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Abstract
Relocation in the square is the most basic open question related to the tilt model with unit moves
under global uniform movement. It is open even with limited directions. We prove that deciding if a
piece can move to the bottom row with only two directions is in P and gives the minimum column.
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1 Introduction

Tilt assembly with uniform global instructions is currently a popular area of research since individually
controlling nanobots may be infeasible or impractical at certain scales. One of the most basic open
questions in the single step tilt model with uniform global movements is whether a tile can be relocated
to specific location on the board (Figure la) even without any blocking geometry. We solve a simpler
version of this problem asking whether, with only two directions, a tile can reach the bottom row.

Given a tilt system with an n x n board B, a set of tiles T = {t1,...t,,} where each t; = (4,7) s.t.
1<li<m,1<i<n,and 1 <j < n. Given ¢;,t; € T, t; #t; if i # j. For shorthand, we use ¢; ; for
t; = (i,7). For just the row or column, we may use ¢;, and ¢; . See [1-3] for model and related work.

Definition 1.1 (First Row Relocation). Given a specific tile to relocate tg at location (r,¢) = (tg,,tr, ),
the first row relocation problem asks whether a series of transformations can translate tg s.t. tg, = 1.

2 High Level Overview

In order for tile tg to reach the bottom row, there must not be any other tiles beneath it. We first find
the empty column needed, and then, through a process termed knitting, we attempt to move the empty
column beneath tgr. We also label the board with sections (Figure 1la). See Figure 1b for examples of
the empty column. We then label the rows with counts of tiles that may affect relocation (Figure 1c).

Definition 2.1 (Empty Column E.). Given a tilt system board configuration S = (B, T) and tile
tr = (r,c) where tg € T, define E, =min{k : c < k <n+1st. |{t;; :t;; € T,i <r,j=k} =0} If
all columns in the BR section have tiles, E. = n + 1 and enters the board after a west, (W), movement.
Definition 2.2 (Knitting). The row between the BL and TL section is the knitting row. Knitting is the

act of performing (W) movements when every position of the knitting area is occupied by a tile. Thus,
tr maintains its position.

Definition 2.3 (Counts). Given a tilt system board configuration S = (B, T), a tile tg € T with location
(r,c¢), and the target empty column E.. Define the count of a row k as follows.
Htij:tijeTi=k1<j<c}, ifk>r (rowsabovetg)
Count(k,t,c) =S |{ti;:ti; €T,i=k,1<j<c}, ifk=r (tgrow),
Htij:tij; € Tyi=k,1<j<E:J}|, if k<r (rows below tg)

This basic framework leads to two important lemmas (2.5 2.6). The algorithm will ensure that one
of these is eventually met. The basic idea is Algorithm 1.
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Figure 1: (a) The board is an n x n square divided into 6 sections based on the tile to relocate. The
four large sections are the Top Left (TL), Top Right (TR), Bottom Left (BL), and Bottom Right (BR)
sections. There is also the knitting area (outlined in blue) and the tile to relocate (red dot). When
we move to general relocation, there will also be a target spot (red square). (f) Tiles that enter the
BR section after D movements are included in Ng. If the empty column is occupied by a tile after
D movement (i.e., it becomes non-empty), then every tile between the empty column and the next
empty column (shown in red) are also added to Nr. Reducing the number of tiles in H is done by (W)
movement. (g) Tiles in H that lead towards another tile beneath it are removed from H.

2.1 Changing the Knitting Row

If neither condition in the lemmas is satisfied, we cannot knit with the tiles in the knitting row. Define
the candidate row as the closest row in the TL section with a count higher than the knitting row.

Definition 2.4 (Candidate Row). Given a tilt system board configuration S = (B, T) and a tile tg € T
at location (r,c¢). The knitting row may contain up to ¢ — 1 tiles. The closest row (fewest south, (S),
movements) in the TL section with a count higher than the knitting row is the candidate row.

Lemma 2.5. [Existence] If the count of the knit- Result: First Row Relocation

ting area is greater than the counts of the lower while Lemmas 2.5, 2.6 are unsatisfied do

section, then first row relocation is possible. Determine E. and counts for each row;
if Lemma 2.5 is satisfied then accept;

Lemma 2.6. [Nonexistence] If there exist a count if Lemma 2.6 is satisfied then reject;

in the bottom sections that is larger than every Set candidate row CR;

count in the TL section and knitting area, then first Move CR to be the new knitting row;

row relocation is impossible. Algorithm 1: High Level Idea

If we make any movements, we may introduce new tiles that must be considered. We look at new
tiles that may enter the BL section (Np) and tiles that may enter in the BR section (Ng).

We include the set of tiles in TR that are at most D distance (with (S) moves) from the BR that
increase the counts of the bottom rows (Figure 1f). The BR and TR sections may change if ¢tz moves.
If E. has tiles after D movements, then we change FE. to the correct column. All tiles that enter the last
row after D movements to the left of the new empty column are included in Ni. Let H be the set of
all tiles in either the TL or BL section that are within D (S) movements from the first row. With (W)
moves, we may be able to reduce H (Figure 1g). When first row relocation is possible, the sequence
is W*SYW?*SY and u, v, z,y must be determined, but are bounded by n. There are < ¢ — 2 possible
candidate rows, and at most n — r moves to bring any C'R to the knitting row.

Theorem 2.7. First row relocation of tile t,. € T on an nxn board can be solved in O(cn+ c|T|) time.
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