Towards Understanding Mixture of Experts in Deep
Learning

Zixiang Chen'and Yihe Deng?and Yue Wu?and Quanquan Gu*and Yuanzhi Li®

Abstract

The Mixture-of-Experts (MoE) layer, a sparsely-activated model controlled by a router, has
achieved great success in deep learning. However, the understanding of such architecture remains
elusive. In this paper, we formally study how the MoE layer improves the performance of neural
network learning and why the mixture model will not collapse into a single model. Our empirical
results suggest that the cluster structure of the underlying problem and the non-linearity of the
expert are pivotal to the success of MoE. To further understand this, we consider a challenging
classification problem with intrinsic cluster structures, which is hard to learn using a single expert.
Yet with the MoE layer, by choosing the experts as two-layer nonlinear convolutional neural
networks (CNNs), we show that the problem can be learned successfully. Furthermore, our theory
shows that the router can learn the cluster-center features, which helps divide the input complex
problem into simpler linear classification sub-problems that individual experts can conquer. To
our knowledge, this is the first result towards formally understanding the mechanism of the MoE
layer for deep learning.

1 Introduction

The Mixture-of-Expert (MoE) structure (Jacobs et al.,, 1991; Jordan and Jacobs, 1994) is a classic
design that substantially scales up the model capacity and only introduces small computation
overhead. In recent years, the MoE layer (Eigen et al.,, 2013; Shazeer et al.,, 2017), which is an
extension of the MoE model to deep neural networks, has achieved remarkable success in deep
learning. Generally speaking, an MoE layer contains many experts that share the same network
architecture and are trained by the same algorithm, with a gating (or routing) function that routes
individual inputs to a few experts among all the candidates. Through the sparse gating function, the
router in the MoE layer can route each input to the top-K(K 2 2) best experts (Shazeer et al., 2017),
or the single (K= 1) best expert (Fedus et al., 2021). This routing scheme only costs the computation
of K experts for a new input, which enjoys fast inference time.

Despite the great empirical success of the MoE layer, the theoretical understanding of such
architecture is still elusive. In practice, all experts have the same structure, initialized from the same
weight distribution (Fedus et al., 2021) and are trained with the same optimization configuration.
The router is also initialized to dispatch the data uniformly. It is unclear why the experts can diverge
to different functions that are specialized to make predictions for different inputs, and why the router

! Department of Computer Science, University of California, Los Angeles, CA 90095, USA; e-mail: chenzx19@cs.ucla.edu
2 Department of Computer Science, University of California, Los Angeles, CA 90095, USA; e-mail: yihedeng@cs.ucla.edu
3 Department of Computer Science, University of California, Los Angeles, CA 90095, USA; e-mail: : ywu@cs.ucla.edu

4 Department of Computer Science, University of California, Los Angeles, CA 90095, USA; e-mail: qgu@cs.ucla.edu

5> Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA; email: yuanzhil@andrew.cmu.edu

can automatically learn to dispatch data, especially when they are all trained using simple local
search algorithms such as gradient descent. Therefore, we aim to answer the following questions:

Why do the experts in MoE diversify instead of collapsing into a single model? And how can the router
learn to dispatch the data to the right expert?

In this paper, in order to answer the above question, we consider the natural “mixture of
classification” data distribution with cluster structure and theoretically study the behavior and
benefit of the MoE layer. We focus on the simplest setting of the mixture of linear classification, where
the data distribution has multiple clusters, and each cluster uses separate (linear) feature vectors to
represent the labels. In detail, we consider the data generated as a combination of feature patches,
cluster patches, and noise patches (See Definition 3.1 for more details). We study training an MoE
layer based on the data generated from the “mixture of classification” distribution using gradient
descent, where each expert is chosen to be a two-layer CNN. The main contributions of this paper are
summarized as follows:

¢ We first prove a negative result (Theorem 4.1) that any single expert, such as two-layer CNNs with
arbitrary activation function, cannot achieve a test accuracy of more than 87.5% on our data
distribution.

¢ Empirically, we found that the mixture of linear experts performs better than the single expert but
is still significantly worse than the mixture of non-linear experts. Figure 1 provides such a result
in a special case of our data distribution with four clusters. Although a mixture of linear models can
represent the labeling function of this data distribution with 100% accuracy, it fails to learn so after
training. We can see that the underlying cluster structure cannot be recovered by the mixture of
linear experts, and neither the router nor the experts are diversified enough after training. In
contrast, the mixture of non-linear experts can correctly recover the cluster structure and diversify.

¢ Motivated by the negative result and the experiment on the toy data, we study a sparsely-gated
MoE model with two-layer CNNs trained by gradient descent. We prove that this MoE model can
achieve nearly 100% test accuracy efficiently (Theorem 4.2).

¢ Along with the result on the test accuracy, we formally prove that each expert of the sparselygated
MoE model will be specialized to a specific portion of the data (i.e., at least one cluster), which is
determined by the initialization of the weights. In the meantime, the router can learn the cluster-
center features and route the input data to the right experts.

¢ Finally, we also conduct extensive experiments on both synthetic and real datasets to corroborate
our theory.

Notation. We use lower case letters, lower case bold face letters, and upper case bold face letters to

denote scalars, vectors, and matrices respectively. We denote a union of disjoint sets (4;: i € I) by

tic/A;. For a vector x, we use kxk; to denote its Euclidean norm. For a matrix W, we use kWkrto denote

its Frobenius norm. Given two sequences {x,} and {y,}, we denote x, = O(y») if |xa| < C1|yn| for some

absolute positive constant Cy, x, = Q(y») if |xn| = C2|ys| for some absolute

Mixture of nonlinear experts

(\
4 -62 00 02 04 06 08 -06 -04 -0.2 00 02 04 06 08

Training —) Finished

Initialization

Mixture of linear experts

& %
0.6 ;‘-* o AN ;'}%’“*@;:’a
O Do T
0.2 e %ﬂ
2
00
s R\
]
C,
-04f, /T

| %ﬁ.‘ 3

— Un "N
-G6 -0.4 =02 00

-06 -04 =02 00 02z 04 06 08

Figure 1: Visualization of the training of MoE with nonlinear expert and linear expert. Different
colors denote router’s dispatch to different experts. The lines denote the decision boundary of the
MoE model. The data points are visualized on 2d space via t-SNE (Van der Maaten and Hinton, 2008).
The MoE architecture follows section 3 where nonlinear experts use activation function o(z) = z3. For
this visualization, we let the expert number M = 4 and cluster number K = 4. We generate n = 1,600
data points from the distribution illustrated in Section 3 with a € (0.5,2), B € (1,2), y € (1,2), and 0, =
1. More details of the visualization are discussed in Appendix A.

positive constant. 02, and x, = O(yy) if C3|ya| < |xa| € Calyn| for some absolute constants C3,C4> 0. We

also use O() to hide logarithmic factors of d in O(+). Additionally, we denote x, = poly(y,) iftn = O(%?)
for some positive constant D, and x, = polylog(ys) if x, = poly(log(y.)). We also denote by x, = o(ys) if
lim,—e X»/yn = 0. Finally we use [N] to denote the index set {1,..,N}.

2 Related Work

Mixture of Experts Model. The mixture of experts model (Jacobs et al., 1991; Jordan and Jacobs,
1994) has long been studied in the machine learning community. These MoE models are based on
various base expert models such as support vector machine (Collobert et al.,, 2002) , Gaussian
processes (Tresp, 2001), or hidden Markov models (Jordan et al., 1997). In order to increase the
model capacity to deal with the complex vision and speech data, Eigen et al. (2013) extended the
MoE structure to the deep neural networks, and proposed a deep MoE model composed of multiple
layers of routers and experts. Shazeer et al. (2017) simplified the MoE layer by making the output of
the gating function sparse for each example, which greatly improves the training stability and
reduces the computational cost. Since then, the MoE layer with different base neural network
structures (Shazeer et al., 2017; Dauphin et al., 2017; Vaswani et al., 2017) has been proposed and
achieved tremendous successes in a variety of language tasks. Very recently, Fedus et al. (2021)
improved the performance of the MoE layer by routing one example to only a single expert instead
of K experts, which further reduces the routing computation while preserving the model quality.

Mixture of Linear Regressions/Classifications. In this paper, we consider a “mixture of
classification” model. This type of models can be dated back to (De Veaux, 1989; Jordan and Jacobs,
1994; Faria and Soromenho, 2010) and has been applied to many tasks including object recognition
(Quattoni et al., 2004) human action recognition (Wang and Mori, 2009), and machine translation
(Liang et al, 2006). In order to learn the unknown parameters for mixture of linear
regressions/classification model, (Anandkumar et al.,, 2012; Hsu et al., 2012; Chaganty and Liang,
2013; Anandkumar et al.,, 2014; Li and Liang, 2018) studies the method of moments and tensor
factorization. Another line of work studies specific algorithms such as Expectation-Maximization
(EM) algorithm (Khalili and Chen, 2007; Yi et al., 2014; Balakrishnan et al., 2017; Wang et al., 2015).
Theoretical Understanding of Deep Learning. In recent years, great efforts have been made to
establish the theoretical foundation of deep learning. A series of studies have proved the
convergence (Jacot et al,, 2018; Li and Liang, 2018; Du et al., 2019; Allen-Zhu et al., 2019b; Zou et al,,
2018) and generalization (Allen-Zhu et al., 2019a; Arora et al., 2019a,b; Cao and Gu, 2019) guarantees
in the so-called “neural tangent kernel” (NTK) regime, where the parameters stay close to the
initialization, and the neural network function is approximately linear in its parameters. A recent line
of works (Allen-Zhu and Li, 2019; Bai and Lee, 2019; Allen-Zhu and Li, 2020a,b,c; Li et al., 2020; Cao
et al, 2022; Zou et al,, 2021; Wen and Li, 2021) studied the learning dynamic of neural networks
beyond the NTK regime. It is worthwhile to mention that our analysis of the MoE model is also
beyond the NTK regime.

3 Problem Setting and Preliminaries

We consider an MoE layer with each expert being a two-layer CNN trained by gradient descent (GD)
over n independent training examples {1(xiyi) ey generated from a data distribution D. In this
section, we will first introduce our data model D, and then explain our neural network model and the
details of the training algorithm.

3.1 Data distribution

We consider a binary classification problem over P-patch inputs, where each patch has d dimensions.
In particular, each labeled data is represented by (x,y), where input x = (x(1),x(2),..,x(") €

(R9)?is a collection of P patches and y € {*1} is the data label. We consider data generated from K
clusters. Each cluster k € [K] has a label signal vector vy and a cluster-center signal vector cx with
kvik, = keykz = 1. For simplicity, we assume that all the signals {Vi}rex1 U {Ci}refx are orthogonal with
each other.

Definition 3.1. A data pair (x,y) € (R9)P x{+1} is generated from the distribution D as follows.

Uniformly draw a pair (k k°) with k 6= k% from {1,..,K}.
Generate the label y € {#1} uniformly, generate a Rademacher random variable€ € {£1},

Independently generate random variables @,y from distribution D4DgD,. In this paper, we

assume there exists absolute constants C1,C; such that almost surely 0 < C1 < a5,y < Co.

Generate x as a collection of P patches: x = (x,x@ . x(P) e (Rd)P, where

- Feature signal. One and only one patch is given by yav.

- Cluster-center signal. One and only one patch is given by fSci. - Feature noise. One and only
one patch is given by€Y Vi,

- Random noise. The rest of the P — 3 patches are Gaussian noises that are independently drawn
from N(0,(0,2/d) - 1a) where o, is an absolute constant.

How to learn this type of data? Since the positions of signals and noises are not specified in
Definition 3.1, it is natural to use the CNNs structure that applies the same function to each patch.
We point out that the strength of the feature noises y could be as large as the strength of the feature
signals a. As we will see later in Theorem 4.1, this classification problem is hard to learn with a single
expert, such as any two-layer CNNs (any activation function with any number of neurons). However,
such a classification problem has an intrinsic clustering structure that may be utilized to achieve
better performance. Examples can be divided into K clusters UkexQ based on the cluster-center
signals: an example (x,y) € Q«if and only if at least one patch of x aligns with c;. It is not difficult to
show that the binary classification sub-problem over Qxcan be easily solved by an individual expert.
We expect the MoE can learn this data cluster structure from the cluster-center signals.
Significance of our result. Although this data can be learned by existing works on a mixture of linear
classifiers with sophisticated algorithms (Anandkumar et al., 2012; Hsu et al., 2012; Chaganty and
Liang, 2013), the focus of our paper is training a mixture of nonlinear neural networks, a more
practical model used in real applications. When an MoE is trained by variants of gradient descent, we
show that the experts automatically learn to specialize on each cluster, while the router automatically
learns to dispatch the data to the experts according to their specialty. Although from a representation
point of view, it is not hard to see that the concept class can be represented by MoEs, our result is
very significant as we prove that gradient descent from random initialization can find a good MoE
with non-linear experts efficiently. To make our results even more compelling, we empirically show
that MoE with linear experts, despite also being able to represent the concept class, cannot be trained
to find a good classifier efficiently.

3.2 Structure of the MoE layer

An MoE layer consists of a set of M “expert networks” fi,...,fu, and a gating network which is generally
set to be linear (Shazeer et al., 2017; Fedus et al., 2021). Denote by f(x;W) the output of the m-th

expert network with input x and parameter W. Define an M-dimensional vector h(x;0) = Ppe[p] 0>x(®)

as the output of the gating network parameterized by © = [$,..,0u] € R*M. The output F of the MoE
layer can be written as follows:

F0,W) = P et (x:,0)fn (W),

where Tx € [M] is a set of selected indices and 7,,(x;0)’s are route gate values given by
exp(hm(x; ©))
3= exp (i (x; ©)

Tm(x;0) = ,Vm € [M]

Expert Model. In practice, one often uses nonlinear neural networks as experts in the MoE layer. In
fact, we found that the non-linearity of the expert is essential for the success of the MoE layer (see
Section 6). For m-th expert, we consider a convolution neural network as follows:

W) =il 2opt @ ((Win g, X)) 3.1)

’

where wy,j € Réis the weight vector of the j-th filter (i.e., neuron) in the m-th expert, J is the number
of filters (i.e., neurons). We denote Wy, = [Wp,1,.., W] € R?/ as the weight matrix of the m-th expert
and further let W = {Wp,}mep as the collection of expert weight matrices. For nonlinear CNN, we
consider the cubic activation function o(z) = z3, which is one of the simplest nonlinear activation
functions (Vecci et al., 1998). We also include the experiment for other activation functions such as
RELU in Appendix Table 7.

Top-1 Routing Model. A simple choice of the selection set Txwould be the whole experts set Tx= [M]
(Jordan and Jacobs, 1994), which is the case for the so-called soft-routing model. However, it would
be time consuming to use soft-routing in deep learning. In this paper, we consider “switch routing”,
which is introduced by Fedus et al. (2021) to make the gating network sparse and save the
computation time. For each input x, instead of using all the experts, we only pick one expert from [M],

i.e., |Tx| = 1. In particular, we choose Tx = argmaxm{hm(x;0)}.
Output
t

QL) Algorithm 1 Gradient descent with random

{ initialization
Expert 1 Expert 2 Expert3 | - . - | ExpertM 1n1tlallz“ """"

Require: Number of iterations T, expert learning
o rate n, router learning rate 1, initialization scale oy,

training setS = {(xi, yi) i1,

A\ 1: Generate each entry of W(® independently from
Input x N(0,03).
Figure 2: Illustration of an MoE layer. For each input 2: Initialize each entry of @ as zero.
x, the router will only select one expert to perform 3:fort=0,2,..,7-1do
computations. The choice is based on the output of the 4: Generate each entry of r®

gating network (dotted line). The expert layer returns independently from Unif[0,1].
the output of the selected expert (gray box) multiplied 5: Update WD as in (3.4).

by the route gate value (softmax of the gating function 6: Update @+ as in (3.5).
output). 7: end for

8: return (0(N,W(D),
3.3 Training Algorithm
Given the training data S = {(xi, i) }i=1, we train Fwith gradient descent to minimize the following
empirical loss function:

LO,W) = %Z?:M(wF(Xi; ©,W)) (3.2)

where " is the logistic loss defined as '(z) =log(1 + exp(-z)). We initialize @ to be zero and initialize
each entry of W by i.1.aN (0, ‘75). Zero initialization of the gating network is widely used in MoE

training. As discussed in Shazeer et al. (2017), it can help avoid out-of-memory errors and initialize
the network in a state of approximately equal expertload (see (5.1) for the definition of expert load).

Instead of directly using the gradient of empirical loss (3.2) to update weights, we add
perturbation to the router and use the gradient of the perturbed empirical loss to update the weights.

X;: @(t)) (t)

In particular, the training example x; will be distributed to argmaxm{} m(Tmgi) instead,

®)
wherel"m,ime[M]i€[] are random noises. Adding noise term is a widely used training strategy for
sparsely-gated MoE layer (Shazeer et al., 2017; Fedus et al., 2021), which can encourage exploration

() ,
across the experts and stabilize the MoE training. In this paper, we draw {7 i Yme[M) icin]
independently from the uniform distribution Unif[0,1] and denotes its collection as r(®. Therefore,
the perturbed empirical loss at iteration t can be written as

1 n
E(t)(e(t) W(t)) = ;Z ﬁ(Jlﬂ-mL t(X“)fmzt (Xl* W(t))) (3 3)

o) +

MO
where m;:= argmaxm{h Xi; m2} Starting from the initialization W(0), the gradient descent

update rule for the experts is

wit) =W -y Vw, 0@ W) /|Vw, £O(@©0 W) p,vm e [M] (3.4)

where 1 > 0 is the expert learning rate. Starting from the initialization ©(), the gradient update rule
for the gating network is

0\ = 9() — 1, - Vg, LO(©Y, W) ¥m € [M] (3.5)

where 1,> 0 is the router learning rate. In practice, the experts are trained by Adam (?) to make sure
they have similar learning speeds. Here we use a normalized gradient which can be viewed as a
simpler alternative to Adam (Jelassi et al., 2021).

4 Main Results

In this section, we will present our main results. We first provide a negative result for learning with
a single expert.

Theorem 4.1 (Single exgert performs poorly). Suppose Da— D, in Definition 3.1, then any function
with the form? (¥) = 2 -1 (x{)w1ll get large test error P ()~ (yF (x) < 0) > 1/8.

Theorem 4.1 indicates that if the feature noise has the same strength as the feature signal i.e., D4

= D,, any two-layer CNNs with the form F(x) = PjEU] a; P,,e[p] o(w/x® + b;) can’t perform well on the
classification problem defined in Definition 3.1 where o can be any activation function. Theorem 4.1
also shows that a simple ensemble of the experts may not improve the performance because the
ensemble of the two-layer CNNs is still in the form of the function defined in Theorem 4.1.

As a comparison, the following theorem gives the learning guarantees for training an MoE layer
that follows the structure defined in Section 3.2 with cubic activation function.

Theorem 4.2 (Nonlinear MoE performs well). Suppose the training data size n = (1(d). Choose
experts number M = O(K logK loglogd), filter size] = ©(logM loglogd), initialization scale oo €

[d-1/3,d-0.01], learning rate 1 = Oe(00),-= ©(M?)n. Then with probability at least 1-0(1), Algorithm 1

is able to output ((-)(T)a W(T)) within T = Oe(n™1) iterations such that the non-linear
MoE defined in Section 3.2 satisfies
e Training error is zero, i.e., y;F(x; @MW) > 0,Vi € [n].

.o T _
¢ Test error is nearly zero, i.e.,P(xvy)ND(yF(xv oM, wim) < 0) = o(1).

More importantly, the experts can be divided into a disjoint union of K non-empty sets [M] =
tke[k]Mk and
¢ (Each expert is good on one cluster) Each expert m € My performs good on the cluster (,
PGy ~D(fm(x; W) < 0](x,y) €) = 0(1).
¢ (Router only distributes example to good expert) With probability at least 1-0(1), an example x €

Qi will be routed to one of the experts in M;.

Theorem 4.2 shows that a non-linear MoE performs well on the classification problem in
Definition 3.1. In addition, the router will learn the cluster structure and divide the problem into K
simpler sub-problems, each of which is associated with one cluster. In particular, each cluster will be
classified accurately by a subset of experts. On the other hand, each expert will perform well on at
least one cluster.

Furthermore, together with Theorem 4.1, Theorem 4.2 suggests that there exist problem
instances in Definition 3.1 (i.e., D= D,) such that an MoE provably outperforms a single expert.

5 Overview of Key Techniques

A successful MoE layer needs to ensure that the router can learn the cluster-center features and
divide the complex problem in Definition 3.1 into simpler linear classification sub-problems that
individual experts can conquer. Finding such a gating network is difficult because this problem is
highly non-convex. In the following, we will introduce the main difficulties in analyzing the MoE layer
and the corresponding key techniques to overcome those barriers.

Main Difficulty 1: Discontinuities in Routing. Compared with the traditional soft-routing model,
the sparse routing model saves computation and greatly reduces the inference time. However, this
form of sparsity also causes discontinuities in routing (Shazeer et al., 2017). In fact, even a small
perturbation of the gating network outputs h(x;0) + § may change the router behavior drastically if
the second largest gating network output is close to the largest gating network output. Key
Technique 1: Stability by Smoothing. We point out that the noise term added to the gating network
output ensures a smooth transition between different routing behavior, which makes the router
more stable. This is proved in the following lemma.

Lemma 5.1. Let hhp € R¥ to be the output of the gating network and {rm}m=1to be the noise
independently drawn from Unif[0,1]. Denote p,pb € RMto be the probability that experts get routed,

i.e., pm= P[argmaxm’ﬂf‘/i]{hm’ + e} = m), pm = P(argmax me{m + 1w} = M)-Then we

have that IP — Blleo < M?||h — h|s,

Lemma 5.1 implies that when the change of the gating network outputs at iteration t and t0 is
small, i.e., kh(x;00) - h(x;00))k., the router behavior will be similar. So adding noise provides a
smooth transition from time t to t°. It is also worth noting that @ is zero initialized. So h(x;0©) = 0
and thus each expert gets routed with the same probability p, = 1/M by symmetric property.
Therefore, at the early of the training when kh(x;00) - h(x;0®)k, is small, router will almost
uniformly pick one expert from [M], which helps exploration across experts.

Main Difficulty 2: No “Real” Expert. At the beginning of the training, the gating network is zero, and
the experts are randomly initialized. Thus it is hard for the router to learn the right features because
all the experts look the same: they share the same network architecture and are trained by the same
algorithm. The only difference would be the initialization. Moreover, if the router makes a mistake at
the beginning of the training, the experts may amplify the mistake because the experts will be trained
based on mistakenly dispatched data.

Key Technique 2: Experts from Exploration. Motivated by the key technique 1, we introduce an
exploration stage to the analysis of MoE layer during which the router almost uniformly picks one

expert from [M]. This stage starts at ¢t = 0 and ends at1 = ln~tog®] < T =0(n")

and the gating network remains nearly unchanged h(x;0") — h(x;0)o = 0(03'5). Because
the experts are treated almost equally during exploration stage, we can show that the experts
become specialized to some specific task only based on the initialization. In particular, the experts
set [M] can be divided into K nonempty disjoint sets [M] = txMy, where

My := {m|argmaxioe[k)jeihvio, W, i = k}. For nonlinear MoE with cubic activation function, the
following lemma further shows that experts in different set My will diverge at the end of the
exploration stage.

Lemma 5.2. Under the same condition as in Theorem 4.2, with probability at least 1 - o(1), the
following equations hold for all expert m € My,

(Tl)) < O‘(X, y) € Q) = o(1)

7

P(xy)~D yfm(x;W
Puyy-Dyfm(W) < 0[(x,y) €) = Q(1/K), VK # k.

Lemma 5.2 implies that, at the end of the exploration stage, the expert m € My can achieve nearly
zero test error on the cluster (xbut high test error on the other clusters Qo k0 6= k.

Main Difficulty 3: Expert Load Imbalance. Given the training data set S = {(xi,¥i) }i-1, the load of
expert m at iterate t is defined as

() — o
Loadm = 2icfnF(mie =m) (5.1)

where P(m;;= m) is probability that the input x;being routed to expert m at iteration ¢t. Eigen et al.

(2013) first described the load imbalance issues in the training of the MoE layer. The gating

(v network may converge to
a state where it always produces large Load,, for the same few experts. This imbalance in expertload
is self-reinforcing, as the favored experts are trained more rapidly and thus are selected even more
frequently by the router (Shazeer et al,, 2017; Fedus et al,, 2021). Expert load imbalance issue not
only causes memory and performance problems in practice, but also impedes the theoretical analysis
of the expert training.
Key Technique 3: Normalized Gradient Descent. Lemma 5.2 shows that the experts will diverge
into trerxyMir. Normalized gradient descent can help different experts in the same My being trained at
the same speed regardless the imbalance load caused by the router. Because the self-reinforcing
circle no longer exists, we can prove that the router will treat different experts in the same Myalmost
equally and dispatch almost the same amount of data to them (See Section E.2 in Appendix for detail).
This Load imbalance issue can be further avoided by adding load balancing loss (Eigen et al., 2013;
Shazeeretal, 2017; Fedus etal., 2021), or advanced MoE layer structure such as BASE Layers (Lewis
etal, 2021; Dua et al,, 2021) and Hash Layers (Roller et al., 2021). Road Map: Here we provide the
road map of the proof of Theorem 4.2 and the full proof is presented in Appendix E. The training
process can be decomposed into several stages. The first stage is called Exploration stage. During this

stage, the experts will diverge into K professional groupsl—'llf(:le =[M]. In particular, we will show
that Mxis not empty for all k € [K]. Besides, for all m € My, finis a good classifier over (. The second
stage is called router learning stage. During this stage, the router will learn to dispatch x € (to one
of the experts in My. Finally, we will give the generalization analysis for the MoEs from the previous
two stages.

6 Experiments 6.1 Synthetic-data

Experiments
Setting 1:a € (0.5,2), € (1,2),y € (0.5,3),0,=1

Testaccuracy (%) Dispatch Entropy

Single (linear) 68.71 NA 10

—— Linear-1
Nonlinear-1

—— Linear-2

—— Nonlinear-2

Single (nonlinear) 79.48 NA %

MoE (linear) 92.99 +2.11 1.300 £ 0.044 04
MoE (nonlinear) 99.46 + 0.55 0.098 + 0.087 02
Settlng 2: a E (05,2), B E (1,2), y E (05,3), O-pz 2 00 0 100 200 300 400 500

Training Epochs

Testaccuracy (%) Dispatch Entropy

Figure 3: Illustration of router

Single (linear) 60.59 NA dispatch entropy. We
Single (nonlinear) 72.29 NA demonstrate the change of entropy
MoE (linear) 88.48 £ 1.96 1.294 + 0.036 of MoE during training on the
MoE (nonlinear) 98.09 + 1.27 0.171+0.103 synthetic data. MoE (linear)-1 and

MoE (nonlinear)-1 refer to Setting
1 in Table 1. MoE (linear)-2 and
MoE (nonlinear)-2 refer to Setting
2 in Table 1.

Table 1: Comparison between MoE (linear) and MoE
(nonlinear) in our setting. We report results of top-1 gating
with noise for both linear and nonlinear models. Over ten
random experiments, we report the average value * standard
deviation for both test accuracy and dispatch entropy.

10

Datasets. We generate 16,000 training examples and 16,000 test examples from the data distribution
defined in Definition 3.1 with cluster number K = 4, patch number P = 4 and dimension d = 50. We
randomly shuffle the order of the patches of x after we generate data (x,y). We consider two
parameter settings: 1. « ~ Uniform(0.5,2), f ~ Uniform(1,2), y ~ Uniform(0.5,3) and 0,=1; 2. a ~
Uniform(0.5,2), f ~ Uniform(1,2), y ~ Uniform(0.5,3) and o, = 2. Note that Theorem 4.1 shows that
when a and y follow the same distribution, neither single linear expert or single nonlinear expert can
give good performance. Here we consider a more general and difficult setting when a and y are from
different distributions.

Models. We consider the performances of single linear CNN, single nonlinear CNN, linear MoE, and
nonlinear MoE. The single nonlinear CNN architecture follows (3.1) with cubic activation function,
while single linear CNN follows (3.1) with identity activation function. For both linear and nonlinear
MoEs, we consider a mixture of 8 experts with each expert being a single linear CNN or a single
nonlinear CNN. Finally, we train single models with gradient descent and train the MoEs with
Algorithm 1. We run 10 random experiments and report the average accuracy with standard
deviation.

Evaluation. To evaluate how well the router learned the underlying cluster structure of the data, we
define the entropy of the router’s dispatch as follows. Denote by nym,» the number of data in cluster K

K
that are dispatched to expert m. The total number of data dispatched to expert mis ""m = > k=1 Tkm

. _ ZK ZAJ . .
and the total number of data is” = 2.k=1 Z.m=1""k,m, The dispatch entropy is

CIFAR-10 (%) CIFAR-
10-Rotate
(%)
Single 80.68 + 0.4580.31 £ 0.62 76.78 +
CNN MoE 1.79
Single 92.45 +0.25 85.76 +
2.91
MoE 79.60 +1.25
89.85 + 2.54
92.60 +=2.01
Single 95.51+0.31 88.23 +
0.96

MoE 95.32 +0.68

Table 2: Comparison between MoE and single model on CIFAR-10 and CIFAR-10-Rotate datasets. We
report the average test accuracy over 10 random experiments * the standard deviation.

then defined as

M nm K Tim To,m
entropy = D m=Linm A0 B Dokl log (o) (6.1)

When each expert receives the data from at most one cluster, the dispatch entropy will be zero. And
a uniform dispatch will result in the maximum dispatch entropy.

11

As shown in Table 1, the linear MoE does not perform as well as the nonlinear MoE in Setting 1,
with around 6% less test accuracy and much higher variance. With stronger random noise (Setting
2), the difference between the nonlinear MoE and linear MoE becomes even more significant. We also
observe that the final dispatch entropy of nonlinear MoE is nearly zero while that of the linear MoE
is large. In Figure 3, we further demonstrate the change of dispatch entropy during the training
process. The dispatch entropy of nonlinear MoE significantly decreases, while that of linear MoE
remains large. Such a phenomenon indicates that the nonlinear MoE can successfully learn the
underlying cluster structure of the data while the linear MoE fails to do so.

6.2 Real-data Experiments

We further conduct experiments on real image datasets and demonstrate the importance of the
clustering data structure to the MoE layer in deep neural networks.

Datasets. We consider the CIFAR-10 dataset (Krizhevsky, 2009) and the 10-class classification task.
Furthermore, we create a CIFAR-10-Rotate dataset that has a strong underlying cluster structure
thatis independent of its labeling function. Specifically, we rotate the images by 30 degrees and merge
the rotated dataset with the original one. The task is to predict if the image is rotated, which is a
binary classification problem. We deem that some of the classes in CIFAR-10 form underlying clusters
in CIFAR-10-Rotate. In Appendix A, we explain in detail how we generate CIFAR-10-Rotate and
present some specific examples.

Models. For the MoE, we consider a mixture of 4 experts with a linear gating network. For the
expert/single model architectures, we consider a CNN with 2 convolutional layers (architecture
details are illustrated in Appendix A.) For a more thorough evaluation, we also consider expert/single
models with architecture including MobileNetV2 (Sandler et al., 2018) and ResNet18 (He et al,,
2016). The training process of MoE also follows Algorithm 1.

The experiment results are shown in Table 2, where we compare single and mixture models of
different architectures over CIFAR-10 and CIFAR-10-Rotate datasets. We observe that the
improvement of MoEs over single models differs largely on the different datasets. On CIFAR-10, the
performance of MoEs is very close to the single models. However, on the CIFAR-10-Rotate dataset,
we can observe a significant performance improvement from single models to MoEs. Such results
indicate the advantage of MoE over single models depends on the task and the cluster structure of the
data.

7 Conclusion and Future Work

In this work, we formally study the mechanism of the Mixture of Experts (MoE) layer for deep
learning. To our knowledge, we provide the first theoretical result toward understanding how the
MoE layer works in deep learning. Our empirical evidence reveals that the cluster structure of the
data plays an important role in the success of the MoE layer. Motivated by these empirical
observations, we study a data distribution with cluster structure and show that Mixture-of-Experts
provably improves the test accuracy of a single expert of two-layer CNNs.

There are several important future directions. First, our current results are for CNNs. It is
interesting to extend our results to other neural network architectures, such as transformers. Second,

12

our data distribution is motivated by the classification problem of image data. We plan to extend our
analysis to other types of data (e.g., natural language data).

A Experiment Details

Al Visualization

In the visualization of Figure 1, MoE (linear) and MoE (nonlinear) are trained according to Algorithm
1 by normalized gradient descent with learning rate 0.001 and gradient descent with learning rate
0.1. According to Definition 3.1, we set K=4, P = 4 and d = 50 and choose a € (0.5,2), B € (1,2),Y €
(1,2) and o, = 1, and generate 3,200 data examples. We consider mixture of M = 4 experts for both
MoE (linear) and MoE (nonlinear). For each expert, we set the number of neurons/filters] = 16. We
train MoEs on 1,600 data examples and visualize classification result and decision boundary on the
remaining 1,600 examples. The data examples are visualized via t-SNE (Van der Maaten and Hinton,
2008). When visualizing the data points and decision boundary on the 2d space, we increase the
magnitude of random noise patch by 3 so that the positive/negative examples and decision
boundaries can be better viewed.

A.2 Synthetic-data Experiments

Synthetic-data experiment setup. For the experiments on synthetic data, we generate the data
according to Definition 3.1 with K= 4, P =4 and d = 50. We consider four parameter settings:

e a ~ Uniform(0.5,2), § ~ Uniform(1,2), y ~ Uniform(0.5,3) and 6, = 1;
e a ~ Uniform(0.5,2), § ~ Uniform(1,2), y ~ Uniform(0.5,3) and o, = 2;
e a~ Uniform(0.5,2), § ~ Uniform(1,2), y ~ Uniform(0.5,2) and o, = 1;
e a~ Uniform(0.5,2), § ~ Uniform(1,2), y ~ Uniform(0.5,2) and o, = 2.

We consider mixture of M = 8 experts for all MoEs and J = 16 neurons/filters for all experts. For single
models, we consider J = 128 neurons/filters. We train MoEs using Algorithm 1. Specifically,
Setting 1:a € (0.5,2), € (1,2),y € (0.5,3),0p,=1

Testaccuracy (%) Dispatch Entropy = Number of Filters

Single (linear) 68.71 NA 128

Single (linear) 67.63 NA 512
Single (nonlinear) 79.48 NA 128
Single (nonlinear) 78.18 NA 512

MoE (linear) 92.99+2.11 1.300 £ 0.044 128 (16*8)
MoE (nonlinear) 99.46 = 0.55 0.098 + 0.087 128 (16*8)

Setting 2: @ € (0.5,2), $ € (1,2), y € (0.5,3), 0p= 2
Testaccuracy (%) Dispatch Entropy = Number of Filters

13

Single (linear) 60.59 NA 128

Single (linear) 63.04 NA 512
Single (nonlinear) 72.29 NA 128
Single (nonlinear) 52.09 NA 512

MoE (linear) 88.48 + 1.96 1.294 + 0.036 128 (16*8)
MoE (nonlinear) 98.09 +1.27 0.171+0.103 128 (16*8)

Setting 3:a € (0.5,2), € (1,2),y € (0.5,2),0p=1
Testaccuracy (%) Dispatch Entropy Number of Filters

Single (linear) 74.81 NA 128

Single (linear) 74.54 NA 512
Single (nonlinear) 72.69 NA 128
Single (nonlinear) 67.78 NA 512

MoE (linear) 9593 +1.34 1.160 +0.100 128 (16*8)
MoE (nonlinear) 99.99 + 0.02 0.008 £ 0.011 128 (16*8)

Setting 4: « € (0.5,2), € (1,2), y € (0.5,2), 0p= 2
Testaccuracy (%) Dispatch Entropy Number of Filters

Single (linear) 74.63 NA 128

Single (linear) 72.98 NA 512
Single (nonlinear) 68.60 NA 128
Single (nonlinear) 61.65 NA 512

MoE (linear) 93.30 + 1.48 1.160 + 0.155 128 (16*8)
MoE (nonlinear) 9892 +1.18 0.089 +0.120 128 (16*8)

Table 3: Comparison between MoE (linear) and MoE (nonlinear) in our setting. We report results
of top-1 gating with noise for both linear and nonlinear models. Over ten random experiments, we
report the average value * standard deviation for both test accuracy and dispatch entropy.

Expert number 1 2 3 4 5 6 7 8

Initial dispatch 1921 2032 1963 1969 2075 1980 2027 2033
Final dispatch 0 3979 4009 O 0 3971 0 4041

Cluster 1 0 0 0 0 0 3971 0 0
Cluster 2 0 0 4009 O 0 0 0 0
Cluster 3 0 0 0 0 0 0 0 4041
Cluster 4 0 3979 0 0 0 0 0 0

Table 4: Dispatch details of MoE (nonlinear) with test accuracy 100%.

we train the experts by normalized gradient descent with learning rate 0.001 and the gating network
by gradient descent with learning rate 0.1. We train single linear/nonlinear models by Adam (?) to
achieve the best performance, with learning rate 0.01 and weight decay 5e-4 for single nonlinear
model and learning rate 0.003 and weight decay 5e - 4 for single linear model.

14

Synthetic-data experiment results. In Table 3, we present the empirical results of single linear CNN,
single nonlinear CNN, linear MoE, and nonlinear MoE under settings 3 and 4, where a and y follow
the same distribution as we assumed in theoretical analysis. Furthermore, we report the total number
of filters for both single CNNs and a mixture of CNNs, where the filter size (equal to 50) is the same
for all single models and experts. For linear and nonlinear MoE, there are 16 filters for each of the 8
experts, and therefore 128 filters in total. Note that in the synthetic-data experiment in the main
paper, we let the number of filters of single models be the same as MoEs (128). Here, we additionally
report the performances of single models with 512 filters, and see if increasing the model size of
single models can beat MoE. From Table 3, we observe that: 1. single models perform poorly in all
settings; 2. linear MoEs do not perform as well as nonlinear MoEs. Specifically, the final dispatch
entropy of nonlinear MoEs is nearly zero while the dispatch entropy of linear MoEs is consistently
larger under settings 1-4. This indicates that nonlinear MoEs successfully uncover the underlying
cluster structure while linear MoEs fail to do so. In addition, we can see that even larger single models
cannot beat linear MoEs or nonlinear MoEs. This is consistent with Theorem 4.1, where a single model
fails under such data distribution regardless of its model size. Notably, by comparing the results in
Table 1 and Table 3, we can see that a single nonlinear model suffers from overfitting as we increase
the number of filters.

Router dispatch examples. We demonstrate specific examples of router dispatch for MoE
(nonlinear) and MoE (linear). The examples of initial and final router dispatch for MoE (nonlinear)
are shown in Table 4 and Table 5. Under the dispatch for nonlinear MoE, each expert is given either
no data or data that comes from one cluster only. The entropy of such dispatch is thus 0. The test
accuracy of MoE trained under such a dispatch is either 100% or very close to 100%, as the expert
can be easily trained on the data from one cluster only. An example of the final dispatch for MoE
(linear) is shown in Table 6, where clusters are not well separated and an expert gets data from
different clusters. The test accuracy under such dispatch is lower (90.61%).

MOoE during training. We further provide figures that illustrate the growth of the inner products
between expert/router weights and feature/center signals during training. Specifically, since each
expert has multiple neurons, we plot the max absolute value of the inner product over the neurons of
each expert. In Figure 4, we demonstrate the training process of MoE (nonlinear), and in Figure 5, we
demonstrate the training process of MoE (linear). The data is the same as setting 1 in Table 1,

Expert number 1 2 3 4 5 6 7 8

Initial dispatch 1978 2028 2018 1968 2000 2046 2000 1962
Final dispatch 3987 4 3975 6 0 1308 4009 2711

Cluster 1 0 0 3971 0 0 0 0 0
Cluster 2 0 0 0 0 0 4 4005 O
Cluster 3 8 4 4 6 0 1304 4 2711

Cluster 4 3979 0 0 0 0 0 0 0
Table 5: Dispatch details of MoE (nonlinear) with test accuracy 99.95%.
Expert number 1 2 3 4 5 6 7 8

Initial dispatch 1969 2037 1983 2007 1949 1905 2053 2097
Final dispatch 136 2708 6969 5311 27 87 4 758

15

Cluster 1 0 630 1629 1298 27 87 4 296
Cluster 2 136 1107 1884 651 0 0 0 231
Cluster 3 0 594 1976 1471 0 0 0 0

Cluster 4 0 377 1480 1891 O 0 0 231

Table 6: Dispatch details of MoE (linear) with test accuracy 90.61%.

with a € (0.5,2), € (1,2), Y € (0.5,3) and 0,= 1. We can observe that, in the top left subfigure of Figure
4 for MoE (nonlinear), the max inner products between expert weight and feature signals exhibit a
property that each expert picks up one feature signal quickly. Similarly, as shown in the bottom right
sub-figure, the router picks up the corresponding center signal. Meanwhile, the nonlinear experts
almost do not learn center signals and the magnitude of the inner products between router weight
and feature signals remain small. However, for MoE (linear), as shown in the top two sub-figures of
Figure 5, an expert does not learn a specific feature signal, but instead learns multiple feature and
center signals. Moreover, as demonstrated in the bottom sub-figures of Figure 5, the magnitude of the
inner products between router weight and feature signals can be even larger than the inner products
between router weight and center signals.

Verification of Theorem 4.1. In Table 7, we provide the performances of single models with
different activation functions under setting 3, where a,y € (1,2) follow the same distribution. In Table
8, we further report the performances of single models with different activation functions under
setting 1 and setting 2. Empirically, even when a and y do not share the same distribution, single
models still fail. Note that, for Tables 7 and 8, the numbers of filters for single models are 128.

Load balancing loss. In Table 9, we present the results of linear MoE with load balancing loss and
directly compare it with nonlinear MoE without load balancing loss. Load balancing loss guarantees
that the experts receive similar amount of data and prevents MoE from activating only one or few
experts. However, on the data distribution that we study, load balancing loss is not the key to the
success of MoE: the single experts cannot perform well on the entire data distribution and must
diverge to learn different labeling functions with respect to each cluster.

16

Inner product between expert weight and feature signal Inner product between expert weight and center signal

Expert1 Expert 2 Expert 1 Expert 2
4 b [cluser 1 02
0.20] — cluser2 0.20-
3 — duser
015{ — clsera 01s
2
1
e — -
y o
o 1 2 3 5 o 1 2 3 4 5 0 3 2 3 a 5 0 1 2 3 4 5
Expert 3 Expert 4 Expert 3 Expert 4
.) 02s 02s
020 020
3 3
o1s 01s
2 2
a0 010
1 ‘ 0.05 0.05
o ll 2 3 4 5 0 1 2 3 4 5 J 1 2 3 4 5 L 0 1 2 3 4 5
Expert 5 Expert 6 Expert 5 Expert 6
02s 02
. .
020 00
3 s
ots 01s
ke 2 0.10 0.10
1 1 0.05 0.05
— —_— — 0.
0 1 2 3 4 5 0 1 2 3 4 5 o 1 2, 3 4 5 N J i 2 3 4 5
Expert 7 Expert 8 Expert 7 Expert §
02s 02s
. .
3 s
o1s 01s
2 8 0.10 0.10
1 1 008 a0s
——————
= o
7% Y%7 "% 1 : & & 3 ®™gy—71 f T I 3
Inner product between router weight and feature signal Inner product between router weight and center signal
Theta 1 Theta 2 Theta 1 Theta 2
— cluser 1 _ 4] — cluser1 A
15— cluserz 15 — cluser2
— cuser3 o] = duser N
10] — clusera 20 — cluserd oo
- 2 2
os os N .
o o 1 2 3 4 [] o 0 1 2. 3 4 5 o — 2, 3 4 5 o 3 2, » 4 5
Theta 3 Theta 4 Theta 3 Theta 4
. .
15 15
3 3
10 10
2 2
0s 0s . .
& 0 | 2, 3 4 B o 0 1 2, 3 4 5 o 1 2, 3 4 5 o 1 2. 3 4 5
Theta 5 Theta 6 Theta 5 Theta 6
. .
3 3
2 2
E ' .
L o - | 2 3 4 B o 0 1 2, 2 4 [3 o 1 2, k& 4 - o 1 2, 3 4 5
Theta 7 Theta 8 Theta 7 Theta 8
. .
15 15
3 s
10 10
2 2
0s os N .
P o
R S T B EE 51 3 ¢+ %% 1 3 3 & 3% I R

Figure 4: Mixture of nonlinear experts. Growth of inner product between expert/router weight and
center/feature vector.

Activation Optimal Accuracy (%) Test Accuracy (%)

Linear 87.50% 74.81%

Cubic 87.50% 72.69%
Relu 87.50% 73.45%
Celu 87.50% 76.91%
Gelu 87.50% 74.01%
Tanh 87.50% 74.76%
Table 7: Verification of Theorem 4.1 (single expert performs poorly). Test accuracy of single

linear/nonlinear models with different activation functions. Data is generated according to Definition
3.1withay€e (1,2),€(L,2)ando,=1.

17

Inner product between expert weight and feature signal Inner product between expert weight and center signal
Expert 1 Expert 2 Expert 1 Expert 2

0s 0s
o] — st - et
— cluser2 0] — cluser o4
— duser3 — duser3
04]|— dusera 04 03{ — clusera 03
02 02
02 02
|, o1
o o 1 2 3 4 5 o0 0 1 2 3 a 5 o J 1 2 3 a 5 N o 1 2 3 4 s
Expert 3 Expert 4 Expert 3 Expert 4
0s os
06 06
04 04
04 04 03 03
I 02 02
02 _— 0.2
_— 01 o1
P —— —
0.0 0. = 0. X
3 T 7 T 7 7 3 T b 3 7 T 3 T 3 3 7 7 3 T p H 7 7
Expert 5 Expert 6 Expert 5 Expert 6
0s 0s
06 06
04 04
04 04 03 03
02 02
02 02 E—
o1 o1 __—
o o % 2 -} 4 5 o 0 3 3 a 5 o 0 1 2 3 a 5 . 0 1 2 3 4 =
Expert 7 zExperl 8 Expert 7 Expert §
os os
06 06
04 04
04 04 03 03
02 02
02 02 . —
0.1 —l - 01
0. 0.0 0. — X
) i 7 7 7 7 3 T 3 3 3 7 5 T 3 7 3 7 3 T T H : 3
Inner product between router weight and feature signal Inner product between router weight and center signal
Theta 1 Theta 2 Theta 1 Theta 2
41— cluser1 4 — cluser 1 —
e iser 2 257 — cluser2 25
3= cuser 3 s 20{|— cluser s 20
—— cluser 4 —— cluser 4
: s 15 15
10 10
1 1
o 1 2 3 4 5 0 1 2, 3 4 5 o 0 2 2. 3 4 5 . o " 2 3 4 5
Theta 3 Theta 4 Theta 3 Theta 4
4 .
25 25
3 3 2.0 2.0
:) 15 15
10 10
1 1
0s 0s
col m—m —— | Y
s T 3 3 : : 3 1 3 3 I 3 13 T 7 T 7 7 3 T T T 7 7
Theta 5 Theta 6 Theta 5 Theta 6
. .
25 25
3 3 2.0 2.0
) , s 15
10 10
1 1 — 05
o 1 ¢] | 4 8 9 0 1 = 3 4 5 L 0 1 | 3 a 5 N o 1 2, 3 4]
Theta 7 Theta 8 Theta 7 Theta 8
2 .
25 2s
3 3 2.0 2.0
.) 15 15
10 10
1 1
0s os
o
3 T 7 7 7 7 3 T b 3 p : 3 T T I T 3 g i 3 3 7 7

Figure 5: Mixture of linear experts. Growth of inner product between expert/router weight and
center/feature vector.

Activation Setting1 Setting 2

Linear 68.71% 60.59%

Cubic 79.48% 72.29%

Relu 72.28% 80.12%

Celu 81L.75% 78.99%

Gelu 79.04% 82.01%

Tanh 81.72% 81.03%
Table 8: Single expert performs poorly (setting 1&2). Test accuracy of single linear/nonlinear
models with different activation functions. Data is generated according to Definition 3.1 with a €
(0.5,2), € (1,2),y€(0.5,3),0,=1 for setting 1. And we have a € (0.5,2), f € (1,2), y € (0.5,3),0,=1 for
setting 2.

Linear MoE with Load Balancing Nonlinear MoE without Load Balancing

18

Setting 1 93.81+1.02 99.46 + 0.55

Setting 2 89.20 £ 2.20 98.09 +1.27
Setting 3 95.12 +£0.58 99.99 + 0.02
Setting 4 92.50 £ 1.55 9892 +1.18

Table 9: Load balancing loss. We report the results for linear MoE with load balancing loss and
compare them with our previous results on nonlinear MoE without load balancing loss. Over ten
random experiments, we report the average test accuracy (%) #* standard deviation. Setting 1-4
follows the data distribution introduced above.

A3 Experiments on Image Data

Figure 6: Examples of the CIFAR-10-Rotate dataset. Both the original image and the rotated image
are processed in the same way, where we crop the image to (24,24), resize to (32,32) and apply
random Gaussian blur.

Datasets. We consider CIFAR-10 (Krizhevsky, 2009) with the 10-class classification task, which
contains 50,000 training examples and 10,000 testing examples. For CIFAR-10-Rotate, we design a
binary classification task by copying and rotating all images by 30 degree and let the model predict if
an image is rotated. In Figure 6, we demonstrate the positive and negative examples of CIFAR-10-
Rotate. Specifically, we crop the rotated images to (24,24), and resize to (32,32) for model
architectures that are designed on image size (32,32). And we further apply random Gaussian noise
to all images to avoid the models taking advantage of image resolutions.

Models. For the simple CNN model, we consider CNN with 2 convolutional layers, both with kernel
size 3 and ReLU activation followed by max pooling with size 2 and a fully connected layer. The
number of filters of each convolutional layer is respectively 64, 128.

CIFAR-10 Setup. For real-data experiments on CIFAR-10, we apply the commonly used transforms
on CIFAR-10 before each forward pass: random horizontal flips and random crops (padding the
images on all sides with 4 pixels and randomly cropping to (32,32)). And as conventionally, we
normalize the data by channel. We train the single CNN model with SGD of learning rate 0.01,

19

momentum 0.9 and weight decay 5e-4. And we train single MobileNetV2 and single ResNet18 with
SGD of learning rate 0.1, momentum 0.9 and weight decay 5e-4 to achieve the best performances.
We train MoEs according to Algorithm 1, with normalized gradient descent on the experts and SGD
on the gating networks. Specifically, for MoE (ResNet18) and MoE (MobileNetV2), we use normalized
gradient descent of learning rate 0.1 and SGD of learning rate 1le-4, both with momentum 0.9 and
weight decay of 5e-4. For MoE (CNN), we use normalized gradient descent of learning rate 0.01 and
SGD of learning rate 1le-4, both with momentum 0.9 and weight decay of 5e-4. We consider top-1
gating with noise and load balancing loss for MoE on both datasets, where the multiplicative
coefficient of load balancing loss is set at 1e-3. All models are trained for 200 epochs to achieve
convergence.

CIFAR-10-Rotate Setup. For experiments on CIFAR10-Rotate, the data is normalized by channel as
the same as in CIFAR-10 before each forward pass. We train the single CNN, single MobileNetV2 and
single ResNet18 by SGD with learning rate 0.01, momentum 0.9 and weight decay 5e-4 to achieve the
best performances. And we train MoEs by Algorithm 1 with normalized gradient descent learning
rate 0.01 on the experts and with SGD of learning rate le-4 on the gating networks, both with
momentum 0.9 and weight decay of 5e-4. We consider top-1 gating with noise and load balancing loss
for MoE on both datasets, where the multiplicative coefficient for load balancing loss is set at 1e-3.
All models are trained for 50 epochs to achieve convergence.

Visualization. In Figure 7, we visualize the latent embedding learned by MoEs (ResNet18) for the
10-class classification task in CIFAR-10 as well as the binary classification task in CIFAR-10Rotate.
We visualize the data with the same label y to see if cluster structures exist within each class. For
CIFAR-10, we choose y =1 ("car”), and plot the latent embedding of data with y = 1 using t-SNE on the
left subfigure, which does not show an salient cluster structure. For CIFAR10-Rotate, we choosey =1
("rotated”) and visualize the data with y = 1 in the middle subfigure. Here, we can observe a clear
clustering structure even though the class signal is not provided during training. We take a step
further to investigate what is in each cluster in the right subfigure. We can observe that most of the
examples in the “frog” class fall into one cluster, while examples of “ship” class mostly fall into the
other cluster.

0.6
s 075
0.4 9%&9\3. X
ka}(.g}‘, s 0.50
s
0.2 -(ii:%i\ 0.25] .
g
0.0 A\ 0.00
-0.25
-0.2
-0.50
=0.4
=0.75
-0.6 -0.4 =0.2 0.0 0.2 0.4 =0.5 0.0 0.5 1.0 =0.5 0.0 0.5 1.0
y=1 (car) y=1 (rotated) (frog, ship)

Figure 7: Visualization of the latent embedding on CIFAR-10 and CIFAR-10-Rotate with fixed label y.
The left figure denotes the visualization of CIFAR-10 when label y is fixed to be 1 (car). The central
figure represents the visualization of CIFAR-10-Rotate when label y is fixed to be 1 (rotated). On the
right figure, red denotes that the data is from the ship class, and blue denotes that the data is from
the frog class.

20

Single MoE

Accuracy 74.13% 76.22%

Table 10: The test accuracy of the single classifier vs. MoE classifier.

Expert1 Expert2 Expert3 Expert4

English 1,374 3,745 2,999 31,882

French 23,470 3,335 13,182 13
Russian 833 9,405 7,723 39
Table 11: The final router dispatch details with regard to the linguistic source of the test data.

0.8

-1.0 -0.5 0.0 0.5 1.0

Figure 8: The distribution of text embedding of the multilingual sentiment analysis dataset. The
embedding is generated by the pre-trained BERT multilingual base model and visualized on 2d space
using t-SNE. Each color denotes a linguistic source, including English, French, and Russian.

A4 Experiments on Language Data

Here we provide a simple example of how MoE would work for multilingual tasks. We gather
multilingual sentiment analysis data from the source of English (Sentiment140 (Go et al., 2009))
which is randomly sub-sampled to 200,000 examples, Russian (RuReviews (Smetanin and Komarov,
2019)) which contains 90,000 examples, and French (Blard, 2020) which contains 200,000 examples.
We randomly split the dataset into 80% training data and 20% test data. We use a pre-trained BERT
multilingual base model (Devlin et al., 2018) to generate text embedding for each text and train 1-
layer neural network with cubic activation as the single model. For MoE, we still let M = 4 with each
expert sharing the same architecture as the single model. In Figure 8, we show the visualization of
the text embeddings in the 2d space via t-SNE, where each color denotes a linguistic source,
with - representing a positive example and x representing a negative example. Data from different
linguistic sources naturally form different clusters. And within each cluster, positive and negative
data exist.

In Table 10, we demonstrate the test accuracy of a single classifier and MoE on the multilingual
sentiment analysis dataset. And in Table 11, we show the final router dispatch details of MoE to each

21

expert with regard to the linguistic source of the text. Notably, MoE learned to distribute examples
largely according to the original language.

B Proof of Theorem 4.1

Because we are using CNNs as experts, different ordering of the patches won’t affect the value of F(x).
So for (x,y) drawn from D in Definition 3.1, we can assume that the first patch x(1)is feature signal, the
second patch x(@ is cluster-center signal, the third patch x®)is feature noise. The other patches x),p
> 4 are random noises. Therefore, we can rewrite x = [y vy, Beg, VGVka], where § = [£,..,6p] is a
Gaussian matrix of size Rdx(P-3),

Proof of Theorem 4.1. Conditioned on the event that ¥ = —€, points ([ayvifCrL-YYVio,€lY),
[_ayvkv 6(:/67 VYV, 5]7 _y)a ([’vik’v Bcklv —QYVg, 6]7 y)) ([—"}/ka/, ﬁck”v QYvi, 5]7 _y) follow the
same distribution because y and a follow the same distribution, and y and -y follow the same

distribution. Therefore, we have
4P(yF (x) < Ole = —y)

=E ﬂ(yF([ayvk‘Bck, —’Y?/Vk’f]) < O) +]l(—yF([—ayvk,ﬁck,’yyvk/,ﬁ]) < 0)

/
N ~

11 [2

+ ﬂ(yF(['}’ka/,,ﬁCkl, —akayﬁ]) < O) + ﬂ(—yF([—’nyk/’ ﬁCk/, ayvk‘vg]) < 0):| .

-~

I3

14

It is easy to verify the following fact

(yF([ayVmBCk, —wwf])) + (- yF([—aka,Bck,'vkaué’]))

+ (yF(["nyk/, Bck’v —QYvy, S])) + (- yF([—"nyk/, Bck’a aYyvi, 5]))

b
- (yf(aka) +yf(Ber) +yf (—yyvir) + yf(ip)>

p=4

P
+ (— yf(—oyvi) — yf (Ber) — yf (yyvir) — Y yf(&zz))
p=4
P
+ (v + s + s o) + Y v e
p=4

P
+ (— yf(=yyvir) — yf(Bew) — yflayvi) =Y yf(ﬁ;v))
p=4
= 0.

By pigeonhole principle, at least one of I4,1I5,13,14is non-zero. This further implies that 4P yF(x) <
Ole = —y) Z1. Applying P(€ = =) = 1/2, we have that
P(yF(x) <0) > P(yF(x) <0)le = —y)P(e = —y) > 1/8

22

which completes the proof. O

C Smoothed Router

In this section, we will show that the noise term provides a smooth transition between different
routing behavior. All the results in this section is independent from our NN structure and its
initialization. We first present a general version of Lemma 5.1 with its proof.

Lemma C.1 (Extension of Lemma 5.1). Let h,hpy € R to be the output of the gating network and

{rm e to be the noise independently drawn from D,. Denote p,pb € RMto be the probability

that experts get routed, i.e., pm = P(argmaxmoem{hmo +rmo} = m), ppm = P(argmax m’'€[M] o +rmo} =m).

Suppose the probability density function of D,is bounded by x, Then we have that kp - pbke <
(xM?2) - kh - hpKe.
Proof. Given random variable{’"m}%:l, let us first consider the event that argmaxu,{hm+ rm} 6= argmax

m{hm + Tm} Let my = argmaxm{hm+ rm} and mz = argmaxm{bhm + rm}, then we have
that

hml + Tml 2 hm2 + Tm27 h/mg + ng Z hm1 + rmll

which implies that

~

ﬁmz - hml Z Tm1 — Tme Z hm2 - hml. (C.l)
Define C(m1,m2) = (bhmz— bhm1+ hmz— hm1)/2, then (C.1) implies that
|7y — Tmy — C(ma, ma)| < mmz - /Hrm = hmy + himy|/2 < ”f1 — h|e, (C.2)
Therefore, we have that,

P(argmax{hm + rn} 6= argmax {Am +7m})n

m

< P(Am; 6= mz € [M], s.t.[Tmy = Tmy — C(m1,ma)| < |[h = hjo)

< " P(Jrmy = Tmy — C(mi,m2)| < |/h =)
m1<mz2

= > E[P(r + Clma,mz) = B = hlloe < iy < 1y + Clma,ma) + [= hloc) s
mi1<msg

IN

(M?) - |[h — o,

where the first inequality is by (C.2), the second inequality is by union bound and the last inequality
is due to the fact that the probability density function of rm1is bounded by k. Then we have that for i

€ [M],

23

lpi — pi| < ‘E[ﬂ . {hm +rm}=1i)—1 (B + 1} = 1) || argmax

argmax
m
- - |
argmax{hm + "’m,} = Z) -1 argmax{hm + 7"771} = ’L)’
mm
<P argmax{hm +rm} /= argmax{hm + Tm})
(m
m

< (kM?)-||h—hls °

which completes the proof. O

Remark C.2. A widely used choice of D,in Lemma C.1 is uniform noise Unif|a, b], in which case the

density function can be upper bounded by 1/(b - a). Another widely used choice ofvVD,is

Gaussian noise/V (0, ‘772-), in which case the density function can be upper bounded by 1/(o,2m).
Increase the range of uniform noise or increase the variance of the Gaussian noise will result in a
smaller density function upper bound and a smoother behavior of routing. In our paper, we consider
unif[0,1] for simplicity, in which case the the density function can be upper bounded by 1 (x = 1).

The following Lemma shows that when two gate network outputs are close, the router will
distribute the examples to those corresponding experts with nearly the same probability.

Lemma C.3. Let h € RMbe the output of the gating network and {rm}m=1be the noise independently
drawn from Unif[0,1]. Denote the probability that experts get routed by p, i.e., pm = P(argmaxmo{hmo +
rmo} = m). Then we have that

|pm = pmo| < M2|hy = hpo.

Proof. Construct hh as copy of h and permute its m,mO°-th element. Denote the corresponding
probability vector as pb. Then it is obviously that |pm—pmo| = kp—pbk and |han = P | = [[h = o,
Applying Lemma 5.1 completes the proof. O

The following lemma shows that the router won’t route examples to the experts with small gating
network outputs, which saves computation and improves the performance.

Lemma C.4. Suppose the noisel”m Ym—1 are independently drawn from Unif[0,1] and hn,(X;0) < maxmo
hmo(x;0) - 1, example x will not get routed to expert m.

Proof. Because hpn(X;0) < maxmo hmo(X;0) — 1 implies that for any Uniform noise {rmo}moep we have that

hm(X;0) + rm < maxhmo(X;0) < max{hmo(X;0) + rmo}, mo mo

where the first inequality is by r» < 1, the second inequality is by rme= 0,Ym®° € [M]. O

24

D Initialization of the Model

Before we look into the detailed proof of Theorem 4.2, let us first discuss some basic properties of the
data distribution and our MoE model. For simplicity of notation, we simplify (x;y;) € Qxas i € Q.
Training Data Set Property. Because we are using CNNs as experts, different ordering of the patches
won'’t affect the value of F(x). So for (x,y) drawn from D in Definition 3.1, we can assume that the first
patch x(W is feature signal, the second patch x(@) is cluster-center signal, the third patch x®)is feature
noise. The other patches xW,p = 4 are random noises. Therefore, we can rewrite x
= [ayvy, Beg, yev, 5], where € = [€4,..,€p] is a Gaussian matrix of size Rd*(P-3),

According to the type of the feature noise, we further divide Qxinto Qi = UQirobased on the feature
noise, i.e. X € Qo if x = [OYVi, BCk, VeV, €]. To better characterize the router training, we need to
break down Qkkointo Q+kkoand Q-kk. Denote by Q+kkothe set that{yi = €ili € Qi }, by Q- the set
that{¥i = —¢ili € Qep},

Lemma D.1. With probability at least 1 - §, the following properties hold for all k € [K],
Z yiﬂg = 5(\/5)7 Z 04? =]E[a3] n/K + 6(\/5)7 Z yifﬂ? = 6(\/5)

i€ ieQy, i€Qy , (D.1)
Z Yiy; = 5(\/5) Z Yity; = 5(\/5)7 Z €Y = 5(\/5)
i€l Q4 Q. (D.2)
Y @vi=0(/n), Y B =E[f]-n/K +O(v/n)
St L . (D.3)

Proof. Fix k € [K], by Hoeffding’s inequality we have that with probability at least 1 - §/8K,

Z vil3; = Zyzﬂ? 1 ((xi,91) €) = O(v/n)
i=1

1€Q

7

where the last equality is by the fact that the expectation of¥B% 1 ((x.9) €) s zero. Fix k € [K], by
Hoeffding’s inequality we have that with probability at least 1 - §/8K,

_ nE[a?]

Yoot =" al1((xi) €) 7 O(vVn)

1E€Q 1=

7

where the last equality is by the fact that the expectation of a®1((x,y) € M) is E[0’]/K pixke [K],
by Hoeffding’s inequality we have that with probability at least 1 - §/8K,

D vie? =Y e 1 ((xi,ui) € %) = O(vn)
=1

1€Q

7

where the last equality is by the fact that the expectation of¥e?’ 1 (%, 4) €) is zero. Now we have
proved the bounds in (D.1). We can get other bounds in (D.2) and (D.3) similarly. Applying union
bound over [K] completes the proof. [

25

Lemma D.2. Suppose that d = Q(log(4nP/$)), with probability at least 1 - §, the following inequalities
hold for alli € [n],k € [K],p = 4,

* kéipke = 0(1),

o« (Vi &) < O(d7Y2), (ep, &ip) < O(d7Y2), (&ip. &i) < O(d7Y2), V(i p') # (i, p).
Proof of Lemma D.2. By Bernstein’s inequality, with probability at least 1 - §/(2nP) we have

1€ipl13 — 03] < O(op+/d~1 log(4nP/5))

Therefore, aslong as d = ((log(4nP/6)), we have 1€i.p ||% <2. Moreover, clearly hé;p, & p0i has mean zero,
V(i,p) 6= (i%p®). Then by Bernstein’s inequality, with probability at least 1-6/(6n%P%) we have

[(&ip: &ir)| < 2075+/d =1 log(12n2P2/5).

Similarly, hvyé;pi and hey ;i have mean zero. Then by Bernstein’s inequality, with probability at least
1 - 6/(3nPK) we have

[hépvid| < 20,Pd-11og(6nPK/6),|hé;p cid| < 20,Pd-110g(6nPK/6).
Applying a union bound completes the proof. O

MOoE Initialization Property.
We divide the experts into K sets based on the initialization.

Definition D.3. Fix expert m € [M], denote (kj';“ j;kn) = argmax;hv, wn, (0 1. Fix cluster k € [K], denote
the profession experts set as My = {mlk}, =k},

Lemma D.4. For M 2 (K log(K/d)),] = 0(log(M/5)), the following inequalities hold with probability
atleast1 - 6.

0) 0
o WAX(2, k) (Wos Vi) < (1= 6/ (BMIZE?)) (wine Vi) g alt m e [M]

(0)
. (Wm,j;‘n’ Vi;,) = 0.01a9 for all m € [M].

e [M,| 21 forall k€ [K].

Proof. Recall that wm.j ™~ N0, Ug[d). Notice that signals vy,..,vgare orthogonal. Given fixed m € [M],

we have that{<w7(2,)jvvk>|j € [J].k € [K]}

N(0, Ug) we have that

are independent and individually draw from

P(hWo,©,vid < 0.0100) < 0.9.

Therefore, we have that P(maxhw,,;(9,vii < 0.010¢) < 0.9%. jk

Therefore, as long as / = O(K-1log(M/9)), fix m € [M] we can guarantee that with probability at least 1
- 6/(3M),

26

w®

max(w,, ",

vi) > 0.010g
J:k .

Take G = 6/(3MJ2K?), by Lemma F.1 we have that with probability at least 1 - §/(3M),

(0) (0)
max w, vy < (1 —G){w, 7w, Vix
(j,k)?é(j;L,k;L)(e k) < 3 Modm bin)

By the symmetric property, we have that for all k € [K],m € [M],

P(k = k

m

)= K
Therefore, the probability that | M| at least include one element is as follows,
P(IMi|21)21-(1-K1)M
By union bound we get that
P(IMi| 21,Vk)21-K(1-KY)M"21-Kexp(-M/K)21-6/3,

where the last inequality is by condition M = Klog(3K/6). Therefore, with probability at least 1 - §/3,
[Mg| = 1,Vk.

Applying Union bound, we have that with probability at least 1 - 4,

0) 72 7021 /< (0)
max w vy < (1 —-0/(3MJ*K W o Vier
(i B g (g vi) < (1= 0/ D Wi, Vhz,)

’

hW, /0 e, Viene 1 2 0.0100,Ym € [M], |My|

> 1,vk € [K].
0

Lemma D.5. Suppose the conclusions in Lemma D.2 hold, then with probability at least 1-6 we have

(0) ~
that! (Win.j» V)| < 0(00) for all v € {(vidrerq Ufeaerq ULEpbepmperr-3,m € [M1, € [J]-

Proof. Fix v € {vi}ke[K]U{ck}ke[k]U{ip}ic[nl,pe[P-3],m € [M],j € []], we have that hwm,(0),vi ~
N(OvU(%HVH%) and kvk; = O(1). Therefore, with probability at least 1 - §/(nPMJ]) we have that
(Wi v)] < O

m,j’

70). Applying union bound completes the proof.]

E Proof of Theorem 4.2

In this section we always assume that the conditions in Theorem 4.2 holds. It is easy to show that all
the conclusions in this section D hold with probability atleast 1 — O(1/logd). The results in this section
hold when all the conclusions in Section D hold. For simplicity of notation, we simplify

(xiyi) € Qkkoas i € Qkko, and “o(yimrmi(Xi;;O (1)) fmie(xi; W(5))) as “oit.

27

Recall that at iteration ¢, data x;is routed to the expert m;.. Here m;,should be interpreted as a
random variable. The gradient of MoE model at iteration ¢ can thus be computed as follows

1
Vem‘c(t) = E Z ﬂ(mi7t = m)gg,tﬂmi,t (xi; G(t))(l — Tmyy (Xi; @(t)))yzfmm (Xi; W(t))XEp)
i,p
1
I Z L(mis # m)l; 1Tm (X33 @(t))ﬂm(xi; Q(t))yifmit(xi
n = ’ ’ ’
”’” SW©)X(p)

1
= E Z 1 (Tni,t = Tn)gg,tﬂ-m,-,t (Xi; ®(t)>yifm,:7t (Xi
ip ;W(9)X(ip)

Z&M, %53 OD) 7, (x5 O D)y, i, (x5 WD) (P ,
(E.1)

Vo L8 = anzt_ O i (xi; ©)y’ ((wil) | xP)x P,
(E.2)

Following lemma shows implicit regularity in the gating network training.

M (0)
Lemma E.1. For all £ > 0, we have that(zmzl Vemc()=0 and thus 2m oL = > m O’ In particular,
t
when 0 is zero initialized, then > Om =0

Proof. We first write out the gradient of &, for all m € [M],

1
Vemﬁ(t) = - Z]l(nli,t = 7n)£;,t77nzr,;,f,(xi§ G(t))yifmr,:,t(xi

" ielnlpelP) w)x?
1
- = Z i, t7rml ¢ (xz @)7Tm(X1, (t))yzfml ¢ (Xi; W(t))XZ('p)
n ot
1€[n],p€[P]

Take summation from m = 1 to m = M, then we have

M
1
Z vem‘c(t) - E Z Eg,tﬂ-mi,t (Xi; ®(t))yifmi,t (Xi;W(t))Xz@)

i€[n],pE[P]

- Z g’/i,tﬂ-mi,t (Xi; Q(t))yifmi,t (Xia W(t))xz(p)

O

Notice that the gradient at iteration ¢ in (E.1) and (E.2) is depend on the random variable m;;, the
following lemma shows that it can be approximated by its expectation.
Lemma E.2. With probability at least 1 - 1/d, for all the vector v € {Vi}ke[x) U {Ci}kerx, m € [M],j € []],

we have the following equations hold |th,xmL(’-‘),vi ~ E[hVsaLO,vi]| = Oe(n-1/2(00 + nt)3), |hVwm,L(e),vi -
E[hVwm,L(5),vi]| = Oe(n-1/2(o0 + nt)2), for all t < d1oo.

Here E[hVwnm,L®,vi] and E[hVs.L®,vi] can be computed as follows,

28

[<V9m Z]P> (M = / t7Tm(Xz'; ®(t))yifm(xi;W(”)(xl(.”),v)

——Z (i =) o (355 O (¢33 © 1)y fr (1

i,p,m’

1
s £O)] = 23 Bl = m) e (e @@ o ((w . xP)) ()).
m,j V>] n 4 (m Wt m) l,tﬂ- (X)y o (< m,j Xz >)<Xz V> w(t))<x£p)’ v>

¢ Wi = willle < Ot

Proof. Because we are using normalized gradient descen) and thus by

®) P
Lemma D.5 we havel {Wm.j»Xi)| < O(oo + 1"y, Therefore,

| :
, hVy,; LO vi= ;Y X 1(mie = m)‘gtﬂm (xi;(é)(t))yioc(}w,(,?j,xl(p)l)hx,(p), vi
i p
| {z
}

Ai

where A; are independent random variables with Al < O((UO + 7775)2). Applying Hoeffding’s
inequality gives that with probability at least 1 - 1/(4d1°!MJK) we have that |hVym,LO,vi -

E[hVwm,LO,vi]| = Oe(n-1/2(0o +1t)?2). Applying union bound gives that with probability at least 1 -
1/(2d), |hVwm;,L®,vi = E[hVwm,LO,vi]| = Oe(n-1/2(00 + nt)2),Ym € [M],j € []],t < d100.

Similarly, we can prove |hVsnL®,vi — E[hVsnL©,vi]| = Oe(n-1/2(00 + nt)3).

E.1 Exploration Stage

_ 1
Denotelt = 17790, The first stage ends when t = Ty. During the first stage training, we can prove

that the neural network parameter maintains the following property.
Lemma E.3. For all ¢t < T, we have the following properties hold,
(Winjs Vi) = O(982), (W) ex) = O(98?). (w15, &) = O(o8%)

o fm(xis W) = O(0§?),

. |€;,t - 1/2| < 6(0'(1)'5)’

° ”0m ||2 S 5(0'(1)5)

o [Ih(x;;©1)oo = O(0d), T (xi: V) = M~ + O(o}¥)
for all m € [M),k € [k],i € [n],p = 4.

() (0) _ 0.5
Proof. The first property is obvious since med - wm,J’HQ < O(nT1) = O(ayg) and thus

29

fm(xsW©)| < XX |o(hwm,jt),X(ip)i)| = Oe(o01.5).

pe[P]jEl]

Then we show that the loss derivative is close to 1/2 during this stage

Let s = yiTtmi(X;; O0) frmie(X; W®), then we have that sl = <‘70) and
1 1

O, — == —-1/2| < op?

o3| = oy — 12| 2 1 = Ot

’

where (i) can be proved by considering |s| <1 and |s| > 1.

Now we prove the fourth bullet in Lemma E.3. Becausel/m| = 0(05'5), we can upper bound
the gradient of the gating network by

1
||V9m£(t) ||2 = H E Z]l(mi,t - m)fg’twmi’t (Xi; @(t))ylfm” (Xi
ip 1 ;W()X(ip)
== b, (i OO (i © W)y fi, (s
%,p

(t))x(p)
= 0(0(1).5)7 ;W ’

2.

’ @) _
where the last inequality is due to Ciel < 1 Toms oy, € [0’1] and %" [l2 = O(1). This further
implies that

16112 = 1659 — 601> < O(oftny) = O(oh®),

where the last inequality is by n.= 0(M?)n. The proof of [(xi; 01|l < 0(06'5) and
o (xi; ©@W) = M1 4 O(op®) are straight forward g1ven||‘9 ||2 = (0°)- O

We will first investigate the property of the router.

Lemma E.4. M&Xme] [P(mi = m) = 1/M| = O(08”) for all £ < Ty, i € [n] and m € [M].
Proof. By Lemma E.3 we have that I (xi; ©1)]l o0 < O(Uo'a). Lemma 5.1 further implies that

max |P(m;; = m) —1/M| = O(a4)
me[M] .

Lemma E.5. We have following gradient update rules hold for the experts,

]Ea?) +6 d70.005 _ s
B O (i, vad) + O(03?)

<VWm,j£(t), Ck> — 6(d—0.005)0_ (< 52)]’ >) + 6(0_%.5)’

(Ve , £, €15) = O(d09)o! (W) &:,)) + O(02)

<vwm,j E(t) ’ Vk;>

for all t < Ty,j € [J]],k € [K],m € [M],p 2 4. Besides, we have the following gradient norm upper bound
holds

30

Ela3] + O(d—0-005 -
||Vwm,jﬁ(t)||2 < Z [«”] QKJ\(ﬂ)U "((gtl)]’ Z O d70005) o ((w (t),jvck‘>)
ke[K] ke[K]

+ Y 0@ (wlh) &) + O(02F)

i€[n],p>4
forallt< Tyj € [J],m € [M].

Proof. The experts gradient can be computed as follows,

1
Ve, LD == 3" L(mip =m)l}, fm(x;
’ " i€l pelP) ;w(t))ﬁm(xi;@(t))ym ((w fn)j, Ep)))xgp),

We first compute the inner product hVwm;L®,cii. By Lemma E.2, we have that [hVwmL®,cii-

E[(Vw,, LD, c1)]| = O(n~20q) < O(a22).
1
E[(Var,,, L0 ci)] = == 3 Blmie = m) mon (xis @)’ (wy,) . i)yl el
1€Q
1
- E Z IP)(Tni,t = m)gg,tﬂ'm(xi; @(t))g (< m]7£z p>)yz<cka & p>
i€[n],p>4
1
— [= gy 32 BB = m) + ()| o (Wit ca)) + Ol
nM
1€Qy
= O™ + 0§ M)/ (W) ei)) + O(07?)
= O(d~")o" (W), 1)) + O(029)

where the second equality is due to Lemma E.3 and D.2, the third equality is due to Lemma E.4, the
last equality is by the choice of n and go. Next we compute the inner product hVym,L,vii. By Lemma

E.2, we have that|(Vwm, £8, Vi) = E[(Va,, ;. L8, vi)]| = O(n~2a9) < O(03).
E[(Vew,, ., LY, V)] ———Z (mie = M)l o (xi;© D)o’ (W) vi))ad | vill3
1€Q

1
== 0 ST Plmaa =)l mn(xis 00" (Wl i) v

k' Ak i€

1
—= Y Pl = m)tmn(xis)0 (W) €)i (Vi Eip)
i€[n],p>4
= | — i P(m; s = m)a3 — i P(m; = WL)ngifi + 0(05‘5) :
2nM - ' 2nM ’ !
lGQk ’LGQk/:k

o' (W) i) + O(2)
(E[0®] + O™ + o)) o’ (W'l vi)) + O(2)

m?]’

- (2]%M]2 + 5(‘1_0'005)) o/ (Wi Vi) + O(o3)

31

where the second equality is due to Lemma E.3 and D.2, the third equality is due to Lemma E.4, the
last equality is by the choice of n and oo. Finally we compute the inner product hVym,L,¢;,i as follows

1
(Vaw £, i) = = Lmig = m)l (o213 00)o' ((wy) . &) |6 pl13 + Oo0d™1?)

= (L2l) o), 1))+ Ot 72

n

= O(d™")o" (W), &) + O(02?),

where the first equality is due to Lemma D.2, second equality is due to | 9;| < 1, € [0,1] and the third
equality is due to Lemma D.2 and our choice of n,go. Based on previous results, let B be the projection

matrix on the linear space spanned by {Vi}ke[x) U{Ci}e[x)- We can verify that

||Vwm3£(f)||2 < ||vam]£(t)||2 + 1T - B)Vwmjﬁ(t)HQ
E[o?] + O(d—0-005) o) o
< Z 2K M?2 U(nL,j’ Z O d- (m] Ck>)
ke[K]
+ Z 5(d_0.005)01(<wm,j7€’i,p>) + O(O’O‘)
i€[n],p=>4

O]

Because we use normalized gradient descent, all the experts get trained at the same speed.
Following lemma shows that expert m will focus on the signal vi»:. Lemma E.6.

For all m € [M] and ¢ < T4, we have following inequalities hold,

hwmyj() me ,Vkm: 1 = 0(000.5), hwmj©) ,vki

Oe(00),Y(j,k) = (6jm+ km«), hw,;® ,cid

Oe(00),Vj € [J1.k € [K], hwn,(0,§;pi = Oe(00),V)

el/li€[n],p=4

Proof. For t < T, the update rule of every expert could be written as,

(t+1) ®) U BE[0%] + O(d ")) = o3
p T VO oo o ek e Ol
(t+1) (t) n 7~/ 7—0.005 (t) 2, /.25
bA-Y2 Y O d m.1° 7 + O
< fm,J E P) < TTL] € P> vamﬁ(t)HF |: ()(W \J £ ,:D> (UO):|
(t+1) (®) n = 7—0.005 (t) 2, /.25
<W’m,,j 7Ck7> - < m]7 k> + ||VWm£(t) ||F [O(d)(W’m,,j7 Ck?> + O(UO)] :

7

32

(E.3)

(t) 0.5 t
For t < T1, we have that<wm7j’ Viz,) < O(og). By comparing the update rule of <Wm7j’ Vi)

() 0.5
and other inner product presented in (E.3), We can prove that<Wm7j’) will grow to%0" while other

inner product still remain nearly unchanged.
t

(t) @)
Comparison with {(Wi:VE) Consider ¥ # K. We want to get an upper bound of Win,j: vk>, so
t —_—
without loss of generality we can assume<wm,j7 Vi) = Q(UO). Since 0 < d-991, we have that

<w(t) Vi) + 5(03'5) =(1+ 6(d_0'005))<wv(wtl),j’ Vk>2. Therefore, we have that

m,j’
(t4+1) o n 3E[0®] + O(d"%) 2
(Wi s Vig) = (Wi g Vi) + Vw, LO| 5 2K M? NCERCY , (E.4)
(t+1) (t) U 3E[a®] + O(d~*0%) (t) 2
Wm iy VE) = Wm i VE + Wm o VI
(W s Vi) = (W2 Vi) IVw,, LO 2K M? v (E.5)

Applying Lemma F.2 by choosing C:= (3E[a3] + Oe(d0905))/(2KM2kVwnLOkr), S =1 +

(0) - (0)
Oe(d-0005), G = 1/(3log(d)M?) and verifying (Wi, Vi,) = S(L+ G (wm', vi) (events in Section D
vi) < O(G~ o) = O(oy).

(t)
<Wm7j7

hold), we have that

(t) (t)
Comparison with <Wm,j’ck>.We want to get an upper bound of <Wm>j’ck>, so without loss of

t
generality we can assume<wm,j’ k) = Q(UO). Because oo < d-091, one can easily show that

(1)) ® n___ 3B’ + 0% 2
<ij ,V 7*n> = <Wm17j, Vk;“n> + ||va£(t) ||F QKJ\/_[Q <wm7j7 Vkvfn>
1 ‘ n O(d=" ‘
(WSZZ Jep) < <wf£),j,Ck> + oo 001)<W7(71;),j’c’f>2'

IVw,, LD 7

Again, applying Lemma F.2 by choosing C;= (3E[a3] + O¢(d-0905))/(2KM2kVw.L0kF), S =

(0) “1 /o0 (0)
Oe(d-°01), G = 2 and verifying (Wi, Vi,) 2 S(1+ G {wm', e) (events in Section D hold), we have
that hw(),vi < 0(6-100) = Oe(O'o).

t) ¢
Comparison with<wm,j ’ 5’/71’). The proof is exact the same as the one with cx. O

Denote the iteration T0" as the first time that IVw,, LD F > 75°° Then Following lemma gives
an upper bound of Tt for all m € M.

Lemma E.7. For all m € [M], we have thatT(m) = 0(7771‘78'8) and thus T0m < 0.01T;. Besides, for all Tp,
< t < Ty we have that

(Ve £ vk) > (1= 00)V, LY 2

m,Im

— T dxd
Proof. Let projection matriXB = VknVE;, € R

orthogonal part

, then we can divide the gradient into two

33

kVWm,jm* L(t)kz = kBVWm,]’m>~< L(t) + (I - B)VWm,jm* L[t]kZ
< kawm,jm* L[t)kz + k(] - B)Vwm,jm* L(t)kz

Recall that

Vaw s £ Zﬂ mig = m)E (i ©)yio! (wi o (7)),

So we have that

1
I(I = B)Vw,, . L2 = H; S Ly = m)l (x5 © D)y’ (w) . xP))(1 - B)x
i,p

1
<n2|
,p

< O(ad),

2

m]*’ z

2

where the first inequality is by | 9| < 1,m» € [0,1] and the second equality is because

1. when x(p) align with vim-, (I - B)x(®) = 0.

12)] Kz s (wifl)j* ,xﬁp)) = 5(00)‘
2. when x; doesn’talign with v .
Therefore, we have that

Ve, . LD]2 < |BVy

™,

o L2+ 0(08) = (Vw,, . LY, viz) + O(7)

m,jh, Womn i

We next compute the gradient of the neuron wm.j»J 7 Jm,

= O(03)
2) (E.6)

m,3’ "

1
190 £l = |32 80t =)65 €0 i (), X
vLp

(t) (P)
where the inequality is by (Wygo %) = (a9

upper bound the gradient norm,

)V # j:"which is due to Lemma E.6. Now we can

kVwnL(tkr < X kVwn,L(k2 < KVwmm: L(ok2 + Oe(002). (E.7)
Jjem

When||VWm,£(t) lr> 03'8, it is obviously that
(Ve £5Vig) 2 Ve, o L8]0 — 0(a8) > [IVw,, LO][r — O(03) = (1 - of)IIVme(t)IIF,

m m ,]

where the first inequality is by (E.6) and the second inequality is by (E.7). Now let us give an upper
bound for Ttm, During the period ¢ < T, | Vw,, L9 p < 74°®, On the one hand, by
Lemma E.5 we have that

3E[a®] — O(d—0%)

t t _ (t) 2 (2.5
VW, L0z 2 ~(Vaw,, L9 Vi,) = =t (e Vi)P = O(07)

34

<W(t) ‘ > 5(0.0.9
which implies that the inner product® ™ m.j:m 'V, 0). On the other hand, by Lemma E.6

we have that

D) o v s (w® n 1 ® 2
Wiy Vi) 2 Oy Vi) * g gy O aeae) Wi Vi)
(t) n (t) 2
> <Wm,]7*na Vix,) + ®<W> <Wm,j:nvvk;‘n>
(t) n ()
> <Wm,j;*”a kan> +©O (KM20'8'8> <Wm,j,,*;l’vk7n>?

(t)
where last inequality is by (Wi gz, iz) 2 0100 . Therefore, we have that the inner product

(t)
<W VK, >grows exponentially and will reach O(Uo) w1th1nO(TI top®) iterations.

O]

Recall that1 = ln~'o 8'5J, following Lemma shows that the expert m € [M] only learns one feature
during the first stage,

Lemma E.8. For all t < T,m € [M], we have that

hwmj(t) m« ,Vkm< 1 = 0(000.5), hwm,j®) ,Vki =

0e(00),VY(j,k) = (6jm«,km+), hwy, ;8 ,cid =
Oe(00),Vj € [J]].k € [K],

< mj’5171’> (0)7vj € [J],Z € [n],pZ 4'

(t)

_ 01
Besides <Wmd;*n’v’“i‘n> > (1 =0)nt, forall t =2 T1/2.

Proof. By Lemma E.7, we havel "™ = O(n~ '00®) < 03 - T1. Notice that hVwmjm: LO,Vied 2
(1- 0'8'1) ||VWm,£(t) ||F, for all T\, < t < T1. Therefore, we have that

(w(tH) Vi) > (W(t) Ve Y+ (L= o VT, <t < Ty

%
MyJm’ A myJm

(t) 0.1
which implies< m.jg VR) = (1= 0(og)t vt = T1/2. Finally, applying Lemma E.6 completes the

proof.
O

E.2 Router Learning Stage
Denote T> = bn-tM-2c, The second stage ends when t = T». Given x = layv, Beg, vev, €], we denote

by "x =[0,5¢i0,..,0] the one only keeps cluster-center signal and denote by xh = layvi, 0,vevy, 0] the
one that only keeps feature signal and feature noise.

35

For all Ty < t < T,, we will show that the router only focuses on the cluster-center signals and the

experts only focus on the feature signals, i.e, we will prove that |fn(x;W®) - f,(xbsW®)| and
kh(x;00) - h(x;,00)k,are small. In particular, We claim that for all T1 < ¢ < T, following proposition
holds.

Proposition E.9. For all T; < t < T, following inequalities hold,

|fin(X5;W®) = fn(Xbi; WO)| < 0(d-9001),Ym € [M],i € [n], (E.8)
kh(xi;0(9) - h(x;0(6)ke < 0(d-0.001),Vi € [n], (E.9)
P(mic= m),mn(x;00) = Q(1/M),Ym € [M],i € Qy-. (E.10)

m

Proposition E.9 implies that expert will only focus on the label signal and router will only focus
on the cluster-center signal. We will prove Proposition E.9 by induction. Before we move into the
detailed proof of Proposition E.9, we will first prove some important lemmas.

Lemma E.10. For all T; < t < Ty, the neural network parameter maintains following property.

o [fu(x;W®)| =0(1),Ym € [M],
o Tmie(x500) = Q(1/M), Vi € [n].

Proof. Because we use normalized gradient descent, the first bullet would be quite straight forward.

Ifm(x;W©)| = X X a(hwm,j),X(ip)i) (=) O(1),

JEUT pe[P]

® lw' — wO ||y = O(nTz) = O(M~* where (i) is by)

and x; = o(1).
Now we prove the second bullet. By Lemma C.4, we have that hp(X;0) = max, hn(x;0)-1, which
implies that
exp(hm, , (Xi; ©")) exp(hm, , (Xi; ")) 1

m j:@(t) = > > —
Tom.o (i) > €xp(him(x;©M)) — M max, exp(hp(x; @) — eM

O]

Lemma E.11. Denote do = max; kh(x;0) - h(x;0)ks and let the random variable “m;.be expert that
getrouted if we use the gating network output h(x ;@©) instead. Then we have following inequalities,

[T (%550) = (X 50)| = O(S6),Ym € [MYi € [n],-(E.11) |P(myc= m) - P(mie= m)| = O(M28e),Ym € [M],i
€[n]. (E12)

Proof. By definition of 6e, we have that kh(x;0®) - h(x;00)ke < de. Then applying Lemma 5.1 gives
|P(mi¢:=m) — P("my:= m)| = Oe(be0),Vm € [M],i € [n], which completes the proof for (E.12).

36

Next we prove (E.11), which needs more effort. For all i € [n], we have

Tm (Xi; ©) exp(hm (x5 ©) — hin (%3 ©))

m(Xi; @) = — —
i (X /) Zm’ 7Tm’(Xi; 6) eXp(hm’ (Xi; @) - hm’ (Xﬁ @))

Let 8mo= exp(hmo(X;0) = hmo(X";;0)) = 1 + O(de). Then for sufficiently small 6o, we have that §mo= 0.5 .
Then we can further compute
)
m i'e(t) - 777_7‘.@ = Tn_i'g - -1
‘77 ,(X,7) T ,(X,u)‘ e ,(X,a) Zm/ Wm’(ii;@)ém’

| Zm' T (X35 ©) (6 — 0|

Zm’ Tm/! (iﬁ @)5m’
Zm’ Tm/ (Xi; 9) |5m’ - 57n|

Zm’ 7"—m’(i'[ﬁ; 6)5771’

= Tm (ii; 6)

< Wm(ii; G))

< 0(5e),

where the last inequality is by |Smo— 6m| < 0(86), Tm(x50) < 1 and Lo mo(x 50)8mo 2 [Fmomo(x750)]/2
=05 O

Following Lemma implies that the pattern learned by experts during the first stage won’t change
in the second stage.

Lemma E.12. Suppose (E.8), (E.9), (E.10) hold for all t € [T4,T] € [T1, T2 - 1], then we have following
inequalities hold for all t € [T, T + 1],

hwmj(t) m« ,Vkm: i 2 (1 = O(000.1))nt, hwmyjt) ,vid =

Oe(00),V(j,k) = (6jm= ,kmx), hwp ;0 ,cii = Oe(00),Vj €

U],k € [Iq; hwm,j(t);fi,pi = Oe(O'o),Vj € U],k € [Iq11 € [n]'p

>4,

Proof. Most of the proof exactly follows the proofin the first stage, so we only list some key steps here.
Recall that

1
Vwm’jﬁ(t) == Z L(m;y = m)€;7t7rm(xi; G(t))yia'(<wffl)’j, xl(-p)>)x£p)
i.p

In the proof of Lemma E.5, we do Taylor expansion at the zero point. Now we will do Taylor expansion
at fm(xbi; W) and r(x ;0) as follows,
|7m (x50 0)fm(X5;W(9) = 11m(X5;0(9)fm(xbi; W(9) |
< | mm(X500) [fm(x5W(©) — fm(Xbi; W©)]| + |[Tm(X5;00) — mm(X5;00)] fm(Xi; W) |

< |fm(xi;W(©) - fm(xbi; W) | + O(|tm(X;;0(0) - mm(X75;0(0)])

37

< 0(d-0.001),

where the first inequality is by triangle inequality, the second inequality is by mn(x;0®) < 1 and
|[fm(x5W®)| = 0(1) in Lemma E.10, the third inequality is by (E.8), (E.9) and (E.11).

Then follow the proof of Lemma E.5, we have that

E[(Vw,, , L9, vis)] = —= Z (Mg =m ﬂm(Xi;@(t))U/“Wg)m Vis) Vg, |13
’LEQk*
1
— = > Blmig = m)l i (xis @) (wy) v, eV, 1
iEQk’,k’,“n

1
= T Pl = m)] (xi @) (WS)i (Vi €i)

= [_ é(%) Z P(m;; = m)as — é(%) Z P(miy = m)v;yie;

7691@}"” ier/,k;‘n

mj’

0@)| o' () vig) + O

—~

9 _61)o’ (W, vis),

m,)’

where (i) is due to (E.10): P(m;:= m) 2 ©(1/M), Vi € Qm:,m € [M]. Again follow Lemma E.5 and Lemma
E.6, we further have that

hVwam,L(6),vki = =0(1)[e hwm,j(t),vki]2, hVwm,L(t),cki =
Oe(1)[hwmyj(t),cki]2, hVwam,L(#),&ipi =
Oe(1)[hwmyjt),&ipi]2.

Thus for all Ty < t < T, the update rule of every expert could be written as,

(t+1) (t) fa U (t) 2
S Ve Vs) +O(1)———— LV
Wi > Vi) = (o Vi) + O Gy Wma Vi)
(t+1) (@) A Ui (t) 2
(Wi s Vi) = Wy i, VE) + O(l)—vamE(t)HF (Wi o Vi)
(D) ey = (w® g Y+ O(1)—— L (w® g,)2
(W 7€ ,P) <W 75 ,p> () vam['(t) HF <W 7€ ,p)
(t+1) (t) A U (t) 2
W s ek) = W o8+ O Gy ma o4

wii) vy <) = O

By the first stage of training we have that { mj o0) while others remains Og(0). Then

we can use Lemma F.2, by choosing § = 0(1)e and G = 2, then we have that

38

hwmj(t), Vim<i = O(1).
hwmyj(t),vii = Oe(00),Vk 6=
kmx. hwm,j(t),cki = Oe(00).
hw(s),&ipi = Oe(00).
Then following Lemma E.7 and E.8, we can prove that forall Ti<t< T+ 1, m € [M],
hwm,j(t) m«,Vkm:1 2 (1 = 0(000.1))nt, hwm,j(e),Vki =
Oe(00),V(j,k) = (6jm+ ,km«), hw,;O ,cd =
Oe(00),Vj € [J1.k € [K], hwnj9,&;pi = Oe(00),V]

€ [/]i€[n]p =4

By the result of expert training we have following results

Lemma E.13. Suppose (E.8), (E.9), (E.10) hold for all t € [Ty, T] S [T1, T2 - 1], then we have that
fin(xWO) = fin(xbis W) = O(08) for all m € [M] and i € [n], t € [T, T+ 1]. Besides,

Yifm(xbi; W(8)) = X haizo(hwm,j(t),vid) + yido(hwm,j(t),Vki)i,Vi € Q+kko,m € [M],
JEN

yifm(xbi;W(1) = X haiza(hwmj(t),vii) — yiso(hwm,j(t),Vioi)i, Vi € Qick-o,m € [M].
Jell

Proof. For all i € 4, we have that
(s W) = £ & W) < | S o(wl e+ Y o(wll &)
JELJ]

je[‘]] 7p24

m
<

<O0(J

~—

‘maxo((w) cp)) +0(J) - max (W &5,

- m,j’ m
kg J

where the first inequality is by triangle inequality and the last equality is by Lemma E.12. O

Next we will show that router only focus on the cluster-center signal rather than the label signal
during the router training.

39

Lemma E.14. Suppose (E.8),E‘9)~’ (E.10 () hold for all t € [Ty, T] € [Ty, T2 - 1], then we have that
kh(x;,00) - h(x;0®)ke = 0(d-0005) hold for all i € [n] and t € [Ty, T + 1]. Besides, we have that max
ke |08, Vi) masxn i |08, i p)| = O(d=%) gor all ¢ e [Ty T + 1.

Proof. Recall the definition of §e in Lemma E.11, we need to show that ey = Oe(d0005) forall t € [T, T
+ 1]. We first prove following router parameter update rules,
hVsuL(t),vki = 0(60nK2) + Oe(d-0.005),hVsuL(#),&ipi = Oe(d-0.005), (E.13)
forall Ti<t<T,me [M], k€ [K], i€ [n]and p =4.
Consider the inner product of the router gradient and the feature vector and we have

E[(Vg, LY, v})]

1 .
= =X Pmye = m) teyimtm (X130 D) (xi; W O)yiars

n I€EQx
| fr
1 .
+ = X Pimit = m) gtyiT[m [Xi;ﬁ)(t))fm (xi;W(t)) iVi
1€Q 0
| {Z 1}
1 .
-= X Pimie = mY 5 yimmo(xi; ® D) (x50 D) frno(xi, W Dy
i€Qk,m%[M]
| {7 1
1
- Z P(mi ;= m) T (x5 OO)y (xi; ©) frr (31, W) i
1€Qys 4, m'€[M]
Iy
1
DT Blmig = m) i (i ©) fin (i W), i)
i€[n],p>4
Is
1

- > P(miy = m'); it (xi: OD) 1, (xi: OD) £ (x5 WD) (xP) vy . (E.14)
- ,

1€[n],p>4,m’€[M]

I
Denote yimm(X ;00)f(xbi; W®),Vi € Q‘fk,ko by F_k,k+ 0. We next show that the output of the MoE
multiplied by label: yimn(x;00)f(x;W),Vi € Q*;wcan be approximated by F_k,k+ 0.
|Tm(xi;00)fm(x5 W) = mm(X;;00))fm(xbi; W) |
< |[rm(X5;00) - mm(X5;00)]fm(X; W) | + |tm(X500) [fm(Xi; W(6) — fm(xbi; W(©)]|

< O(|mm(x:5;0(0) — Tm(X75;0(0)|) + |fm(xi; W) - fm(xbi; W(n)|

40

< 0(dgn) + O(oy),

where the first inequality is by triangle inequality, the second inequality is by mx(x;0®) < 1 and
|fm(xsW®)| = 0(1) in Lemma E.10, the third inequality is by (E.11) and Lemma E.13.

Similarly, denote yirm(X ;00)fn(xbi;WW),i € Qo by F_k,k- o and we can show that value

YiTtn(X;:0(0)fin(x;W(),Vi € (0 can be approximated by F - o. Now we can bound I as
follows,

(B)yl 0
—— BN [P(miy = m)yiai + O(dgw)] + O(af)

k'#k " ot
1€ K.k

"(Fyyp-)Fr O
n Z k=) Ey Z [P(miy = m)yics + O(6gw)] + O(c)
k' £k i€,
1 €I F ’ F+ ’ 0
> % >~ [Pl = myyici + O(M?g)] + O(at)

K'#k et

k,k!
+ Z Tl Z [P(ﬁli,t =m)yic; + O(Aﬂ(s@("))] + 5(08)
k'#£k ZEQI;,C/

Fk.k./

W O(M?Sg) +O(n™% + 63)
= O(M?6g) + O(d %)
v v

where (i) is due to (E.12) and (ii) is by Par oyia = Oe(n) and Pieﬂ—k,koyia = Oe(n)in

kk

(»)

Lemma D.1. Similarly we can prove that I, 15,14 = O(M28ew) + Oe(d-0005). Since(X; » Vi) =

Oe(d-1/2),Vp 2 4, Ty, Tmie< 1 and fri:= O(1), we can upper bound Is,/s by Oe(d-1/2). Plugging those bounds

into the gradient computation (E.14) gives
E[<Vem£(t),Vk>] = O(M?%5g) + 5(d—0.005).

We finally consider the alignment between router gradient and noise

1
<V0m£(t),€iap'> = Z L(mip = m)li yiTm, , (X33 Q(t))fmi,t (x;

: []p>4 WO, &)
- - Z éz AYiTm,, t(xl? e))Wm(xw o)fmZ t(
n],p>4
o) < >+O(d 1/2)
u) (1/2) -W(t))<xz('p)7£i'¢p’>_

41

where the (i) is by considering the cases (i%p?) = &, and &opo 6= &, respectively and (ii) is due to our
choice of n. Now, we have completed the proof of (E.13).

Plugging the gradient estimation (E.13) in to the gradient update rule for the gating network
(3.5) gives

max (011, vi)| < max|(0F), vi)| + O(n-M*0g0) + O(npd ") ((E15
m, m,)
nax [(O0Y, € ,)| < max (8%, &)| + O(n,d~"0%) (I(E-16
m,,p m,,p
)

Combining (E.15) and (E.16), we have that there exist C1 = O(M?) and C; = Oe(d-%995) such that de1 <

60w+ Cinréew + C2nr. Therefore, we have that

down+ C1-1C2 < (1 + Cinr)[dew + C1-1C2]

< exp(Cinr)[dew + C1-1C2],

where the last inequality is due to exp(z) = 1 + z for all z € R. Then we further have that

dow < exp(Cinrt)[dgo) + Cfng] < exp(Cmrn_l.M_Q)[(S@(O) + Cfng] = 5(d_0‘005)

7

where the last equality is by n.= (M2)n. O

Define Ae := maxe[x) maXmmoeM MaXxiy)€ax |hm(X;;0) — hmo(X;;@)|, which measures the bias of the
router towards different experts in the same M;. Following Lemma shows that the router will treats
professional experts equally when Asis small.

Lemma E.15. For all t = 0, we have that following inequality holds,

max max max |7, (x;: ©M) — 1. (x;: @) < 2A :
ke[K] m,m’'eMy, (Xi,yi)EQk| me i3) m (%3 1< 2800

7

a ax |[P(miy=m) —P(mi; =m')| = O(M?*)A
max max, (Xi{gi)gml (miy =m) —P(miy =m")| = O()em.

Proof. By Lemma C.3, we directly have that
[P(mic=m) = P(mjc= m9)| < O(M2)|hm(X:;0©) = hpo(X;00)].
Then, we prove that
| Tmo(X50) = Tm(X50)| < 2| him(X5;0©) = hpo(X;00)]. (E.17)

When |hpm(X;00) — hpno(x;00)| = 1, it is obvious that (E.17) is true. When |hn(Xx;00) — hno(x;00)| < 1

we have that

42

[T (X3 ©) — Ty (%45 O)| =

exp(hn (xi; ©®)) — exp(hy (x4; O1))) ‘
> €XD (hip (xi ©1)))
‘ exp(hyy (x5 ©1))
> €XD (B (x5 ©1))
< 20 (x5 O — Ry (x5 © D)),

‘) ’CXp(hm(Xi; e(t)> - hm'(xi; @(t))) - 1|

which completes the proof of (E.17). O

Notice that the gating network is initialized to be zero, so we have Ag = 0 at initialization.

We can further show that Ag=0 1/poly(d>) during the training up to time T = Oe(n1).

Lemma E.16. Suppose (E.8), (E.9), (E.10) hold for all t € [T, T] € [T1, T2 - 1], then we have that Aen <
Oe(d-9001) holds forall t € [T1,T + 1].

Proof. One of the key observation is the similarity of the m-th and the m9-th expert in the same expert
class My. Lemma E.12 implies that maxi€Qy | fn (i, W(t)) — for (X4, W(t))| = 0(08'1) <
Oe(d—0.001).

Another key observe is that, we only need to focus on the k-th cluster-center signal. Lemma E.14
implies that,

Ao = max maxoeMk (xmax,y)ex |hm(Xi; @) — hmo(Xi;; (1)) | ke[K] mm
< max max°eM (xmax,y) e |hm(X 500) = hpo(X ;O0)| + 200 ke[K] mm

= Mmax maxoeMy |h19m - ﬁmo,ﬁ,-cki| + 260&) kE[K] mm

< (Cymax max |(0,, — 0,,cp)| + 2060
a ke[K] m,m’eMkK m ms Ck)| 10)

7

where the first inequality is by Lemma E.14 and the second inequality is by i< C>. We now prove that
following gradient difference is small

<V9m£(t) - Vem' E(t)7 Ck>
1
-, Z Z P(m; = m)zg,tﬂm(xﬁ @(t))yifm(xi

e[l pelP] WP, i)
- l Z > P(mig = m)l o (x50)y, frw (xi
" it elP) WO e

— Z Z Z [T (X35 S)) — T (X4 o))] (mzt = ,/)Zg,tﬂ'm”(xi; @(t))

zEQk pE[P] m" €[M]

yifm// (Xi,)(xgig)7 ck‘> + O(dfO.OOI)

1
_ o(g) S [BOmiy = m') = B(miy = m)) |6 7 (x5 ©) Biys I (330 4 (00001

i€Qx

+ 0(1)max|mmo(X;00) — mn(x;00)| + O(1)max|fm(x; W) — fro(x, WO)| ieu ieu

43

= 0(1)|P(m,-,t: m©) ~ P(mj:= m)]| + O(1)max|mmo(X;00) — myn(x;00)|
i€Q
+ 0(1)max|fm(x; W(5) - fmo(xi W(8))| + Oe(d-0.001)
i€k
(if) 2 -0.001
= 0(M Do) + Oe(d),

where the (i) is by Lemma E.2 and (ii) is by Lemma E.15. It further implies that Aew+1) < O(n-M?)Aew
+0e(n,d-0001), Following previous proof of de, we have that Ag(r.1)= Oe(d-0-001).

O]

Together with the key technique 1, we can infer that each expert m € M, will get nearly the same
load as other experts in My. Since Ag keeps increasing during the training, it cannot be bounded if we
allow the total number of iterations goes to infinity in Algorithm 1. This is the reason that we require
early stopping in Theorem 4.2, which we believe can be waived by adding load balancing loss (Eigen
et al.,, 2013; Shazeer et al.,, 2017; Fedus et al.,, 2021), or advanced MoE layer structure such as BASE
Layers (Lewis et al., 2021; Dua et al,, 2021) and Hash Layers (Roller et al., 2021).

Lemma E.17. Suppose (E.8), (E.9), (E.10) hold for all t € [T4,T] € [T1,T>-1], then for m /€ Myand t €

[Ty, T],if <07(7?’ Ci) = MaXy (95,2, Ck) —1 we have that

343
(Vo £O.) > af I
m 5 Ok =2 KB

> + 6(d—0.005>

Proof. The expectation of the inner product hVsmL®,cii can be computed as follows,

[(Vomﬁ(t) Ck: Z]P’ mit = 7 f7rm (Xz ®(t))yzfm (Xz)) <X5p)> Ck>

- — Z mzt =m)El tTm! (Xu @(t))ﬂ-m(xz @()yzfm (xz;))<X5p) ck>
n

ﬂp7

i) 1 ~ .
D25 Plmiy = m)l mn(xi: ©O) Biy fn (xis W) + O(d=00%)

n
iGQk

- = Z D P(mig = m) o (x50 1 (3 1) Bigyi frr (31, W)

'7erm €[M] .
(E.18)

where (i) is due to |h§;p,cii| = Oe(d-05).

We can rewrite the inner product (E.18) as follows,

1
(t) S R / L @OOYE.0,. .
]E[(ngﬁ ,ck>] - E P(m; 4 m)ﬁl’twm(xl, ®)ﬁly,fm(x,,;w(t)) + Oe(d-0005)

44

1€Q

LY S E=m

) i tTTm/ (x4 G(t))

m(Xi; Q(t))ﬂiyifm’(xia W)
1€Qy, m’/€[M)]
1 —
= X P(mi:t = m)‘lc,tT[m (Xf;@(t))yiﬁifm(xi;wm)+Q(d 0.005)
n i€EQk
I {Z }
I
_1ox

P(mic = m% i mmo(xi; © D)1m (x1; 0 D) Biyif mo(xi, W)
n i€EQk,m%M g

{z

(E.19)
1
-= X P(mic = m) ' §mmo(xi; © D)1t (xi;© D) Biyif mo(xi, W 1)
n i€Qk,m %M |

{z }
I3
(E.20)
To calculate 14,1513, let’s first lower bound Iz. We now consider the case that m € M6 MO € M.
Because <97(n), Ck) = maXy, (O, cx) —1, we can easily prove that m,(x;00) = Q(1/M),Vi € Qi
Then we have that
1

I _5 A g]P)(Tni,t = Tnl)gg’tﬂ'm’ (Xi§ @(t))ﬂ'm(xz;
1€QE,m'eMy,
3t3

> Q(#) Z Bi

1€Q,m’ e My,

20(ihp)

where the first inequality is by mmo(x;00) = Q(1/M), P(m;:= m°) 2 O(1/M), Vi € Qim:,m €
[]Vf], yifm’ (Xi; W(t)) = 773753(1 -

G(T))/Biyifm’ (Xiv W(f))

G)) and °=-0(1) for all i € Q4 m° € Mdue to Proposition E.9
and Lemma E.12, and the last inequality is by |My| = 1 in Lemma D.4 and

PlEQkﬁl Q(n/K) in Lemma D.1.
Then we consider the case that m,m® 6€ M. Applying Taylor expansion of ;= 1/2+0(Jn3t3)
gives

; Z mzt = fﬂnL(X’La (t))yiﬁifm(xi; W(t))
lEQk

=— Z (i = m) T (xi;

Oy, B; fn (xi; WO) + O(J25¢°)
lGQk

45

= Z Z P(miy = m)mm (xi; ©W)yiBi fn (xi

k! ZEQ:M ;W(t)) +O(J2776t6)
Z Y Plmiy = m)mn(xi; 01y fin (xis W)
K €
= O(J*n"t%) + O(d~*%). (E.21)

where the last inequality is by the technique we have used before in Lemma E.16. By (E.21), we can
get upper bound |I1],|I3| by O(J2n6te) + Oe(d-0-005).
Plugging the bound of 11,15,z into (E.20) gives,

<v9 E() >>Q< 33
KM3

n3t3 = 1-0.005
<0 - od ™
= <KM3> +0()

where the last inequality is by t < T> = bn-1M-2c. O

> + O(J2776t6) + 6(d70.005>

Now we can claim that Proposition E.9 is true and we summarize the results as follow lemma.

Le(l%lr)na E.18. For all T1 7 t < T, we have Proposition E.9 holds. Besides, we have that
<0 2 Ck) < max,,’ €[M)] <0 > — Q(KilMig) for all m/e M.

Proof. We will first use induction to prove Proposition E.9. It is worth noting that proposition E.9 is
true at the beginning of the second stage t = T1. Suppose (E.8), (E.9), (E.10) hold for all t € [T1,T] S
[T1, T2 - 1], we next verify that they also hold for t € [Ty, T + 1]. Lemma E.13 shows that (E.8) holds for
t € [Ty, T+ 1]. Lemma E.14 further shows that (E.8) holds for t € [Ty, T + 1]. Therefore, we only need to
verify whether (E.10) holds for t € [Ty, T + 1]. Therefore, for each pair i € Q, m € M;, we need to
estimate the gap between expert m and the expert with best performance h,(x;0®) - maxmo
hmo(x;0@). By Lemma E.17 and Lemma E.14, we can induce that h,(x;00) is small therefore cannot
be the largest one. Thus hn(X;00) — maxmo hmo(X;;0()) = hm(Xi;O()) — maxmo hmo(Xi;0(8)) < Aew <
Oe(d-0.001). Therefore, by Lemma C.3 we have (E.10) holds. Now we have verified that (E.10) also

holds for ¢t € [T, T + 1], which completes the induction for Lemma E.O.
(t)Fmally, we care(gl)llly characterize the value of<9m)ack> for n;nt = O(M2) and m /€ M. If
(O, i) = max,, (6,7, ck) ~1, by Lemma E.17 we have that

3t3

(6D, c) < (09, cx) — @(’””

e) + 6(nrd_0'005) <0

(E.22)

(t+1) (t) T
(O 7,) < maxpy (6,7, cp)—1, clearly we have that<97(n12)a c) <

t t+1
-Q(K1M-9) since <9§n)7 ¢k) will keep decreasing as long as <91(n+ :

If there exists t < T>-1 such that
;Ck) = —1 and our step size n, =

(t+1) ()
©(M2?)n is small enough. If (Om s cr) = maxy (0,7, Ck) =1 holds forall t< Tz - 1, take telescope sum
of (E.22) fromt=0to t = T, - 1 gives that

46

KM3
s=0
31 33
(i) Nrn~s A~ 7—0.005
= — o d
(KM3) +0()

(0 where the (i) is Y77} i = n?(n —1)2/ by®,=0and (ii)isby 4 and
the last inequality is due to

T -
T>=bn-1M-2c and n,= O(M2)n. Now we have proved that<9§n2)7 cp) < —QUE'M 9) for all m /€ M.
Finally, by Lemma E.1 we have that

(12) 1 (12)
max (6,7, cp) > — 0, ,cr)=0
m’e[M}< " T m;w}< !

(T2) —1a7-9 (12) —13rs—9
Therefore, we have that (O cx) < —QETIM™Y) < MaXme[M] <0m’2 sck) — QBT M), which

completes the proof.
O

E.3 Generalization Results

In this section, we will present the detailed proof of Lemma 5.2 and Theorem 4.2 based on analysis in
the previous stages.

Proof of Lemma 5.2. We consider the m-th expert in the MoE layer, suppose that m € M. Then if we
draw a new sample (x,y) € (. Without loss of generality, we assume x = layv, Beg, vevis, €].

By Lemma E.8, we have already get the bound for inner product between weights and feature signal,
cluster-center signal and feature noise. However, we need to recalculate the bound of the inner
product between weights and random noises because we have fresh random noises i.i.d drawn from
N(0,(c,%2/d) - 15). Notice that we use normalized gradient descent for expert with step size 1, so we
have that

[wie) = wiills < 0Ty = O(af?),

m,j m,j

(11) (0) 0.5)
Therefore, by triangle inequality we have that ”Wmu‘ 2 =< ”Wm.,jH2 +0(0p”) < 0(00\@). Because
t

N0, (02/d) - [w'T)

2
the inner product (Win.j»€p) follows the distribution m,j ”2), we have that with

probability atleast 1 - 1/(dPMj),
(W&} = Oy 2wl |l2 log(dPM.])) < O(a0)

m,j

Applying Union bound for m € [M],j € []],p = 4 gives that, with probability atleast 1 - 1/d,

47

(T1)

(W &) = O(09),¥m € [M],j € [J],p > 4

(E.23)

Now under the event that (E.23) holds, we have that

Yfm(xW(©) =y XX o(hwm;X(p)i)

JeU1 pe(P]

= yo(hwmjm.,ayvii) +y X o(hwmj,X(p)i)
(ip)6=(jm*,1)

= C13(1 - 000.1)3001.5 — Oe(003)
= Q(oo015),

where the first inequality is due to (E.3). Because (E.23) holds holds with probability at least 1 - 1/d,
so we have prove that

P(x,y)~Dyfm(X;W(T1)) < O}(X= y) € Qk) < 1/d.

On the other hand, if we draw a new sample (x,y) € Qxo,k? 6= k. Then we consider the special set
Q1o € Qrowhere feature noise is vyand the sign of the feature noise is not equal to the label y. Without

loss of generality, we assume it as X = [ayVio, ¢k, —yYVi€]. Then under the event that (E.23) holds, we
have that

Yfm(x, W) =y XX o(hwm;X(p)i)

JeU1 pelP]

X
(:p)6=(jm",3)

= yo(hWpjm:,—yyvid) +y o(hwy,;,x®i)

< -C13(1 - 000.1)3001.5 + Oe(003)

< -Q(o015),

where the first inequality is due to (E.3). Because (E.23) holds holds with probability atleast 1 - 1/d,
so we have prove that

(1) - _
Poyy-yflcW) S 0[06y) € Q) > 1-1/d.

Then we further have that
T
P(x,y)~Dyfm(X;W(1)) < 0‘(X, y) € Qk/)

> Poyy bW) < 010%) € k) - Py ((%,9) € Oy [(x,9) € Q)

48

> Q(1/K), which

completes the proof.

O]

Proof of Theorem 4.2. We will give the prove for T = T, i.e., at the end of the second stage. Test Error
is small. We first prove the following result for the experts. For all expert m € My, we have that

Pl Dyl) < 0[(x:9) € Q) = 0(1) (E.24)

The proof of is similar to the proof of Lemma 5.2. We consider the m-th expert in the MoE layer,
suppose that m € My. Then if we draw a new sample (x,y) € Q. Without loss of generality, we assume
x = [ayv, Beg, yevy, €]. By Lemma E.8, we have already get the bound for inner product between
weights and feature signal, cluster-center signal and feature noise. However, we need to recalculate
the bound of the inner product between weights and random noises because we have fresh random

N(0, (o7/d)

noises i.i.d drawn from ' Id). Notice that we use normalized gradient descent with step

size n, so we have that

lw'D —w® |l < 9T = O(1)

(1) (0) A A
Therefore, by triangle inequality we have thatl Wm,jllz < Wy, ;]2 +0(1) < O(UO\/a). Because the

N0, (o2/d) - [w'])

t 2
inner product <Wm,j &p) follows the distribution m,j “2), with probability at least 1 -

1/(dPM]) we have that,

(Wi s &p)| = O(apd 2w |2 log(dPM.T)) < O(c)

Applying Union bound for m € [M],j € [J],p = 4 gives that, with probability atleast 1 - 1/d,

|<wf§},£p)! = O(00),Ym € [M],j € [J],p > 4 (E.25)

Now, under the event that (E.25) holds, we have that

yfm(x,W(n) =y X X o(hwm,j(1),X(p)i)

JEU1 pelP]

=yo(hwmjnm,ayvid) +y X o(hwmj(r),X(p)i)
(:p)6=(jm, 1)

> C13(1 - 600.1)3M-4 — Oe(003) =

Q(1)e,

where the first inequality is by Lemma E.12. Because (E.25) holds with probability at least 1-1/d, so
we have prove that

49

T]
P(le)NDyfm(X;w()) < O’(X7 y) € Qkﬁ) < 1/d
We then prove that, with probability at least 1 - 0(1), an example x € ; will be routed to one of
the experts in My For x = [ay v, Bek, vevi, §], we need to check that hn(x;0(M) < maxmo

(T) (1)
hmo(x;0(N),¥m 6€ M. By Lemma E.18, we know that (O vck) < maxy (6,7, cx) —
-Q(K-1M-9). Further by Lemma E.14, we have that maxmk |< m aVk>| = O(d~*%!
test error, we need to give an upper bound< ™ ,€p> where &, is a fresh noise drawn from

N(0, (e p/d) Id) We can upper bound the gradient of the gating network by

Hvemﬁ(t) |2 = H — Z L(miy = m)l; T, , (Xi; G)(t))yifmi (x4 W(t))xgp)
n 4 L :

). Again to calculate

. Z gl ATm; 4 le ())ﬂ-m(xi; @(t))yifmi,t (Xi
(t))x(p)

= O(l)v ;W 2

where the last inequality is due to | 9;¢| < 1, wm,mmic € [0,1] and kx(P)k, = O(1). This further implies that
105112 = 1165 — 6512 < O(tny) < Oy~ 'ny) = O(1),

m m m

)
where the last inequality 1(% by 1. = ©(M2)n. Because the inner product< m 51)) follows the
distribution?V (0: (@ 2/ d) - [|6m ||2) we have that with probability at least 1 - 1/(dPM),

10D, &, = O(a,d /261 |2 log(dPM)) < O(d~/?),

Applying Union bound for m € [M],p = 4 gives that, with probability atleast 1 - 1/d,

(05, &) = O(d™"/?),Ym € [M],p > 4 (E.26)
Now, under the event that (E.26) holds, we have that
hm(X;0(M) — maxhmo(x;0(M) mo

< hOm(1),cki — maxmohOm(To),cki + 4maxmk |hdm(1),vki| + 4P maxm,p |hdm(1),Epi|

-Q(K-1M-9) + Oe(d-0.001) < 0.

Because (E.26) holds holds with probability at least 1-1/d, so we have prove that with probability at
least 1 — 1/d, an example x € Qxwill be routed to one of the experts in M.

Training Error is zero. The prove for training error is much easier, because we no longer need to
deal with the fresh noises and we no longer need to use high probability bound for those inner
products with fresh noises. That’s the reason we can get exactly zero training error. We first prove
the following result for the experts. For all expert m € My, we have that
(T) ;
Vifm(X;W) <0,Vi e Q
€y

50

Without loss of generality, we assume that the feature patch appears in x;. By Lemma E.12, we
have that for all i € Qi

Yifm(Xi, W(1) = yi X X o(hwm,j(1),X(ip)i)

JEl pelP]

= yio(hwmj(T)m, ayivki) + yi X o(hwm,j(n),X(p)i)
(:p)6=(jm",1)
2 C13(1 - 000.1)3M-4 - Oe(003) >
0,
where the first inequality is Lemma E.12. We then prove that, and example (x;y:) € Q will be routed

to one of the experts in My. Suppose the m-th expert is not in My. We only need to check the value of
hm(X;0M) < maxmo hmo(X; (M), which is straight forward by Lemma E.18 and Lemma E.14.

O]
F Auxiliary Lemmas
Lemma F.1. Let {am} 1 are the random variable i.i.d. drawn from N(0,1). Define the non-
increasing sequence ofl@m}m—y as al)>... > a(M). Then we have that
P(a®@z (1 - G)aM) < GM?
Proof. Let W be the CDF of N(0,1) and let p be the PDF of N (0, Ug). Then we have that,
Pa@ 2 (1 - G)am)
Z
= 1(a@z (1 - G)aMM!Mp(altm)da
= / 1(a® > (1 - @)a")YM M - 1)p(a™)p(a®) ¥ (a@)YM24aM da?
a(l)Z(l(Q)
1
< 1(a® > 1 - @Q)a" MM - 1)p(aM)—=daPda®
< o 0 2 (0= @M = (e
_ / GMM = 1) 1) (40 gg
aM)>0 V2T
< GM?2, awz aqm
O

For normalized gradient descent we have following lemma,
Lemma F.2 (Lemma C.19 Allen-Zhu and Li 2020c). Let {x;y:}+-1,. be two positive sequences that satisfy

51

xt+12 xt+ 1 - Cex2t

yer1 < ye+ Sn - Ceyee,

and [Xe1 = Xe|2 + |Yee1 = Vie|2 < 2. Suppose xo,y0 = 0(1),x02 yoS(1 + G),

G21‘0 G2y0
log(A/z0) log(1/G)

7 < min{

}

Then we have for all 4 > xo, let Txbe the first iteration such that x;= A4, then we have y7.< O(yoG1).

Proof. We only need to replace O(nAe1) in the proof of Lemma C.19 by O(n), because we use
normalized gradient descent, i.e, C:x?,< 1. For completeness, we present the whole poof here.

forallg =0,1,2,.,, let Ty be the first iteration such that x; 2 (1+68)9xo, let b be the smallest integer
such that (1+68)?x0 2 A. For simplicity of notation, we replace x; with A whenever x; 2 A.

Then by the definition of Ty, we have that

X NC(1 + 6)gx |2 < XTg+1— xTg< 6(1 + 8)gx0 + O(n),
0
t€[Tg, Tg+1)

where the last inequality holds because we are using normalized gradient descent, i.e., max; | X1 — X:
< 7. This implies that

6 1 O
Y i< + <;7)

—_ g_
1Ty Tys1) (1+0)7wo a5

Recall that b is the smallest integer such that (1 + §)¥xo 2 4, so we can calculate

b—1
S s [S g] Oy L L8 O 10, Ollest/)
g=0

t>0,2: <A

xg 0 xg Z0 22 log(1+)

Let Tx be the first iteration t in which x> A. Then we have that

T,

= 1+6 O(n)log(A/z

cht < + " (n) Ogé /x0)
o o

=0 (F.1)

On the other hand, let A°= G-lypand b’ be the smallest integer such that (1 + §)b% = A°. For

simplicity of notation, we replace y: with Awhen y;> A°. Then 1et73 be the first iteration such that y;
> (1 + 8)9yo, then we have that

X nSC[(1 + 8)g+1x J(g-1) 2 yTgoe1 = yTgo2 6(1 + 8)gyo— O(n). t 0

t€[Tg0,Tgo+1)

Therefore, we have that

52

§ 1 O(n)
Z SnCe 2 2, .9
T (1+0)7(A+3)y0 wo

Recall that b0is the smallest integer such that (1 +0)"y0 > A’ wo we have that
b —2

) 1 O
> _
2. G2 GO W2

120,24 <A 9=0

Let Ty be the first iteration ¢ in which y;> A9, so we can calculate

Ty
1-— 1 Al
Y “nSCy > 0@ +6G) _ OMm) 0%2 /Yo)
- " " ' (F.2)

. G2z G?yo
Compare (F.1) and (F.2). Choosing 6 = G and”! < min{ log(A/gEo)’ log(1/G) }, together with x¢ 2

YoS(1 +G)

References

Allen-Zhu, Z. and Li, Y. (2019). What can ResNet learn efficiently, going beyond kernels? In Advances
in Neural Information Processing Systems.

Allen-Zhu, Z. and Li, Y. (2020a). Backward feature correction: How deep learning performs deep
learning. arXiv preprint arXiv:2001.04413 .

Allen-Zhu, Z. and Li, Y. (2020b). Feature purification: How adversarial training performs robust deep
learning. arXiv preprint arXiv:2005.10190 .

Allen-Zhu, Z. and Li, Y. (2020c). Towards understanding ensemble, knowledge distillation and self-
distillation in deep learning. arXiv preprint arXiv:2012.09816 .

Allen-Zhu, Z,, Li, Y. and Liang, Y. (2019a). Learning and generalization in overparameterized neural
networks, going beyond two layers. In Advances in Neural Information Processing Systems.

Allen-zhu, Z., Li, Y. and Song, Z. (2019b). A convergence theory for deep learning via
overparameterization. In International Conference on Machine Learning.

Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M. and Telgarsky, M. (2014). Tensor decompositions for
learning latent variable models. Journal of machine learning research 15 2773-2832.

Anandkumar, A., Hsu, D. and Kakade, S. M. (2012). A method of moments for mixture models and
hidden markov models. In Conference on Learning Theory. JMLR Workshop and Conference
Proceedings.

Arora, S., Du, S., Hu, W,, Li, Z. and Wang, R. (2019a). Fine-grained analysis of optimization and
generalization for overparameterized two-layer neural networks. In International Conference on
Machine Learning.

53

Arora, S., Du, S. S., Hu, W., Li, Z,, Salakhutdinov, R. and Wang, R. (2019b). On exact computation with
an infinitely wide neural net. In Advances in Neural Information Processing Systems.

Bai, Y. and Lee, J. D. (2019). Beyond linearization: On quadratic and higher-order approximation of
wide neural networks. arXiv preprint arXiv:1910.01619 .

Balakrishnan, S., Wainwright, M. J. and Yu, B. (2017). Statistical guarantees for the em algorithm: From
population to sample-based analysis. The Annals of Statistics 45 77-120.

Blard, T. (2020). French sentiment analysis with bert. https://github.com/TheophileBlard/ french-
sentiment-analysis-with-bert.

Cao, Y., Chen, Z., Belkin, M. and Gu, Q. (2022). Benign overfitting in two-layer convolutional neural
networks. arXiv preprint arXiv:2202.06526 .

Cao, Y. and Gu, Q. (2019). Generalization bounds of stochastic gradient descent for wide and deep
neural networks. In Advances in Neural Information Processing Systems.

Chaganty, A. T. and Liang, P. (2013). Spectral experts for estimating mixtures of linear regressions. In
International Conference on Machine Learning. PMLR.

Collobert, R., Bengio, S. and Bengio, Y. (2002). A parallel mixture of svms for very large scale problems.
Neural computation 14 1105-1114.

Dauphin, Y. N., Fan, A., Auli, M. and Grangier, D. (2017). Language modeling with gated convolutional
networks. In International conference on machine learning. PMLR.

De Veaux, R. D. (1989). Mixtures of linear regressions. Computational Statistics & Data Analysis 8 227-
245.

Devlin, J., Chang, M., Lee, K. and Toutanova, K. (2018). BERT: pre-training of deep bidirectional
transformers for language understanding. CoRR abs/1810.04805.

Du, S. S., Zhai, X, Poczos, B. and Singh, A. (2019). Gradient descent provably optimizes over-
parameterized neural networks. In International Conference on Learning Representations.

Dua, D., Bhosale, S., Goswami, V., Cross, J., Lewis, M. and Fan, A. (2021). Tricks for training sparse
translation models. arXiv preprint arXiv:2110.08246 .

Eigen, D., Ranzato, M. and Sutskever, I. (2013). Learning factored representations in a deep mixture of
experts. arXiv preprint arXiv:1312.4314 .

Faria, S. and Soromenho, G. (2010). Fitting mixtures of linear regressions. Journal of Statistical
Computation and Simulation 80 201-225.

Fedus, W., Zoph, B. and Shazeer, N. (2021). Switch transformers: Scaling to trillion parameter models
with simple and efficient sparsity. arXiv preprint arXiv:2101.03961 .

Go, A., Bhayani, R. and Huang, L. (2009). Twitter sentiment classification using distant supervision.
CS224N project report, Stanford 1 2009.

54

https://github.com/TheophileBlard/french-sentiment-analysis-with-bert
https://github.com/TheophileBlard/french-sentiment-analysis-with-bert
https://github.com/TheophileBlard/french-sentiment-analysis-with-bert
https://github.com/TheophileBlard/french-sentiment-analysis-with-bert

He, K., Zhang, X., Ren, S. and Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition.

Hsu, D. J, Kakade, S. M. and Liang, P. S. (2012). Identifiability and unmixing of latent parse trees.
Advances in neural information processing systems 25.

Jacobs, R. A, Jordan, M. I, Nowlan, S. J. and Hinton, G. E. (1991). Adaptive mixtures of local experts.
Neural computation 3 79-87.

Jacot, A., Gabriel, F. and Hongler, C. (2018). Neural tangent kernel: Convergence and generalization in
neural networks. In Advances in neural information processing systems.

Jelassi, S., Mensch, A,, Gidel, G. and Li, Y. (2021). Adam is no better than normalized sgd: Dissecting
how adaptivity improves gan performance .

Jordan, M. I., Ghahramani, Z. and Saul, L. K. (1997). Hidden markov decision trees. Advances in neural
information processing systems 501-507.

Jordan, M. |. and Jacobs, R. A. (1994). Hierarchical mixtures of experts and the em algorithm.
Neural computation 6 181-214.

Khalili, A. and Chen, J. (2007). Variable selection in finite mixture of regression models. Journal of the
american Statistical association 102 1025-1038.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Tech. rep.

Lewis, M., Bhosale, S., Dettmers, T., Goyal, N. and Zettlemoyer, L. (2021). Base layers:

Simplifying training of large, sparse models. In International Conference on Machine Learning.
PMLR.

Li, Y. and Liang, Y. (2018). Learning overparameterized neural networks via stochastic gradient
descent on structured data. In Advances in Neural Information Processing Systems.

Li, Y., Ma, T. and Zhang, H. R. (2020). Learning over-parametrized two-layer neural networks beyond
ntk. In Conference on learning theory. PMLR.

Liang, P., Bouchard-Cot" e, A.", Klein, D. and Taskar, B. (2006). An end-to-end discriminative approach
to machine translation. In Proceedings of the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Association for Computational
Linguistics.

Quattoni, A., Collins, M. and Darrell, T. (2004). Conditional random fields for object recognition.
Advances in neural information processing systems 17.

Roller, S., Sukhbaatar, S., Weston, J. et al. (2021). Hash layers for large sparse models.
Advances in Neural Information Processing Systems 34 17555-17566.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L.-C. (2018). Mobilenetv2:

55

Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision
and pattern recognition.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G. and Dean, J.

(2017). Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538 .

Smetanin, S. and Komarov, M. (2019). Sentiment analysis of product reviews in russian using
convolutional neural networks. In 2019 IEEE 21st conference on business informatics (CBI), vol. 1.
IEEE.

Tresp, V. (2001). Mixtures of gaussian processes. Advances in neural information processing systems
654-660.

Van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-sne. Journal of machine learning
research 9.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L. and Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing
systems.

Vecci, L., Piazza, F. and Uncini, A. (1998). Learning and approximation capabilities of adaptive spline
activation function neural networks. Neural Networks 11 259-270.

Wang, Y. and Mori, G. (2009). Max-margin hidden conditional random fields for human action
recognition. In 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE.

Wang, Z., Gu, Q., Ning, Y. and Liu, H. (2015). High dimensional em algorithm: Statistical optimization
and asymptotic normality. Advances in neural information processing systems 2.8.

Wen, Z. and Li, Y. (2021). Toward understanding the feature learning process of self-supervised
contrastive learning. In International Conference on Machine Learning. PMLR.

Yi, X., Caramanis, C. and Sanghavi, S. (2014). Alternating minimization for mixed linear regression. In
International Conference on Machine Learning. PMLR.

Zou, D,, Cao, Y., Li, Y. and Gu, Q. (2021). Understanding the generalization of adam in learning neural
networks with proper regularization. arXiv preprint arXiv:2108.11371 .

Zou, D., Cao, Y., Zhou, D. and Gu, Q. (2018). Stochastic gradient descent optimizes overparameterized
deep relu networks. arXiv preprint arXiv:1811.08888 .

56

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Setting and Preliminaries
	3.1 Data distribution
	3.2 Structure of the MoE layer
	fm(x;W) =, (3.1)
	, (3.2)
	, (3.3)
	W, (3.4)
	, (3.5)

	4 Main Results
	5 Overview of Key Techniques
	Load, (5.1)

	6 Experiments
	6.1 Synthetic-data Experiments
	entropy = . (6.1)

	6.2 Real-data Experiments

	7 Conclusion and Future Work
	A Experiment Details
	A.1 Visualization
	A.2 Synthetic-data Experiments
	A.3 Experiments on Image Data
	A.4 Experiments on Language Data

	B Proof of Theorem 4.1
	C Smoothed Router
	. (C.2)

	D Initialization of the Model
	, (D.1) , (D.2) . (D.3)
	, (D.1) , (D.2) . (D.3)

	E Proof of Theorem 4.2
	(E.2)
	;W
	E.1 Exploration Stage
	(E.3)
	, (E.4) (E.5)
	, (E.4) (E.5)
	, (E.6)

	E.2 Router Learning Stage
	|πm(xi;Θ) − πm(x¯i;Θ)| = O(δΘ),∀m ∈ [M],i ∈ [n],. (E.11) |P(mi,t = m) − P(¯mi,t = m)| = O(M2δΘ),∀m ∈ [M],i ∈ [n]. (E.12)
	h∇θmL(t),vki = O(δΘ(t)K2) + Oe(d−0.005),h∇θmL(t),ξi,pi = Oe(d−0.005), (E.13)
	Plugging the gradient estimation (E.13) in to the gradient update rule for the gating network
	|πm0(xi;Θ) − πm(xi;Θ)| ≤ 2|hm(xi;Θ(t)) − hm0(xi;Θ(t))|. (E.17)
	(E.18)
	(E.19)
	(E.20)
	Then we consider the case that m,m0 6∈ Mk. Applying Taylor expansion of `0i,t = 1/2+O(Jη3t3)
	(E.21)
	. (E.22)

	E.3 Generalization Results
	. (E.23)
	P(x,y)∼D yfm(x;W. (E.24)
	. (E.25)
	. (E.26)

	F Auxiliary Lemmas
	. (F.1)
	. (F.2)

	References

