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Abstract 
The Mixture-of-Experts (MoE) layer, a sparsely-activated model controlled by a router, has 

achieved great success in deep learning. However, the understanding of such architecture remains 
elusive. In this paper, we formally study how the MoE layer improves the performance of neural 
network learning and why the mixture model will not collapse into a single model. Our empirical 
results suggest that the cluster structure of the underlying problem and the non-linearity of the 
expert are pivotal to the success of MoE. To further understand this, we consider a challenging 
classification problem with intrinsic cluster structures, which is hard to learn using a single expert. 
Yet with the MoE layer, by choosing the experts as two-layer nonlinear convolutional neural 
networks (CNNs), we show that the problem can be learned successfully. Furthermore, our theory 
shows that the router can learn the cluster-center features, which helps divide the input complex 
problem into simpler linear classification sub-problems that individual experts can conquer. To 
our knowledge, this is the first result towards formally understanding the mechanism of the MoE 
layer for deep learning. 

1 Introduction 
The Mixture-of-Expert (MoE) structure (Jacobs et al., 1991; Jordan and Jacobs, 1994) is a classic 
design that substantially scales up the model capacity and only introduces small computation 
overhead. In recent years, the MoE layer (Eigen et al., 2013; Shazeer et al., 2017), which is an 
extension of the MoE model to deep neural networks, has achieved remarkable success in deep 
learning. Generally speaking, an MoE layer contains many experts that share the same network 
architecture and are trained by the same algorithm, with a gating (or routing) function that routes 
individual inputs to a few experts among all the candidates. Through the sparse gating function, the 
router in the MoE layer can route each input to the top-K(K ≥ 2) best experts (Shazeer et al., 2017), 
or the single (K = 1) best expert (Fedus et al., 2021). This routing scheme only costs the computation 
of K experts for a new input, which enjoys fast inference time. 

Despite the great empirical success of the MoE layer, the theoretical understanding of such 
architecture is still elusive. In practice, all experts have the same structure, initialized from the same 
weight distribution (Fedus et al., 2021) and are trained with the same optimization configuration. 
The router is also initialized to dispatch the data uniformly. It is unclear why the experts can diverge 
to different functions that are specialized to make predictions for different inputs, and why the router 
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can automatically learn to dispatch data, especially when they are all trained using simple local 
search algorithms such as gradient descent. Therefore, we aim to answer the following questions: 

Why do the experts in MoE diversify instead of collapsing into a single model? And how can the router 
learn to dispatch the data to the right expert? 

In this paper, in order to answer the above question, we consider the natural “mixture of 
classification” data distribution with cluster structure and theoretically study the behavior and 
benefit of the MoE layer. We focus on the simplest setting of the mixture of linear classification, where 
the data distribution has multiple clusters, and each cluster uses separate (linear) feature vectors to 
represent the labels. In detail, we consider the data generated as a combination of feature patches, 
cluster patches, and noise patches (See Definition 3.1 for more details). We study training an MoE 
layer based on the data generated from the “mixture of classification” distribution using gradient 
descent, where each expert is chosen to be a two-layer CNN. The main contributions of this paper are 
summarized as follows: 
• We first prove a negative result (Theorem 4.1) that any single expert, such as two-layer CNNs with 

arbitrary activation function, cannot achieve a test accuracy of more than 87.5% on our data 
distribution. 

• Empirically, we found that the mixture of linear experts performs better than the single expert but 
is still significantly worse than the mixture of non-linear experts. Figure 1 provides such a result 
in a special case of our data distribution with four clusters. Although a mixture of linear models can 
represent the labeling function of this data distribution with 100% accuracy, it fails to learn so after 
training. We can see that the underlying cluster structure cannot be recovered by the mixture of 
linear experts, and neither the router nor the experts are diversified enough after training. In 
contrast, the mixture of non-linear experts can correctly recover the cluster structure and diversify. 

• Motivated by the negative result and the experiment on the toy data, we study a sparsely-gated 
MoE model with two-layer CNNs trained by gradient descent. We prove that this MoE model can 
achieve nearly 100% test accuracy efficiently (Theorem 4.2). 

• Along with the result on the test accuracy, we formally prove that each expert of the sparselygated 
MoE model will be specialized to a specific portion of the data (i.e., at least one cluster), which is 
determined by the initialization of the weights. In the meantime, the router can learn the cluster-
center features and route the input data to the right experts. 

• Finally, we also conduct extensive experiments on both synthetic and real datasets to corroborate 
our theory. 

Notation. We use lower case letters, lower case bold face letters, and upper case bold face letters to 
denote scalars, vectors, and matrices respectively. We denote a union of disjoint sets (Ai : i ∈ I) by 
ti∈IAi. For a vector x, we use kxk2 to denote its Euclidean norm. For a matrix W, we use kWkF to denote 
its Frobenius norm. Given two sequences {xn} and {yn}, we denote xn = O(yn) if |xn| ≤ C1|yn| for some 
absolute positive constant C1, xn = Ω(yn) if |xn| ≥ C2|yn| for some absolute 
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Figure 1: Visualization of the training of MoE with nonlinear expert and linear expert. Different 
colors denote router’s dispatch to different experts. The lines denote the decision boundary of the 
MoE model. The data points are visualized on 2d space via t-SNE (Van der Maaten and Hinton, 2008). 
The MoE architecture follows section 3 where nonlinear experts use activation function σ(z) = z3. For 
this visualization, we let the expert number M = 4 and cluster number K = 4. We generate n = 1,600 
data points from the distribution illustrated in Section 3 with α ∈ (0.5,2), β ∈ (1,2), γ ∈ (1,2), and σp = 
1. More details of the visualization are discussed in Appendix A. 

positive constant  , and xn = Θ(yn) if C3|yn| ≤ |xn| ≤ C4|yn| for some absolute constants C3,C4 > 0. We 
also use O(·) to hide logarithmic factors of d in O(·). Additionally, we denote xn = poly(yn) if ) 
for some positive constant D, and xn = polylog(yn) if xn = poly(log(yn)). We also denote by xn = o(yn) if 
limn→∞ xn/yn = 0. Finally we use [N] to denote the index set {1,...,N}. 

2 Related Work 
Mixture of Experts Model. The mixture of experts model (Jacobs et al., 1991; Jordan and Jacobs, 
1994) has long been studied in the machine learning community. These MoE models are based on 
various base expert models such as support vector machine (Collobert et al., 2002) , Gaussian 
processes (Tresp, 2001), or hidden Markov models (Jordan et al., 1997). In order to increase the 
model capacity to deal with the complex vision and speech data, Eigen et al. (2013) extended the 
MoE structure to the deep neural networks, and proposed a deep MoE model composed of multiple 
layers of routers and experts. Shazeer et al. (2017) simplified the MoE layer by making the output of 
the gating function sparse for each example, which greatly improves the training stability and 
reduces the computational cost. Since then, the MoE layer with different base neural network 
structures (Shazeer et al., 2017; Dauphin et al., 2017; Vaswani et al., 2017) has been proposed and 
achieved tremendous successes in a variety of language tasks. Very recently, Fedus et al. (2021) 
improved the performance of the MoE layer by routing one example to only a single expert instead 
of K experts, which further reduces the routing computation while preserving the model quality. 
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Mixture of Linear Regressions/Classifications. In this paper, we consider a “mixture of 
classification” model. This type of models can be dated back to (De Veaux, 1989; Jordan and Jacobs, 
1994; Faria and Soromenho, 2010) and has been applied to many tasks including object recognition 
(Quattoni et al., 2004) human action recognition (Wang and Mori, 2009), and machine translation 
(Liang et al., 2006). In order to learn the unknown parameters for mixture of linear 
regressions/classification model, (Anandkumar et al., 2012; Hsu et al., 2012; Chaganty and Liang, 
2013; Anandkumar et al., 2014; Li and Liang, 2018) studies the method of moments and tensor 
factorization. Another line of work studies specific algorithms such as Expectation-Maximization 
(EM) algorithm (Khalili and Chen, 2007; Yi et al., 2014; Balakrishnan et al., 2017; Wang et al., 2015). 
Theoretical Understanding of Deep Learning. In recent years, great efforts have been made to 
establish the theoretical foundation of deep learning. A series of studies have proved the 
convergence (Jacot et al., 2018; Li and Liang, 2018; Du et al., 2019; Allen-Zhu et al., 2019b; Zou et al., 
2018) and generalization (Allen-Zhu et al., 2019a; Arora et al., 2019a,b; Cao and Gu, 2019) guarantees 
in the so-called “neural tangent kernel” (NTK) regime, where the parameters stay close to the 
initialization, and the neural network function is approximately linear in its parameters. A recent line 
of works (Allen-Zhu and Li, 2019; Bai and Lee, 2019; Allen-Zhu and Li, 2020a,b,c; Li et al., 2020; Cao 
et al., 2022; Zou et al., 2021; Wen and Li, 2021) studied the learning dynamic of neural networks 
beyond the NTK regime. It is worthwhile to mention that our analysis of the MoE model is also 
beyond the NTK regime. 

3 Problem Setting and Preliminaries 
We consider an MoE layer with each expert being a two-layer CNN trained by gradient descent (GD) 
over n independent training examples  generated from a data distribution D. In this 
section, we will first introduce our data model D, and then explain our neural network model and the 
details of the training algorithm. 

3.1 Data distribution 

We consider a binary classification problem over P-patch inputs, where each patch has d dimensions. 
In particular, each labeled data is represented by (x,y), where input x = (x(1),x(2),...,x(P)) ∈ 

(Rd)P is a collection of P patches and y ∈ {±1} is the data label. We consider data generated from K 
clusters. Each cluster k ∈ [K] has a label signal vector vk and a cluster-center signal vector ck with 
kvkk2 = kckk2 = 1. For simplicity, we assume that all the signals {vk}k∈[K] ∪ {ck}k∈[K] are orthogonal with 
each other. 

Definition 3.1. A data pair (x,y) ∈ (Rd)P ×{±1} is generated from the distribution D as follows. 

• Uniformly draw a pair (k,k0) with k 6= k0 from {1,...,K}. 
• Generate the label y ∈ {±1} uniformly, generate a Rademacher random variable . 
• Independently generate random variables α,β,γ from distribution Dα,Dβ,Dγ. In this paper, we 

assume there exists absolute constants C1,C2 such that almost surely 0 < C1 ≤ α,β,γ ≤ C2. 

• Generate x as a collection of P patches: x , where 
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– Feature signal. One and only one patch is given by yαvk. 
– Cluster-center signal. One and only one patch is given by βck. – Feature noise. One and only 

one patch is given by . 
– Random noise. The rest of the P − 3 patches are Gaussian noises that are independently drawn 

from N(0,(σp2/d) · Id) where σp is an absolute constant. 

How to learn this type of data? Since the positions of signals and noises are not specified in 
Definition 3.1, it is natural to use the CNNs structure that applies the same function to each patch. 
We point out that the strength of the feature noises γ could be as large as the strength of the feature 
signals α. As we will see later in Theorem 4.1, this classification problem is hard to learn with a single 
expert, such as any two-layer CNNs (any activation function with any number of neurons). However, 
such a classification problem has an intrinsic clustering structure that may be utilized to achieve 
better performance. Examples can be divided into K clusters ∪k∈[K]Ωk based on the cluster-center 
signals: an example (x,y) ∈ Ωk if and only if at least one patch of x aligns with ck. It is not difficult to 
show that the binary classification sub-problem over Ωk can be easily solved by an individual expert. 
We expect the MoE can learn this data cluster structure from the cluster-center signals. 
Significance of our result. Although this data can be learned by existing works on a mixture of linear 
classifiers with sophisticated algorithms (Anandkumar et al., 2012; Hsu et al., 2012; Chaganty and 
Liang, 2013), the focus of our paper is training a mixture of nonlinear neural networks, a more 
practical model used in real applications. When an MoE is trained by variants of gradient descent, we 
show that the experts automatically learn to specialize on each cluster, while the router automatically 
learns to dispatch the data to the experts according to their specialty. Although from a representation 
point of view, it is not hard to see that the concept class can be represented by MoEs, our result is 
very significant as we prove that gradient descent from random initialization can find a good MoE 
with non-linear experts efficiently. To make our results even more compelling, we empirically show 
that MoE with linear experts, despite also being able to represent the concept class, cannot be trained 
to find a good classifier efficiently. 

3.2 Structure of the MoE layer 

An MoE layer consists of a set of M “expert networks” f1,...,fM, and a gating network which is generally 
set to be linear (Shazeer et al., 2017; Fedus et al., 2021). Denote by fm(x;W) the output of the m-th 

expert network with input x and parameter W. Define an M-dimensional vector h(x;Θ) = Pp∈[P] Θ>x(p) 

as the output of the gating network parameterized by Θ = [θ1,...,θM] ∈ Rd×M. The output F of the MoE 
layer can be written as follows: 

F(x;Θ,W) = Pm∈Txπm(x;Θ)fm(x;W), 

where Tx ⊆ [M] is a set of selected indices and πm(x;Θ)’s are route gate values given by 

. 
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Expert Model. In practice, one often uses nonlinear neural networks as experts in the MoE layer. In 
fact, we found that the non-linearity of the expert is essential for the success of the MoE layer (see 
Section 6). For m-th expert, we consider a convolution neural network as follows: 

 fm(x;W) = , (3.1) 

where wm,j ∈ Rd is the weight vector of the j-th filter (i.e., neuron) in the m-th expert, J is the number 

of filters (i.e., neurons). We denote Wm = [wm,1,...,wm,J] ∈ Rd×J as the weight matrix of the m-th expert 
and further let W = {Wm}m∈[M] as the collection of expert weight matrices. For nonlinear CNN, we 
consider the cubic activation function σ(z) = z3, which is one of the simplest nonlinear activation 
functions (Vecci et al., 1998). We also include the experiment for other activation functions such as 
RELU in Appendix Table 7. 
Top-1 Routing Model. A simple choice of the selection set Tx would be the whole experts set Tx = [M] 
(Jordan and Jacobs, 1994), which is the case for the so-called soft-routing model. However, it would 
be time consuming to use soft-routing in deep learning. In this paper, we consider “switch routing”, 
which is introduced by Fedus et al. (2021) to make the gating network sparse and save the 
computation time. For each input x, instead of using all the experts, we only pick one expert from [M], 
i.e., |Tx| = 1. In particular, we choose Tx = argmaxm{hm(x;Θ)}. 

Algorithm 1 Gradient descent with random 
initialization 
Require: Number of iterations T, expert learning 
rate η, router learning rate ηr, initialization scale σ0, 
training set . 
1: Generate each entry of W(0) independently from

 
Figure 2: Illustration of an MoE layer. For each input 
x, the router will only select one expert to perform 
computations. The choice is based on the output of the 
gating network (dotted line). The expert layer returns 
the output of the selected expert (gray box) multiplied 
by the route gate value (softmax of the gating function 
output). 

3.3 Training Algorithm 

2: Initialize each entry of Θ(0) as zero. 
3: for t = 0,2,...,T − 1 do 
4: Generate each entry of r(t) 

independently from Unif[0,1]. 
5: Update W(t+1) as in (3.4). 
6: Update Θ(t+1) as in (3.5). 

7: end for 
8: return (Θ(T),W(T)). 

 
Given the training data , we train F with gradient descent to minimize the following 
empirical loss function: 

 , (3.2) 

where ` is the logistic loss defined as `(z) = log(1 + exp(−z)). We initialize Θ(0) to be zero and initialize 
each entry of W(0) by i.i.d ). Zero initialization of the gating network is widely used in MoE 
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training. As discussed in Shazeer et al. (2017), it can help avoid out-of-memory errors and initialize 
the network in a state of approximately equal expert load (see (5.1) for the definition of expert load). 

Instead of directly using the gradient of empirical loss (3.2) to update weights, we add 
perturbation to the router and use the gradient of the perturbed empirical loss to update the weights. 

In particular, the training example xi will be distributed to argmax  instead, 

where  are random noises. Adding noise term is a widely used training strategy for 
sparsely-gated MoE layer (Shazeer et al., 2017; Fedus et al., 2021), which can encourage exploration 

across the experts and stabilize the MoE training. In this paper, we draw 
independently from the uniform distribution Unif[0,1] and denotes its collection as r(t). Therefore, 
the perturbed empirical loss at iteration t can be written as 

 , (3.3) 

where mi,t = argmax . Starting from the initialization W(0), the gradient descent 
update rule for the experts is 

 W , (3.4) 

where η > 0 is the expert learning rate. Starting from the initialization Θ(0), the gradient update rule 
for the gating network is 

 , (3.5) 

where ηr > 0 is the router learning rate. In practice, the experts are trained by Adam (?) to make sure 
they have similar learning speeds. Here we use a normalized gradient which can be viewed as a 
simpler alternative to Adam (Jelassi et al., 2021). 

4 Main Results 
In this section, we will present our main results. We first provide a negative result for learning with 
a single expert. 

Theorem 4.1 (Single expert performs poorly). Suppose Dα = Dγ in Definition 3.1, then any function 
with the form ) will get large test error  

Theorem 4.1 indicates that if the feature noise has the same strength as the feature signal i.e., Dα 

= Dγ, any two-layer CNNs with the form F(x) = Pj∈[J] aj 
P

p∈[P] σ(wj>x(p) + bj) can’t perform well on the 
classification problem defined in Definition 3.1 where σ can be any activation function. Theorem 4.1 
also shows that a simple ensemble of the experts may not improve the performance because the 
ensemble of the two-layer CNNs is still in the form of the function defined in Theorem 4.1. 

As a comparison, the following theorem gives the learning guarantees for training an MoE layer 
that follows the structure defined in Section 3.2 with cubic activation function. 
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Theorem 4.2 (Nonlinear MoE performs well). Suppose the training data size n = Ω(d). Choose 
experts number M = Θ(K logK loglogd), filter size J = Θ(logM loglogd), initialization scale σ0 ∈ 
[d−1/3,d−0.01], learning rate η = Oe(σ0),ηr = Θ(M2)η. Then with probability at least 1−o(1), Algorithm 1 

is able to output ( ) within T = Oe(η−1) iterations such that the non-linear 
MoE defined in Section 3.2 satisfies 
• Training error is zero, i.e., yiF(xi;Θ(T),W(T)) > 0,∀i ∈ [n]. 

• Test error is nearly zero, i.e.,  
More importantly, the experts can be divided into a disjoint union of K non-empty sets [M] = 

tk∈[K]Mk and 

• (Each expert is good on one cluster) Each expert m ∈ Mk performs good on the cluster Ωk, 
P(x,y)∼D(yfm(x;W(T)) ≤ 0|(x,y) ∈ Ωk) = o(1). 

• (Router only distributes example to good expert) With probability at least 1−o(1), an example x ∈ 
Ωk will be routed to one of the experts in Mk. 

Theorem 4.2 shows that a non-linear MoE performs well on the classification problem in 
Definition 3.1. In addition, the router will learn the cluster structure and divide the problem into K 
simpler sub-problems, each of which is associated with one cluster. In particular, each cluster will be 
classified accurately by a subset of experts. On the other hand, each expert will perform well on at 
least one cluster. 

Furthermore, together with Theorem 4.1, Theorem 4.2 suggests that there exist problem 
instances in Definition 3.1 (i.e., Dα = Dγ) such that an MoE provably outperforms a single expert. 

5 Overview of Key Techniques 
A successful MoE layer needs to ensure that the router can learn the cluster-center features and 
divide the complex problem in Definition 3.1 into simpler linear classification sub-problems that 
individual experts can conquer. Finding such a gating network is difficult because this problem is 
highly non-convex. In the following, we will introduce the main difficulties in analyzing the MoE layer 
and the corresponding key techniques to overcome those barriers. 
Main Difficulty 1: Discontinuities in Routing. Compared with the traditional soft-routing model, 
the sparse routing model saves computation and greatly reduces the inference time. However, this 
form of sparsity also causes discontinuities in routing (Shazeer et al., 2017). In fact, even a small 
perturbation of the gating network outputs h(x;Θ) + δ may change the router behavior drastically if 
the second largest gating network output is close to the largest gating network output. Key 
Technique 1: Stability by Smoothing. We point out that the noise term added to the gating network 
output ensures a smooth transition between different routing behavior, which makes the router 
more stable. This is proved in the following lemma. 

Lemma 5.1. Let h,hb ∈ RM to be the output of the gating network and  to be the noise 
independently drawn from Unif[0,1]. Denote p,pb ∈ RM to be the probability that experts get routed, 
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i.e., pm = P(argmax (argmax Then we 

have that . 

Lemma 5.1 implies that when the change of the gating network outputs at iteration t and t0 is 
small, i.e., kh(x;Θ(t)) − h(x;Θ(t0))k∞, the router behavior will be similar. So adding noise provides a 
smooth transition from time t to t0. It is also worth noting that Θ is zero initialized. So h(x;Θ(0)) = 0 
and thus each expert gets routed with the same probability pm = 1/M by symmetric property. 
Therefore, at the early of the training when kh(x;Θ(t)) − h(x;Θ(0))k∞ is small, router will almost 
uniformly pick one expert from [M], which helps exploration across experts. 
Main Difficulty 2: No “Real” Expert. At the beginning of the training, the gating network is zero, and 
the experts are randomly initialized. Thus it is hard for the router to learn the right features because 
all the experts look the same: they share the same network architecture and are trained by the same 
algorithm. The only difference would be the initialization. Moreover, if the router makes a mistake at 
the beginning of the training, the experts may amplify the mistake because the experts will be trained 
based on mistakenly dispatched data. 
Key Technique 2: Experts from Exploration. Motivated by the key technique 1, we introduce an 
exploration stage to the analysis of MoE layer during which the router almost uniformly picks one 
expert from [M]. This stage starts at t = 0 and ends at  
and the gating network remains nearly unchanged ). Because 
the experts are treated almost equally during exploration stage, we can show that the experts 
become specialized to some specific task only based on the initialization. In particular, the experts 
set [M] can be divided into K nonempty disjoint sets [M] = tkMk, where 

Mk := {m|argmaxk0∈[K],j∈[J]hvk0,wm,j(0) i = k}. For nonlinear MoE with cubic activation function, the 
following lemma further shows that experts in different set Mk will diverge at the end of the 
exploration stage. 

Lemma 5.2. Under the same condition as in Theorem 4.2, with probability at least 1 − o(1), the 
following equations hold for all expert m ∈ Mk, 

P(x,y)∼D yfm(x;W , 

P(x,y)∼D yfm(x;W  

Lemma 5.2 implies that, at the end of the exploration stage, the expert m ∈ Mk can achieve nearly 

zero test error on the cluster Ωk but high test error on the other clusters Ωk0,k0 6= k. 

Main Difficulty 3: Expert Load Imbalance. Given the training data set , the load of 
expert m at iterate t is defined as 

 Load , (5.1) 

where P(mi,t = m) is probability that the input xi being routed to expert m at iteration t. Eigen et al. 

(2013) first described the load imbalance issues in the training of the MoE layer. The gating 
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(t) network may converge to 
a state where it always produces large Loadm for the same few experts. This imbalance in expert load 
is self-reinforcing, as the favored experts are trained more rapidly and thus are selected even more 
frequently by the router (Shazeer et al., 2017; Fedus et al., 2021). Expert load imbalance issue not 
only causes memory and performance problems in practice, but also impedes the theoretical analysis 
of the expert training. 
Key Technique 3: Normalized Gradient Descent. Lemma 5.2 shows that the experts will diverge 
into tk∈[K]Mk. Normalized gradient descent can help different experts in the same Mk being trained at 
the same speed regardless the imbalance load caused by the router. Because the self-reinforcing 
circle no longer exists, we can prove that the router will treat different experts in the same Mk almost 
equally and dispatch almost the same amount of data to them (See Section E.2 in Appendix for detail). 
This Load imbalance issue can be further avoided by adding load balancing loss (Eigen et al., 2013; 
Shazeer et al., 2017; Fedus et al., 2021), or advanced MoE layer structure such as BASE Layers (Lewis 
et al., 2021; Dua et al., 2021) and Hash Layers (Roller et al., 2021). Road Map: Here we provide the 
road map of the proof of Theorem 4.2 and the full proof is presented in Appendix E. The training 
process can be decomposed into several stages. The first stage is called Exploration stage. During this 
stage, the experts will diverge into K professional groups ]. In particular, we will show 
that Mk is not empty for all k ∈ [K]. Besides, for all m ∈ Mk, fm is a good classifier over Ωk. The second 
stage is called router learning stage. During this stage, the router will learn to dispatch x ∈ Ωk to one 
of the experts in Mk. Finally, we will give the generalization analysis for the MoEs from the previous 
two stages. 
6 Experiments 

Setting 1:α ∈ (0.5,2), β ∈ (1,2), γ ∈ (0.5,3),σp = 1 
 Test accuracy (%) Dispatch Entropy 

Single (linear) 68.71 NA 

Single (nonlinear) 79.48 NA 
MoE (linear) 92.99 ± 2.11 1.300 ± 0.044 

MoE (nonlinear) 99.46 ± 0.55 0.098 ± 0.087 
Setting 2: α ∈ (0.5,2), β ∈ (1,2), γ ∈ (0.5,3), σp = 2 

 Test accuracy (%) Dispatch Entropy 

Single (linear) 60.59 NA 

Single (nonlinear) 72.29 NA 
MoE (linear) 88.48 ± 1.96 1.294 ± 0.036 

MoE (nonlinear) 98.09 ± 1.27 0.171 ± 0.103 
Table 1: Comparison between MoE (linear) and MoE 
(nonlinear) in our setting. We report results of top-1 gating 
with noise for both linear and nonlinear models. Over ten 
random experiments, we report the average value ± standard 
deviation for both test accuracy and dispatch entropy. 

6.1 Synthetic-data 
Experiments 

 

Figure 3: Illustration of router 
dispatch entropy. We 
demonstrate the change of entropy 
of MoE during training on the 
synthetic data. MoE (linear)-1 and 
MoE (nonlinear)-1 refer to Setting 
1 in Table 1. MoE (linear)-2 and 
MoE (nonlinear)-2 refer to Setting 
2 in Table 1. 
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Datasets. We generate 16,000 training examples and 16,000 test examples from the data distribution 
defined in Definition 3.1 with cluster number K = 4 , patch number P = 4 and dimension d = 50. We 
randomly shuffle the order of the patches of x after we generate data (x,y). We consider two 
parameter settings: 1. α ∼ Uniform(0.5,2), β ∼ Uniform(1,2), γ ∼ Uniform(0.5,3) and σp = 1; 2. α ∼ 
Uniform(0.5,2), β ∼ Uniform(1,2), γ ∼ Uniform(0.5,3) and σp = 2. Note that Theorem 4.1 shows that 
when α and γ follow the same distribution, neither single linear expert or single nonlinear expert can 
give good performance. Here we consider a more general and difficult setting when α and γ are from 
different distributions. 
Models. We consider the performances of single linear CNN, single nonlinear CNN, linear MoE, and 
nonlinear MoE. The single nonlinear CNN architecture follows (3.1) with cubic activation function, 
while single linear CNN follows (3.1) with identity activation function. For both linear and nonlinear 
MoEs, we consider a mixture of 8 experts with each expert being a single linear CNN or a single 
nonlinear CNN. Finally, we train single models with gradient descent and train the MoEs with 
Algorithm 1. We run 10 random experiments and report the average accuracy with standard 
deviation. 
Evaluation. To evaluate how well the router learned the underlying cluster structure of the data, we 
define the entropy of the router’s dispatch as follows. Denote by nk,m the number of data in cluster K 

that are dispatched to expert m. The total number of data dispatched to expert m is  
and the total number of data is . The dispatch entropy is 

  CIFAR-10 (%) CIFAR-
10-Rotate 
(%) 

CNN 
Single 
MoE 

80.68 ± 0.45 80.31 ± 0.62 76.78 ± 
1.79 

 Single 92.45 ± 0.25 85.76 ± 
2.91 

 MoE 

   

 

 Single 95.51 ± 0.31 88.23 ± 
0.96 

 MoE 95.32 ± 0.68  

Table 2: Comparison between MoE and single model on CIFAR-10 and CIFAR-10-Rotate datasets. We 
report the average test accuracy over 10 random experiments ± the standard deviation. 

then defined as 

 entropy = . (6.1) 

When each expert receives the data from at most one cluster, the dispatch entropy will be zero. And 
a uniform dispatch will result in the maximum dispatch entropy. 
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As shown in Table 1, the linear MoE does not perform as well as the nonlinear MoE in Setting 1, 
with around 6% less test accuracy and much higher variance. With stronger random noise (Setting 
2), the difference between the nonlinear MoE and linear MoE becomes even more significant. We also 
observe that the final dispatch entropy of nonlinear MoE is nearly zero while that of the linear MoE 
is large. In Figure 3, we further demonstrate the change of dispatch entropy during the training 
process. The dispatch entropy of nonlinear MoE significantly decreases, while that of linear MoE 
remains large. Such a phenomenon indicates that the nonlinear MoE can successfully learn the 
underlying cluster structure of the data while the linear MoE fails to do so. 

6.2 Real-data Experiments 

We further conduct experiments on real image datasets and demonstrate the importance of the 
clustering data structure to the MoE layer in deep neural networks. 
Datasets. We consider the CIFAR-10 dataset (Krizhevsky, 2009) and the 10-class classification task. 
Furthermore, we create a CIFAR-10-Rotate dataset that has a strong underlying cluster structure 
that is independent of its labeling function. Specifically, we rotate the images by 30 degrees and merge 
the rotated dataset with the original one. The task is to predict if the image is rotated, which is a 
binary classification problem. We deem that some of the classes in CIFAR-10 form underlying clusters 
in CIFAR-10-Rotate. In Appendix A, we explain in detail how we generate CIFAR-10-Rotate and 
present some specific examples. 
Models. For the MoE, we consider a mixture of 4 experts with a linear gating network. For the 
expert/single model architectures, we consider a CNN with 2 convolutional layers (architecture 
details are illustrated in Appendix A.) For a more thorough evaluation, we also consider expert/single 
models with architecture including MobileNetV2 (Sandler et al., 2018) and ResNet18 (He et al., 
2016). The training process of MoE also follows Algorithm 1. 

The experiment results are shown in Table 2, where we compare single and mixture models of 
different architectures over CIFAR-10 and CIFAR-10-Rotate datasets. We observe that the 
improvement of MoEs over single models differs largely on the different datasets. On CIFAR-10, the 
performance of MoEs is very close to the single models. However, on the CIFAR-10-Rotate dataset, 
we can observe a significant performance improvement from single models to MoEs. Such results 
indicate the advantage of MoE over single models depends on the task and the cluster structure of the 
data. 

7 Conclusion and Future Work 
In this work, we formally study the mechanism of the Mixture of Experts (MoE) layer for deep 
learning. To our knowledge, we provide the first theoretical result toward understanding how the 
MoE layer works in deep learning. Our empirical evidence reveals that the cluster structure of the 
data plays an important role in the success of the MoE layer. Motivated by these empirical 
observations, we study a data distribution with cluster structure and show that Mixture-of-Experts 
provably improves the test accuracy of a single expert of two-layer CNNs. 

There are several important future directions. First, our current results are for CNNs. It is 
interesting to extend our results to other neural network architectures, such as transformers. Second, 
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our data distribution is motivated by the classification problem of image data. We plan to extend our 
analysis to other types of data (e.g., natural language data). 

A Experiment Details 

A.1 Visualization 

In the visualization of Figure 1, MoE (linear) and MoE (nonlinear) are trained according to Algorithm 
1 by normalized gradient descent with learning rate 0.001 and gradient descent with learning rate 
0.1. According to Definition 3.1, we set K = 4, P = 4 and d = 50 and choose α ∈ (0.5,2), β ∈ (1,2), γ ∈ 
(1,2) and σp = 1, and generate 3,200 data examples. We consider mixture of M = 4 experts for both 
MoE (linear) and MoE (nonlinear). For each expert, we set the number of neurons/filters J = 16. We 
train MoEs on 1,600 data examples and visualize classification result and decision boundary on the 
remaining 1,600 examples. The data examples are visualized via t-SNE (Van der Maaten and Hinton, 
2008). When visualizing the data points and decision boundary on the 2d space, we increase the 
magnitude of random noise patch by 3 so that the positive/negative examples and decision 
boundaries can be better viewed. 

A.2 Synthetic-data Experiments 

Synthetic-data experiment setup. For the experiments on synthetic data, we generate the data 
according to Definition 3.1 with K = 4, P = 4 and d = 50. We consider four parameter settings: 

• α ∼ Uniform(0.5,2), β ∼ Uniform(1,2), γ ∼ Uniform(0.5,3) and σp = 1; 

• α ∼ Uniform(0.5,2), β ∼ Uniform(1,2), γ ∼ Uniform(0.5,3) and σp = 2; 

• α ∼ Uniform(0.5,2), β ∼ Uniform(1,2), γ ∼ Uniform(0.5,2) and σp = 1; 

• α ∼ Uniform(0.5,2), β ∼ Uniform(1,2), γ ∼ Uniform(0.5,2) and σp = 2. 

We consider mixture of M = 8 experts for all MoEs and J = 16 neurons/filters for all experts. For single 
models, we consider J = 128 neurons/filters. We train MoEs using Algorithm 1. Specifically, 
Setting 1:α ∈ (0.5,2), β ∈ (1,2), γ ∈ (0.5,3),σp = 1 

 Test accuracy (%) Dispatch Entropy Number of Filters 

Single (linear) 68.71 NA 128 

Single (linear) 67.63 NA 512 
Single (nonlinear) 79.48 NA 128 
Single (nonlinear) 78.18 NA 512 

MoE (linear) 92.99 ± 2.11 1.300 ± 0.044 128 (16*8) 
MoE (nonlinear) 99.46 ± 0.55 0.098 ± 0.087 128 (16*8) 

Setting 2: α ∈ (0.5,2), β ∈ (1,2), γ ∈ (0.5,3), σp = 2 
 Test accuracy (%) Dispatch Entropy Number of Filters 
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Single (linear) 60.59 NA 128 

Single (linear) 63.04 NA 512 
Single (nonlinear) 72.29 NA 128 
Single (nonlinear) 52.09 NA 512 

MoE (linear) 88.48 ± 1.96 1.294 ± 0.036 128 (16*8) 
MoE (nonlinear) 98.09 ± 1.27 0.171 ± 0.103 128 (16*8) 

Setting 3:α ∈ (0.5,2), β ∈ (1,2), γ ∈ (0.5,2),σp = 1 
 Test accuracy (%) Dispatch Entropy Number of Filters 

Single (linear) 74.81 NA 128 

Single (linear) 74.54 NA 512 
Single (nonlinear) 72.69 NA 128 
Single (nonlinear) 67.78 NA 512 

MoE (linear) 95.93 ± 1.34 1.160 ± 0.100 128 (16*8) 
MoE (nonlinear) 99.99 ± 0.02 0.008 ± 0.011 128 (16*8) 

Setting 4: α ∈ (0.5,2), β ∈ (1,2), γ ∈ (0.5,2), σp = 2 
 Test accuracy (%) Dispatch Entropy Number of Filters 

Single (linear) 74.63 NA 128 

Single (linear) 72.98 NA 512 
Single (nonlinear) 68.60 NA 128 
Single (nonlinear) 61.65 NA 512 

MoE (linear) 93.30 ± 1.48 1.160 ± 0.155 128 (16*8) 
MoE (nonlinear) 98.92 ± 1.18 0.089 ± 0.120 128 (16*8) 

Table 3: Comparison between MoE (linear) and MoE (nonlinear) in our setting. We report results 
of top-1 gating with noise for both linear and nonlinear models. Over ten random experiments, we 
report the average value ± standard deviation for both test accuracy and dispatch entropy. 

Expert number 1 2 3 4 5 6 7 8 

Initial dispatch 1921 2032 1963 1969 2075 1980 2027 2033 

Final dispatch 0 3979 4009 0 0 3971 0 4041 
Cluster 1 0 0 0 0 0 3971 0 0 

Cluster 2 0 0 4009 0 0 0 0 0 
Cluster 3 0 0 0 0 0 0 0 4041 
Cluster 4 0 3979 0 0 0 0 0 0 

Table 4: Dispatch details of MoE (nonlinear) with test accuracy 100%. 

we train the experts by normalized gradient descent with learning rate 0.001 and the gating network 
by gradient descent with learning rate 0.1. We train single linear/nonlinear models by Adam (?) to 
achieve the best performance, with learning rate 0.01 and weight decay 5e-4 for single nonlinear 
model and learning rate 0.003 and weight decay 5e − 4 for single linear model. 
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Synthetic-data experiment results. In Table 3, we present the empirical results of single linear CNN, 
single nonlinear CNN, linear MoE, and nonlinear MoE under settings 3 and 4, where α and γ follow 
the same distribution as we assumed in theoretical analysis. Furthermore, we report the total number 
of filters for both single CNNs and a mixture of CNNs, where the filter size (equal to 50) is the same 
for all single models and experts. For linear and nonlinear MoE, there are 16 filters for each of the 8 
experts, and therefore 128 filters in total. Note that in the synthetic-data experiment in the main 
paper, we let the number of filters of single models be the same as MoEs (128). Here, we additionally 
report the performances of single models with 512 filters, and see if increasing the model size of 
single models can beat MoE. From Table 3, we observe that: 1. single models perform poorly in all 
settings; 2. linear MoEs do not perform as well as nonlinear MoEs. Specifically, the final dispatch 
entropy of nonlinear MoEs is nearly zero while the dispatch entropy of linear MoEs is consistently 
larger under settings 1-4. This indicates that nonlinear MoEs successfully uncover the underlying 
cluster structure while linear MoEs fail to do so. In addition, we can see that even larger single models 
cannot beat linear MoEs or nonlinear MoEs. This is consistent with Theorem 4.1, where a single model 
fails under such data distribution regardless of its model size. Notably, by comparing the results in 
Table 1 and Table 3, we can see that a single nonlinear model suffers from overfitting as we increase 
the number of filters. 
Router dispatch examples. We demonstrate specific examples of router dispatch for MoE 
(nonlinear) and MoE (linear). The examples of initial and final router dispatch for MoE (nonlinear) 
are shown in Table 4 and Table 5. Under the dispatch for nonlinear MoE, each expert is given either 
no data or data that comes from one cluster only. The entropy of such dispatch is thus 0. The test 
accuracy of MoE trained under such a dispatch is either 100% or very close to 100%, as the expert 
can be easily trained on the data from one cluster only. An example of the final dispatch for MoE 
(linear) is shown in Table 6, where clusters are not well separated and an expert gets data from 
different clusters. The test accuracy under such dispatch is lower (90.61%). 
MoE during training. We further provide figures that illustrate the growth of the inner products 
between expert/router weights and feature/center signals during training. Specifically, since each 
expert has multiple neurons, we plot the max absolute value of the inner product over the neurons of 
each expert. In Figure 4, we demonstrate the training process of MoE (nonlinear), and in Figure 5, we 
demonstrate the training process of MoE (linear). The data is the same as setting 1 in Table 1, 

Expert number 1 2 3 4 5 6 7 8 

Initial dispatch 1978 2028 2018 1968 2000 2046 2000 1962 

Final dispatch 3987 4 3975 6 0 1308 4009 2711 
Cluster 1 0 0 3971 0 0 0 0 0 

Cluster 2 0 0 0 0 0 4 4005 0 
Cluster 3 8 4 4 6 0 1304 4 2711 
Cluster 4 3979 0 0 0 0 0 0 0 

Table 5: Dispatch details of MoE (nonlinear) with test accuracy 99.95%. 
Expert number 1 2 3 4 5 6 7 8 

Initial dispatch 1969 2037 1983 2007 1949 1905 2053 2097 

Final dispatch 136 2708 6969 5311 27 87 4 758 
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Cluster 1 0 630 1629 1298 27 87 4 296 

Cluster 2 136 1107 1884 651 0 0 0 231 
Cluster 3 0 594 1976 1471 0 0 0 0 
Cluster 4 0 377 1480 1891 0 0 0 231 
Table 6: Dispatch details of MoE (linear) with test accuracy 90.61%. 

with α ∈ (0.5,2), β ∈ (1,2), γ ∈ (0.5,3) and σp = 1. We can observe that, in the top left subfigure of Figure 
4 for MoE (nonlinear), the max inner products between expert weight and feature signals exhibit a 
property that each expert picks up one feature signal quickly. Similarly, as shown in the bottom right 
sub-figure, the router picks up the corresponding center signal. Meanwhile, the nonlinear experts 
almost do not learn center signals and the magnitude of the inner products between router weight 
and feature signals remain small. However, for MoE (linear), as shown in the top two sub-figures of 
Figure 5, an expert does not learn a specific feature signal, but instead learns multiple feature and 
center signals. Moreover, as demonstrated in the bottom sub-figures of Figure 5, the magnitude of the 
inner products between router weight and feature signals can be even larger than the inner products 
between router weight and center signals. 
Verification of Theorem 4.1. In Table 7, we provide the performances of single models with 
different activation functions under setting 3, where α,γ ∈ (1,2) follow the same distribution. In Table 
8, we further report the performances of single models with different activation functions under 
setting 1 and setting 2. Empirically, even when α and γ do not share the same distribution, single 
models still fail. Note that, for Tables 7 and 8, the numbers of filters for single models are 128. 
Load balancing loss. In Table 9, we present the results of linear MoE with load balancing loss and 
directly compare it with nonlinear MoE without load balancing loss. Load balancing loss guarantees 
that the experts receive similar amount of data and prevents MoE from activating only one or few 
experts. However, on the data distribution that we study, load balancing loss is not the key to the 
success of MoE: the single experts cannot perform well on the entire data distribution and must 
diverge to learn different labeling functions with respect to each cluster. 
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Figure 4: Mixture of nonlinear experts. Growth of inner product between expert/router weight and 
center/feature vector. 

Activation Optimal Accuracy (%) Test Accuracy (%) 

Linear 87.50% 74.81% 

Cubic 87.50% 72.69% 
Relu 87.50% 73.45% 
Celu 87.50% 76.91% 
Gelu 87.50% 74.01% 
Tanh 87.50% 74.76% 

Table 7: Verification of Theorem 4.1 (single expert performs poorly). Test accuracy of single 
linear/nonlinear models with different activation functions. Data is generated according to Definition 
3.1 with α,γ ∈ (1,2), β ∈ (1,2) and σp = 1. 
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Figure 5: Mixture of linear experts. Growth of inner product between expert/router weight and 
center/feature vector. 

Activation Setting 1 Setting 2 

Linear 68.71% 60.59% 

Cubic 79.48% 72.29% 
Relu 72.28% 80.12% 
Celu 81.75% 78.99% 
Gelu 79.04% 82.01% 
Tanh 81.72% 81.03% 

Table 8: Single expert performs poorly (setting 1&2). Test accuracy of single linear/nonlinear 
models with different activation functions. Data is generated according to Definition 3.1 with α ∈ 
(0.5,2), β ∈ (1,2), γ ∈ (0.5,3),σp = 1 for setting 1. And we have α ∈ (0.5,2), β ∈ (1,2), γ ∈ (0.5,3),σp = 1 for 
setting 2. 

 Linear MoE with Load Balancing Nonlinear MoE without Load Balancing 
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Setting 1 93.81 ± 1.02 99.46 ± 0.55 

Setting 2 89.20 ± 2.20 98.09 ± 1.27 
Setting 3 95.12 ± 0.58 99.99 ± 0.02 
Setting 4 92.50 ± 1.55 98.92 ± 1.18 

Table 9: Load balancing loss. We report the results for linear MoE with load balancing loss and 
compare them with our previous results on nonlinear MoE without load balancing loss. Over ten 
random experiments, we report the average test accuracy (%) ± standard deviation. Setting 1-4 
follows the data distribution introduced above. 

A.3 Experiments on Image Data 

 

Figure 6: Examples of the CIFAR-10-Rotate dataset. Both the original image and the rotated image 
are processed in the same way, where we crop the image to (24,24), resize to (32,32) and apply 
random Gaussian blur. 

Datasets. We consider CIFAR-10 (Krizhevsky, 2009) with the 10-class classification task, which 
contains 50,000 training examples and 10,000 testing examples. For CIFAR-10-Rotate, we design a 
binary classification task by copying and rotating all images by 30 degree and let the model predict if 
an image is rotated. In Figure 6, we demonstrate the positive and negative examples of CIFAR-10-
Rotate. Specifically, we crop the rotated images to (24,24), and resize to (32,32) for model 
architectures that are designed on image size (32,32). And we further apply random Gaussian noise 
to all images to avoid the models taking advantage of image resolutions. 
Models. For the simple CNN model, we consider CNN with 2 convolutional layers, both with kernel 
size 3 and ReLU activation followed by max pooling with size 2 and a fully connected layer. The 
number of filters of each convolutional layer is respectively 64, 128. 
CIFAR-10 Setup. For real-data experiments on CIFAR-10, we apply the commonly used transforms 
on CIFAR-10 before each forward pass: random horizontal flips and random crops (padding the 
images on all sides with 4 pixels and randomly cropping to (32,32)). And as conventionally, we 
normalize the data by channel. We train the single CNN model with SGD of learning rate 0.01, 
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momentum 0.9 and weight decay 5e-4. And we train single MobileNetV2 and single ResNet18 with 
SGD of learning rate 0.1, momentum 0.9 and weight decay 5e-4 to achieve the best performances. 
We train MoEs according to Algorithm 1, with normalized gradient descent on the experts and SGD 
on the gating networks. Specifically, for MoE (ResNet18) and MoE (MobileNetV2), we use normalized 
gradient descent of learning rate 0.1 and SGD of learning rate 1e-4, both with momentum 0.9 and 
weight decay of 5e-4. For MoE (CNN), we use normalized gradient descent of learning rate 0.01 and 
SGD of learning rate 1e-4, both with momentum 0.9 and weight decay of 5e-4. We consider top-1 
gating with noise and load balancing loss for MoE on both datasets, where the multiplicative 
coefficient of load balancing loss is set at 1e-3. All models are trained for 200 epochs to achieve 
convergence. 
CIFAR-10-Rotate Setup. For experiments on CIFAR10-Rotate, the data is normalized by channel as 
the same as in CIFAR-10 before each forward pass. We train the single CNN, single MobileNetV2 and 
single ResNet18 by SGD with learning rate 0.01, momentum 0.9 and weight decay 5e-4 to achieve the 
best performances. And we train MoEs by Algorithm 1 with normalized gradient descent learning 
rate 0.01 on the experts and with SGD of learning rate 1e-4 on the gating networks, both with 
momentum 0.9 and weight decay of 5e-4. We consider top-1 gating with noise and load balancing loss 
for MoE on both datasets, where the multiplicative coefficient for load balancing loss is set at 1e-3. 
All models are trained for 50 epochs to achieve convergence. 
Visualization. In Figure 7, we visualize the latent embedding learned by MoEs (ResNet18) for the 
10-class classification task in CIFAR-10 as well as the binary classification task in CIFAR-10Rotate. 
We visualize the data with the same label y to see if cluster structures exist within each class. For 
CIFAR-10, we choose y = 1 (”car”), and plot the latent embedding of data with y = 1 using t-SNE on the 
left subfigure, which does not show an salient cluster structure. For CIFAR10-Rotate, we choose y = 1 
(”rotated”) and visualize the data with y = 1 in the middle subfigure. Here, we can observe a clear 
clustering structure even though the class signal is not provided during training. We take a step 
further to investigate what is in each cluster in the right subfigure. We can observe that most of the 
examples in the “frog” class fall into one cluster, while examples of “ship” class mostly fall into the 
other cluster. 

 

Figure 7: Visualization of the latent embedding on CIFAR-10 and CIFAR-10-Rotate with fixed label y. 
The left figure denotes the visualization of CIFAR-10 when label y is fixed to be 1 (car). The central 
figure represents the visualization of CIFAR-10-Rotate when label y is fixed to be 1 (rotated). On the 
right figure, red denotes that the data is from the ship class, and blue denotes that the data is from 
the frog class. 
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 Single MoE 

Accuracy 74.13% 76.22% 

Table 10: The test accuracy of the single classifier vs. MoE classifier. 
 Expert 1 Expert 2 Expert 3 Expert 4 

English 1,374 3,745 2,999 31,882 

French 23,470 3,335 13,182 13 
Russian 833 9,405 7,723 39 

Table 11: The final router dispatch details with regard to the linguistic source of the test data. 

 

Figure 8: The distribution of text embedding of the multilingual sentiment analysis dataset. The 
embedding is generated by the pre-trained BERT multilingual base model and visualized on 2d space 
using t-SNE. Each color denotes a linguistic source, including English, French, and Russian. 

A.4 Experiments on Language Data 

Here we provide a simple example of how MoE would work for multilingual tasks. We gather 
multilingual sentiment analysis data from the source of English (Sentiment140 (Go et al., 2009)) 
which is randomly sub-sampled to 200,000 examples, Russian (RuReviews (Smetanin and Komarov, 
2019)) which contains 90,000 examples, and French (Blard, 2020) which contains 200,000 examples. 
We randomly split the dataset into 80% training data and 20% test data. We use a pre-trained BERT 
multilingual base model (Devlin et al., 2018) to generate text embedding for each text and train 1-
layer neural network with cubic activation as the single model. For MoE, we still let M = 4 with each 
expert sharing the same architecture as the single model. In Figure 8, we show the visualization of 
the text embeddings in the 2d space via t-SNE, where each color denotes a linguistic source, 
with · representing a positive example and × representing a negative example. Data from different 
linguistic sources naturally form different clusters. And within each cluster, positive and negative 
data exist. 

In Table 10, we demonstrate the test accuracy of a single classifier and MoE on the multilingual 
sentiment analysis dataset. And in Table 11, we show the final router dispatch details of MoE to each 
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expert with regard to the linguistic source of the text. Notably, MoE learned to distribute examples 
largely according to the original language. 

B Proof of Theorem 4.1 
Because we are using CNNs as experts, different ordering of the patches won’t affect the value of F(x). 
So for (x,y) drawn from D in Definition 3.1, we can assume that the first patch x(1) is feature signal, the 
second patch x(2) is cluster-center signal, the third patch x(3) is feature noise. The other patches x(p),p 
≥ 4 are random noises. Therefore, we can rewrite x ], where ξ = [ξ4,...,ξP ] is a 
Gaussian matrix of size Rd×(P−3). 

Proof of Theorem 4.1. Conditioned on the event that , points ([αyvk,βck,−γyvk0,ξ],y), 
 follow the 

same distribution because γ and α follow the same distribution, and y and −y follow the same 
distribution. Therefore, we have 

 

 
= 0. 

By pigeonhole principle, at least one of I1,I2,I3,I4 is non-zero. This further implies that 4P yF(x) ≤ 
1. Applying 2, we have that 

, 



23 

which completes the proof.  

C Smoothed Router 
In this section, we will show that the noise term provides a smooth transition between different 
routing behavior. All the results in this section is independent from our NN structure and its 
initialization. We first present a general version of Lemma 5.1 with its proof. 

Lemma C.1 (Extension of Lemma 5.1). Let h,hb ∈ RM to be the output of the gating network and 

 to be the noise independently drawn from Dr. Denote p,pb ∈ RM to be the probability 

that experts get routed, i.e., pm = P(argmaxm0∈[M]{hm0 +rm0} = m), pbm = P(argmax rm0} = m). 
Suppose the probability density function of Dr is bounded by κ, Then we have that kp − pbk∞ ≤ 

(κM2) · kh − hbk∞. 

Proof. Given random variable , let us first consider the event that argmaxm{hm + rm} 6= argmax
. Let m1 = argmaxm{hm + rm} and m2 = argmaxm{bhm + rm}, then we have 

that 

, 

which implies that 

 . (C.1) 

Define C(m1,m2) = (bhm2 − bhm1 + hm2 − hm1)/2, then (C.1) implies that 

 . (C.2) 

Therefore, we have that, 

P(argmax{hm + rm} 6= argmax m
 m 

≤ P(∃m1 6= m2 ∈ [M], s.t.  

 

where the first inequality is by (C.2), the second inequality is by union bound and the last inequality 
is due to the fact that the probability density function of rm1 is bounded by κ. Then we have that for i 
∈ [M], 
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 argmax
 argmax 

m 
 

argmax  argmax  
mm 

 ≤ P argmax = argmax  
m 

, 

which completes the proof.  

Remark C.2. A widely used choice of Dr in Lemma C.1 is uniform noise Unif[a, b], in which case the 
density function can be upper bounded by 1/(b − a). Another widely used choice of√Dr is 

Gaussian noise ), in which case the density function can be upper bounded by 1/(σr 2π). 
Increase the range of uniform noise or increase the variance of the Gaussian noise will result in a 
smaller density function upper bound and a smoother behavior of routing. In our paper, we consider 
unif[0,1] for simplicity, in which case the the density function can be upper bounded by 1 (κ = 1). 

The following Lemma shows that when two gate network outputs are close, the router will 
distribute the examples to those corresponding experts with nearly the same probability. 

Lemma C.3. Let h ∈ RM be the output of the gating network and  be the noise independently 
drawn from Unif[0,1]. Denote the probability that experts get routed by p, i.e., pm = P(argmaxm0{hm0 + 
rm0} = m). Then we have that 

|pm − pm0| ≤ M2|hm − hm0|. 

Proof. Construct hb as copy of h and permute its m,m0-th element. Denote the corresponding 
probability vector as pb. Then it is obviously that |pm−pm0| = kp−pbk∞ and . 
Applying Lemma 5.1 completes the proof.  

The following lemma shows that the router won’t route examples to the experts with small gating 
network outputs, which saves computation and improves the performance. 

Lemma C.4. Suppose the noise  are independently drawn from Unif[0,1] and hm(x;Θ) ≤ maxm0 

hm0(x;Θ) − 1, example x will not get routed to expert m. 

Proof. Because hm(x;Θ) ≤ maxm0 hm0(x;Θ) − 1 implies that for any Uniform noise {rm0}m0∈[M] we have that 

hm(x;Θ) + rm ≤ maxhm0(x;Θ) ≤ max{hm0(x;Θ) + rm0}, m0 m0 

where the first inequality is by rm ≤ 1, the second inequality is by rm0 ≥ 0,∀m0 ∈ [M].  
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D Initialization of the Model 
Before we look into the detailed proof of Theorem 4.2, let us first discuss some basic properties of the 
data distribution and our MoE model. For simplicity of notation, we simplify (xi,yi) ∈ Ωk as i ∈ Ωk. 
Training Data Set Property. Because we are using CNNs as experts, different ordering of the patches 
won’t affect the value of F(x). So for (x,y) drawn from D in Definition 3.1, we can assume that the first 
patch x(1) is feature signal, the second patch x(2) is cluster-center signal, the third patch x(3) is feature 
noise. The other patches x(p),p ≥ 4 are random noises. Therefore, we can rewrite x 

], where ξ = [ξ4,...,ξP ] is a Gaussian matrix of size Rd×(P−3). 

According to the type of the feature noise, we further divide Ωk into Ωk = ∪Ωk,k0 based on the feature 
noise, i.e. x ∈ Ωk,k0 if x ]. To better characterize the router training, we need to 
break down Ωk,k0 into Ω+k,k0 and Ω−k,k0. Denote by Ω+k,k0 the set that , by Ω−k,k0 the set 
that . 

Lemma D.1. With probability at least 1 − δ, the following properties hold for all k ∈ [K], 

, (D.1) 

, (D.2) 

. (D.3) 

Proof. Fix k ∈ [K], by Hoeffding’s inequality we have that with probability at least 1 − δ/8K, 

, 

where the last equality is by the fact that the expectation of  is zero. Fix k ∈ [K], by 
Hoeffding’s inequality we have that with probability at least 1 − δ/8K, 

, 

where the last equality is by the fact that the expectation of . Fix k ∈ [K], 
by Hoeffding’s inequality we have that with probability at least 1 − δ/8K, 

, 

where the last equality is by the fact that the expectation of  is zero. Now we have 
proved the bounds in (D.1). We can get other bounds in (D.2) and (D.3) similarly. Applying union 
bound over [K] completes the proof.  
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Lemma D.2. Suppose that d = Ω(log(4nP/δ)), with probability at least 1 − δ, the following inequalities 
hold for all i ∈ [n],k ∈ [K],p ≥ 4, 

• kξi,pk2 = O(1), 

•  
Proof of Lemma D.2. By Bernstein’s inequality, with probability at least 1 − δ/(2nP) we have 

. 

Therefore, as long as d = Ω(log(4nP/δ)), we have 2. Moreover, clearly hξi,p,ξi0,p0i has mean zero, 
∀(i,p) 6= (i0,p0). Then by Bernstein’s inequality, with probability at least 1−δ/(6n2P2) we have 

. 

Similarly, hvk,ξi,pi and hck,ξi,pi have mean zero. Then by Bernstein’s inequality, with probability at least 
1 − δ/(3nPK) we have 

 

|hξi,p,vki| ≤ 2σp
pd−1 log(6nPK/δ),|hξi,p,cki| ≤ 2σp

pd−1 log(6nPK/δ). 

Applying a union bound completes the proof.  

MoE Initialization Property. 
We divide the experts into K sets based on the initialization. 

Definition D.3. Fix expert m ∈ [M], denote (  ) = argmaxj,khvk,wm,j(0) i. Fix cluster k ∈ [K], denote 
the profession experts set as . 

Lemma D.4. For M ≥ Θ(K log(K/δ)), J ≥ Θ(log(M/δ)), the following inequalities hold with probability 
at least 1 − δ. 

•  for all m ∈ [M] 

•  for all m ∈ [M]. 

• |Mk| ≥ 1 for all k ∈ [K]. 

Proof. Recall that w ). Notice that signals v1,...,vK are orthogonal. Given fixed m ∈ [M], 

we have that  are independent and individually draw from 
) we have that 

P(hwm,j(0) ,vki < 0.01σ0) < 0.9. 

Therefore, we have that P(maxhwm,j(0) ,vki < 0.01σ0) < 0.9KJ. j,k 

Therefore, as long as J ≥ Θ(K−1 log(M/δ)), fix m ∈ [M] we can guarantee that with probability at least 1 
− δ/(3M), 
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. 

Take G = δ/(3MJ2K2), by Lemma F.1 we have that with probability at least 1 − δ/(3M), 

. 

By the symmetric property, we have that for all k ∈ [K],m ∈ [M], 

. 

Therefore, the probability that |Mk| at least include one element is as follows, 

P(|Mk| ≥ 1) ≥ 1 − (1 − K−1)M. 

By union bound we get that 

P(|Mk| ≥ 1,∀k) ≥ 1 − K(1 − K−1)M ≥ 1 − K exp(−M/K) ≥ 1 − δ/3, 

where the last inequality is by condition M ≥ K log(3K/δ). Therefore, with probability at least 1 − δ/3, 
|Mk| ≥ 1,∀k. 

Applying Union bound, we have that with probability at least 1 − δ, 

, 

hw
m,j(0) m∗ ,vkm∗ i ≥ 0.01σ0,∀m ∈ [M], |Mk| 

≥ 1,∀k ∈ [K]. 

 

Lemma D.5. Suppose the conclusions in Lemma D.2 hold, then with probability at least 1−δ we have 

that ) for all v ∈ {vk}k∈[K] ∪{ck}k∈[K] ∪{ξi,p}i∈[n],p∈[P−3],m ∈ [M],j ∈ [J]. 

Proof. Fix v ∈ {vk}k∈[K]∪{ck}k∈[K]∪{ξi,p}i∈[n],p∈[P−3],m ∈ [M],j ∈ [J], we have that hwm,j(0) ,vi ∼ 
) and kvk2 = O(1). Therefore, with probability at least 1 − δ/(nPMJ) we have that 

). Applying union bound completes the proof.  

E Proof of Theorem 4.2 
In this section we always assume that the conditions in Theorem 4.2 holds. It is easy to show that all 
the conclusions in this section D hold with probability at least 1 − O(1/logd). The results in this section 
hold when all the conclusions in Section D hold. For simplicity of notation, we simplify 
(xi,yi) ∈ Ωk,k0 as i ∈ Ωk,k0, and `0(yiπmi,t(xi;Θ(t))fmi,t(xi;W(t))) as `0i,t. 
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Recall that at iteration t, data xi is routed to the expert mi,t. Here mi,t should be interpreted as a 
random variable. The gradient of MoE model at iteration t can thus be computed as follows 

 

;W(t))x(ip) 

;W(t))x(ip) 

 ,
 (E.1) 

(E.2) 

Following lemma shows implicit regularity in the gating network training. 

Lemma E.1. For all t ≥ 0, we have that  and thus . In particular, 
when Θ is zero initialized, then  

Proof. We first write out the gradient of θm for all m ∈ [M], 

;W  

. 

Take summation from m = 1 to m = M, then we have 

 

= 0. 

 

Notice that the gradient at iteration t in (E.1) and (E.2) is depend on the random variable mi,t, the 
following lemma shows that it can be approximated by its expectation. 

Lemma E.2. With probability at least 1 − 1/d, for all the vector v ∈ {vk}k∈[K] ∪ {ck}k∈[K], m ∈ [M], j ∈ [J], 

we have the following equations hold |h∇θmL(t),vi − E[h∇θmL(t),vi]| = Oe(n−1/2(σ0 + ηt)3), |h∇wm,jL(t),vi − 
E[h∇wm,jL(t),vi]| = Oe(n−1/2(σ0 + ηt)2), for all t ≤ d100. 

Here E[h∇wm,jL(t),vi] and E[h∇θmL(t),vi] can be computed as follows, 
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;W  

Proof. Because we are using normalized gradient descent, ) and thus by 

Lemma D.5 we have ). Therefore, 

, 

 {z
 } 

Ai 

where Ai are independent random variables with . Applying Hoeffding’s 
inequality gives that with probability at least 1 − 1/(4d101MJK) we have that |h∇wm,jL(t),vi − 

E[h∇wm,jL(t),vi]| = Oe(n−1/2(σ0 +ηt)2). Applying union bound gives that with probability at least 1 − 

1/(2d), |h∇wm,jL(t),vi − E[h∇wm,jL(t),vi]| = Oe(n−1/2(σ0 + ηt)2),∀m ∈ [M],j ∈ [J],t ≤ d100. 

Similarly, we can prove |h∇θmL(t),vi − E[h∇θmL(t),vi]| = Oe(n−1/2(σ0 + ηt)3). 

 

E.1 Exploration Stage 

Denote . The first stage ends when t = T1. During the first stage training, we can prove 
that the neural network parameter maintains the following property. 

Lemma E.3. For all t ≤ T1, we have the following properties hold, 

• ), 

• ), 

• ), 

• ), 

• ), 

for all m ∈ [M],k ∈ [k],i ∈ [n],p ≥ 4. 

Proof. The first property is obvious since ) and thus 

h∇ w m,j L ( t ) , v i = 
1 
n 

X 
i 

X 
p 

 ( m i,t = m ) ̀ 0 
i,t π m ( x i ; Θ ( t ) ) y i σ 0 ( h w ( t ) m,j , x ( p ) 

i i ) h x ( p ) 
i , v i 

| 
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|fm(xi;W(t))| ≤ X X |σ(hwm,j(t) ,x(ip)i)| = Oe(σ01.5). 
p∈[P] j∈[J] 

Then we show that the loss derivative is close to 1/2 during this stage. 
Let s = yiπmi,t(xi;Θ(t))fmi,t(xi,W(t)), then we have that ) and 

, 

where (i) can be proved by considering |s| ≤ 1 and |s| > 1. 
Now we prove the fourth bullet in Lemma E.3. Because ), we can upper bound 

the gradient of the gating network by 

;W(t))x(ip) 

;W . 

where the last inequality is due to 1] and (1). This further 
implies that 

, 

where the last inequality is by ηr = Θ(M2)η. The proof of ) and 

) are straight forward given   

We will first investigate the property of the router. 

Lemma E.4. ) for all t ≤ T1, i ∈ [n] and m ∈ [M]. 

Proof. By Lemma E.3 we have that ). Lemma 5.1 further implies that 

. 
 

Lemma E.5. We have following gradient update rules hold for the experts, 

, 

for all t ≤ T1,j ∈ [J],k ∈ [K],m ∈ [M],p ≥ 4. Besides, we have the following gradient norm upper bound 
holds 
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for all t ≤ T1,j ∈ [J],m ∈ [M]. 

Proof. The experts gradient can be computed as follows, 

;W . 

We first compute the inner product h∇wm,jL(t),cki. By Lemma E.2, we have that |h∇wm,jL(t),cki− 

 

 

where the second equality is due to Lemma E.3 and D.2, the third equality is due to Lemma E.4, the 
last equality is by the choice of n and σ0. Next we compute the inner product h∇wm,jL,vki. By Lemma 

E.2, we have that  
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where the second equality is due to Lemma E.3 and D.2, the third equality is due to Lemma E.4, the 
last equality is by the choice of n and σ0. Finally we compute the inner product h∇wm,jL,ξi,pi as follows 

 

where the first equality is due to Lemma D.2, second equality is due to |`0i,t| ≤ 1,πm ∈ [0,1] and the third 
equality is due to Lemma D.2 and our choice of n,σ0. Based on previous results, let B be the projection 
matrix on the linear space spanned by {vk}k∈[K] ∪{ck}k∈[K]. We can verify that 

 

 

Because we use normalized gradient descent, all the experts get trained at the same speed. 
Following lemma shows that expert m will focus on the signal vkm∗ . Lemma E.6. 

For all m ∈ [M] and t ≤ T1, we have following inequalities hold, 

hwm,j(t) m∗ ,vkm∗ i = O(σ00.5), hwm,j(t) ,vki = 

Oe(σ0),∀(j,k) = (6jm∗ ,km∗ ), hwm,j(t) ,cki = 

Oe(σ0),∀j ∈ [J],k ∈ [K], hwm,j(t) ,ξi,pi = Oe(σ0),∀j 

∈ [J],i ∈ [n],p ≥ 4. 

Proof. For t ≤ T1, the update rule of every expert could be written as, 

 hw

 , 
, 
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(E.3) 

For t ≤ T1, we have that ). By comparing the update rule of  

and other inner product presented in (E.3) , We can prove that  will grow to  while other 
inner product still remain nearly unchanged. 
Comparison with . Consider . We want to get an upper bound of , so 
without loss of generality we can assume ). Since σ0 ≤ d−0.01, we have that 

. Therefore, we have that 

, (E.4) 

 (E.5) 

Applying Lemma F.2 by choosing Ct = (3E[α3] + Oe(d−0.005))/(2KM2k∇WmL(t)kF ), S = 1 + 

Oe(d−0.005), G = 1/(3log(d)M2) and verifying  (events in Section D 

hold), we have that  

Comparison with .We want to get an upper bound of , so without loss of 
generality we can assume ). Because σ0 ≤ d−0.01, one can easily show that 

, 

Again, applying Lemma F.2 by choosing Ct = (3E[α3] + Oe(d−0.005))/(2KM2k∇WmL(t)kF ), S = 

Oe(d−0.01), G = 2 and verifying  (events in Section D hold), we have 
that hw(t),vki ≤ O(G−1σ0) = Oe(σ0). 

Comparison with . The proof is exact the same as the one with ck.  

Denote the iteration T(m) as the first time that . Then Following lemma gives 
an upper bound of T(m) for all m ∈ M. 

Lemma E.7. For all m ∈ [M], we have that ) and thus T(m) < 0.01T1. Besides, for all Tm 

< t ≤ T1 we have that 

. 

Proof. Let projection matrix , then we can divide the gradient into two 
orthogonal part 
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k∇wm,jm∗ L(t)k2 = kB∇wm,jm∗ L(t) + (I − B)∇wm,jm∗ L(t)k2 

≤ kB∇wm,jm∗ L(t)k2 + k(I − B)∇wm,jm∗ L(t)k2 

Recall that 

, 

So we have that 

 

where the first inequality is by |`0i,t| ≤ 1,πm ∈ [0,1] and the second equality is because 

1. when xi(p) align with vkm∗ , (I − B)x(ip) = 0. 

(p) 
2. when xi doesn’t align with v 

Therefore, we have that 

. 

We next compute the gradient of the neuron w , 

 , (E.6) 

where the inequality is by which is due to Lemma E.6. Now we can 
upper bound the gradient norm, 

 k∇WmL(t)kF ≤ X k∇wm,jL(t)k2 ≤ k∇wm,jm∗ L(t)k2 + Oe(σ02). (E.7) 
j∈[J] 

When , it is obviously that 

, 

where the first inequality is by (E.6) and the second inequality is by (E.7). Now let us give an upper 
bound for T(m). During the period . On the one hand, by 
Lemma E.5 we have that 
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which implies that the inner product ). On the other hand, by Lemma E.6 
we have that 

 

where last inequality is by . Therefore, we have that the inner product 
 grows exponentially and will reach ) within ) iterations. 

 

Recall that , following Lemma shows that the expert m ∈ [M] only learns one feature 
during the first stage, 

Lemma E.8. For all t ≤ T1,m ∈ [M], we have that 

hwm,j(t) m∗ ,vkm∗ i = O(σ00.5), hwm,j(t) ,vki = 

Oe(σ0),∀(j,k) = (6jm∗ ,km∗ ), hwm,j(t) ,cki = 

Oe(σ0),∀j ∈ [J],k ∈ [K], 

. 

Besides , for all t ≥ T1/2. 

Proof. By Lemma E.7, we have . Notice that h∇wm,jm∗ L(t),vk∗i ≥ 

, for all Tm ≤ t ≤ T1. Therefore, we have that 

, 

which implies 2. Finally, applying Lemma E.6 completes the 
proof. 

 

E.2 Router Learning Stage 

Denote T2 = bη−1M−2c, The second stage ends when t = T2. Given x ], we denote 

by ¯x = [0,βck,0,...,0] the one only keeps cluster-center signal and denote by xb = ] the 
one that only keeps feature signal and feature noise. 
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For all T1 ≤ t ≤ T2, we will show that the router only focuses on the cluster-center signals and the 

experts only focus on the feature signals, i.e., we will prove that |fm(xi;W(t)) − fm(xbi;W(t))| and 
kh(xi;Θ(t)) − h(x¯i,Θ(t))k∞ are small. In particular, We claim that for all T1 ≤ t ≤ T2, following proposition 
holds. 

Proposition E.9. For all T1 ≤ t ≤ T2, following inequalities hold, 

m 

Proposition E.9 implies that expert will only focus on the label signal and router will only focus 
on the cluster-center signal. We will prove Proposition E.9 by induction. Before we move into the 
detailed proof of Proposition E.9, we will first prove some important lemmas. 

Lemma E.10. For all T1 ≤ t ≤ T2, the neural network parameter maintains following property. 

• |fm(xi;W(t))| = O(1),∀m ∈ [M], 

• πmi,t(xi;Θ(t)) = Ω(1/M), ∀i ∈ [n]. 

Proof. Because we use normalized gradient descent, the first bullet would be quite straight forward. 

|fm(xi,W(t))| = X X σ(hwm,j(t) ,x(ip)i) (=i) O(1), 
j∈[J] p∈[P] 

where (i) is by) (p) 
and xi = O(1). 

Now we prove the second bullet. By Lemma C.4, we have that hmi,t(x;Θ) ≥ maxm hm(x;Θ)−1, which 
implies that 

. 
 

Lemma E.11. Denote δΘ = maxi kh(x¯i;Θ) − h(xi;Θ)k∞ and let the random variable ¯mi,t be expert that 
get routed if we use the gating network output h(x¯i;Θ(t)) instead. Then we have following inequalities, 

|πm(xi;Θ) − πm(x¯i;Θ)| = O(δΘ),∀m ∈ [M],i ∈ [n],.(E.11) |P(mi,t = m) − P(¯mi,t = m)| = O(M2δΘ),∀m ∈ [M],i 
∈ [n]. (E.12) 

Proof. By definition of δΘ, we have that kh(xi;Θ(t)) − h(x¯i;Θ(t))k∞ ≤ δΘ. Then applying Lemma 5.1 gives 

|P(mi,t = m) − P(¯mk,t = m)| = Oe(δΘ),∀m ∈ [M],i ∈ [n], which completes the proof for (E.12). 

|fm(xi;W(t)) − fm(xbi;W(t))| ≤ O(d−0.001),∀m ∈ [M],i ∈ [n], (E.8) 

kh(xi;Θ(t)) − h(x¯i;Θ(t))k∞ ≤ O(d−0.001),∀i ∈ [n], (E.9) 

P(mi,t = m),πm(xi;Θ(t)) = Ω(1/M),∀m ∈ [M],i ∈ Ωk∗ . (E.10) 
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Next we prove (E.11), which needs more effort. For all i ∈ [n], we have 

. 

Let δm0 = exp(hm0(xi;Θ) − hm0(x¯i;Θ)) = 1 + O(δΘ). Then for sufficiently small δΘ, we have that δm0 ≥ 0.5 . 
Then we can further compute 

 
≤ O(δΘ), 

where the last inequality is by |δm0 − δm| ≤ O(δΘ), πm(x¯i;Θ) ≤ 1 and Pm0 πm0(x¯i;Θ)δm0 ≥ [P
m0 πm0(x¯i;Θ)]/2 

= 0.5.  

Following Lemma implies that the pattern learned by experts during the first stage won’t change 
in the second stage. 

Lemma E.12. Suppose (E.8), (E.9), (E.10) hold for all t ∈ [T1,T] ⊆ [T1,T2 − 1], then we have following 
inequalities hold for all t ∈ [T1,T + 1], 

hwm,j(t) m∗ ,vkm∗ i ≥ (1 − O(σ00.1))ηt, hwm,j(t) ,vki = 

Oe(σ0),∀(j,k) = (6jm∗ ,km∗ ), hwm,j(t) ,cki = Oe(σ0),∀j ∈ 

[J],k ∈ [K], hwm,j(t) ,ξi,pi = Oe(σ0),∀j ∈ [J],k ∈ [K],i ∈ [n],p 

≥ 4. 

Proof. Most of the proof exactly follows the proof in the first stage, so we only list some key steps here. 
Recall that 

. 

In the proof of Lemma E.5, we do Taylor expansion at the zero point. Now we will do Taylor expansion 
at fm(xbi;W) and π(x¯i;Θ) as follows, 

|πm(xi;Θ(t))fm(xi;W(t)) − πm(x¯i;Θ(t))fm(xbi;W(t))| 

≤ |πm(x¯i;Θ(t))[fm(xi;W(t)) − fm(xbi;W(t))]| + |[πm(xi;Θ(t)) − πm(x¯i;Θ(t))]fm(xi;W(t))| 

≤ |fm(xi;W(t)) − fm(xbi;W(t))| + O(|πm(xi;Θ(t)) − πm(x¯i;Θ(t))|) 
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≤ O(d−0.001), 

where the first inequality is by triangle inequality, the second inequality is by πm(x¯i;Θ(t)) ≤ 1 and 
|fm(xi;W(t))| = O(1) in Lemma E.10, the third inequality is by (E.8), (E.9) and (E.11). 

Then follow the proof of Lemma E.5, we have that 

 

where (i) is due to (E.10): P(mi,t = m) ≥ Θ(1/M), ∀i ∈ Ωkm∗ ,m ∈ [M]. Again follow Lemma E.5 and Lemma 

E.6, we further have that 

h∇wm,jL(t),vki = −Θ(1)[e hwm,j(t) ,vki]2, h∇wm,jL(t),cki = 

Oe(1)[hwm,j(t) ,cki]2, h∇wm,jL(t),ξi,pi = 

Oe(1)[hwm,j(t) ,ξi,pi]2. 

Thus for all T1 ≤ t ≤ T, the update rule of every expert could be written as, 

 

. 

By the first stage of training we have that ), while others remains Oe(σ0). Then 
we can use Lemma F.2, by choosing S = Θ(1)e and G = 2, then we have that 
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hwm,j(t) ,vkm∗ i = O(1). 

hwm,j(t) ,vki = Oe(σ0),∀k 6= 

km∗ . hwm,j(t) ,cki = Oe(σ0). 

hw(t),ξi,pi = Oe(σ0). 

Then following Lemma E.7 and E.8, we can prove that for all T1 ≤ t ≤ T + 1, m ∈ [M], 

hwm,j(t) m∗ ,vkm∗ i ≥ (1 − O(σ00.1))ηt, hwm,j(t) ,vki = 

Oe(σ0),∀(j,k) = (6jm∗ ,km∗ ), hwm,j(t) ,cki = 

Oe(σ0),∀j ∈ [J],k ∈ [K], hwm,j(t) ,ξi,pi = Oe(σ0),∀j 

∈ [J],i ∈ [n],p ≥ 4. 

 

By the result of expert training we have following results 

Lemma E.13. Suppose (E.8), (E.9), (E.10) hold for all t ∈ [T1,T] ⊆ [T1,T2 − 1], then we have that 
|fm(xi;W(t)) − fm(xbi;W ) for all m ∈ [M] and i ∈ [n], t ∈ [T1,T + 1]. Besides, 

yifm(xbi;W(t)) = X hαi3σ(hwm,j(t) ,vki) + γi3σ(hwm,j(t) ,vk0i)i,∀i ∈ Ω+k,k0,m ∈ [M], 
j∈[J] 

yifm(xbi;W(t)) = X hαi3σ(hwm,j(t) ,vki) − γi3σ(hwm,j(t) ,vk0i)i,∀i ∈ Ωk,k−0,m ∈ [M]. 
j∈[J] 

Proof. For all i ∈ Ωk, we have that 

 

, 

where the first inequality is by triangle inequality and the last equality is by Lemma E.12.  

Next we will show that router only focus on the cluster-center signal rather than the label signal 
during the router training. 
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Lemma E.14. Suppose (E.8),  ( ) hold for all t ∈ [T1,T] ⊆ [T1,T2 − 1], then we have that 
kh(x¯i,Θ(t)) − h(xi;Θ(t))k∞ = O(d−0.005) hold for all i ∈ [n] and t ∈ [T1,T + 1]. Besides, we have that max

) for all t ∈ [T1,T + 1]. 

Proof. Recall the definition of δΘ in Lemma E.11, we need to show that δΘ(t) = Oe(d−0.005) for all t ∈ [T1,T 

+ 1]. We first prove following router parameter update rules, 

 h∇θmL(t),vki = O(δΘ(t)K2) + Oe(d−0.005),h∇θmL(t),ξi,pi = Oe(d−0.005), (E.13) 

for all T1 ≤ t ≤ T, m ∈ [M], k ∈ [K], i ∈ [n] and p ≥ 4. 
Consider the inner product of the router gradient and the feature vector and we have 

 

} 

 

 

Denote yiπm(x¯i;Θ(t))fm(xbi;W(t)),∀i ∈ Ω+k,k0 by F¯
k,k+ 0. We next show that the output of the MoE 

multiplied by label: yiπm(xi;Θ(t))fm(xi;W),∀i ∈ Ω+k,k0 can be approximated by F¯
k,k+ 0. 

|πm(xi;Θ(t))fm(xi;W(t)) − πm(x¯i;Θ(t))fm(xbi;W(t))| 

≤ |[πm(xi;Θ(t)) − πm(x¯i;Θ(t))]fm(xi;W(t))| + |πm(x¯i;Θ(t))[fm(xi;W(t)) − fm(xbi;W(t))]| 

≤ O(|πm(xi;Θ(t)) − πm(x¯i;Θ(t))|) + |fm(xi;W(t)) − fm(xbi;W(t))| 

= 
1 
n 

X 
i ∈ Ω k 

 ( m i,t = m ) ̀ 0 
i,t y i π m ( x i ; Θ ( t ) ) f m ( x i ; W ( t ) ) y i α i 

| { z I 1 

+ 1 
n 

X 
i ∈ Ω k 0 ,k 

 ( m i,t = m ) ̀ 0 
i,t y i π m ( x i ; Θ ( t ) ) f m ( x i ; W ( t ) )  i γ i 

| { z } I 2 

− 1 
n 

X 
i ∈ Ω k ,m 0 ∈ [ M ] 

 ( m i,t = m 0 ) ̀ 0 
i,t y i π m 0 ( x i ; Θ ( t ) ) π m ( x i ; Θ ( t ) ) f m 0 ( x i , W ( t ) ) y i α i 

| { z } I 3 
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, 

where the first inequality is by triangle inequality, the second inequality is by πm(x¯i;Θ(t)) ≤ 1 and 
|fm(xi;W(t))| = O(1) in Lemma E.10, the third inequality is by (E.11) and Lemma E.13. 

Similarly, denote yiπm(x¯i;Θ(t))fm(xbi;W(t)),i ∈ Ω−k,k0 by F¯
k,k− 0 and we can show that value 

yiπm(xi;Θ(t))fm(xi;W(t)),∀i ∈ Ω−k,k0 can be approximated by F¯
k,k− 0. Now we can bound I1 as 

follows, 

 

 √  √  

where (i) is due to (E.12) and (ii) is by Pi∈Ω+ 0 yiα = Oe( n) and Pi∈Ω−k,k0 yiα = Oe( n) in 
k,k 

Lemma D.1. Similarly we can prove that I2,I3,I4 = O(M2δΘ(t)) + Oe(d−0.005). Since  

Oe(d−1/2),∀p ≥ 4, πm,πmi,t ≤ 1 and fmi,t = O(1), we can upper bound I5,I6 by Oe(d−1/2). Plugging those bounds 

into the gradient computation (E.14) gives 

. 

We finally consider the alignment between router gradient and noise 

;W  

;W . 
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where the (i) is by considering the cases (i0,p0) = ξi,p and ξi0,p0 6= ξi,p respectively and (ii) is due to our 
choice of n. Now, we have completed the proof of (E.13). 

Plugging the gradient estimation (E.13) in to the gradient update rule for the gating network 
(3.5) gives 

 
(E.15
) 

 
(E.16
) 

Combining (E.15) and (E.16), we have that there exist C1 = O(M2) and C2 = Oe(d−0.005) such that δΘ(t+1) ≤ 

δΘ(t) + C1ηrδΘ(t) + C2ηr. Therefore, we have that 

δΘ(t+1) + C1−1C2 ≤ (1 + C1ηr)[δΘ(t) + C1−1C2] 

≤ exp(C1ηr)[δΘ(t) + C1−1C2], 

where the last inequality is due to exp(z) ≥ 1 + z for all z ∈ R. Then we further have that 

, 

where the last equality is by ηr = Θ(M2)η.  

Define ∆Θ := maxk∈[K] maxm,m0∈Mk max(xi,yi)∈Ωk |hm(xi;Θ) − hm0(xi;Θ)|, which measures the bias of the 
router towards different experts in the same Mk. Following Lemma shows that the router will treats 
professional experts equally when ∆θ is small. 

Lemma E.15. For all t ≥ 0, we have that following inequality holds, 

, 

. 

Proof. By Lemma C.3, we directly have that 

|P(mi,t = m) − P(mi,t = m0)| ≤ O(M2)|hm(xi;Θ(t)) − hm0(xi;Θ(t))|. 

Then, we prove that 

 |πm0(xi;Θ) − πm(xi;Θ)| ≤ 2|hm(xi;Θ(t)) − hm0(xi;Θ(t))|. (E.17) 

When |hm(xi;Θ(t)) − hm0(xi;Θ(t))| ≥ 1, it is obvious that (E.17) is true. When |hm(xi;Θ(t)) − hm0(xi;Θ(t))| ≤ 1 
we have that 
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which completes the proof of (E.17).  

Notice that the gating network is initialized to be zero, so we have ∆Θ = 0 at initialization. 

We can further show that ∆Θ = O 1/poly(  during the training up to time T = Oe(η−1). 
Lemma E.16. Suppose (E.8), (E.9), (E.10) hold for all t ∈ [T1,T] ⊆ [T1,T2 − 1], then we have that ∆Θ(t) ≤ 
Oe(d−0.001) holds for all t ∈ [T1,T + 1]. 

Proof. One of the key observation is the similarity of the m-th and the m0-th expert in the same expert 
class Mk. Lemma E.12 implies that max  
Oe(d−0.001). 

Another key observe is that, we only need to focus on the k−th cluster-center signal. Lemma E.14 
implies that, 

∆Θ(t) = max max0∈Mk (ximax,yi)∈Ωk |hm(xi;Θ) − hm0(xi;Θ(t))| k∈[K] m,m 

≤ max max0∈Mk (ximax,yi)∈Ωk |hm(x¯i;Θ(t)) − hm0(x¯i;Θ(t))| + 2δΘ(t) k∈[K] m,m 

= max max0∈Mk |hθm − θm0,βicki| + 2δΘ(t) k∈[K] m,m 

, 

where the first inequality is by Lemma E.14 and the second inequality is by βi ≤ C2. We now prove that 
following gradient difference is small 

;W  

;W  

 

;W  
i∈Ωk 

+ O(1)max|πm0(xi;Θ(t)) − πm(xi;Θ(t))| + O(1)max|fm(xi,W(t)) − fm0(xi,W(t))| i∈Ωk i∈Ωk 
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= O(1)|P(mi,t = m0) − P(mi,t = m)]| + O(1)max|πm0(xi;Θ(t)) − πm(xi;Θ(t))| 
i∈Ωk 

+ O(1)max|fm(xi,W(t)) − fm0(xi,W(t))| + Oe(d−0.001) 
i∈Ωk 

 (ii) 2 −0.001 

 = O(M ∆Θ(t)) + Oe(d ), 

where the (i) is by Lemma E.2 and (ii) is by Lemma E.15. It further implies that ∆Θ(t+1) ≤ O(ηrM2)∆Θ(t) 

+Oe(ηrd−0.001). Following previous proof of δΘ, we have that ∆Θ(T+1) = Oe(d−0.001). 

 

Together with the key technique 1, we can infer that each expert m ∈ Mk will get nearly the same 
load as other experts in Mk. Since ∆Θ keeps increasing during the training, it cannot be bounded if we 
allow the total number of iterations goes to infinity in Algorithm 1. This is the reason that we require 
early stopping in Theorem 4.2, which we believe can be waived by adding load balancing loss (Eigen 
et al., 2013; Shazeer et al., 2017; Fedus et al., 2021), or advanced MoE layer structure such as BASE 
Layers (Lewis et al., 2021; Dua et al., 2021) and Hash Layers (Roller et al., 2021). 

Lemma E.17. Suppose (E.8), (E.9), (E.10) hold for all t ∈ [T1,T] ⊆ [T1,T2 −1], then for m /∈ Mk and t ∈ 

[T1,T] , if 1 we have that 

. 

Proof. The expectation of the inner product h∇θmL(t),cki can be computed as follows, 

 

 

. 
(E.18) 

where (i) is due to |hξi,p,cki| = Oe(d−0.5). 
We can rewrite the inner product (E.18) as follows, 

;W(t)) + Oe(d−0.005) 
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 {z } 
I1 

 {z
 } 

I2 
(E.19) 

. 

 {z } 
I3 

(E.20) 

To calculate I1,I2,I3, let’s first lower bound I2. We now consider the case that m ∈ M6 k,m0 ∈ Mk. 

Because 1, we can easily prove that πm(xi;Θ(t)) = Ω(1/M),∀i ∈ Ωk. 
Then we have that 

 

 

where the first inequality is by πm0(xi;Θ(t)) = Ω(1/M), P(mi,t = m0) ≥ Θ(1/M), ∀i ∈ Ωkm∗ ,m ∈ 
)) and `0 = −Θ(1) for all i ∈ Ωk,m0 ∈ Mk due to Proposition E.9 

and Lemma E.12, and the last inequality is by |Mk| ≥ 1 in Lemma D.4 and 

Pi∈Ωk βi = Ω(n/K) in Lemma D.1. 
Then we consider the case that m,m0 6∈ Mk. Applying Taylor expansion of `0i,t = 1/2+O(Jη3t3) 

gives 

 

= 
1 
n 

X 
i ∈ Ω k 

 ( m i,t = m ) ̀ 0 
i,t π m ( x i ; Θ ( t ) ) y i β i f m ( x i ; W ( t ) ) 

| 

+ e O ( d − 0 . 005 ) 

− 1 
n 

X 
i ∈ Ω k ,m 0 ∈M k 

 ( m i,t = m 0 ) ̀ 0 
i,t π m 0 ( x i ; Θ ( t ) ) π m ( x i ; Θ ( t ) ) β i y i f m 0 ( x i , W ( t ) ) 

| 

− 1 
n 

X 
i ∈ Ω k ,m 0 / ∈M k 

 ( m i,t = m 0 ) ̀ 0 
i,t π m 0 ( x i ; Θ ( t ) ) π m ( x i ; Θ ( t ) ) β i y i f m 0 ( x i , W ( t ) ) 

| 
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;W  

  (E.21) 

where the last inequality is by the technique we have used before in Lemma E.16. By (E.21), we can 
get upper bound |I1|,|I3| by O(J2η6t6) + Oe(d−0.005). 

Plugging the bound of I1,I2,I3 into (E.20) gives, 

 

where the last inequality is by t ≤ T2 = bη−1M−2c.  

Now we can claim that Proposition E.9 is true and we summarize the results as follow lemma. 

Lemma E.18. For all T1 ≤ t ≤ T2, we have Proposition E.9 holds. Besides, we have that 
) for all m /∈ Mk.. 

Proof. We will first use induction to prove Proposition E.9. It is worth noting that proposition E.9 is 
true at the beginning of the second stage t = T1. Suppose (E.8), (E.9), (E.10) hold for all t ∈ [T1,T] ⊆ 
[T1,T2 − 1], we next verify that they also hold for t ∈ [T1,T + 1]. Lemma E.13 shows that (E.8) holds for 
t ∈ [T1,T + 1]. Lemma E.14 further shows that (E.8) holds for t ∈ [T1,T + 1]. Therefore, we only need to 
verify whether (E.10) holds for t ∈ [T1,T + 1]. Therefore, for each pair i ∈ Ωk, m ∈ Mk, we need to 
estimate the gap between expert m and the expert with best performance hm(xi;Θ(t)) − maxm0 

hm0(xi;Θ(t)). By Lemma E.17 and Lemma E.14, we can induce that hm(xi;Θ(t)) is small therefore cannot 
be the largest one. Thus hm(xi;Θ(t)) − maxm0 hm0(xi;Θ(t)) = hm(xi;Θ(t)) − maxm0 hm0(xi;Θ(t)) ≤ ∆Θ(t) ≤ 
Oe(d−0.001). Therefore, by Lemma C.3 we have (E.10) holds. Now we have verified that (E.10) also 
holds for t ∈ [T1,T + 1], which completes the induction for Lemma E.9. 

Finally, we carefully characterize the value of , for ηrη−1 = Θ(M2) and m /∈ Mk. If 
1, by Lemma E.17 we have that 

 . (E.22) 

If there exists t ≤ T2−1 such that 1, clearly we have that  

−Ω(K−1M−9) since  will keep decreasing as long as 1 and our step size ηr = 

Θ(M2)η is small enough. If 1 holds for all t ≤ T2 − 1, take telescope sum 
of (E.22) from t = 0 to t = T2 − 1 gives that 



47 

 

by θm = 0 and (ii) is by 4 and (0) where the (i) is 
the last inequality is due to 
T2 = bη−1M−2c and ηr = Θ(M2)η. Now we have proved that ) for all m /∈ Mk. 
Finally, by Lemma E.1 we have that 

. 

Therefore, we have that ), which 
completes the proof. 

 

E.3 Generalization Results 

In this section, we will present the detailed proof of Lemma 5.2 and Theorem 4.2 based on analysis in 
the previous stages. 

Proof of Lemma 5.2. We consider the m-th expert in the MoE layer, suppose that m ∈ Mk. Then if we 
draw a new sample (x,y) ∈ Ωk. Without loss of generality, we assume x  
By Lemma E.8, we have already get the bound for inner product between weights and feature signal, 
cluster-center signal and feature noise. However, we need to recalculate the bound of the inner 
product between weights and random noises because we have fresh random noises i.i.d drawn from 
N(0,(σp2/d) · Id). Notice that we use normalized gradient descent for expert with step size η, so we 
have that 

. 

Therefore, by triangle inequality we have that ). Because 
the inner product  follows the distribution ), we have that with 
probability at least 1 − 1/(dPMJ), 

. 

Applying Union bound for m ∈ [M],j ∈ [J],p ≥ 4 gives that, with probability at least 1 − 1/d, 
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 . (E.23) 

Now under the event that (E.23) holds, we have that 

yfm(x,W(t)) = y X X σ(hwm,j,x(p)i) 
j∈[J] p∈[P] 

 = yσ(hwm,jm∗ ,αyvki) + y X σ(hwm,j,x(p)i) 
(j,p)6=(jm∗ ,1) 

≥ C13(1 − σ00.1)3σ01.5 − Oe(σ03) 

≥ Ω(σ01.5), 

where the first inequality is due to (E.3). Because (E.23) holds holds with probability at least 1 − 1/d, 
so we have prove that 

P(x,y)∼D yfm(x;W  

On the other hand, if we draw a new sample (x,y) ∈ Ωk0,k0 6= k. Then we consider the special set 
Ω−k0,k ⊆ Ωk0 where feature noise is vk and the sign of the feature noise  is not equal to the label y. Without 
loss of generality, we assume it as x = [αyvk0,βck0,−γyvk,ξ]. Then under the event that (E.23) holds, we 

have that 

yfm(x,W(t)) = y X X σ(hwm,j,x(p)i) 
j∈[J] p∈[P] 

 = yσ(hwm,jm∗ ,−γyvki) + y X σ(hwm,j,x(p)i) 
(j,p)6=(jm∗ ,3) 

≤ −C13(1 − σ00.1)3σ01.5 + Oe(σ03) 

≤ −Ω(σ01.5), 

where the first inequality is due to (E.3). Because (E.23) holds holds with probability at least 1 − 1/d, 
so we have prove that 

P(x,y)∼D yfm(x;W  

Then we further have that 

P(x,y)∼D yfm(x;W  

≥ P(x,y)∼D yfm(x;W  
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≥ Ω(1/K), which 

completes the proof. 

 

Proof of Theorem 4.2. We will give the prove for T = T2, i.e., at the end of the second stage. Test Error 
is small. We first prove the following result for the experts. For all expert m ∈ Mk, we have that 

 P(x,y)∼D yfm(x;W . (E.24) 

The proof of is similar to the proof of Lemma 5.2. We consider the m-th expert in the MoE layer, 
suppose that m ∈ Mk. Then if we draw a new sample (x,y) ∈ Ωk. Without loss of generality, we assume 
x ]. By Lemma E.8, we have already get the bound for inner product between 
weights and feature signal, cluster-center signal and feature noise. However, we need to recalculate 
the bound of the inner product between weights and random noises because we have fresh random 
noises i.i.d drawn from ). Notice that we use normalized gradient descent with step 
size η, so we have that 

. 

Therefore, by triangle inequality we have that ). Because the 
inner product  follows the distribution ), with probability at least 1 − 
1/(dPMJ) we have that , 

. 

Applying Union bound for m ∈ [M],j ∈ [J],p ≥ 4 gives that, with probability at least 1 − 1/d, 

 . (E.25) 

Now, under the event that (E.25) holds, we have that 

yfm(x,W(T)) = y X X σ(hwm,j(T),x(p)i) 

j∈[J] p∈[P] 

 = yσ(hwm,j(T)m∗ ,αyvki) + y X σ(hwm,j(T),x(p)i) 

(j,p)6=(jm∗ ,1) 

≥ C13(1 − σ00.1)3M−4 − Oe(σ03) = 

Ω(1)e , 

where the first inequality is by Lemma E.12. Because (E.25) holds with probability at least 1−1/d, so 
we have prove that 
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P(x,y)∼D yfm(x;W  

We then prove that, with probability at least 1 − o(1), an example x ∈ Ωk will be routed to one of 
the experts in Mk. For x ], we need to check that hm(x;Θ(T)) < maxm0 

hm0(x;Θ(T)),∀m 6∈ Mk. By Lemma E.18, we know that  

−Ω(K−1M−9). Further by Lemma E.14, we have that max ). Again to calculate 
test error, we need to give an upper bound , where ξp is a fresh noise drawn from 

). We can upper bound the gradient of the gating network by 

 

;W . 

where the last inequality is due to |`0i,t| ≤ 1, πm,πmi,t ∈ [0,1] and kx(ip)k2 = O(1). This further implies that 

, 

where the last inequality is by ηr = Θ(M2)η. Because the inner product  follows the 
distribution ), we have that with probability at least 1 − 1/(dPM), 

. 

Applying Union bound for m ∈ [M],p ≥ 4 gives that, with probability at least 1 − 1/d, 

 . (E.26) 

Now, under the event that (E.26) holds, we have that 

hm(x;Θ(T)) − maxhm0(x;Θ(T)) m0 

≤ hθm(T),cki − maxm0 hθm(T0),cki + 4maxm,k |hθm(T),vki| + 4P maxm,p |hθm(T),ξpi| 

≤ −Ω(K−1M−9) + Oe(d−0.001) < 0. 

Because (E.26) holds holds with probability at least 1−1/d, so we have prove that with probability at 
least 1 − 1/d, an example x ∈ Ωk will be routed to one of the experts in Mk. 
Training Error is zero. The prove for training error is much easier, because we no longer need to 
deal with the fresh noises and we no longer need to use high probability bound for those inner 
products with fresh noises. That’s the reason we can get exactly zero training error. We first prove 
the following result for the experts. For all expert m ∈ Mk, we have that 

yifm(xi;W . 

(1) 
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Without loss of generality, we assume that the feature patch appears in xi . By Lemma E.12, we 
have that for all i ∈ Ωk 

yifm(xi,W(T)) = yi X X σ(hwm,j(T),x(ip)i) 
j∈[J] p∈[P] 

 = yiσ(hwm,j(T)m∗ ,αyivki) + yi X σ(hwm,j(T),x(p)i) 

(j,p)6=(jm∗ ,1) 

≥ C13(1 − σ00.1)3M−4 − Oe(σ03) > 

0, 

where the first inequality is Lemma E.12. We then prove that, and example (xi,yi) ∈ Ω will be routed 
to one of the experts in Mk. Suppose the m-th expert is not in Mk. We only need to check the value of 
hm(xi;Θ(T)) < maxm0 hm0(xi;Θ(T)), which is straight forward by Lemma E.18 and Lemma E.14. 

 

F Auxiliary Lemmas 
Lemma F.1. Let  are the random variable i.i.d. drawn from N(0,1). Define the non- 
increasing sequence of . Then we have that 

P(a(2) ≥ (1 − G)a(1)) ≤ GM2 

Proof. Let Ψ be the CDF of N(0,1) and let ρ be the PDF of ). Then we have that, 

P(a(2) ≥ (1 − G)a(1)) 
Z 

 = 1(a(2) ≥ (1 − G)a(1))M!Πmρ(a(m))da 

 a(1)≥ ≥a(M) 

 

For normalized gradient descent we have following lemma, 
Lemma F.2 (Lemma C.19 Allen-Zhu and Li 2020c). Let {xt,yt}t=1,.. be two positive sequences that satisfy 
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xt+1 ≥ xt + η · Ctx2t 

yt+1 ≤ yt + Sη · Ctyt2, 

and |xt+1 − xt|2 + |yt+1 − yt|2 ≤ η2. Suppose x0,y0 = o(1),x0 ≥ y0S(1 + G), 

. 

Then we have for all A > x0, let Tx be the first iteration such that xt ≥ A, then we have yTx ≤ O(y0G−1). 

Proof. We only need to replace O(ηAq−1) in the proof of Lemma C.19 by O(η), because we use 
normalized gradient descent, i.e, Ctx2t ≤ 1. For completeness, we present the whole poof here. 

for all g = 0,1,2,...,, let Tg be the first iteration such that xt ≥ (1+δ)gx0, let b be the smallest integer 
such that (1+δ)bx0 ≥ A. For simplicity of notation, we replace xt with A whenever xt ≥ A. 
Then by the definition of Tg, we have that 

 X ηCt[(1 + δ)gx ]2 ≤ xTg+1 − xTg ≤ δ(1 + δ)gx0 + O(η), 
0 

t∈[Tg,Tg+1) 

where the last inequality holds because we are using normalized gradient descent, i.e., maxt |xt+1 − xt| 
≤ η. This implies that 

. 

Recall that b is the smallest integer such that (1 + δ)bx0 ≥ A, so we can calculate 

 

Let Tx be the first iteration t in which xt ≥ A. Then we have that 

 . (F.1) 

On the other hand, let A0 = G−1y0 and b’ be the smallest integer such that (1 + δ)b0x0 ≥ A0. For 
simplicity of notation, we replace yt with A0 when yt ≥ A0. Then let  be the first iteration such that yt 

≥ (1 + δ)gy0, then we have that 

X ηSC [(1 + δ)g+1x ](q−1) ≥ yTg0+1 − yTg0 ≥ δ(1 + δ)gy0 − O(η). t 0 
t∈[Tg0,Tg0+1) 

Therefore, we have that 
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. 

Recall that b0 is the smallest integer such that (1 + . wo we have that 

 

Let Ty be the first iteration t in which yt ≥ A0, so we can calculate 

 . (F.2) 

Compare (F.1) and (F.2). Choosing δ = G and , together with x0 ≥ 
y0S(1 + G) 
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