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Abstract
Relocation in the square is the most basic open question related to the tilt model with unit moves

under global uniform movement. It is open even with limited directions. We prove that deciding if a
piece can move to the bottom row with only two directions is in P and gives the minimum column.
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1 Introduction

Tilt assembly with uniform global instructions is currently a popular area of research since individually
controlling nanobots may be infeasible or impractical at certain scales. One of the most basic open
questions in the single step tilt model with uniform global movements is whether a tile can be relocated
to specific location on the board (Figure 1a) even without any blocking geometry. We solve a simpler
version of this problem asking whether, with only two directions, a tile can reach the bottom row.

Given a tilt system with an n × n board B, a set of tiles T = {t1, . . . tm} where each tl = (i, j) s.t.
1 ≤ l ≤ m, 1 ≤ i ≤ n, and 1 ≤ j ≤ n. Given ti, tj ∈ T, ti 6= tj if i 6= j. For shorthand, we use ti,j for
tl = (i, j). For just the row or column, we may use tlr and tlc . See [1–3] for model and related work.

Definition 1.1 (First Row Relocation). Given a specific tile to relocate tR at location (r, c) = (tRr , tRc),
the first row relocation problem asks whether a series of transformations can translate tR s.t. tRr

= 1.

2 High Level Overview

In order for tile tR to reach the bottom row, there must not be any other tiles beneath it. We first find
the empty column needed, and then, through a process termed knitting, we attempt to move the empty
column beneath tR. We also label the board with sections (Figure 1a). See Figure 1b for examples of
the empty column. We then label the rows with counts of tiles that may affect relocation (Figure 1c).

Definition 2.1 (Empty Column Ec). Given a tilt system board configuration S = (B,T) and tile
tR = (r, c) where tR ∈ T, define Ec = min{k : c ≤ k ≤ n + 1 s.t. |{ti,j : ti,j ∈ T, i < r, j = k}| = 0}. If
all columns in the BR section have tiles, Ec = n + 1 and enters the board after a west, 〈W 〉, movement.

Definition 2.2 (Knitting). The row between the BL and TL section is the knitting row. Knitting is the
act of performing 〈W 〉 movements when every position of the knitting area is occupied by a tile. Thus,
tR maintains its position.

Definition 2.3 (Counts). Given a tilt system board configuration S = (B,T), a tile tR ∈ T with location
(r, c), and the target empty column Ec. Define the count of a row k as follows.

Count(k, tr,c) =


|{ti,j : ti,j ∈ T, i = k, 1 ≤ j < c}|, if k > r (rows above tR)

|{ti,j : ti,j ∈ T, i = k, 1 ≤ j ≤ c}|, if k = r (tR row),

|{ti,j : ti,j ∈ T, i = k, 1 ≤ j < Ec}|, if k < r (rows below tR)

This basic framework leads to two important lemmas (2.5 2.6). The algorithm will ensure that one
of these is eventually met. The basic idea is Algorithm 1.
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(g) Reducing tiles

Figure 1: (a) The board is an n × n square divided into 6 sections based on the tile to relocate. The
four large sections are the Top Left (TL), Top Right (TR), Bottom Left (BL), and Bottom Right (BR)
sections. There is also the knitting area (outlined in blue) and the tile to relocate (red dot). When
we move to general relocation, there will also be a target spot (red square). (f) Tiles that enter the
BR section after D movements are included in NR. If the empty column is occupied by a tile after
D movement (i.e., it becomes non-empty), then every tile between the empty column and the next
empty column (shown in red) are also added to NR. Reducing the number of tiles in H is done by 〈W 〉
movement. (g) Tiles in H that lead towards another tile beneath it are removed from H.

2.1 Changing the Knitting Row

If neither condition in the lemmas is satisfied, we cannot knit with the tiles in the knitting row. Define
the candidate row as the closest row in the TL section with a count higher than the knitting row.

Definition 2.4 (Candidate Row). Given a tilt system board configuration S = (B,T) and a tile tR ∈ T
at location (r, c). The knitting row may contain up to c − 1 tiles. The closest row (fewest south, 〈S〉,
movements) in the TL section with a count higher than the knitting row is the candidate row.

Lemma 2.5. [Existence] If the count of the knit-
ting area is greater than the counts of the lower
section, then first row relocation is possible.

Lemma 2.6. [Nonexistence] If there exist a count
in the bottom sections that is larger than every
count in the TL section and knitting area, then first
row relocation is impossible.

Result: First Row Relocation
while Lemmas 2.5, 2.6 are unsatisfied do

Determine Ec and counts for each row;
if Lemma 2.5 is satisfied then accept;
if Lemma 2.6 is satisfied then reject;
Set candidate row CR;
Move CR to be the new knitting row;
Algorithm 1: High Level Idea

If we make any movements, we may introduce new tiles that must be considered. We look at new
tiles that may enter the BL section (NL) and tiles that may enter in the BR section (NR).

We include the set of tiles in TR that are at most D distance (with 〈S〉 moves) from the BR that
increase the counts of the bottom rows (Figure 1f). The BR and TR sections may change if tR moves.
If Ec has tiles after D movements, then we change Ec to the correct column. All tiles that enter the last
row after D movements to the left of the new empty column are included in NR. Let H be the set of
all tiles in either the TL or BL section that are within D 〈S〉 movements from the first row. With 〈W 〉
moves, we may be able to reduce H (Figure 1g). When first row relocation is possible, the sequence
is WuSvW xSy and u, v, x, y must be determined, but are bounded by n. There are ≤ c − 2 possible
candidate rows, and at most n− r moves to bring any CR to the knitting row.

Theorem 2.7. First row relocation of tile tr,c ∈ T on an n×n board can be solved in O(cn+ c|T|) time.
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