identify the sta-
ble stars first, that are more often part of a cluster and
not the noise, which can then be used to find the stable
clusters. We call the sample of stars after this cut the
high-stability sample.

The sample size of the high-stability sample is sig-
nificantly smaller than the full sample. It does, how-
ever, guarantee that the clusters found in this sample

are much more robust with respect to any resampling
of the kinematic inputs within their uncertainties. The
fact that these stars are associated with some cluster
in multiple random realizations signifies that these stars
stay close to overdensities in the parameter space. More
importantly, the overdensities themselves remain signif-
icant above the background such that HDBSCAN would
identify them as clusters. We can think of this as deep-
ening the contrast of the clustering space. We show
these high-stability sample stars (in red) as well as the
entire sample (in black) in Figure 3. Some structures
are visible by eye in this high-stability sample.

3.4. Selection of Ncut
stack

We chooseN cut
stack=20 to balance sample sizes and over-

all stabilities of the final clusters. The sample size of
the high-stability sample reduces as shown in Figure S1,
while the stabilities of the final clusters improve with
increasing N cut

stack. We tested the clustering results’ sta-
bilities of high-stability samples using different N cut

stack,
following methods detailed in Section 3.5, and found
that N cut

stack at 20 yields the largest sample of stable stars
with most of the final clusters being stable.

We find no obvious correlation between the N cut
stack and

the uncertainty distribution of the high-stability sample.
A concern of theN cut

stack would be that it reduced the data
size by essentially performing an uncertainty cut, bias-
ing towards stars that do not move as much in the clus-
tering space. To test this, we examine the uncertainty
distribution of the subsample in 3D cylindrical velocity
space with and without Nstack cut, shown in Figure S2.
The result indicates a minimum effect on the overall
distribution of the uncertainties in any of the cylindri-
cal velocities. We are thus confident that the stars with
lower Nstack are not excluded because of high uncertain-
ties but because they are at the edge of the identified
clusters in the clustering spaces. In other words, under
the same level of uncertainties, they blend in with the
background noise more easily given their position in the
clustering space, and thus Nstack is selecting physically
more significant stars as part of a cluster than just sta-
tistically better measured stellar kinematics. The same
test is carried out in the integrals of motion space with
a similar result.

After identifying the stable stars, we apply
HDBSCAN with the same parameter settings on only the
stars, with Nstack above 20. The resulting clusters on
this high-stability sample are taken as the final clusters.
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Figure 3. Summary plot for the full sample (black), downsampled to 20%, with the high-stability (Nstack> 20) sample (red)

identified from the cylindrical velocity clustering space.
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3.5. Stability of Clusters and Stars

We apply the clustering algorithm as well as the 100
random realization process mentioned above to this new
high-stability sample. As discussed in Sections 3.3 and
3.4, the high-stability sample comprises only stars iden-
tified to be part of some clusters in at least 20 of the
100 random realizations. The clusters found this way
are thus more robust than those from the full sample.
They are also more stable against merging/splitting due
to uncertainties because stars consistently identified as
noise have been removed. We now discuss in more detail
how we evaluate the stability of the final clusters.

We call the clusters found from the mean values of
the clustering parameters the baseline clusters. We use
the Jaccard coefficient J (Jaccard 1901) between two
clusters from two different realizations to quantify the
stability of the cluster. The coefficient Jas for a baseline
cluster s is defined as the number of common members
between the cluster s and a cluster a found in another
realization, which we label Ns,a, divided by the total
number of members in the initial cluster s that we label
Ns.

Jas =
Ns,a
Ns

. (1)

Baseline clusters s are those from the baseline real-
ization, i.e., clusters found with the mean values, and
clusters a are those found in each of the 100 random
realizations.3

We also define the inverse Jaccard Coefficient J† as
the number of common members divided by the total
number of members in a random cluster. More specif-
ically, the Ja†s for a baseline cluster s and a random
realization cluster a is therefore defined as

Ja†s =
Ns,a
Na

. (2)

To study whether a baseline cluster s is stable, we find
its closest cluster in a random realization, i.e., the clus-
ter with which it shares the most members. To do so,
we calculate the maximum Js, that we call Jr,max

s , of
the baseline cluster s (with respect to all the clusters)
in each of the random realization r. We thus record at
most 100 values of the Jr,max

s for each baseline cluster s;
some baseline clusters are not identified at all in some

3 For illustrative purposes, we compute Jas between all baseline
clusters and random realization clusters, i.e., for every baseline
cluster, we study how much it overlaps with every other cluster in
all 100 random realizations. Theoretically, the same thing could
be done with any one of the random realizations serving the role
of the baseline clusters, because they are ultimately treated as
equal. The conclusion about the stability of the cluster mem-
bership remains valid, however, regardless of whether we use the
baseline clustering as the base, or a random realization as the
base. We use the mean values clustering result as the baseline.
The only case of clusters that we might miss are the ones that
are present in other realizations but not in the baseline.

of the random realizations, in which cases the Jr,max
s

is undefined. We also record the corresponding maxi-
mum value of the J†s in each realization, called Jr†,max

s ;
this is applying Equation 2 on the same pair of clus-
ters (the baseline s and the random realization r). We
note that these Jr†,max

s are therefore not necessarily the
maximum possible values for the given random realiza-
tion and baseline cluster.4 We examine the Jr,max

s and
Jr†,max
s distribution of all the baseline clusters to evalu-

ate their stability.
To distinguish stable from unstable clusters, we first

study the distributions of J and J† of each of the base-
line clusters. In Figure 4, we show two examples of the
distributions of Jr,max

s and Jr†,max
s for two baseline clus-

ters. To define stability, we take 50% as the cut in Jr,max
s

and Jr†,max
s distributions. When over half of the cluster

members in the baseline/random cluster are present in
the corresponding random/baseline cluster, we say that
the baseline cluster is successfully recovered in that ran-
dom realization, and thus stable. Although the 50% cut
is a choice we make, we verified in the Jaccard distribu-
tions of all clusters (similarly to those shown in Figure 4)
that the stability of the cluster is not sensitive to the ex-
act choice of the cut and is in most cases unambiguous.

More specifically, for a baseline cluster s showing con-
sistently high Jaccard and inverse Jaccard coefficients,
specifically Jr,max

s > 50% and J†r,max
s > 50% for all re-

alizations r, the baseline cluster is stable against split-
ting. Similarly, baseline clusters s with consistently
Jr,max
s < 50% and J†r,max

s < 50% are unstable. The
more interesting cases are when the J and J† distri-
butions are inconsistent, as shown in the bottom panel
of Figure 4; the high Js but low J†s distributions indi-
cate that the baseline cluster is either absorbing more
members, or merging with other clusters in random real-
izations. We can distinguish the two cases by examining
if multiple baseline clusters share the same maximum J
cluster in a given random realization. Lastly, we have
baseline clusters with the opposite distributions, low J
but high J†; these clusters split in random realizations.
Applied to the high-stability sample described earlier in
this section, we find that most of the Jaccard distribu-
tions across the two clustering spaces show consistently
high distributions of J and J†.5 These clusters are iden-
tified as the final stable clusters, and the stars within
them as core stable stellar members.

4. CLUSTERING RESULTS

4 For example, in the case of baseline clusters splitting into multiple

smaller clusters in random realizations (Jr†,max
s 6= Js,max

r ).
5 This is not the case if we run HDBSCAN over multiple realizations

with the original sample, as a large fraction of the clusters merges
and splits, making it difficult to identify the robust groups of
stars, and their core member stars.
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Figure 4. Example Jaccard and inverse Jaccard distribu-

tions from clustering results in cylindrical velocity space with

Zmax cut at 2.5 kpc and Nstack cut at 20. Cluster 13 repre-

sents a typical stable cluster, whereas cluster 22 represents a

more ambiguous case where the Jaccard distribution seems

stable while the inverse Jaccard is not. See text for detailed

discussion of this case.

We perform HDBSCAN for the high-stability sample (de-
fined in Section 3.5) to obtain the clusters from the sta-
ble stars. We repeat the process for both clustering
spaces (see Section 3.2). Note that the high-stability
samples are different in each of the clustering spaces
(and depend on the N cut

stack, which we set to 20 as ex-
plained in Section 3.4). All clustering summary results
shown here are from a single realization with the mean
kinematic parameters of the stars. As discussed in Sec-
tion 3, the clustering procedure is repeated for 100 ran-
dom realizations, and all clusters are examined for their
stability (see Section 3.5). The reported stable clusters
in Tables 1 and 2 are summarized based on the Jaccard
stability studies. Therefore, the clusters from the sum-
mary figures may not all be classified as stable in the
tables. We find 1405 stars in 23 stable clusters in ve-
locity space, and 497 stars in 6 stable clusters in energy
and action space.

4.1. Velocity clusters

Running the above clustering procedure in velocity
space, we show the clustering results in Figure 5. The
stars are color-coded by the clusters with which they are
associated. We note that even with this high-stability
sample clustering space, not all stars are classified to
be in one of the final clusters. The final stable clusters
from 100 random realizations of HDBSCAN are listed in
Table 1.
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Figure 5. Summary plot for clusters that HDBSCAN identified from the high-stability (Nstack> 20) sample with Zmax 2σ above

2.5 kpc from the cylindrical velocity space.
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We see prograde structures with velocity distributions
similar to that of the thin and thick disk. One notice-
able difference is the slight bias towards positive radial
velocity, i.e., more of the identified disk-like prograde
clusters are found to be moving away from the galactic
center. We discuss each stable cluster identified here in
more details in Section 5.

4.2. Integrals of Motion Clusters

The clustering results in the Integrals of Motion (En-
ergy and Action) space applied to the high-stability sam-
ple are shown in Figure 6. As expected, the clustering
results are not the same as those identified in the cylin-
drical velocity space, as seen in Figure 5. We examine
and summarize the properties and stabilities of these
clusters in Table 2.
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Table 1. Results from sample with Nstack greater than 20 in the cylindrical velocity clustering space

Cluster ID Color vR σvR vφ σvφ vz σvz ecc [Fe/H] N[Fe/H] Nstar Stability

km s−1 km s−1 km s−1 km s−1 km s−1 km s−1 dex

0 � -100.93 14.21 291.85 15.01 145.05 16.55 0.53 0 63 Stable

1 � 97.72 11.55 -2.75 19.65 -112.26 10.35 0.88 -1.16 9 39 Stable

2 � 110.0 4.39 -171.9 5.72 -95.88 4.74 0.36 -0.61 7 26 Stable

3 � -111.46 5.48 -159.53 10.44 -106.72 5.86 0.41 -0.7 11 42 Stable

4 � -109.77 16.78 -21.44 7.12 -110.45 9.18 0.86 -1.07 16 59 Stable

5 � -281.08 26.82 -5.67 13.93 72.8 25.23 0.96 -1.47 8 64 Stable

6 � -204.84 12.42 -19.4 11.72 -117.92 13.3 0.91 -0.99 2 24 Stable

7 � 24.75 8.75 -19.96 9.28 93.65 7.35 0.85 -1.11 4 26 Stable

8 � -41.78 19.17 -11.6 11.1 97.05 8.69 0.89 -0.99 15 56 Stable

9 � 36.39 14.65 -151.04 11.71 -106.22 6.46 0.28 -0.65 26 167 Stable

10 � -24.14 23.2 -225.72 8.45 88.6 15.14 0.13 -0.54 49 251 Unstable

11 � -21.08 3.87 -171.0 8.7 -102.21 5.74 0.18 -0.55 11 54 Stable

12 � -2.5 3.59 -160.82 5.33 -111.6 4.52 0.2 -0.56 10 37 Stable

13 � 52.34 5.4 -121.0 5.82 104.6 3.98 0.42 -0.78 8 34 Stable

14 � 21.54 2.52 -230.59 2.77 -75.43 10.34 0.13 -0.38 5 28 Unstable

15 � -49.2 4.82 -207.99 5.06 -99.18 5.09 0.15 -0.54 5 26 Unstable

16 � 43.19 3.43 -153.73 5.16 100.18 7.57 0.29 -0.55 9 32 Stable

17 � -27.67 3.01 -214.13 6.3 -90.66 4.52 0.1 -0.58 3 24 Unstable

18 � 5.53 6.88 -183.34 7.56 51.14 7.83 0.15 -0.3 6 184 Stable

19 � -15.19 8.52 -172.05 8.28 103.42 7.02 0.17 -0.59 16 63 Stable

20 � 18.78 7.3 -172.49 4.68 104.28 5.6 0.17 -0.59 5 39 Ambiguous

21 � -7.8 4.65 -233.56 2.34 -94.81 6.03 0.13 -0.31 2 20 Unstable

22 � 4.87 3.06 -208.89 8.21 -98.67 7.19 0.05 -0.48 13 47 Unstable
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Figure 6. Summary plot for clusters that HDBSCAN identified from the high-stability (Nstack> 20) sample with Zmax 2σ above

2.5 kpc from the integral of motion space.
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4.3. Relationship between clusters

We examine the HDBSCAN merger trees from the clus-
tering results mentioned in Sections 4.1 and 4.2. The
trees are extracted by the condensed tree method
from the HDBSCAN package. The merger tree allows us to
directly see how clusters are related to each other along
the hierarchical tree. This is especially important for
our clustering method, leaf, which captures the small-
est clusters in the sample and is thus designed to sub-
divide clusters that may be related to each other. It
also provides intuition on which axis HDBSCAN primarily
uses to distinguish clusters during the clustering pro-
cess. Figure 7 shows the merger tree for the clustering
in velocity space. Identified clusters are shown with a
color matching that given in Figure 5. By examining
the Figure, we find, for example, that Cluster 0 from
Table 1 is the first to be separated from the rest of the
clusters, which is sensible given that Cluster 0 is the
only retrograde structure found, and it is surrounded
by low density points that HDBSCAN deems to be noise.
The stars are generally first separated by vφ, where we
see a clear division between clusters with and without
prograde kinematics.

To study whether multiple clusters belong to the
same object, we perform a KS test (Kolmogorov 1933;
Smirnov 1948) on the available metallicity of each clus-
ter, which is obtained through cross-matching from
LAMOST DR6 (Cui et al. 2012; Zhao et al. 2012).6 Note
that while we classified the clusters’ stabilities based on
their J and J† distributions, all clusters from the base-
line realization, stable and unstable, are included in the
following analysis to avoid inconsistencies caused by re-
moving nodes in the merger tree. Some of the insta-
bility may be reflected during the merging process, so
it is useful to keep them while inspecting the final re-
sults. We note that due to the lack of metallicity mea-
surements for part of the sample, some of the smaller
clusters contain too few valid metallicity measurements
to provide enough statistics to perform a KS test. In
cases where there are fewer than five available [Fe/H]
measurements in a given cluster, we skip the compari-
son, move on to the parent node, and assume the child
node can be merged.

We work from the bottom up to compare the metallic-
ities of the clusters on each of the branches. If they are
statistically consistent with being drawn from the same
group, we merge them together. If not, we keep them
as separate groups. We use the KS 2samp routine from
the Scipy package (Jones et al. 2001) to perform the KS
test. The results are discussed further in Section 5.

6 We note that we use the metallicity measurements from LAM-
OST DR6 for better statistics in the comparison, as they provide
more metallicities than APOGEE DR17, which were featured in
the summary plots.
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merged either because the test mentioned above failed or one of the children nodes failed to merge.

5. DISCUSSION AND INTERPRETATION

We compare our final clustering results in the two clus-
tering spaces (see Section 3.2), with parameters set at
Zmax > 2.5 kpc, and Nstack > 20, against known Milky
Way substructures from the literature.

5.1. Merged clusters

From Figure 8 (left panel) and Tables 1 and 3, we see
that the unstable clusters 14, 15, 17, 21, and 22 are all
mergeable (along with the stable clusters 9, 11, and 12).
This indicates that the instability of these five clusters
against splitting and merging is consistent with the fact
that they are compatible with being part of a larger
cluster in metallicity space. They are likely all coming
from the same larger cluster in velocity space, but only
split/merge due to their locations in phase space and the
associated uncertainties. Thus, these unstable clusters
are fragments of a larger cluster, split in different ways.
The member stars in these clusters still remain robust,
albeit for a larger cluster.

On the other hand, the unstable cluster 10 has no po-
tentially merging clusters in metallicity space, suggest-
ing that cluster 10 by itself is unlikely a robust cluster
and dissolves in velocity space when considering uncer-
tainties. Stellar members in this cluster are thus not
robust cluster members.

In addition to the previously identified unstable clus-
ters, we also get stable clusters merged, which is the case
for clusters 4-9, 11, 12, 19, and 20 from Table 1. Their
corresponding parents, after merging, provide hints for
the reason. For example, the newly merged clusters VI
and X are likely both part of the thick disk, given the
prograde rotational velocity of vφ at ∼ −180 km s−1.
The leaf method we used for HDBSCAN divided them
into smaller subgroups but their metallicities distribu-
tions allow us to confidently say that they can be merged
back into a larger group.

We repeat the same process with the clustering result
for the integrals of motion space and include the results
in Figure 8 (right panel) and Table 4. Clusters 5 and
6, which were previously identified as unstable in Ta-
ble 2, are merged together with clusters 4 and 7. These
results are shown in Figures 9 and 10 for the velocity
and integral of motion spaces, respectively. We discuss
in the following subsections how the clusters compare
with structures known from previous studies. When ap-
plicable, we use references from the literature where the
kinematic values are obtained and derived similarly to
our study to avoid systematic differences, i.e., original
data from Gaia and similar galaxy potentials used in
orbital integrations.
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Figure 9. Summary plot for merged clusters that HDBSCAN identified in the high-stability (Nstack> 20) sample with Zmax 2σ

above 2.5 kpc from the cylindrical velocity space. Note the colors do not match those from Figure 5, but those quoted in Table 3.



Milky Way Substructure 21

−2500 0 2500
Lz [kpc km s−1]

−150000

−125000

−100000

−75000

−50000

−25000

0
E
to
t

[k
m

2
s−

2 ]

5000 7500 10000 12500
rgal [pc]

−4000

−2000

0

2000

4000

Z
[p

c]

0 5 10 15
rperi [kpc]

0

5

10

15

20

25

r a
po

[k
p

c]

−500 0 500
vr [km/s]

−600

−400

−200

0

200

400

600

v φ
[k

m
/s

]

−500 0 500
vr [km/s]

−600

−400

−200

0

200

400

600
v z

[k
m

/s
]

0.00 0.25 0.50 0.75 1.00
Ecc [Unitless]

0

2

4

6

8

10

12

14

f
(E

cc
)

0.00 0.25 0.50 0.75 1.00
Ecc [unitless]

1000

1500

2000

2500

3000

3500

4000

4500

5000

Z
m

ax
[p

c]

−1 0 1
Jφ/Jtot [kpc km/s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

(J
z
−
J
R

)/
J
to
t

[k
p

c
km

/s
]

−2 0
[Fe/H] [dex]

−0.2

0.0

0.2

0.4

0.6
[α

/F
e]

[d
ex

]

0 1000 2000
JR [kpc km/s]

−3000

−2000

−1000

0

1000

2000

3000

J
φ

[k
p

c
km

/s
]

0 1000 2000
JR [kpc km/s]

0

250

500

750

1000

1250

1500

1750

2000

J
z

[k
p

c
km

/s
]

−2 0
[Fe/H] [dex]

0.0

0.5

1.0

1.5

2.0

f
([

F
e/

H
])

Figure 10. Summary plot for merged clusters that HDBSCAN identified in the high-stability (Nstack> 20) sample with Zmax 2σ

above 2.5 kpc from the energy and action space. Note the colors do not match those from Figure 6
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5.2. Velocity space

In this section, we associate clusters found in the ve-
locity clustering space with known structures in the lit-
erature by discussing their mean kinematics and chem-
ical characteristics in turn. A summary of the all the
clusters discussed here can be found in Figure 9, and
Table 3.

We start with the two globular clusters identified,
NGC 3201 (cluster I shown as dark red in Figure 9) and
NGC 104 (cluster IX, shown as dark blue in Figure 9).
We find these clusters at (l, b) = (277.21, 8.63) degrees
and (305.88,−44.90) degrees, and heliocentric distances
of 4.22 kpc and 4.33 kpc, respectively. These coordinates
are consistent with the values of (l, b) = (277.23, 8.64)
degrees and (305.89,−44.90) degrees from Harris (1996,
2010) considering the half-light radius of these two clus-
ters are at 3.1 arcmin and 3.17 arcmin, respectively. The
heliocentric distances in Harris (1996, 2010) are 4.9 and
4.5 kpc for NGC 3201 and NGC 104, respectively, where
we attribute the disagreement with our values to sys-
tematic uncertainties in the different methods used in
measuring distances, i.e., photometry vs. astrometry.
Finding these globular clusters within our framework is
a validation of our clustering method. It is, however,
worth noting that these two globular clusters appear
more extended along the line of sight than they actually
are from dedicated globular cluster studies (see Harris
2010, and references therein). This is a common effect
in galactic coordinate transformation caused by the un-
certainties in the distance to the sources. First, this
further emphasizes the importance of incorporating un-
certainties into the clustering. Additionally, a similar
effect would be present for the entire sample and as a
result systematically increase the scale height of the thin
disk at high galactic latitude. This plays a role in in-
terpreting the prograde structures we identify, which we
discuss below.

Our newly identified clusters II, III, XII have almost
no rotational motion and low metallicity. Their chemi-
cal characteristics are overall consistent with being part
of GSE, with mean [Fe/H] = −1.16, −1.02, and −1.19,
respectively. These values agree with literature esti-
mates of the metallicity of the GSE, which ranges from
[Fe/H] ∼ −1.6 to −1.1, depending on the selection crite-
rion (Helmi et al. 2018; Necib et al. 2019a; Naidu et al.
2020). Because of the Zmax cut we applied, the stars
identified as part of these clusters most likely correspond
to the high vertical motion portion of the GSE. The ma-
jority of the GSE would be left out in the initial cut, yet
the fact that the overdensity is still identified suggests
the GSE has a non-negligible tail in high vertical veloc-
ity distribution. Clusters II and XII (shown in orange
and red in Figure 9) have the known high radial veloc-
ities of the GSE (Belokurov et al. 2018; Helmi et al.
2018). However, Cluster III (shown in yellow) does not.
It could be that this cluster, which has eccentricities and

metallicities consistent with clusters II and XII, encom-
passes the stars that connect the positive and negative
radial velocity lobes of the GSE.

We now discuss the possibility of our prograde clus-
ters being the high Jz tail of the thin disk or thick disk.
Knowing that the uncertainties in the distances can sys-
tematically increase the scale height of the disk, stars
originally on the exponential tail of the disk height dis-
tribution could be pushed outward into our selection
region, Zmax greater than 2.5 kpc, as was shown earlier
in Figure 2. We thus expect there to be a significant
amount of disk stars in the final high-stability sample.
Cluster VII (in cyan), despite the significant vertical mo-
tion, does otherwise appear to be part of the thin disk.
The cluster has rotational velocity vφ = −225.72 km s−1

and eccentricity of 0.13, consistent with being part of
the thin disk. The mean metallicity of −0.54 and low
α-abundance also support the thin disk origin.

Additionally, clusters IV, V, VI, X, colored as fluores-
cent green, green, turquoise, and purple, respectively,
sit in between the two groups mentioned above, with
kinematics more consistent with that of the thick disk,
and average vφ approximately 150 to 180 km s−1. The
current estimate of the canonical thick disk scale height
from recent literature study is 0.9± 0.2 kpc (see Bland-
Hawthorn & Gerhard (2016) for a review on galactic
disc parameters). The metallicity distributions of these
clusters peak between −1 and 0 dex, with overall high
α-abundances, which are consistent with these stars be-
ing part of the canonical thick disk. We thus associate
them as part of the thick disk. Clusters VIII (in dark
blue) and XI (in pink), while being prograde, appear
distinct from the thin disk with metallicity distributions
extending lower than −1. This can be taken as a sign
of these clusters containing accreted stellar populations
or a portion of the metal-weak Atari disk (Norris et al.
1985; Morrison 1990; Chiba & Beers 2000; Mardini et al.
2022).

5.3. Integrals of Motion Space

Similarly to the above, we associate the following clus-
ters identified in energy and action space with known
Milky Way substructures. We find four clusters that
we list in Table 4, and show in Figure 10. Cluster
I, shown in the Figure colored in dark red, closely re-
sembles the Helmi stream (Helmi et al. 1999), which is
expected due to its well-known large vertical motion.
Thus most of its members pass the Zmax cut. The
mean kinematics and metallicity of the cluster identi-
fied in our study are Jφ = −1.17±0.10 × 103 kpc km s−1,

Etot = −10.68±0.29 × 104 km2 s−2, and [Fe/H] = −1.56.
They agree with literature selection of the Helmi stream
in Lz in [−1.7,−0.75]×103 kpc km s−1 (Koppelman et al.
2019b), Etot = −10.3 × 104 km2 s−2, and peak [Fe/H]
ranging from −1.5 to −1.3 (Naidu et al. 2020). As the
merger event associated with these streams happened
approximately 5-8 Gyr ago (Koppelman et al. 2019b),
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the stream does not show a significant coherent spatial
structure. Its stars distribute spatially similar to the
background stars, except being confined by Galactic ra-
dial distance (Koppelman et al. 2019b).

Cluster II, shown in green, is a mix of three substruc-
tures. Merging based on metallicity alone has caused
structures that are obviously not from the same group
to be merged. Thus, instead of discussing the merged
cluster II, we discuss pre-merging clusters 1 and 2, to-
gether with cluster III, i.e., cluster 3.

The radial motion dominated clusters (pre-merging
clusters 1 and 3), resembling the GSE, are identified
with much fewer clusters than in velocity space, and they
are mainly distinguished by energy rather than radial ve-
locity. Both clusters have mean metallicity [Fe/H] ∼ −1,
roughly consistent with literature values, but the lower
energy cluster 3 shows potential for contamination from
the high metallicity in-situ halo at [Fe/H] ∼ −0.5 and
the big splash (stars formed in protodisc and have orbit
altered to the highly eccentric orbit by the last major
merger event) with metallicity > −0.7 from Belokurov
et al. (2020). The higher energy cluster, on the other
hand, appears to be more in line with the metal-poor
nature of an accreted structure like the GSE.

Globular cluster NGC 3201 (our pre-merging cluster
2) is identified as in the cylindrical velocity space. There
are, however, a few additional members identified in this
cluster, which are most likely not true members of the
globular cluster. We suspect they actually belong to
the high energy retrograde structure Sequoia Myeong
et al. (2019), and are instead mis-classified to be part
of this globular cluster due to our HDBSCAN parameter
setting. Namely, the minimum cluster size of 20 prohib-
ited these Sequoia stars from forming their own cluster.
Repeating HDBSCAN clustering in the full sample space
with minimum cluster size reduced to 10, the result indi-
cates Sequoia-like stars are identified separately as their
own cluster. We are thus confident that we may safely
remove the globular cluster core members and treat the
rest of the cluster as a significant overdensity. We can
do so given the globular cluster’s well-known coordi-
nates ((l, b) = (277.21, 8.63) degrees) and angular radius
(0.05◦) (Harris 2010) in the sky (see the details of this
overdensity in Figure S6). Note that the few stars that
are left have no metallicities available.

There has been a discussion in the literature about
the existence of multiple populations within the cur-
rently identified retrograde structure named Sequoia,
i.e., Arjuna and I’itoi. The three structures are dis-
cussed in more detail in Naidu et al. (2020). The latter
two are discovered in chemical space as separate peaks,
with [Fe/H] of −1.6, −1.2, < −2 for Sequoia, Arjuna,
and I’itoi, respectively. The lack of metallicity mea-
surements for our cluster prevents us from resolving po-
tential population compositions of this prograde struc-
ture. Like GSE, Sequoia is also believed to have most
of its stars having a zero mean vz. Thus, our initial

cut has preferentially removed Sequoia. Despite that,
HDBSCAN identifies an overdensity at high Zmax, signal-
ing that Sequoia may be more kinematically heated and
vertically extended than previously thought.

We associate multiple prograde structures (all in
merged cluster IV, shown in dark red) with the thin
and the thick disk, as they have rotational velocity of
∼ −200 km s−1 and metallicity ∼ −0.5 dex, consistent
with the disk of the Milky Way (Bland-Hawthorn &
Gerhard 2016). The position of these clusters in the
Zmax vs. eccentricity plane also suggest the possibil-
ity of these stars being the high vertical motion end of
the velocity distribution of the thin disk and thick disk.
We evaluated whether these stars belong to Nyx; cross-
matching Nyx and Nyx-2 with the high-stability sample
in integrals of motion space yields no match. In fact,
the majority of the Nyx stars are cut out by our Zmax

cut, so we would not expect this cluster to be associated
with the Nyx.

5.4. Comparison with Other Works

Previous work has been done in identifying local sub-
structures self-consistently with only kinematic data as
input. We now compare the results of our clustering
algorithm to those of previous studies.

We first discuss the work of Sofie Lövdal et al. (2022);
Ruiz-Lara et al. (2022), which shares similar scientific
goals and approaches as this study. Sofie Lövdal et al.
(2022) adopted a Gaia eDR3 sample with crossmatched
radial velocities from other spectroscopic surveys than
APOGEE and LAMOST. The halo sample, used for
clustering, is isolated by applying a vLSR cut. They
opted for the single linkage tree as the clustering al-
gorithm, combined with Mahalanobis distances (Maha-
lanobis 1936) for final cluster and membership selec-
tions. While different, HDBSCAN is inherently also a link-
age tree algorithm. The clustering space of Sofie Lövdal
et al. (2022) is limited to energy and angular momenta,
and uncertainties in these quantities have not been taken
into account.

While both Sofie Lövdal et al. (2022) and our study
identified structures such as the GSE, Helmi Stream,
and Sequoia, we do not identify some of the struc-
tures (e.g., Thamnos) identified in Sofie Lövdal et al.
(2022) mostly because of the different cuts applied. The
Zmax cut has removed the majority of the structures
to the point that HDBSCAN can no longer pick up any
overdensities in phase space. This is likely the case for
Thamnos, which is known to be associated with a low
stellar mass accretion event that happened a long time
ago, a low metallicity, and low total energy. The mean
〈vz〉 for Thamnos is consistent with being zero from pre-
vious studies, and its current identified member count
is lower than that of GSE or Sequoia. Moreover, our
average cluster size is significantly smaller due to the
different approach we used for selecting robust cluster
members with uncertainties considered, along with the
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different algorithm used. While some clusters identified
in their study also appear in similar phase space loca-
tions in single realizations of this study, the majority of
the stars within these overdensities, as discussed in Sec-
tion 3.3, do not robustly belong to said clusters when all
random realizations are taken into account. We see in
Figure S1 that most of the stars ever associated with any
cluster by HDBSCAN in the 100 random realizations have
Nstack less than 10, i.e., they are flagged as noise 90% of
the time. The robust clusters and their constituents are
thus a smaller subset of what one would get by apply-
ing HDBSCAN to only the full sample with nominal value
inputs.

Ruiz-Lara et al. (2022) used a crossmatched chemical
information and mass-age relation to characterize the
identified clusters in Sofie Lövdal et al. (2022). The
membership selection was validated with isochrone fit-
ting and metallicity distribution function study, where
there are available matches in spectroscopic surveys. We
do not carry out a similar validation because requiring
stability of the clusters comes at the expense of statis-
tics. As such, we cannot reliably characterize the pro-
genitors with such few available chemical abundances.
While our sample size does allow further study of the
structure’s color-magnitude diagram and potential com-
parison with synthetic color-magnitude diagrams, fac-
toring in the observational uncertainties from the data
and theoretical uncertainties from the stellar evolution
models is not a trivial effort (Cignoni & Tosi 2010). We
thus defer characterizing our robust clusters with syn-
thetic color-magnitude diagram fitting procedures to a
future study.

We also compare our results with those from Naidu
et al. (2020), where selections are more based on physi-
cal intuition. Again, we recover the GSE, Helmi Stream,
and Sequoia, but miss Thamnos for the same reasons
mentioned above. We also do not detect any structure
that resembles Aleph or Wukong, both reported to have
high Jz(Naidu et al. 2020). While Aleph has a relatively
high vertical motion, its selection required chemical in-
formation which is not available to our study. Wukong is
a structure found to be two overdensities near the mar-
gin of the GSE in the Etot vs. Lz plane. With only kine-
matic information, we suspect that incorporating uncer-
tainties has caused the cluster to become unstable and
thus make it more difficult for HDBSCAN to robustly sepa-
rate it from the GSE and background. We also point out
that Naidu et al. (2020) focused on stars 3 kpc away from
the solar neighborhood, so it is also likely that these two
structures are only present/or dominate at high galactic
latitude, and thus we do not have large enough statistics
within our sample to identify such kinds of structures.

Our clustering results give two clusters associated with
the GSE. Donlon et al. (2022) discussed the GSE being
composed of multiple components, namely the VRM,
Nereus, and Cronus, using kinematics and metallicities
for Gaia eDR3 dwarf stars. We compare our pre-

merging clusters 1 and 3 in the integrals of motion space
with the three radial merger events identified by Donlon
et al. (2022). Our pre-merging cluster 1 resembles the
VRM and Nereus with its high energy and double-lobed
vr velocity profile, but the average metallicity of our
cluster [Fe/H] ∼ −1.07 is higher than those of the VRM
and Nereus at −1.7 and −2.1 respectively. Similarly,
the lower energy cluster 3 has slightly higher metal-
licity [Fe/H] ∼ −0.89 than the Cronus at −1.2. Fur-
ther, while the Cronus was shown to be prograde with
Lz ∼ −400 kpc km s−1, our low energy GSE-like cluster
is consistent with being non-rotating. In short, while our
clustering results in the integral of motion space separate
the GSE into high-energy and low-energy components,
the metallicities do not show as significant a difference
as that shown in Donlon et al. (2022). The discrepancy
may be a combined result of systematic differences in
metallicity derivation, given that Donlon et al. (2022)
used photometric metallicity estimates calibrated using
a collection of spectroscopic survey catalogs in the lit-
erature (see Section 2.3 in Kim & Lépine (2022)) while
we only used LAMOST DR6, and/or potential contam-
ination from in-situ stars in our clusters given that our
clustering is based solely on kinematic properties. For a
similar reason, we are not able to distinguish potential
constituents in our high eccentricity clusters the same
way as in Myeong et al. (2022), where chemical abun-
dances from APOGEE DR17 (Abdurro’uf et al. 2022)
and GALAH DR3 (Buder et al. 2021) are used to con-
struct the chemo-dynamical space for Gaussian Mixture
Modeling.

6. INTERPRETATION AND CONCLUSIONS

In this section, we discuss both the challenges in iden-
tifying local structures using clustering algorithms as
well the potential that new approaches can deliver with
current and future data with regards to the detailed ex-
ploration of the Galaxy’s assembly and accretion history.

In general, while satellite galaxies that have merged
or are in the process of merging with the Milky Way
can principally be extracted with clustering tools, the
observed signal is often too weak compared to the back-
ground (e.g. structures within the disk) and identifi-
cation becomes even more challenging with increasing
measurement uncertainties. Accordingly, the current
standard practice of largely mitigating unreliable selec-
tions has been focused on using either chemical abun-
dance information or isochrone fitting techniques to val-
idate the stellar membership. However, this approach,
when applied to the entirety of the Galaxy, will be lim-
iting going forward; chemical information is severely re-
stricted by the difficulty in obtaining medium or high-
resolution spectroscopic metallicities and abundances
for quantities of stars that are comparable to those of
large-scale astrometric and photometric surveys such as
Gaia. Isochrone fitting of a collection of stars is de-
pendent on the completeness and selection function of
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any sample. These methods of a posteriori resorting
the data also partially undermine the purpose of using
an unsupervised machine learning algorithm to handle
large data sets and make objective decisions unaffected
by human biases.

Another problem on its own is measurement uncer-
tainties associated with input kinematic data. Unfortu-
nately, the current scope of our study is severely limited
by detailed and precise 6D kinematics information, es-
pecially for fainter stars that probe deep into the galac-
tic halo, when measurement uncertainties become larger
or no information is available at all. Membership as-
signments by hierarchical clustering algorithms such as
HDBSCAN are generally unreliable when uncertainties are
not taken into account. For example, when considering
stars that are associated with a random cluster in more
than one out of 100 random clustering realizations, the
majority of the stars are often assigned to be noise in the
other 99 realizations. However, this is not too surprising.
Hierarchical clustering algorithms, e.g., single-linkage al-
gorithms such as HDBSCAN, rely on first building some
form of a hierarchical merger tree, which can alter signif-
icantly when data points are shifted within their respec-
tive uncertainties. A changed tree will naturally lead to
altered findings and as such will yield unreliable results
when it comes to identifying new overdensities and their
constituents. Thus, the results from applying such algo-
rithms straight to the nominal mean values of the input
parameters cannot be trusted. We thus stress the need
for numerical techniques that produce the most reliable
and reproducible clustering results, by taking advantage
of incorporating existing observational and astrometric
uncertainties in the clustering algorithms. Specifically,
we propose a more robust method of utilizing HDBSCAN in
identifying local stable stellar overdensities in kinematic
space.

To overcome these challenges and to identify robust
and reliable clusters, in this study, we use Gaia eDR3
astrometry data together with line-of-sight radial ve-
locity from Gaia DR2 to identify clusters in the solar
neighborhood using HDBSCAN. In our novel procedure,
we successfully incorporate measurement uncertainties
in the clustering algorithm to produce stable and ro-
bust clusters and recover previously known structures
in the Milky Way, specifically the GSE, Sequoia, the
Helmi Stream, and the globular clusters NGC 3201 and
NGC 104. We achieved this by resampling the input
data, repeating the clustering process, and treating each
random realization equally. We then incorporate mea-
surement uncertainties in the clustering algorithm by
resampling the input data, repeating the clustering pro-
cess, and treating each random realization equally. This
technique allows us to confidently isolate the most stable
and robust cluster members by stacking the clustering
results from each realization and removing those that are
associated with noise in more than 20 (out of 100) re-

alizations. These cluster members are then re-clustered
into our final set of stable clusters.

When properly incorporating measurement uncertain-
ties in a routine fashion, the resulting robust cluster
members will naturally be much fewer than those that
would be obtained from applying algorithms to only the
nominal values. We have thus focused in this study
on retrieving stellar core members of structures near
us. Regardless, these results already provide candidate
structures that could be targeted for follow-up observa-
tions with future spectroscopic surveys, such as 4MOST
(de Jong et al. 2019) and WEAVE (Dalton et al. 2012).
Since obtaining spectroscopic data requires significant
amounts of time, as more clusters as well as cluster can-
didates are being identified, targeted follow-up will be
maximally efficient, ensuring a high discovery rate.

To further increase efficiency and maximal identifica-
tion of as many cluster member stars as possible, as
a next step we anticipate expanding our technique to
include a ”cluster re-building” component in which we
start with the robust clusters and then carry out an ad-
ditional member selection with progressively loosened
stability criteria to eventually re-build the full clusters
step-by-step, still with uncertainties factored in. This
approach makes use of the fact that the existence of the
cluster is no longer in question, and instead focuses ef-
forts on finding the complete stellar membership.

More broadly, our technique of providing precise iden-
tifications of substructure signatures has the potential
to go beyond finding just accreted structures. In par-
ticular, in the galactic disk, studies of moving groups
have long revealed many overdensities of stars moving in
common orbits (Antoja et al. 2018), with the most dom-
inant ones being the branches of Sirius, Coma Berenices,
Hyades-Pleiades, and Hercules. These local overdensi-
ties, proposed to be induced by dynamical resonances,
past perturbations, and/or non-axisymmetric features
of the Milky Way, are all prime targets of research and
provide valuable insights into the formation and evolu-
tion of the galactic disk (see, e.g., Appendix B of Trick
et al. (2019) for a short review). New moving groups
are still being discovered thanks to constantly improv-
ing methodologies (Ramos et al. 2018; Bernet et al. 2022;
Lucchini et al. 2022). Identifying these overdensities in
the disk with high confidence requires careful treatment
of the uncertainties, as the structures will most likely
be accompanied by strong background noise. Lucchini
et al. (2022), for example, incorporated various mea-
surement uncertainties with wavelet transforms, which
is another promising way to maximize unsupervised data
analysis outputs.

These novel data analysis approaches, and as more
and deeper data becomes available, from both space
missions, such as Gaia, and ground missions, such as
the Vera Rubin Observatory Legacy Survey of Space and
Time (LSST) (Ivezić et al. 2019), showcase the huge dis-
covery potential for stellar (sub)structures in the Milky
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Way. We thus anticipate that many more delicate, thus
far hidden clusters will be discovered. But success will
rest solely on our ability to rely on unsupervised machine
learning algorithms, such as HDBSCAN, to provide trust-
worthy outputs. We can only trust algorithms when we
factor in measurement uncertainties that, of course, are
always present in observational astronomy.

In closing, understanding in detail how accurate these
techniques and algorithms are given the current level of
uncertainties in observational measurements is an im-
portant step towards building a complete picture of the
Milky Way, as well as towards providing improved mod-
eling capabilities of the local DM phase space distribu-
tion.

We thus encourage future clustering studies to be-
gin testing and incorporating uncertainties into their
new generation of techniques and unsupervised machine
learning algorithms, to acquire reliable and robust selec-
tions of substructures and their member stars based on
kinematic information only.
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APPENDIX

In this appendix, we show the figures associated with theNstack cuts. Fig S1 shows the number of stars associated with
any cluster at Nstack number of realizations. Figure S2 shows the error distribution of stars with various Nstack cuts. We
also include Figure S3 and S4, showing the clustering result on the velocity and integrals of motion spaces respectively,
without placing any Nstack cut on the stacked sample. As expected they include a much larger number of clusters. We
also include Figure S5, the equivalent of Figure 7 in integrals of motion space. Finally, Figure S6 shows the resulting
clustering, having removed cluster NGC 3201 (see related discussion in Section 5.3).
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Figure S1. Distribution of Nstack for the stacked full subsample with Zmax 2σ above 2.5 kpc from the cylindrical velocity

space.
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Figure S2. Absolute and relative error distribution of cylindrical velocities for the stacked full subsample with Zmax 2σ above

2.5 kpc at different Nstack cuts. Note that the y axis is on logarithmic scale.



32 Ou, Necib, & Frebel

−2500 0 2500

Lz [kpc km s−1]

−150000

−125000

−100000

−75000

−50000

−25000

0
E
to
t

[k
m

2
s−

2 ]

5000 7500 10000 12500
rgal [pc]

−4000

−2000

0

2000

4000

Z
[p

c]

0 5 10 15
rperi [kpc]

0

5

10

15

20

25

r a
po

[k
p

c]

−500 0 500
vr [km/s]

−600

−400

−200

0

200

400

600

v φ
[k

m
/s

]

−500 0 500
vr [km/s]

−600

−400

−200

0

200

400

600

v z
[k

m
/s

]

0.00 0.25 0.50 0.75 1.00
Ecc [Unitless]

0

5

10

15

20

25

30

f
(E

cc
)

0.00 0.25 0.50 0.75 1.00
Ecc [unitless]

1000

1500

2000

2500

3000

3500

4000

4500

5000

Z
m

ax
[p

c]

−1 0 1
Jφ/Jtot [kpc km/s]

−1.0

−0.5

0.0

0.5

(J
z
−
J
R

)/
J
to
t

[k
p

c
km

/s
]

−2 0
[Fe/H] [dex]

−0.2

0.0

0.2

0.4

0.6
[α

/F
e]

[d
ex

]

0 1000 2000
JR [kpc km/s]

−3000

−2000

−1000

0

1000

2000

3000

J
φ

[k
p

c
km

/s
]

0 1000 2000
JR [kpc km/s]

0

250

500

750

1000

1250

1500

1750

2000

J
z

[k
p

c
km

/s
]

−2 0
[Fe/H] [dex]

0

1

2

3

4

f
([

F
e/

H
])

Figure S3. Summary plot for clusters that HDBSCAN identified from stacked full subsample with Zmax 2σ above 2.5 kpc from

the cylindrical velocity space.
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Figure S4. Summary plot for clusters that HDBSCAN identified from stacked full subsample with Zmax 2σ above 2.5 kpc from

the Energy + 3D action space.
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Figure S5. Condensed merger tree for the stacked subsample with Nstack> 20 and Zmax 2σ above 2.5 kpc from the Energy +

3D action space.
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Figure S6. Summary plot for cluster 1 from HDBSCAN identified from stacked stable (Nstack> 20) subsample with Zmax 2σ

above 2.5 kpc from the Energy+Action space with NGC 3201 removed.


	1 Introduction
	2 Data Set
	2.1 Quality Cuts
	2.2 Crossmatched Data Sets
	2.3 Zmax Cuts
	2.4 Coordinate Transformations
	2.5 Orbit Integration

	3 Clustering Algorithm
	3.1 Choice of Algorithm
	3.2 Clustering Spaces
	3.3 Uncertainties: Random Realizations and Stacking
	3.4 Selection of Nstackcut
	3.5 Stability of Clusters and Stars

	4 Clustering Results
	4.1 Velocity clusters
	4.2 Integrals of Motion Clusters
	4.3 Relationship between clusters

	5 Discussion and Interpretation
	5.1 Merged clusters
	5.2 Velocity space
	5.3 Integrals of Motion Space
	5.4 Comparison with Other Works

	6 Interpretation and Conclusions

