
REV: A Video Engine for Object Re-identification
at the City Scale

Tiantu Xu
Purdue University

Kaiwen Shen
Purdue University

Yang Fu
UIUC

Humphrey Shi
UIUC

Felix Xiaozhu Lin
University of Virginia

Abstract—Object re-identification (ReID) is a key application
of city-scale cameras on the edge. It is challenged by the limited
accuracy of vision algorithms and the large video volume. We
present REV, a practical ReID engine that builds upon three new
techniques. (1) REV formulates ReID as a spatiotemporal query.
Instead of retrieving all the images of a target object, it looks
for locations and times in which the target object appeared. (2)
REV makes robust assessment of the target object occurrences
by clustering unreliable object features. Each resultant cluster
represents the general impression of a distinct object. (3) REV
samples cameras strategically in order to maximize its spatiotem-
poral coverage at low compute cost. Through an evaluation on 25
hours of videos from 25 cameras, REV reached a high accuracy
of 0.87 (recall at 5) across 70 queries. It runs at 830× of video
realtime in achieving high accuracy.

Index Terms—camera networks, vehicle re-identification

I. INTRODUCTION

City-scale camera networks: a key edge application As
video intelligence advances and camera cost drops, city cam-
eras expand fast [31], [12]. Camera networks are considered as
an important edge application [27]; edge servers are often the
ideal platforms for processing camera videos, as transmitting
the videos to data centers is often expensive. Being strategi-
cally deployed near key locations such as highway entrances
or road intersections, multiple cameras (2–5 per location
as reported [59], [46]) offer complementary and overlapped
viewpoints of scenes.
Object ReID on city videos A key application of city cameras
is object re-identification (ReID): given an input image of an
object X, search for occurrences of X in a video repository.
ReID has been an important computer vision task, seeing
popular use cases such as criminal investigation and traffic
planning [35], [46], [47]. Many ReID algorithms are proposed
recently as fueled by neural networks [71], [57], [69], [72],
[14], [58], [23], [13]. Object ReID over city videos is typically
“finding a needle in a haystack”. The videos to be queried
are long and produced by many cameras. The videos may
not contain the input image or any images from the camera
that produced the input image (called the origin camera). The
occurrences of the target object can be rare and transient. For
instance, in a popular dataset of city traffic videos [59], 99%
of distinct vehicles only appear for less than 10 seconds.
A common pipeline for ReID is shown in Figure 1: 1 given
an input image of target object X, the pipeline extracts its fea-
ture, e.g., using ResNet-152 [19] to extract a 1024-dimension
vector [58], [23]; 2 from the queried videos, the pipeline

Detect objects
from queried
videos

Extract
features

An image of
target

f1 = [-,-,-]
…
fN= [-,-,-]

Ftarget = [-,-,-]
Compare
Similarity

User

Ranked results

… 1
Extract
input

feature

2

3

4

…A repo of city videos

Fig. 1: The classic pipeline for object ReID, which formu-
lates ReID as an image retrieval task

detects all bounding boxes belonging to the same class as
the target, e.g., using YOLOv3 [55]; 3 the pipeline extracts
the features of all detected bounding boxes; 4 it calculates
pairwise similarities between X and the bounding boxes. The
similarity is often measured as feature distance [45], where a
shorter distance suggests a higher similarity between X and
a bounding box. Of the four stages, stage 2 and stage 3
are the most expensive. For instance, extracting features in
stage 3 is three orders of magnitude slower than calculating
feature distance in stage 4 . The cost of stage 2 and stage
3 further grows with the amount of videos. This pipeline

structure is widely used, e.g., by almost all participants in
popular vehicle ReID challenges [23], [58], [43].

Proliferating ReID algorithms call for practical ReID sys-
tems. Our driving use case is vehicle ReID, where identifiably
personal information such as license plates are intentionally
blocked for privacy [59]. Vehicle ReID is one of the most
important ReID problems [47]. The solutions are likely trans-
ferable to other object classes for ReID.

Challenge 1: Limitations of modern ReID algorithms By
its definition, ReID focuses on differentiating objects of the
same class, e.g., vehicles. The inherent difficulty is that in
real-world videos, many objects of the same class exhibit
only subtle visual differences. Meanwhile, bounding boxes of
the same object that are captured by the same or different
cameras, may appear quite different. As a result, ReID can
be challenging even to human eyes, let alone algorithms. As

Section II will show, state-of-the-art vision algorithms may
deem bounding boxes of different objects more similar than
bounding boxes of the same object. Even with a cascade
of expensive NNs without considering execution speed, the
mean average precision (mAP) accuracies of vehicle ReID are
only 0.70–0.85 [58], [23], [20], [43], [59]. In other words, a
substantial fraction of bounding boxes returned by ReID is
the false positive. This suggests that ReID is much harder
than other popular vision tasks, e.g., modern object classifiers,
which can achieve accuracy of near 99% [51]. Any practical
ReID system shall manage the algorithm limitations explicitly.

Challenge 2: Many cameras, expensive processing Recent
city deployment reported 2-5 cameras per traffic intersection
[59], [46] and 60–500 intersections per square mile in urban
areas [11]. Hence, a query covering a few square miles needs
to process videos from a few hundred, if not a few thousand,
cameras. Modern ReID has an insatiable need for resources.
For example, a ∼$3,000 NVIDIA Titan V GPU, detects
bounding boxes with YOLOv3 [55] at up to only 45 FPS. The
same GPU extracts features with ResNet-152 at ∼90 bounding
boxes per second. To process city videos from a square mile in
a day, at least a few hundred GPU hours are needed. This cost
quickly becomes prohibitive as camera deployment and query
scope further expand. Simply using cheap vision operators
does not solve the problem, as we will show in the paper.

REV We present REV, a practical ReID system that over-
comes algorithm limitations, optimizes for resource efficiency,
and provides useful ReID answers. REV centers on two
insights.

• No need to label all bounding boxes correctly: Instead
of searching for all occurrences of a target, REV focuses on
what users care about: times and locations in which the target
appeared. This allows REV to derive robust query answers out
of unreliable features of individual bounding boxes.

• Better to know a bit from many cameras than know-
ing much from a few cameras: Prior work often exploits
resource/quality tradeoffs within a video stream, e.g., tuning
frame resolutions, rates, and cropping factors [67], [32], [21],
[65], [28]. By contrast, REV focuses on tradeoffs in camera
sampling. This is because on city-scale ReID: (1) cameras
in different locations provide extensive spatial coverage; (2)
cameras near the same location provide complementary view-
points. As a result, processing more cameras is almost always
favorable than processing more pixels from one camera.

With the insights, REV has three noteworthy designs.

Key design 1: ReID as spatiotemporal queries While prior
research treats ReID as image retrieval – search for every
bounding box of a target object X [26], [27], [23], [58], we
formulate ReID as a spatiotemporal query: search for times
and locations in which object X appeared. REV organizes all
videos in spatiotemporal cells. Each cell comprises video clips
captured by cameras near a geo-location during a time window.
REV answers a query with a short list of spatiotemporal cells
that are most likely to contain the target object. The user

reviews the returned cells and makes the final assessment.

Key design 2: Approximating distinct objects with cluster-
ing All objects captured by a camera are heavily impacted
by the camera’s posture, including its position and orientation.
They are also impacted by random visual disturbance, includ-
ing occlusion and background clutter. REV minimizes the two
impacts. It samples co-located cameras, looking for camera
postures that match the origin camera. It clusters bounding
boxes, mitigating the random visual disturbance. Each resul-
tant cluster thus represents the collective “impression” of a
distinct object by the cameras. Clustering has been a classic
algorithm for data processing [30] and vision [21]. REV gives
it a novel use that derives robust ReID answers out of sparse
video frames and unreliable object features.

Key design 3: Incremental search in spatiotemporal cells
To tame the processing of videos in numerous spatiotemporal
cells, REV hinges on its camera sampling strategy. It avoids
processing redundant video contents as much as possible while
exploiting diverse camera postures as needed. To do this, REV
starts executing a query by sampling a minimum number of
cameras to estimate the promises of all cells, i.e., how likely a
cell contains the target object. As the query progresses, REV
spends resources on cells where the discovery of the target
occurrences is most likely. Based on the processing results,
REV updates cell promises and re-prioritizes the cells, which
guide the remaining query execution.

We implement and evaluate REV on a dataset of 25 hours
of videos from 25 cameras. On 70 queries with diverse target
objects, REV delivers high accuracies: recall at 5 of 0.87 and
recall at 10 of 0.91 on average. REV is fast: its output con-
verges to high accuracy in 108.5 seconds and 105.1 seconds on
average, which are 830×–856× of video realtime. Compared
to competitive baselines, REV reduces query delays by up to
6.5×. Our evaluation further validates REV’s optimizations
that exploit the knowledge of camera deployment.

Contributions We made the following contributions.

• Towards a practical and resource-efficient ReID system,
we advocate a new approach: focusing on finding relevant
spatiotemporal cells rather than individual object occurrences.

• We present to cluster unreliable features of bounding boxes.
As approximations of distinct objects, the resultant clusters ef-
fectively overcome the limitation in ReID algorithm accuracy.

• We present an incremental search algorithm for spatiotem-
poral cells. This algorithm exploits diverse camera viewpoints
while minimizing the processing of redundant videos.

• We report REV, a first-of-its-kind ReID system that embod-
ies the above ideas and works on large video repositories.

Ethical considerations All visual data used is from the
public domain; no information traceable to human individuals
is collected or analyzed.

II. MOTIVATIONS

A. System model

Queries & videos REV targets retrospective queries: at
the query time, all videos are already stored in a central
repository, which complements and is orthogonal to real-
time processing [27]. We assume a large repository of videos
from geo-distributed cameras. Preprocessing at ingestion, i.e.,
as videos are being captured, is optional, as permitted by
compute resource. At ingestion time, the system knows the
object classes that will be queried, e.g., cars; the system does
not need to know the input images to be used for queries.
Hence, preprocessing must be agnostic to specific queries.
Retrospective queries can be latency-sensitive because human
analysts in the loop, e.g., a crime investigation before the
criminal flees. This motivation is shared by many existing
video systems [21], [32], [65] .

A query includes an input image of the target object X
and the scope of videos to be queried. Following the norm
in ReID research [57], [72], [14], [58], [23], [13], we do not
assume that the query provides additional information about
the image’s timestamp or which camera captured the image;
we do not assume the video repository contains the input
image; we do not assume any other images from the origin
camera is available.
Camera Deployment Our base design is based on the
following assumptions. The deployment spans multiple geo-
locations. At each location, multiple cameras are co-located
as a geo-group. The query system knows which cameras are
co-located, i.e., belonging to the same geo-group. Of the
same geo-group and during a short period of time, e.g., tens
of seconds, cameras are likely (although not necessarily) to
capture similar sets of objects from different viewpoints. These
assumptions hold for popular city video datasets, as shown
in CityFlow [59], where camera locations (the arrow tails),
camera orientations (the arrow directions), and camera IDs
(the numbers) are clearly annotated in their Figure 2.

Beyond the above, a query system may have deployment-
specific knowledge, including quantitative camera postures
and correlations across camera geo-groups, e.g., “one object
appearing in geo-group A has 50% chance to reappear in
geo-group B within the next 10 minutes”. To exploit such
knowledge, we augment our base design with a series of
optimizations to be presented in Section VI.

B. Challenge 1: Algorithm limitations

Observation: unreliable features Figure 2 compares the
features of a target vehicle A and a confusing vehicle B. The
features are extracted by ResNet-152, a state-of-the-art neural
network. Given an image of vehicle A: (1) ResNet-152 deems
10% of B’s bounding boxes exhibit shorter feature distances
than A’s bounding boxes, hence are more similar to the input
image; (2) the bounding box most similar to the input image
is from the confusing vehicle B but not A; (3) the features of
bounding boxes of the same vehicle show a high variation, as
reflected by the wide range of the feature distances. The above

Target: vehicle A
Cam 29

o

f
b

o
u

n
d

in
g

b
o

xe
s

o

f
b

o
u

n
d

in
g

b
o

xe
s

Distance to the input

The box w/
shortest distance

Vehicle A on Cam 30

Vehicle B on Cam 32

Cluster
centroid

Cluster
centroid

Fig. 2: Examples of unreliable bounding boxes. Left: an
image of vehicle A, whose feature is the input. Top: a
histogram of distances between the input and other features
of A. Bottom: a histogram of distances between the input and
features of B, a confusing vehicle. All features are 1×1024
vectors extracted by ResNet-152. Euclidean distances with L-
2 norm [45] are used. Video clips: 4.7/4.9 seconds for vehicle
A/B from CityFlow [59]

example of unreliable features is not isolated: they are the
major hurdle for ReID accuracy. Our experiment will show that
they are the major cause of low query accuracy (Section VII).

Causes of unreliable features Ideally, a ReID system should
learn an object’s inherent characteristics, e.g., its color, shape,
skeleton, and key points, and match them to the input. Yet,
a camera’s actual observation is affected by the camera’s
posture and the transient disturbances occurred to objects as
they move, e.g., changes in size and viewpoint, background
clutter, and occlusion. Hence, classic ReID pipelines that aim
at labeling each bounding box are heavily affected by the
aforementioned factors. The pipelines cannot achieve high
accuracy because it cannot eliminate the impacts.

C. Challenge 2: Numerous cameras & videos

Colossal data volume A city camera generates more than
6 GBs of videos daily (720P at 1FPS). Estimated from
recent reports on camera deployment in northern American
cities [46], [59], [11], the number of city cameras per square
mile ranges from a few hundred to a few thousand. A ReID
query covering only a few square miles and one day of videos
will have to consume PBs of videos.

Expensive vision operators Extensive work uses neural
networks (NNs) for ReID, advancing the accuracy steadily [62]
on public datasets [15], [70]. For instance, recent operators
cascade multiple NNs, each detecting a separate set of vehicle
features, e.g., orientations or roof types. The additional NNs
are reported to improve accuracy (mAP) by 10% at the cost

of 7× overhead [58], [22]. We estimate that they run no more
than 15 FPS on a modern GPU.

Would cheaper operators help? Cheaper NNs and vision
primitives were used in detecting object classes as tradeoffs
between accuracy and cost [32], [21], [64], [6]. Yet, they
are unlikely remedies to ReID. This is because ReID tasks
require to differentiate objects of the same class, and cheap
operators simply do not offer surplus accuracy for systems
to trade off. We have evaluated the option of two cheap
vision primitives, RGB histogram [48] and SIFT [41]. RGB
histograms are highly volatile to changes in lighting conditions
and background clutter; SIFT captures various local features,
which is much less reliable compared to global features
extracted by modern NNs, while not significantly faster than
the latter. Section VI will present more details.

D. Why is prior work inadequate

Computer vision research typically treats ReID as an image
retrieval task [71], [58], [22], [43]. Aiming at finding all
bounding boxes of a target object, computer vision studies
focus on improving accuracy without considering query speed
or efficiency much. However, retrieving every bounding box
would miss the opportunities in answering spatiotemporal
queries with much lower delays.

Existing ReID systems are often designed for and evaluated
on smaller camera deployment, e.g., 8 cameras over a univer-
sity campus [15]. They lack mechanisms for processing city-
scale videos. Many designs work around the vision algorithm
limitations by relying on deployment-specific knowledge, e.g.,
strong spatiotemporal correlations across cameras [27], knowl-
edge of object trajectories [8], road coordinates, and vehicle
transition patterns [60]. It is unclear how well such assump-
tions universally hold for city-scale deployment. By contrast,
our design is more generic as it only requires information
from video frames and can nevertheless optimize queries with
additional information as they become available (Section VII).
Spatiotemporal databases are designed for managing object
trajectories, e.g., airplane movements and human movement,
and answering queries about them [24], [10], [2], [50],
[52]. They ingest structured data, e.g., sequences of GPS
coordinates; they cannot ingest unstructured video data and
recognizes object occurrences as REV does. The output of our
system can be the source of a spatiotemporal database.

III. SYSTEM OVERVIEW

REV organizes all videos in a repository in spatiotemporal
cells, where a cell <L, T> comprises video clips captured by
cameras near a geo-location L during a time period T . To
query for a target object X, a user submits an image of X.
REV answers the query with a short list of spatiotemporal
cells ranked by their likelihood of containing the target object
X. Alongside each returned cell, REV presents video clips
and annotates the bounding boxes likely to be of X. While
executing a query, REV keeps updating the rank based on its
video processing progress.

Location A
Cam A1

Cam A2*
Cam A3

A cell

Location B
Cam B1

Cam B2*
Location C

Cam C1*
Cam C2

Clusters of bounding boxes

Input image

Video footage

Cell Promise

Location C, 10:30:00 .95

…

Location B, 10:30:30 .90

Location A, 11:10:30 .80

…

10:30:00 10:30:30 10:31:00

Top k cells

Sample
additional
cameras

3

2

4

5

1

1

1

Fig. 3: An overview of REV. (* indicates a starter camera)

To answer spatiotemporal queries, REV does not have to
find all appearances of the object, which can be costly if
at all possible. Instead, REV focuses on finding a cluster of
object appearances and uses the cluster to identify potential
times/locations that are likely to contain the target object,
which is much more robust and efficient.

We design REV as a recall-oriented system [4], seeking to
find all positive cells and rank them to the top. As such, REV
minimizes human efforts in analyzing videos. We do not intent
REV to replace humans because vision algorithms cannot (yet)
substitute human assessment on real-world videos. The same
spirit is seen in other popular recall-oriented systems, e.g.,
search for legal documents or patents [3], [5], where final
decisions from humans are vital.

Video ingestion At ingestion time, REV pre-processes videos
captured by a small number of cameras. The processing is
optional, as permitted by REV’s compute resource. The pre-
processing detects objects of interesting classes (e.g., vehicles)
on the selected cameras and extracts their features; it is
oblivious to any specific input image. At ingestion time,
REV also profiles videos, which is a common practice of
video systems [21], [27], [64], [63]. It periodically samples
videos from each camera to train parameters for clustering
bounding boxes and for sampling cameras. We will discuss
these parameters in Section IV and Section V. The profiling is
light, processing 30 seconds of every 1-hour video and taking
less than 10 seconds on a modern GPU.

Executing a query As shown in Figure 3, REV searches all
cells iteratively; it processes videos from additional cameras
in an incremental fashion. It starts by sampling from all
cells in the query scope. The initial sampling is brief, as
REV only processes a small fraction of video footage from
selected cameras (dubbed “starter cameras”) 1 . From the
sampled video of a cell, REV detects distinct objects out of
unreliable bounding box features; it does so by clustering these
features. Each resultant cluster represents a distinct object,
where the cluster’s centroid is an approximation of the object’s

true feature 2 . REV ranks all the cells by their promises,
which are estimated as the similarity between a cell’s objects
and the input image 3 . REV emits the ranked cells as the
query results to users, who review the top ones 4 . For the
remaining cells yet to be decided, REV processes videos from
additional cameras and uses the results to update the cell rank
continuously 5 . A query is terminated by users when they are
satisfied with the current results, or by REV when it finishes
processing all videos in the query scope.

REV will not miss any target object – if a query is executed
to completion, all videos will be searched. REV is designed
to reduce the latency of finding the target object, a goal valid
even in offline search. REV has a number of hyper-parameters
as many ML systems do. Fortunately, REV’s performance
is less sensitive to these hyper-parameters as we measured
(Section VII-E). Furthermore, REV may continuously update
its hyper-parameters as it runs.
Limitations REV inherits the statistical nature of its under-
pinning ReID algorithms, notably neural networks. While REV
delivers high-confidence results, e.g., our results show that on
more than 70% of queries, it ranks all the true cells among
the top 5 (Section VII), it cannot provide sound guarantees.
Similarly, although REV’s output accuracy often quickly con-
verges as it executes a query, there is no guarantee on the
convergence rate. Our expectation is that users review the top
k cells to confirm the target object’s existence; they entrust
REV on the remaining unreviewed cells, being comfortable
with the level of confidence that REV provides. However, in
case they want to be absolutely certain that no true cells are
left out of the top k, they would need to inspect all the videos.

IV. CLUSTERING BOUNDING BOXES

A core mechanism of REV is to recognize distinct objects
from bounding boxes and compare the recognized objects to
the input image. The mechanism serves two purposes:
• Working around the unreliable features of bounding boxes,
which addresses the algorithm limitation of feature extractors.

• Tolerating low frame rates of videos, which allows REV to
maximize the camera coverage in query execution.

Clustering similar bounding boxes Bounding box features
as captured by cameras are subject to sudden or graduate
disturbance. For example, as a vehicle travels towards or away
from a camera, the size of its bounding box changes; the view
angle may change; it may be occluded by obstacles such as a
light pole; its background may be intruded by other vehicles.

Disturbance to bounding box features is difficult to model
and eliminate in general. Fortunately, if we consider similar
bounding boxes in consecutive video frames (even if they
are sparse in time), the feature disturbances due to graduate
impacts are likely to smooth out, and the outlier features due
to sudden impacts can be removed from consideration.

To this end, REV clusters object features based on their
similarities. The similarity, for instance, can be measured by
Euclidean distances across 1024-dimension feature vectors. As
a result, each cluster represents a camera’s general impression

0%

20%

40%

60%

80%

100%

10 5 2.5 2 1 0.5

Clustering Tracking

Pe
rc

en
ta

ge

Frame Per Second (FPS)

Fig. 4: Clustering bounding boxes tolerates low frame
rates. Y-axis: the percentage of bounding boxes correctly
attributed to respective objects. Object tracking implemented
in OpenCV 3.4.4. Videos from CityFlow [59]

of a distinct object during a given time window. The cluster’s
centroid is an approximation of the camera’s true observation
of the object. REV’s clustering is novel in that it overcomes
the accuracy limitations on individual bounding boxes for
ReID. It differs from prior work [21] that uses clustering
for processing efficiency, e.g., to avoid processing similar
objects. Figure 2 showcases why clustering is useful. Once
we cluster the respective bounding boxes of the two vehicles,
the centroids distances (solid vertical lines) are much more
robust indicators of object similarity, suggesting the general
impression of vehicle A is much closer to the input image.

Predicting the number of distinct objects (k) REV runs
k-means clustering within each spatiotemporal cell. By min-
imizing the sum of intra-cluster variances across all clusters,
k-means thus puts most visually similar objects in the same
cluster. k-means guarantees convergence to local optimum and
is known robust to outliers [33]. We also tested other popular
clustering methods, e.g., hierarchical clustering. We find them
less favorable. For instance, they often attribute bounding
boxes of the same object to separate clusters.

As a prerequisite for applying k-means, REV must specify
k as the number of distinct objects in each video clip. An
accurate k is crucial to the clustering outcome. REV predicts k
based on a simple intuition: of a given video scene, the distinct
vehicle number is correlated to the spatial density of bounding
boxes. Therefore, REV only needs twofold information to
predict k: (1) x1, the number of bounding boxes detected in
the video clip; (2) x2, the number of frames that contain non-
zero objects. Such information is already available from object
detection (the ReID stage that precedes feature extraction),
as described in Section I. From x1 and x2, REV further
derives three variables as different orders of the box/frame
ratio: x3 = (x1/x2)2, x4 = (x1/x2), and x5 = (x2/x1).

We formulate a regression model: k = ax + b. The model
takes as an input x = [x1, x2, x3, x4, x5] which consists of
variables above; its parameters are a vector a and a scalar b.
We instantiate one shared model for all cells, for which we
train a and b offline in one shot on 30-second labeled videos.

Tolerance of low frame rates k-means clustering is robust
to low frame rates. As a comparison, we have investigated
object tracking. We find that object tracking demands a much
higher frame rate than clustering in order to estimate trajectory

with good accuracy. Figure 4 shows an experiment. As the
frame rate drops to below 2.5 FPS, object tracking quickly
loses accuracy to become barely useful. By contrast, k-means
still maintains high accuracy of over 90%. Object tracking
also suffers from other difficulties, e.g., differentiating nearby
objects that move along similar trajectories [1].

The experiment also shows that increasing the frame rate
for clustering leads to a diminishing return. When the frame
rate increases from 1 FPS to 10 FPS, the clustering accuracy
improves by less than 3%. This supports our principle: prior-
itizing camera coverage over video fidelity.

V. INCREMENTAL SEARCH IN SPATIOTEMPORAL CELLS

The search mechanics address two questions. (1) How likely
does a cell contain the target object? (2) For which cells REV
should process videos from additional cameras?

A. Assessing cell promises

REV quantifies the likelihood of a cell containing the target
by promise: a cell shows high promise if any object in this cell
is similar to the input image. Promise reflects the following
rationale: due to the rarity of the target object occurrences, a
cell is promising as long as any camera has captured any object
that is sufficiently similar to the input image. Such a cell is
more likely to contain the target than another cell with many
objects somewhat similar to the input. We define the single-
camera promise for a cell C as psingle(R,C), which is the
promise REV perceives assuming it only processes one video
clip from camera R. psingle is reciprocal to the smallest feature
distance between the input and any centroid of object clusters
from the video clip, i.e., psingle(R,C) = 1/min(dist(X, o))
where X is the feature of target object and o is the centroid of
any object features cluster. REV further maintains the overall
promise for C as the highest of single-camera promises of C .

B. Prioritizing cells in search

A cell’s promise reflects the single object most similar to the
input. The metric, however, is inadequate for REV to decide
whether additional cameras are worth sampling for a cell.
Instead, REV needs to track the accumulated findings for the
cell and the accumulated search efforts spent on the cell. For
instance, if REV has sampled a large fraction of cameras for
a cell already but only discovering objects with low similarity
to the input, REV should consider prioritizing other cells.

REV maintains the cells in the following categories:
• Green cells: REV has collected enough – though not nec-
essarily all – evidences for them, and predicts them likely to
contain the target object. Sampling from additional cameras is
unlikely to change this assessment.

• Red cells: REV has collected enough evidences and predicts
them unlikely to contain the target object. Sampling from
additional cameras is unlikely to change this assessment.

• Gray cells: the existing evidences are insufficient. Sampling
from one or a few cameras will likely turn a cell to red or
green. Just like how humans would decide on a suspicious cell,
REV will request additional video from a different viewpoint.

The search plan All cells begin in gray. REV starts from
processing videos for the the gray cells which are undecided,
to the green cells (to refine their rank of presentation to the
user), and then to the red cells (in the unlikely event that any
true cells fall into this category). Based on the new processing
results, REV moves cells across categories, as will be discussed
below. REV exhausts all cells in a category before moving to
the next category. In each category, REV always processes the
cell that has the highest overall promise.

Categorizing cells with camera votes To categorize a
cell C , REV incorporates observations from multiple cameras
by voting. The voting mimics how humans would make a
collective decision. REV quantizes all single-camera promises
with two thresholds, Phigh and Plow. A camera with promise
p > Phigh casts a high-confidence vote with a weight of 1;
a camera with promise Phigh < p < Phigh casts a medium-
confidence vote with a weight of 1/k. k controls the relative
weights of high and medium confidence votes. In the current
implementation, we set k = 2. As a result, REV moves a cell
to the green category if one camera casts a high-confidence
vote or two cameras cast medium-confidences votes.
Phigh and Plow depend the tradeoff between refining exist-

ing results and exploring for new results. A lower Phigh would
eagerly put cells in green, postponing sampling of additional
cameras for them until much later. By comparison, a higher
Phigh would be lazier in moving a cell to green.

We set Phigh high so that REV tends to refine the rank
of promising cells. This is because we expect users to only
inspect several top cells; it is thus vital to aggressively
push the true cells to this small range. Based on the same
rationale, we tune Plow to a low value in order to admit
more cells to the gray category. In our implementation, we
set Phigh = 1/dshort, where 99% of the bounding boxes with
feature distance shorter than dshort indeed belong to the same
vehicle. We set Plow = 1/dlong, where 99% of the bounding
boxes that belong to the same vehicle have feature distances
shorter than dlong. We will evaluate their sensitivity.

C. Putting it together: the query execution flow

Stage 1: Initial sampling of cells REV starts a query by
processing one starter camera for each cell in the query scope.
Based on videos from the starter cameras, REV recognizes
distinct objects in each cell; for each recognized object, REV
derives their cluster centroids. In this stage, REV prioritizes
cells if there exists any heuristics on which cells are more
likely to contain the target object, e.g., video clips captured
during rush hours. REV uses a low video frame rate (1 FPS)
tolerable to the clustering algorithm (Section IV).

After processing the starter cameras for all cells in the query
scope, REV has assigned cells to their initial categories. The
cells in each category are ranked by their promises.
Choosing starter cameras. The starter camera choices matter
as they set the initial search direction. Ideally, the starter
cameras should be the ones most likely to have captured the
target from a viewpoint similar to the input image. In practice,

REV can exploit knowledge on camera deployment to pick
starter cameras, as will be described in Section VI. If such
prior knowledge is unavailable, our base design simply picks
cameras that have the highest density of distinct objects. The
heuristics is that such cameras will have higher chances of
capturing the target object. To do so, REV profiles each cam-
era’s density of objects offline and picks the starter cameras
ahead of the query. We evaluate REV’s sensitivity to the starter
camera choices in Section VII-E.
Pre-processing at ingestion. Stage 1 can be executed ahead
of queries because its processing is independent of specific
input images. Such pre-processing at ingestion is optional
and elastic. The number of starter cameras REV can process
depends on resources, e.g., the number of GPUs. REV pro-
cesses unprocessed starter cameras right after a query starts
and caches the results for future queries (Section VI).

We also consider the situation where ample resources are
available at ingestion. Is it worth pre-processing multiple
starter cameras per geo-group? Our experiments in Section VII
suggest diminishing returns. This is because a small number
of starter cameras properly chosen can already yield decent
estimations for cell promises and hence a good initial ranking.

Stage 2: Incremental search Based on the initial results
from starter cameras, REV may already have put some cells
in gray. Common causes include: the starter cameras never
captured the target vehicle; they captured the target vehicle
but from viewpoints significantly different from the input; they
captured a different but visually similar vehicle. REV resolves
these gray cells by sampling videos from additional cameras.

REV picks the next cells as follows. (1) It first looks for
unprocessed cameras for the highest-ranked gray cell. (2) If
REV has already processed cameras for all gray cells, it moves
to the highest-ranked green cell that still has unprocessed
cameras. (3) If all cameras for green cells are processed, REV
moves to red cells, hoping to find target object instances in
those cells missed out previously. After picking up the next
cell and processing one additional camera for it, REV updates
the cell’s category and re-rank all the cells. REV then picks
the next cell based on the updated categories and ranks.

VI. OPTIMIZATIONS

A. Exploiting prior knowledge

Picking starter cameras based on posture similarity If the
quantitative postures of deployed cameras are known to REV,
e.g., as part of per camera metadata, REV can pick the starter
cameras as the ones having postures most similar to the origin
camera, i.e., the camera producing the query image. To do so,
REV estimates the posture of origin camera in two alternative
ways: it can rely on a human analyst to annotate the posture,
which only requires annotating one image per query; it may
automate the estimation with vision algorithms. Section VII-F
will evaluate the former method.

Prioritizing cameras with complementary postures In our
base design, when REV samples a secondary or subsequent

of all cameras 25 Total video length 25 hours
of geo-groups 7 # of distinct vehicles 70
of total cells 3000 # of all bounding boxes ~1M
Time duration of a cell 30 secs

 TABLE I: The video dataset used in evaluation

camera for a cell, it picks a random one from the same geo-
group. If REV has prior knowledge of camera postures, it
can make more informed decisions. Following the selection
of the starter camera, REV picks the next camera as the one
that offers the most different viewpoint compared to the prior
camera, i.e., the N-th camera is always the camera that has
the largest viewpoint difference from the (N-1)-th camera.
Reusing states of previous queries REV speeds up a query’s
execution by reusing the states from prior queries on the same
videos. These queries may have different input images; they
could be fully or partially executed. The states include all
distinct objects recognized from the starter cameras, as well as
some of the bounding boxes, distinct objects, and features from
other cameras. To generate the initial ranking of cells, REV
may reuse the existing distinct objects; in incremental search,
REV may favor cameras for which partial results already exist.
Section VII-F will evaluate the idea.

B. Utilizing cheap vision operators

While our base design uses ResNet-152, we further inves-
tigate cheaper operators with lower accuracy in the following
ways. We will evaluate these techniques in Section VII-F.
Using cheap operators during ingestion for early rank-
ing When there are insufficient resources to execute the
“gold” ResNet-152, REV falls back to deriving a rough rank
of spatiotemporal cells to guide future incremental search
in cells [63]. The choices of pre-processing are rich, e.g.,
processing more starter cameras with cheaper operators or
processing fewer cameras with more expensive operators.
Using cheap operators to filter object instances REV clus-
ters the cheap features, discard unpromising object instances,
and only extract expensive features for the surviving bounding
boxes. Accordingly, it adjusts k to the number of surviving
clusters. Note that REV cannot cluster features from different
extractors, e.g., ResNet-50 and ResNet-152, because these
features are different object representations.
Cheaper operators in lieu of the gold operator We will
study REV’s query speed and accuracy in this situation.

VII. EVALUATION

We answer the following questions in evaluation:
§VII-B Can REV achieve good accuracy with low delays?
§VII-C Are the key designs useful?
§VII-D Does REV outperform prior alternative designs?
§VII-E REV’s sensitivity to its parameters and query inputs?
§VII-F How effective are REV’s add-on optimizations?

A. Methodology

Video Dataset An ideal video dataset for benchmarking
REV would: (1) comprise long videos produced by many

Loc A
Cam A1

Cam A2

Cam A3

… …

1 hour

Loc B
Cam B1

Cam B2

… …

…

Epoch i
(original)

Epoch i -1
(duplicated & post-processed)

Epoch i +1
(duplicated & post-processed)

Occurrence of the target vehicle Occurrences of other vehicles

Fig. 5: Augmenting real-world city videos [59] as our
test dataset: duplicating the original epoch; erasing random
vehicles from each epoch; erasing the target vehicle from all
but the original epoch.

cameras; (2) come from real-world deployment and capture
spatiotemporal patterns of vehicles; (3) provide vehicle labels
as the ground truth for accuracy evaluation. We prefer real-
world videos [59] over simulators such as VisualRoad [17].
This is because a simulator generates long animations based
on user-defined vehicle motions and camera postures, which
do not necessarily reflect real-world ReID challenges, e.g.,
object rarity, camera diversity, and disturbance.

We use CityFlow [59], a public video dataset that best
suits our needs. By NVIDIA for the AI City Challenge 2019,
the dataset consists of 5 scenarios, from which we select the
largest one (scenario 4). The video footage spans 30 minutes
in total, as captured by 25 cameras at 7 traffic intersections
(hence 7 geo-groups) of a northern American city. The footage
captures 17,302 vehicle bounding boxes belonging to 70
distinct vehicles. We downsample the videos to 1 FPS, a low
frame rate adopted in prior video systems [21], [32], [65].

We overcome a shortcoming of the CityFlow dataset [59]:
each of the videos lasts around 30 seconds on a camera; by
contrast, a real-world ReID query often spans video footage
of hours or days. Using short videos trivializes the query
execution: the number of spatiotemporal cells is small, and the
target object is not rare. We augment the dataset, extending
the video length while introducing minimum bias.

Our augmentation is shown in Figure 5. First, we duplicate
the original video clips to be many epochs, each comprising
video clips from all cameras. By doing so, we preserve the
spatiotemporal patterns of vehicle instances within each epoch.
Second, we remove a random fraction (0–1) of vehicles from
each epoch, erasing their bounding boxes from all the video
clips in that epoch. This diversifies the augmented videos over
time, preventing them from becoming repeated loops of the
original clips. Third, we ensure that target objects are rare and
difficult to find. For a query with an input image of target X,
we erase all X’s bounding boxes from duplicated epochs while
only keeping ones in the original epoch. We further exclude the
origin camera from the query scope. Our data augmentation
makes ReID more challenging: it extends the videos, diver-
sifies vehicle occurrences, and preserves true vehicle rarity.
Meanwhile, it preserves the vehicles’ spatiotemporal patterns.
The final videos used in the evaluation are summarized in

Table I. They span 25 hours, 1 hour per camera. Together, the
videos consist of 3000 cells of 30 seconds each and more than
1 million bounding boxes. Given a query, only 243 bounding
boxes on average (0.02% of all) belong to the target vehicle,
and 1.6 cells on average (0.5% of all) contain the target.

Query setup We test REV on 70 queries, each for one
distinct vehicle in the video dataset. A query contains one
vehicle image randomly selected from all bounding boxes of
the vehicle in the dataset. We then exclude the origin camera
from the query scope. As described in Section III, a query
does not specify the timestamp or the origin camera of the
input image, as opposed to prior work [27].

Environment REV runs on 12-core Xeon E5-2620v3 with
an Titan V GPU. REV detects vehicle bounding boxes
with YOLOv3 [55] and extracts their features with ResNet-
152 [19]. We train ResNet-152 on images from 329 dif-
ferent vehicles from 34,760 images from the datasets of
CityFlow [59] and Cars [34], with all vehicles used in the
evaluation excluded.

Accuracy Metric We measure a query’s accuracy with
recall at k, i.e., the fraction of all true cells included in the
top k output cells. True cells are the cells containing the
target object. Recall at k is commonly used in recall-oriented
systems, which focus on retrieving rare objects [3], [5]. By
setting k as low as 5, the resultant metric (recall@5) measures
the usefulness of query results – how likely a user finds true
cells by only reviewing the top 5 cells returned by REV. A
high value of recall at 5 means that REV successfully finds
most if not all true cells, since the true cells of most queries
(> 98% in our dataset) are fewer than 5. We also report recall
at 10, a more relaxed metric considering ranking true cells
among the top 10 as acceptable.

Note that precision, i.e., the percentage of true cells in the
top k cells, is not a suitable metric to REV. First, since users
only focus on a small set of top results returned by REV,
precision does not reflect the results quality or user efforts.
Second, the number of true cells varies across queries, making
precision less meaningful. Assume there is one true cell. Even
if REV ranks it as the top 1, precision@5 will be as low as
0.2. We are unaware of precision being used for other recall-
oriented queries, e.g., web or patent search.

Speed metric As REV keeps refining the rank of cells, we
report the delays for its output accuracy (recall at 5) to reach
accuracy goals: 0.25, 0.50, 0.75, and 0.99. We use eventual
accuracy to refer to the output accuracy after REV processes
all videos in the query scope. We measure delays only for
queries on which REV’s eventual accuracies meet or exceed
these accuracy goals. REV cannot meet high accuracy goals,
e.g., 0.99, on a small fraction of queries.

Counting distinct vehicles To predict the number of distinct
vehicles in each spatiotemporal cell, we trained the regression
model as in Section IV. On average, the predicted number of
distinct vehicles is only 6.5% different than the true number.

%
 o

f
Q

u
e

ri
e

s

(c) Ours vs NoSampleCluster(b) Ours vs NoSample(a) Ours vs NoCluster

Both achieve accuracy;
ours has higher delay

Both achieve accuracy;
both have same delay

Ours achieves accuracy;
alternative does not

Both achieve accuracy;
ours has lower delay

0.25

(65/70)

0.50

(64/70)

0.75

(50/70)

0.99

(50/70)

0%

20%

40%

60%

80%

0.25

(65/70)

0.50

(64/70)

0.75

(50/70)

0.99

(50/70)
0.25

(65/70)

0.50

(64/70)

0.75

(50/70)

0.99

(50/70)
Accuracy

Worse Tied Better

Fig. 6: Query-by-query comparison between REV and the alternatives, broken down by per-query comparison outcomes.
Numbers (X/Y) on bottom show accuracy goals: X = the number of queries on which REV reaches the accuracy goal; Y =
total query count.

B. End-to-end performance

Accuracy On most queries, REV achieves high eventual
accuracies. All 70 queries achieve an average recall@5 of 0.87.
Among them, 64 queries (91%) meet or exceed an accuracy
of 0.50; 50 queries (70%) meet or exceed an accuracy of
0.99. On the metric of recall@10: all 70 queries achieve an
average accuracy of 0.91; among them, 69 queries (99%) meet
or exceed an accuracy of 0.50; 58 queries (83%) meet or
exceed an accuracy of 0.99. Such accuracy achieved through
clustering is higher than what can be achieved on individual
bounding boxes, explained in Section IV. This validates that
clustering makes robust decisions based on unreliable features.

We manually inspect the six queries where the accuracy is
lower than 0.5, attributing the cause to the limitation of feature
extractors. For instance, when vehicle 262 is used as the input,
it is challenging even for humans to associate the input image
with all the 30 true bounding boxes. Not surprisingly, such
inputs confused the feature extractors.

Delays REV meets accuracy goals with moderate delays. In
querying 25 hours of videos on our single-GPU machine, REV
takes 59.5 seconds on average (stddev: 156.2, 90th percentile:
457.5) to reach an accuracy of 0.50, and 108.5 seconds on
average (stddev: 194.9, 90th percentile: 488.0) to reach 0.99.
Roughly, this speed is 830× of video realtime, i.e., 4.3 seconds
to perform ReID on each hour of videos.

C. Significance of key designs

We test several versions of REV with key designs off:
• NoCluster: Clustering is off. This version ranks a cell based
on the minimum pairwise distance between the input image
and bounding boxes in the cell. With the rank, this version
searches in cells by sampling from cameras as REV does.

• NoSample: Camera sampling is turned off. The version
randomly picks starter cameras for each camera group. It
clusters bounding boxes and ranks cells accordingly, just as
REV does. Unlike REV’s incremental processing of cameras
and updating of the cell rank, this version processes all
cameras for a cell before updating the rank.

• NoSampleCluster: Both clustering and sampling are off.
This version ranks a cell based on the minimum distance
between the input image and the bounding boxes; it processes
all cameras for a cell before updating the cell rank.

Figure 6 summarizes REV’s strength against the alternative
versions. On most queries, REV outperforms the alternatives,
either reaching higher accuracy or the same accuracy in lower
delays. Only on a small fraction of queries, REV shows longer
delays; REV never fails to reach the accuracy attainable by
alternatives. Note that Figure 6 does not include the latencies
for queries failed to reach the target accuracy: we consider
these queries as incomplete, thus less meaningful to include.

Clustering improves query accuracy Compared to the
alternatives without clustering, REV’s per-query accuracy gain
higher by 0.13 on average (stddev: 0.28). Such an accuracy
gain is considered significant in prior work [62]. REV’s
accuracy is higher on 14 out of all 70 queries; on the remaining
queries, REV’s accuracy ties with the alternatives (mostly with
short delays, see below) and is never lower. Clustering is vital
to accuracy in two ways: (1) it is robust against strong feature
noise, which is the key to achieve high accuracy goals such
as 0.99; (2) it makes the initial cell ranking more accurate.

Camera sampling reduces query delays REV is much
faster in reaching accuracy goals. Figure 7 shows the delay
CDFs. With accuracy goals of 0.50 and 0.99, REV’s delays are
2.9× and 1.7× shorter than NoCluster on average, 4.5× and
3.3× shorter than NoSample on average, and 6.5× and 3.9×
shorter than NoSampleCluster on average. NoSampleCluster
and NoSample suffer from poor choices of starter cameras,
which in turn result in the poor initial rank of cells.

D. Comparison to prior works

We next compare REV to two prior works: Spatula [27]
and PROVID [38]. We modify them to support spatiotemporal
queries. These designs lack our techniques of clustering and
sampling; they randomly pick the starter cameras.
• Spatula-ST: exploiting object spatiotemporal correla-
tions. Unlike our design which samples cameras to rank cells,

(a) Delay to reach accuracy 0.5
(56/70)

(b) Delay to reach accuracy 0.99
(36/70)

CD
F

Sec Sec

Fig. 7: The CDF of query delays by REV and the alternatives,
showing REV runs much faster. (X/Y): X = the number of
queries on which all the versions reach the accuracy goal; Y
= total query count.

Spatula-ST utilizes Spatula’s [27] cross-camera correlation
model for ranking cells. To do so, Spatula-ST profiles (1) the
spatial correlation of object occurrences, i.e., the portion of
overlapped objects across different cameras; (2) the temporal
correlation, i.e., the time difference in which an object is likely
to reappear in other cameras. At ingestion time, Spatula-ST
randomly picks one starter camera from each geo-group and
derives an initial rank of all cells. At query time, Spatula-ST
considers the current top cells as the most promising cells; it
prioritizes the cells from the most correlated cameras and time
ranges, processing them to update the rank of cells.

• PROVID-ST: Re-rank by spatiotemporal constraints:
PROVID-ST ranks bounding boxes by taking into account
the likelihood of a vehicle reappearing in another location
and time [38]. Following the work, PROVID-ST calculates
spatiotemporal proximity as follows:

s =
|Di −Dj |
Dmax

× |Ti − Tj |
Tmax

(1)

|Di − Dj | stands for the geo-distance between cell i and j,
which is normalized by Dmax, the longest distance among all
camera groups; |Ti−Tj | stands for the time difference between
cell i and j, which is normalized by Tmax, the entire query time
frame. A smaller s indicates closer spatiotemporal proximity.
Therefore, PROVID-ST first calculates a cell’s promise p
as our design does and further the promise with the cell’s
spatiotemporal proximity to all the green cells, i.e., p = p/s.

Comparison results REV outperforms Spatula-ST and
PROVID-ST. Spatula-ST’s average accuracy is 0.75, 13.8%
lower than REV. PROVID-ST’s average accuracy is 0.66,
24.1% lower than REV. The major causes are the lack of
clustering and the limitation of their spatiotemporal models,
e.g., PROVID misses vehicles traveling a long distance over
a long time. As shown in Figure 8, REV executes faster than
Spatula-ST and PROVID-ST on most queries. With accuracy
goals of 0.50 and 0.99, REV’s average delays are 3.2× and
2.3× shorter than Spatula-ST, and 6.4× and 4.8× shorter than
PROVID-ST, respectively.

(a) Delay to reach accuracy 0.5
(56/70)

(b) Delay to reach accuracy 0.99
(36/70)

CD
F

Sec Sec

Spatula-ST Spatula-ST

Fig. 8: The CDF of query delays by REV, Spatula-ST, and
PROVID-ST, showing REV runs much faster. (X/Y): X = the
number of queries on which all the versions reach the accuracy
goal; Y = total query count.

D
el

ay
(S

ec
)

(b) Starter cameras having captured
/ missed the target object

(a) Delay in reaching accuracy
goal, averaged over queries

%
 o

f
st

ar
te

r
ca

m
s

0

50

100

150

200

250

0.50 0.99

Ours Random

0%

50%

100%

Ours Random

Missed Captured

Accuracy
goals (64/70) (50/70)

Fig. 9: A comparison between REV’s choices of starter
cameras and random choices, showing the significance of
the choices. (X/Y): X = the number of queries reaching the
accuracy goal; Y = total query count.

E. Sensitivity to parameters and inputs

Choices of starter cameras matter While not affecting a
query’s eventual accuracy, the choice of starter cameras has
a high impact on query delays. This is because the choice
affects the initial rank of cells. As shown in Figure 9(a), with
starter cameras randomly picked, the average query delays
grow by 1.5× and 3.9× to meet accuracy goals of 0.50 and
0.99, respectively. Figure 9(b) shows the cause: a substantial
fraction of random starter cameras miss the target vehicle they
should have captured (i.e., the target captured by other cameras
in the same geo-group), missing opportunity in optimizing the
initial ranking of cells. With good choices of starter cameras,
as shown in Figure 7, about 80% and 60% of queries can
directly reach 0.50 and 0.99 without additional cameras.

Moderate sensitivity to input images REV shows resilience
to different input images from our dataset. First, we replace
the randomly selected input images with another random batch
selected from the dataset. As a result, REV sees an average
of 0.04 difference in accuracy (stddev: 0.24); it sees delay
differences of 7.7 seconds (11.7%) and 13.4 seconds (12.5%)
for 0.50 and 0.99, respectively. Second, we test “easier” input
images by including the camera that produced the input image
in the query scope, while still excluding the input image from

D
el

ay
 (s

ec
) i

n
lo

gs
ca

le

1

200

0 1 2 3 4
1

200

0 1 2 3 4
N N

(a) Accuracy goal = 0.50
(56/70)

(b) Accuracy goal = 0.99
(36/70)

Ours NoClusterSample NoSample NoCluster

Fig. 10: Query delays when pre-processing N cameras per
geo-group at ingestion time, showing pre-processing more
than one camera per group results in diminishing return. Y-
axis in logscale. (X/Y): X = # of queries on which all versions
reach accuracy goal; Y = total query count. N exceeding the
total cameras of a geo-group: all the cameras are pre-processed

the scope. As such, the query scope now has a camera with a
viewpoint identical to the input image. REV a sees moderate
benefit: 0.05 higher accuracy on average (std: 0.15), 23.0% and
12.1% reduction in delays, and 1% less processed videos on
average. We attribute the results to our dataset characteristics:
(1) Camera redundancy: given any input image, there are
likely cameras offering similar viewpoints. (2) Decent image
quality: were the input images in poorer quality, e.g., with
large occlusion or low resolution, they may confuse the neural
networks used in REV, resulting in lower accuracy overall.
Low sensitivity to thresholds We learn Phigh and Plow via
offline profiling of original video clips. As the thresholds deter-
mine when to pause sampling cameras, their values may affect
query delays but not the eventual accuracy. With methods
in (§V), we determine default values Phigh=1/dshort=1/0.73
and Plow = 1/dlong = 1/0.91. We test REV by deviating
from default values: dshort ± 0.1 and dlong ± 0.1. Across
all 70 queries, the query delays only vary by less than 10%
on average. The new thresholds increase delays on more
than 90% of the queries (average increase: 2.4 seconds);
and reduce delays on the remaining (average reduction: 7.2
seconds). Based on the minor variation, we conclude that the
default parameters are adequate; the benefit from fine-tuning
thresholds for individual queries is marginal.

F. Impact of optimizations

Processing at ingestion Figure 10 shows the average query
delay as a function of N, the number of starter cameras per
geo-group pre-processed at ingestion time. We omit N > 4,
where REV can extract all object features at ingestion time,
leaving only feature matching to query time. Since feature
matching is more than 1000× faster than feature extraction, a
query’s execution overhead becomes trivial.

The results support lightweight pre-processing at inges-
tion. (1) Pre-processing starter cameras reduces query delays
substantially. Comparing to no pre-processing at all, pre-
processing one starter camera per group reduces query delays
by around 4×. (2) Pre-processing more than 1 starter camera
per geo-group yields diminishing returns, no more than 25%

Delay (sec)
Accuracy goal = 0.50 (64/70)

Delay (sec)
Accuracy goal = 0.99 (50/70)

C
D

F

Our base design

Our base design w/ cam orientation

Our base design

Our base design w/ cam orientation

Fig. 11: CDFs of query delays when REV picks starter
cameras based on their orientations, showing the benefit.
(X/Y): X = # of queries reaching accuracy goal; Y = total
query count.

delay reduction. (3) With the same pre-processing at ingestion
time, REV delivers much lower delays than the alternatives.

Picking starter cameras based on orientations (Sec-
tion VI-A) We estimate deployed camera orientations from
the map in Figure 11. We use human-labeled viewpoints for
input images of queries, minimizing inaccurate viewpoints.
Overall, this optimization tends to benefit queries that used
to be slow. On the queries used to have ≥70% percentile
delays, REV sees on average 5.8× and 2× lower delays in
reaching an accuracy of 0.50 and 0.99, respectively. For the
remaining 70% queries, the delay reduction is negligible as
most queries converge based on starter cameras. The reason
is that significantly better viewpoints from manually picked
starter cameras have little impact on current well-performed
queries, but on those queries that used to suffers from bad
indexes. Besides, by replacing starter cameras that used to
have decent viewpoints, the initial rank of spatiotemporal cells
typically does not have sharp changes, so the query delay will
not differ (those <70% percentiles).

Sampling cameras from complementary orientations (Sec-
tion VI-A) With camera orientations of the dataset, REV sees
a 4.6% and 2.0% reduction in delays to reach an accuracy
of 0.50 and 0.99, respectively. We identify two reasons for
the minor benefit: co-located cameras are providing comple-
mentary viewpoints, and picking any of them is likely to help
the search to similar degrees; the cameras with orientations
opposed to the starter cameras can be inferior choices, e.g.,
capturing much fewer bounding boxes (and hence less likely
the target object) than average cameras.

Reusing states of previous queries (Section VI-A) REV can
effectively speed up a new query by reusing the intermediate
state of previous queries. To show this, we test ten query pairs
<Qold, Qnew> on two accuracy goals of 0.50 and 0.99. The
input images are randomly picked, and are different within
each pair. Within each pair: we run Qold and terminates it
once reaching the accuracy goal, and run Qnew with the query
state left from Qold. Between pairs, we cleanse any query state.
With Qold reaching an accuracy of 0.50 (i.e., a “brief” query),
the delays for Qnew to reach an accuracy of 0.50 and 0.99 are
reduced by 86.2% and 76.8%, respectively. With Qold reaching

Percentage of GPU busy time during video ingestion

Av
g
de
la
y
(s
ec
)t
o
re
ac
h
0.
99

2/7 4/7
7/7

11/72/7 3/7
4/7 5/7

6/7
7/7 8/7 9/7

1/7

2/7
3/7 4/7

5/7
6/7

7/7

Fig. 12: The average query delay to reach an accuracy of 0.99
(Y-axis) with different resource budgets (percentage of GPU
busy time as videos ingest) for ingestion-time processing (X-
axis). The figure shows that using the most expensive operator
at the ingestion is always beneficial. Annotation (A/B): A =
of starter cameras processed; B = the total # of geo-groups.
A > B means more than 1 starter camera in some geo-groups.

an accuracy of 0.99 (i.e., a “thorough” query), the delays for
Qnew are reduced by 86.2% and 78.1%, respectively.

Using cheap vision operators (Section VI-B) We test
two representative cheap vision operators: RGB histogram, a
color filter; ResNet-50, a feature extractor less accurate than
ResNet-152. Note that we avoid “local” operators such as
SIFT [41] that extract regional features because local features
are typically used for pairwise comparison of images and do
not suit clustering. We evaluate the following designs.

• Replacing the golden operator (ResNet-152). The replace-
ment is not beneficial. By replacing ResNet-152 with RGB
histogram, REV’s accuracy drops to nearly 0. By replacing
ResNet-152 with ResNet-50, the accuracy drops by 3.2%, and
the delays to reach an accuracy of 0.99 increased by 10%.
The reason is that compared to ResNet-152, ResNet-50’s cost
reduction cannot compensate for its inferior ranking of cells
which misguides the query execution.

• For early ranking. Using cheaper operators for ranking cells
is ineffective. As shown in Figure 12, while more ingestion
resources result in lower query delays in general, running the
golden operator always results in lower query delays. This is
because ResNet-152, despite running slower, ranks cells more
accurately, which avoids processing cells with low promises.

• For early filtering. Using cheaper operators as early filters
results in lower accuracy and longer delays. We make REV
pre-cluster the features of RGB histogram, filter clusters that
show low promise, and run ResNet-152 on the bounding box
of the surviving clusters. The average query accuracy drops by
21%, and the delays to reach accuracy goals of 0.50 and 0.99
increase by 3.4× and 2.7×. This is because color histograms
result in a poor rank of cells which misguides REV’s query
execution. The same experiment with ResNet-50 as the filter
results in 12% decrease in accuracy and 2.7× and 2.5× longer
delays to reach accuracy goals of 0.50 and 0.99. Note that REV
cannot reuse the Resnet-50 features in computing the ResNet-

152 features because they belong to different feature spaces.

VIII. RELATED WORK

Optimizing video analytics Besides Spatula [27], ViT-
rack [8], and VeTrac [60] discussed earlier, to reduce multi-
camera inference cost, Caesar [39] encodes object activity
correlation across cameras; Optasia [42] shares common work
modules and parallelizes query plans; Jiang et al. [29] initiate
an abstraction of camera clusters to enable resource and data
sharing among cameras. There have been works optimizing
video analytics with operator cascades [32], [16], [21], [56],
and format tuning to trade accuracy for cost-efficiency [65],
[25], [28], [67], [49]. Focus [21] saves cost by pre-processing
videos with cheap NNs at ingestion. Notably, it clusters
object features to avoid redundant comparisons with target
objects. REV uses clustering in a different way: to smooth
out transient disturbances for higher ReID accuracy. Extensive
works exploit collaborations between cloud and edge [66],
[53], [6], [37], [54]; cloud/edge and mobile devices [7], [9];
cloud and cameras [63]; edge and cameras [68], [36]; and
edge and drones [61]. Elf [64] imposes energy planning for
counting queries on resource-frugal cameras. None of above
was designed for ReID over city-scale cameras.

Information Retrieval Recall-oriented retrievals, e.g., legal
or patent search, is a group of tasks to find all relevant
documents, and a bad rank typically incurs significant more
efforts from domain experts [3], [5], [44]. As objects are rare
in ReID tasks and typically requires domain knowledge in
criminal investigation or smart traffic planning, we position
REV to solve recall-oriented tasks, i.e., requiring all true cell
to be retrieved, and adopt the metric of recall for evaluation.

Vehicle Re-ID augmentations Besides general features,
recent works mine minor features like car make/model [58],
number of doors/seats [40], and brands/tags in windows [18],
requiring extra large amount of labeled high-resolution videos,
and is not practical in urban surveillance systems.

IX. CONCLUSION

We built REV, a video engine for object ReID across city-
scale cameras. First, REV answers spatiotemporal queries on
location and time of target vehicle occurrences. Second, REV
approximates distinct objects by clustering unreliable object
features emitted by ReID algorithms before matching with
the input image. Third, to search in colossal video data, REV
samples cameras to maximize the spatiotemporal coverage and
incrementally processes additional cameras on demand. On 25
hours of city videos spanning 25 cameras, REV on average
reached an accuracy of 0.87 and ran at 830× video realtime
in achieving high accuracy.

ACKNOWLEDGMENTS

The authors were supported in part by NSF awards
#2128725, #1919197, #2106893, and Virginia’s Common-
wealth Cyber Initiative. The authors thank the anonymous
reviewers for their insightful feedback.

REFERENCES

[1] Deep learning in video multi-object tracking: A survey.
Neurocomputing, 381:61 – 88, 2020.

[2] Tamas Abraham and J. Roddick. Survey of spatio-temporal databases.
GeoInformatica, 3:61–99, 1999.

[3] Avi Arampatzis, Jaap Kamps, and Stephen Robertson. Where to stop
reading a ranked list? threshold optimization using truncated score
distributions. In Proceedings of the 32nd International ACM SIGIR
Conference on Research and Development in Information Retrieval,
SIGIR ’09, page 524–531, New York, NY, USA, 2009. Association for
Computing Machinery.

[4] Bissan Audeh, Philippe Beaune, and Michel Beigbeder. Recall-oriented
evaluation for information retrieval systems. In Mihai Lupu, Evangelos
Kanoulas, and Fernando Loizides, editors, Multidisciplinary Information
Retrieval, pages 29–32, Berlin, Heidelberg, 2013. Springer Berlin Hei-
delberg.

[5] Dara Bahri, Yi Tay, Che Zheng, Donald Metzler, and Andrew Tomkins.
Choppy: Cut transformer for ranked list truncation. In Proceedings
of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’20, page 1513–1516,
New York, NY, USA, 2020. Association for Computing Machinery.

[6] Christopher Canel, Thomas Kim, Giulio Zhou, Conglong Li, Hyeontaek
Lim, David G. Andersen, Michael Kaminsky, and Subramanya R. Dul-
loor. Scaling video analytics on constrained edge nodes. In Proceedings
of the 2nd SysML Conference, 2019.

[7] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl,
and Hari Balakrishnan. Glimpse: Continuous, real-time object recogni-
tion on mobile devices. In Proceedings of the 13th ACM Conference
on Embedded Networked Sensor Systems, SenSys ’15, page 155–168,
New York, NY, USA, 2015. Association for Computing Machinery.

[8] L. Cheng and J. Wang. Vitrack: Efficient tracking on the edge for
commodity video surveillance systems. In IEEE INFOCOM 2018 -
IEEE Conference on Computer Communications, pages 1052–1060,
2018.

[9] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan. Cachier: Edge-
caching for recognition applications. In 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), pages 276–
286, 2017.

[10] Martin Erwig, Ralf Hartmut Güting, Markus Schneider, and Michalis
Vazirgiannis. Spatio-temporal data types: An approach to modeling and
querying moving objects in databases. Geoinformatica, 3(3):269–296,
September 1999.

[11] Congress for the New Urbanism. Street networks 101.
https://www.cnu.org/our-projects/street-networks/street-networks-101,
2020.

[12] Forbes. The internet of things is creat-
ing 1984’s national camera surveillance network.
https://www.forbes.com/sites/kalevleetaru/2019/07/20/the-
internet-of-things-is-creating-1984s-national-camera-surveillance-
network/#9d301f523319, 2020.

[13] Yang Fu, Yunchao Wei, Guanshuo Wang, Yuqian Zhou, Honghui Shi,
and Thomas S. Huang. Self-similarity grouping: A simple unsupervised
cross domain adaptation approach for person re-identification. In
Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), October 2019.

[14] Yang Fu, Yunchao Wei, Yuqian Zhou, Honghui Shi, Gao Huang,
Xinchao Wang, Zhiqiang Yao, and Thomas Huang. Horizontal pyra-
mid matching for person re-identification. Proceedings of the AAAI
Conference on Artificial Intelligence, 33(01):8295–8302, Jul. 2019.

[15] M. Gou, S. Karanam, W. Liu, O. Camps, and R. J. Radke.
Dukemtmc4reid: A large-scale multi-camera person re-identification
dataset. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 1425–1434, July 2017.

[16] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal,
Alec Wolman, and Arvind Krishnamurthy. Mcdnn: An approximation-
based execution framework for deep stream processing under resource
constraints. In Proceedings of the 14th Annual International Conference
on Mobile Systems, Applications, and Services, MobiSys ’16, pages
123–136, New York, NY, USA, 2016. ACM.

[17] Brandon Haynes, Amrita Mazumdar, Magdalena Balazinska, Luis Ceze,
and Alvin Cheung. Visual road: A video data management benchmark.
In SIGMOD, pages 972–987, 2019.

[18] Bing He, Jia Li, Yifan Zhao, and Yonghong Tian. Part-regularized near-
duplicate vehicle re-identification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June
2019.

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

[20] Zhiqun He, Yu Lei, Shuai Bai, and Wei Wu. Multi-camera vehicle
tracking with powerful visual features and spatial-temporal cue. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 203–212, 2019.

[21] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram
Venkataraman, Paramvir Bahl, Matthai Philipose, Phillip B. Gibbons,
and Onur Mutlu. Focus: Querying large video datasets with low latency
and low cost. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), Carlsbad, CA, 2018. USENIX
Association.

[22] De-An Huang, Vignesh Ramanathan, Dhruv Mahajan, Manohar Paluri,
Li Fei-Fei, and Juan Carlos Niebles. What makes a video a video:
Analyzing temporal information in video understanding models and
datasets. In CVPR, pages 7366–7375. IEEE Computer Society, 2018.

[23] Tsung-Wei Huang, Jiarui Cai, Hao Yang, Hung-Min Hsu, and Jenq-Neng
Hwang. Multi-view vehicle re-identification using temporal attention
model and metadata re-ranking. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, June 2019.

[24] James N. Hughes, Andrew Annex, Christopher N. Eichelberger, Anthony
Fox, Andrew Hulbert, and Michael Ronquest. GeoMesa: a distributed ar-
chitecture for spatio-temporal fusion. In Matthew F. Pellechia, Kannap-
pan Palaniappan, Peter J. Doucette, Shiloh L. Dockstader, Gunasekaran
Seetharaman, and Paul B. Deignan, editors, Geospatial Informatics,
Fusion, and Motion Video Analytics V, volume 9473, pages 128 – 140.
International Society for Optics and Photonics, SPIE, 2015.

[25] Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodík, Leana Gol-
ubchik, Minlan Yu, Victor Bahl, and Matthai Philipose. Videoedge:
Processing camera streams using hierarchical clusters. October 2018.

[26] Samvit Jain, Ganesh Ananthanarayanan, Junchen Jiang, Yuanchao Shu,
and Joseph E Gonzalez. Scaling video analytics systems to large camera
deployments. arXiv preprint arXiv:1809.02318, 2018.

[27] Samvit Jain, Xun Zhang, Yuhao Zhou, Ganesh Ananthanarayanan,
Junchen Jiang, Yuanchao Shu, Victor Bahl, and Joseph Gonzalez. Spat-
ula: Efficient cross-camera video analytics on large camera networks.
In ACM/IEEE Symposium on Edge Computing (SEC 2020), November
2020.

[28] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen,
and Ion Stoica. Chameleon: Scalable adaptation of video analytics. In
Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM ’18, pages 253–266, New York,
NY, USA, 2018. ACM.

[29] Junchen Jiang, Yuhao Zhou, Ganesh Ananthanarayanan, Yuanchao Shu,
and Andrew A. Chien. Networked cameras are the new big data clusters.
In Proceedings of the 2019 Workshop on Hot Topics in Video Analytics
and Intelligent Edges, HotEdgeVideo’19, page 1–7, New York, NY,
USA, 2019. Association for Computing Machinery.

[30] Xin Jin and Jiawei Han. K-Means Clustering, pages 563–564. Springer
US, Boston, MA, 2010.

[31] The Wall Street Journal. A world with a billion cameras watching
you is just around the corner. https://www.wsj.com/articles/a-
billion-surveillance-cameras-forecast-to-be-watching-within-two-years-
11575565402, 2019.

[32] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei
Zaharia. Noscope: Optimizing neural network queries over video at
scale. Proc. VLDB Endow., 10(11):1586–1597, August 2017.

[33] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D.
Piatko, Ruth Silverman, and Angela Y. Wu. An efficient k-means
clustering algorithm: Analysis and implementation. 24(7), 2002.

[34] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object
representations for fine-grained categorization. ICCVW ’13, page
554–561, USA, 2013. IEEE Computer Society.

[35] Xiying Li and Zhihao Zhou. Object Re-Identification Based on Deep
Learning. 06 2019.

[36] Yuanqi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei Wang, Guo-
qing Harry Xu, and Ravi Netravali. Reducto: On-camera filtering for
resource-efficient real-time video analytics. In Proceedings of the Annual

Conference of the ACM Special Interest Group on Data Communication
on the Applications, Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’20, page 359–376, New York,
NY, USA, 2020. Association for Computing Machinery.

[37] Peng Liu, Bozhao Qi, and Suman Banerjee. Edgeeye: An edge service
framework for real-time intelligent video analytics. In Proceedings of the
1st International Workshop on Edge Systems, Analytics and Networking,
EdgeSys’18, pages 1–6, New York, NY, USA, 2018. ACM.

[38] X. Liu, W. Liu, T. Mei, and H. Ma. Provid: Progressive and multi-
modal vehicle reidentification for large-scale urban surveillance. IEEE
Transactions on Multimedia, 20(3):645–658, 2018.

[39] Xiaochen Liu, Pradipta Ghosh, Oytun Ulutan, B. S. Manjunath, Kevin
Chan, and Ramesh Govindan. Caesar: Cross-camera complex activity
recognition. In Proceedings of the 17th Conference on Embedded
Networked Sensor Systems, SenSys ’19, page 232–244, New York, NY,
USA, 2019. Association for Computing Machinery.

[40] Xinchen Liu, Wu Liu, Tao Mei, and Huadong Ma. A deep learning-based
approach to progressive vehicle re-identification for urban surveillance.
In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors,
Computer Vision – ECCV 2016, pages 869–884, Cham, 2016. Springer
International Publishing.

[41] David G Lowe. Distinctive image features from scale-invariant key-
points. International journal of computer vision, 60(2):91–110, 2004.

[42] Yao Lu, Aakanksha Chowdhery, and Srikanth Kandula. Optasia: A rela-
tional platform for efficient large-scale video analytics. In Proceedings
of the Seventh ACM Symposium on Cloud Computing, SoCC ’16,
page 57–70, New York, NY, USA, 2016. Association for Computing
Machinery.

[43] Kai Lv, Heming Du, Yunzhong Hou, Weijian Deng, Hao Sheng, Jianbin
Jiao, and Liang Zheng. Vehicle re-identification with location and time
stamps. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, June 2019.

[44] Walid Magdy and Gareth J.F. Jones. Pres: A score metric for evaluat-
ing recall-oriented information retrieval applications. In Proceedings
of the 33rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’10, page 611–618, New
York, NY, USA, 2010. Association for Computing Machinery.

[45] Wolfram MathWorld. l2-norm. https://mathworld.wolfram.com/L2-
Norm.html, 2020.

[46] Microsoft. Video analytics towards vision zero, 2019.
[47] Milind Naphade, Rama Chellappa, David Anastasiu, Anuj Sharma,

Ming-Ching Chang, Xiaodong Yang, Shuo Wang, Zheng Tang, and
Liang Zheng. Ai city challenge, 2020.

[48] OpenCV. Histogram calculation. docs.opencv.org.
[49] Chrisma Pakha, Aakanksha Chowdhery, and Junchen Jiang. Reinventing

video streaming for distributed vision analytics. In 10th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 18), Boston,
MA, 2018. USENIX Association.

[50] Neelabh Pant, Mohammadhani Fouladgar, Ramez Elmasri, and Kul-
sawasd Jitkajornwanich. A survey of spatio-temporal database research.
In Ngoc Thanh Nguyen, Duong Hung Hoang, Tzung-Pei Hong, Hoang
Pham, and Bogdan Trawiński, editors, Intelligent Information and
Database Systems, pages 115–126, Cham, 2018. Springer International
Publishing.

[51] Hieu Pham, Zihang Dai, Qizhe Xie, Minh-Thang Luong, and Quoc V.
Le. Meta pseudo labels, 2021.

[52] Kriengkrai Porkaew, Iosif Lazaridis, and Sharad Mehrotra. Querying
mobile objects in spatio-temporal databases. In Christian S. Jensen,
Markus Schneider, Bernhard Seeger, and Vassilis J. Tsotras, editors,
Advances in Spatial and Temporal Databases, pages 59–78, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

[53] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen. Deepdecision: A mobile
deep learning framework for edge video analytics. In IEEE INFOCOM
2018 - IEEE Conference on Computer Communications, pages 1421–
1429, April 2018.

[54] Arun Ravindran and Anjus George. An edge datastore architecture for
latency-critical distributed machine vision applications. In USENIX
Workshop on Hot Topics in Edge Computing (HotEdge 18), Boston,
MA, July 2018. USENIX Association.

[55] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.
CoRR, abs/1804.02767, 2018.

[56] Haichen Shen, Seungyeop Han, Matthai Philipose, and Arvind Krishna-
murthy. Fast video classification via adaptive cascading of deep models.

In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017.

[57] Yifan Sun, Liang Zheng, Yi Yang, Qi Tian, and Shengjin Wang. Beyond
part models: Person retrieval with refined part pooling (and a strong
convolutional baseline). In Proceedings of the European Conference on
Computer Vision (ECCV), September 2018.

[58] Xiao Tan, Zhigang Wang, Minyue Jiang, Xipeng Yang, Jian Wang, Yuan
Gao, Xiangbo Su, Xiaoqing Ye, Yuchen Yuan, Dongliang He, Shilei
Wen, and Errui Ding. Multi-camera vehicle tracking and re-identification
based on visual and spatial-temporal features. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, June
2019.

[59] Zheng Tang, Milind Naphade, Ming-Yu Liu, Xiaodong Yang, Stan
Birchfield, Shuo Wang, Ratnesh Kumar, David Anastasiu, and Jenq-
Neng Hwang. Cityflow: A city-scale benchmark for multi-target multi-
camera vehicle tracking and re-identification. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2019.

[60] Panrong Tong, Mingqian Li Li, Mo Li, Jianqiang Huang, and Xiansheng
Hua. Large-scale vehicle trajectory reconstruction with camera sensing
network. In Proceedings of the 27th Annual International Conference
on Mobile Computing and Networking, MobiCom ’21, 2021.

[61] Junjue Wang, Ziqiang Feng, Zhuo Chen, Shilpa George, Mihir Bala,
Padmanabhan Pillai, Shao-Wen Yang, and Mahadev Satyanarayanan.
Bandwidth-efficient live video analytics for drones via edge computing.
In 2018 IEEE/ACM Symposium on Edge Computing, SEC 2018,
Seattle, WA, USA, October 25-27, 2018, pages 159–173, 2018.

[62] Paper with code. Person re-identification on dukemtmc-reid, 2020.
[63] Mengwei Xu, Tiantu Xu, Yunxin Liu, Xuanzhe Liu, Gang Huang, and

Felix Xiaozhu Lin. Supporting video queries on zero-streaming cameras.
CoRR, abs/1904.12342, 2019.

[64] Mengwei Xu, Xiwen Zhang, Yunxin Liu, Gang Huang, Xuanzhe Liu,
and Felix Xiaozhu Lin. Approximate query service on autonomous iot
cameras. In Proceedings of the 18th International Conference on Mobile
Systems, Applications, and Services, MobiSys ’20, page 191–205, New
York, NY, USA, 2020. Association for Computing Machinery.

[65] Tiantu Xu, Luis Materon Botelho, and Felix Xiaozhu Lin. Vstore: A
data store for analytics on large videos. In Proceedings of the Fourteenth
EuroSys Conference 2019, EuroSys ’19, pages 16:1–16:17, New York,
NY, USA, 2019. ACM.

[66] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li. Lavea: Latency-
aware video analytics on edge computing platform. In 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS),
pages 2573–2574, June 2017.

[67] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Phili-
pose, Paramvir Bahl, and Michael J. Freedman. Live video analytics
at scale with approximation and delay-tolerance. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
17), pages 377–392, Boston, MA, 2017. USENIX Association.

[68] Tan Zhang, Aakanksha Chowdhery, Paramvir (Victor) Bahl, Kyle
Jamieson, and Suman Banerjee. The design and implementation of
a wireless video surveillance system. In Proceedings of the 21st
Annual International Conference on Mobile Computing and Networking,
MobiCom ’15, pages 426–438, New York, NY, USA, 2015. ACM.

[69] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian. Scalable
person re-identification: A benchmark. In 2015 IEEE International
Conference on Computer Vision (ICCV), pages 1116–1124, 2015.

[70] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian. Scalable
person re-identification: A benchmark. In 2015 IEEE International
Conference on Computer Vision (ICCV), pages 1116–1124, 2015.

[71] Liang Zheng, Yi Yang, and Alexander G. Hauptmann. Person re-
identification: Past, present and future. CoRR, abs/1610.02984, 2016.

[72] Z. Zhong, L. Zheng, D. Cao, and S. Li. Re-ranking person re-
identification with k-reciprocal encoding. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 3652–3661,
2017.

