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Abstract

Recently the surprising discovery of Bootstrap Your Own Latent (BYOL) method by Grill et al.
shows the negative term in contrastive loss can be removed if we add the so-called prediction head
to the network architecture, which breaks the symmetry between the positive pairs. This initiated
the research of non-contrastive self-supervised learning. It is mysterious why even when trivial
collapsed global optimal solutions exist, neural networks trained by (stochastic) gradient descent
can still learn competitive representations and avoid collapsed solutions. This phenomenon is one

LG] 14 May&f%@@o% typical examples of implicit bias in deep learning optimization, and its underlying
mechanism remains little understood to this day.

In this work, we present our empirical and theoretical discoveries about the mechanism of
prediction head in non-contrastive self-supervised learning methods. Empirically, we find that
when the prediction head is initialized as an identity matrix with only its off-diagonal
entries being trained, the network can learn competitive representations even though the trivial
optima still exist in the training objective. Moreover, we observe a consistent rise and fall
trajectory of off-diagonal entries during training. Our evidence suggests that understanding the
identity-initialized prediction head is a good starting point for understanding the mechanism of
the trainable prediction head.

Theoretically, we present a framework to understand the behavior of the trainable, but
identity-initialized prediction head. Under a simple setting, we characterized the substitution
effect and acceleration effect of the prediction head during the training process. The
substitution effect happens when learning the stronger features in some neurons can substitute
for learning these features in other neurons through updating the prediction head. And the
acceleration effect happens when the substituted features can accelerate the learning of other
weaker features to prevent them from being ignored. These two effects together enable the neural
networks to learn all the features rather than focus only on learning the stronger features, which
is likely the cause of the dimensional collapse phenomenon. To the best of our knowledge, this is
also the first end-to-end optimization guarantee for non-contrastive methods using nonlinear
neural networks with a trainable prediction head and normalization.
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1 Introduction

Self-supervised learning is about learning representations of real-world vision or language data
without human supervision, and contrastive learning [66, 45, 43, 24, 20, 34] is one of the most
successful self-supervised learning approaches. It has been known that the behavior of contrastive
learning depends critically on the minimization of the negative term, which corresponds to
contrasting the representations of negative pairs, i.e., pairs of different data points. However, the
surprising finding of the Bootstrap Your Own Latent (BYOL) method by Grill et al. [39] initiated the
research of non-contrastive self-supervised learning, which refers to contrastive learning methods
without using the negative pairs. BYOL achieved state-of-the-art results in various computer vision
benchmarks and there are plenty of follow-up works [41, 26, 21, 17, 33, 91, 46, 65] making
improvements in this direction.

Figure 1: Dimensional Collapse.

one wishes to learn a network ¢ such that ¢(x) aligns in direction Network trained without prediction
with ¢(x?), where x and x° are called the positive pair, generated by N€ad will learn extremely correlated
. . neurons.
random augmentations from the same sample. Without
On a high level, in non-contrastive self-supervised learning,
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contrasting the negative pairs, it is extremely easy for neural
networks to cheat the learning task by learning certain inferior = ‘
representations. One trivial solution known as the complete " T T om o oh ok o i
collapse is when ¢(-) is a constant vector whose variance is zero. Another trivial global optimal

[46]. Nevertheless, adding a trainable prediction head on top of (a) Histograms of the correlations of
(one branch of) ¢(x) magically avoids learning such solutions, projection head neurons.

solution, typically learned by the neural network after training, is when all the coordinates ¢;(-) are
exactly aligned, which is named as dimensional collapse by Hua
etal.
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even though the prediction head can possibly learn the identity
mapping and render itself useless. It is mysterious why even if ==
the network can minimize the training objective by learning an
identity prediction head and a collapsed encoder network ¢(:), it =
still optimizes for a non-collapsed state-of-the-art representation T o7 0w 0w 0k ok ok ois b
instead when trained by (variants of) stochastic gradient descent
(SGD).

Since the proposition of BYOL, there have been lots of empirical(b) Histograms of the correlations of

studies trying to understand non-contrastive learning. The encoder network neurons (before
projection head).
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SimSiam method by Chen and He [26] shows the exponential mov-

ing average (EMA) is not necessary for avoiding collapsed solutions while stop-gradient is necessary.
Richemond et al. [72] empirically disproved the conjecture that information leakage from batch
normalization (BN) is the reason why BYOL can avoid collapse. DINO [21] further explored replacing
the normalized “-loss by a cross-entropy loss. Zhang et al. [92] gives empirical evidence that using a
single bias layer as a prediction head is capable of avoiding collapsed solutions. All the methods above



use loss functions that are asymmetric with respect to the positive pair. If one wishes to work without
both asymmetry and the negative pairs, one must add extra diversity-enforcing structures say
neuron-wise regularization in Barlow Twins [91] or a more complicated output normalization scheme
than BN [33, 46]. The seminal works [91, 46] provide empirical evidence that the prediction head
encourages the network to learn more diversified features. But in theory, the question of how the
prediction head helps in learning those diverse features is still unanswered.

Despite the great empirical effort put to investigate these non-contrastive learning methods, there
is very little theoretical progress towards explaining them. Most of existing theories focus on
contrastive learning, especially from the statistical learning perspective [83, 85, 14, 84, 42, 86, 13, 15,
50, 47, 63]. The theoretical tools used in these paper rely heavily on the properties of the minima of
loss function. However, due to the existence of trivial dimensional collapsed global optimal solutions
(even with the prediction head) of the non-contrastive methods, to the best of our knowledge, there
is no well-established statistical framework for those methods yet. To explain the non-contrastive
learning, it is inevitable to study how the solutions are chosen during the optimization. Therefore, we
consider understanding the optimization process to be crucial for understanding these methods.
Our research questions are:

Our theoretical questions: the role of prediction head
Why do most non-contrastive self-supervised methods learn collapsed solutions when the
socalled prediction head is absent in the network architecture? How does the trainable prediction
head help optimizing the neural network to learn more diversified representations in
noncontrastive self-supervised learning?

Theoretical challenges of our questions. Due to the existence of trivial collapsed optimal solutions
of the non-contrastive learning objective, we need to understand the implicit bias in optimization
posed by the prediction head. However, to the best of our knowledge, all of the previous implicit
biases theories focus only on the supervised learning tasks, and thus cannot be applied to our question.
Even though [89] has characterized the training trajectory of contrastive learning, its analysis cannot
incorporate the training of the prediction head. In theory, the optimization of nonlinear neural
networks with at least two trainable layers in self-supervised learning is still intractable. A detailed
explanation of our challenges will be given in Section 2.

There are already some theoretical papers [82, 87, 67] that try to address similar questions. While
none of these papers studied the training process of the prediction head, our results provide a
completely different perspective: We explain why training the prediction head can encourage the
network to learn diversified features and avoid dimensional collapses, even

when the trivial collapsed optima still exist in the training objective, which is not covered by the

prior works. We defer the detailed comparison of similar works to Section 1.1. On a high level, the
results in this paper are summarized as follows:

Our empirical contributions. In non-contrastive self-supervised learning, we obtain the following
experimental results:

e We discover empirically that even when the prediction head is linear and initialized as an
identity matrix with only off-diagonal entries being trainable, the performance of learned



representation is comparable to using the usual non-linear two-layer MLP or randomly
initialized (trainable) linear prediction head. This disproves the belief that non-symmetric
initialization of the online and target network is needed. See Figure 2.

e We empirically verified that even when the prediction head is an identity-initialized matrix, it
does not always converge to a symmetric matrix during training. This proves the trainable
prediction head does not need to behave like a symmetric matrix during most of the training
process. Therefore the theories based on symmetric prediction head [82, 87] cannot fully
explain the behaviors of the trainable prediction head. See Figure 3 and Figure 4.

Our theoretical contributions. We based our theory on a very simple setting, where the data consist
of two features: the strong feature and the weak feature. Intuitively, we can think of the strong
features in a dataset are the ones that show up more frequently or with large magnitude,
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Figure 2: Performances of using different prediction heads. Here in CIFAR-10, CIFAR-100 and STL-10, identity-
initialized linear prediction head can achieve good accuracies comparable to commonly used two-layer non-
linear MLP or randomly-initialized linear head. All the prediction heads are trainable, while for
identityinitialized prediction head only the off-diagonal entries are trainable. Here BN or L2norm represents
the output normalization, and EMA represents using exponential moving average to update the target network
as in BYOL [41]. More details of these experiments can be seen in Section 8.

and weak features as those that show up rarely or with small magnitude. We consider learning with
a two-layer non-linear neural network with output normalization using (stochastic) gradient
descent. Under this setting, we obtain the following results.

e We prove that without a prediction head, even with BN on the output to avoid complete collapse,
the networks will still converge to dimensional collapsed solutions, which provides a theoretical
explanation to the dimensional collapse phenomenon observed in [46]. « We prove that the
trainable prediction head, combined with suitable output normalization and stop-gradient
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operation, can learn diversified features to avoid the dimensional collapse problem. We
characterize two effects of prediction head: the substitution effect and the acceleration effect.
The intuitions of these two effects are summarized below:

The mechanism of the trainable prediction head
In our setting, we prove that (1) without the prediction head, all the neurons will only learn the
strongest feature in the data set thus causing dimensional collapses; (2) the trainable prediction
head can help to learn weak features by leveraging two effects: the substitution effect and the
acceleration effect. The substitution effect happens when by learning the prediction head, the
learned stronger features in some neurons can substitute for learning the same features in other
neurons, which decreases the learning speed of strong features in those neurons. And the
acceleration effect happens when the strong features substituted via the prediction head can
further accelerate the learning of weaker features in those substituted neurons.
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Figure 3: Trajectories of the identity-initialized prediction head. off-diag(E) is obtained by setting the diagonal
of E to be zero. In (a), we discover that over all three datasets considered here, the Frobenius norm of our
identity-initialized prediction head’s off-diagonal matrix clearly display a two stage separation, more precisely,
arise and fall pattern; In (b), The off-diagonal matrix of the prediction head is not symmetric in CIFAR-10 and
CIFAR-100. Since the diagonal entries are fixed to one, our measure is more accurate in measuring the
symmetricity of the prediction head matrix.

Besides the above effects, we also explain, in our setting, how the two common components in
non-contrastive learning: stop-gradient operation and output normalization, can assist the prediction
head in creating those effects during the training process. We point out it is the interactions between
these components, rather than their individual effects, that ensure the success of the training. We shall
discuss this in more detail in Section 5.3.

1.1 Comparison to Similar Studies

In this section, we will clarify the differences between our results and some similar studies. Especially
the theoretical papers by Tian et al. [82] and Wang et al. [87]. Pokle et al. [67] compared the
landscapes between contrastive and non-contrastive learning and points out the existence of non-
collapsed bad minima for non-contrastive learning without a prediction head.

We point out that all the claims below are derived only in our theoretical setting and are
partially verified in experiments over datasets such as CIFAR-10, CIFAR-100, and STL-10.
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Can eigenspace alignment explain the effects of training the prediction head? The paper [82]
presented a theoretical statement that (symmetric) linear prediction head will converge to a matrix
that commutes with the covariance matrix of linear representations at the end of training, and they
provided experiments to support their theory. However, our theory suggests that the intermediate
stage of training the prediction head matters more to the feature learning of the base network
than the convergence stage. Indeed, as shown in Figure 3, in many cases, the trainable projection
head will converge back to identity after training, which commutes with any covariance matrix.
However, simply setting the prediction head to identity without training leads to significantly worse
results. Therefore, we believe that it is critical to study the entire learning process to understand the
role of the prediction head. We prove that in our setting, the substitution effect and the acceleration
effect happen during the stage when the networks are trying to learn the weaker features, and after
that, the prediction head will converge back to the identity matrix at the end of training (see
Proposition 5.4). Again, we emphasize that our characterization of the prediction head trajectory is
partially verified by the experiments in Figure 3a: the training trajectory of the prediction head
displays a clear two-stage separation, which demonstrates that the convergence result (e.g., the
eigenspace alignment result in [82]) is not sufficient to characterize the training process of prediction
head. We conjecture the result in [82] on the prediction head is due to a similar convergence result
we obtain at the end of training.

Can the symmetric prediction head explain the trainable prediction head? In the paper [82],
experiments over the STL-10 dataset showed that the linear prediction head tends to converge to a
symmetric matrix during training. And the follow-up paper [87] established a theory under the
symmetric prediction head (which is not trained but manually set at each iteration). However, similar
to the reason why eigenspace alignment cannot fully explain the effects of the prediction head, the
symmetric prediction head given in [87] might not explain the trainable prediction head as well.
Under their linear network setting, where W is the weight matrix of the base encoder, they manually
set the prediction head W, at iteration t to be

WO « WO, za] (WH)T (1.1)

and the outputs of both online and target network are not normalized. Under this manual update rule
of the prediction head, they proved a subspace learning result under gaussian data setting.

Nevertheless, our experiments in Figure 2 and Figure 3b show that even if we initialize the
prediction head using a symmetric matrix (identity), the trainable prediction head can be very
asymmetric at the early training stage when the encoder network learn most of its features.
Moreover, Figure 3b demonstrates that the prediction heads in CIFAR-10 and CIFAR-100 experiments
do not converge to a symmetric matrix. In accord with these experiments, our theory suggests that
the prediction head cannot converge to a symmetric matrix before the encoder network has
successfully learned all the features. Moreover, the theory in [87] cannot distinguish between learning
complete collapsed (zero) solutions and learning dimensional collapsed ones, therefore cannot
explain why the prediction can help avoid the dimensional collapse. Actually, in the presence of
feature imbalance (e.g.,Em wiz| has huge eigen-gap), the symmetric prediction head in (1.1) is also
likely to collapse into a rank-one matrix where W focus on learning the largest eigenvector of the
covariancellz, 717 1T

The differences between our results and [87]‘s are in that we are based on nonlinear network
architecture and a trainable prediction head. Indeed, our theory and experiments in Figure 7 show



that when feature imbalance happens (which is very common in vision datasets, see [25]), training a
nonlinear network would cause discrepancies in the learning pace between different neurons. We
proved that by learning to become asymmetric, the trainable prediction head can leverage such
discrepancies and creates the substitution effect (see Lemma 5.2) and the acceleration effect (see
Theorem 5.3). We believe this proves that asymmetry is the key to explaining the implicit bias of the
trainable prediction head and our results establish the symmetry-breaking mechanism of the
prediction head in non-contrastive learning.

The role of stop-gradient and output-normalization. The seminal work [26] gave empirical results
showing that stop-gradient operation is essential for avoiding the collapsed solutions. It is discussed
in the theory of Tian et al. [82] that without the stop-gradient, the linear network will learn the zero
(constant) solution. [87] also incorporated the stop-gradient into their theory, but they did not
explain why stop-gradient is necessary for their setting. We provide a different perspective about why
stop-gradient and output normalization (together) are necessary for noncontrastive learning. We
proved in our setting, that the stop-gradient and output-normalization
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Figure 4: Trajectories of the identity-initialized prediction head with a (min,max) confidence band, average
over 3 runs. In all three datasets, we observe a consistent rise and fall trajectory pattern.

together can turn the features substituted via the prediction head into a factor in the gradient of the
slower learning neurons, thereby creating the acceleration effect. If either one of these components
is missing, the acceleration effect of the prediction head will not happen and all neurons in the
network will focus on learning the strongest feature. Formal arguments will be given in Section 5.3.

In contrast, [82, 87] did not incorporate the output normalization into their theory, even though
their experiments have used certain forms of normalizations. We believe their method is closely
related to the whitening method in [33]. To the best of our knowledge, our paper is the first to explain
the effects of output-normalization in optimizing nonlinear neural networks in self-supervised
learning.

Dimensional collapse Currently the only theoretical investigation on the dimensional collapse is by
Jing et al. [52], where they focus on the contrastive learning setting. We believe their result on the role
of the projection head is meaningful to understanding non-contrastive learning. But we emphasize
that the objective (2.2) suffer from much more extreme dimensional collapse, as shown in Figure 1.
Thus the causes described in Jing et al. [52] such as strong data augmentations cannot fully explain
the dimensional collapse in the non-contrastive setting.



2  Preliminaries on Non-contrastive Learning

In this section, we formally define what is non-contrastive self-supervised learning. To do this, we
first introduce contrastive learning following [24, 89] as background. We use [N] as a shorthand for
the index set {1,..,N}.

Background on contrastive learning. Letting ¢w () be the neural networks, contrastive learning
aims to learn good representations ¢w via contrasting representations of similar data samples to
those of dissimilar ones. Usually we are given a batch of data points {Xi}ie[m, and we construct for each
i € [N] a positive pair (X;(1),X;2)) (which are assumed to be simmilar) by applying ran-

(1)  (2)dom data augmentations to
X;, and collect negative pairs (X; Xj)fori6=je€ &N] (which are assumed to be dissimilar). Now

_ (1 ’ N s .
given the representations®i = ow(X;7), 2 = ¢w(X;7), i €[N ], we train the network ¢wto
minimize the following contrastive loss:

1 . .
Lecontrastive(Ow) 1= N Z —sim(z;, z0) /7 + log Z exp (mm(zi-,z;)/?’) (2.1)
i€[N] positive term Lj (N]

W
negative term

{z}

(a) Features learned with prediction head (b) Features learned without prediction head

Figure 5: Feature visualization of deep neural network. We visualized the features of an Wide-ResNet-16x5
following the BYORL method by Gowal et al. [38], a adversarial robust version of BYOL. Features learned with
prediction head obviously have more variety than features learned without the prediction head. Our feature
visualization technique follows from [5].



where sim(+,-) is the similarity metric, often defined as the cosine similarity, and 7 is the so-called
temperature hyper-parameter. Intuitively, minimizing the contrastive loss can be roughly viewed as
trying to classify the representation z;as z instead of z,j 6= i. It is a common belief that in order for
the network @wto be able to “distinguish” data points X;from X},j 6= i, merely minimizing the positive
term of contrastive loss is not sufficient.

As shown by the papers [25, 89], the performance of contrastive learning depends critically on the
negative term. But the BYOL method [41] managed to remove the negative term without harm, by
adding a trainable prediction head to the network architecture, which opened the new direction of
non-contrastive self-supervised learning.

Non-contrastive self-supervised learning. We choose the SimSiam method [26] as our primary
framework, whose differerence with BYOL is a EMA component that is proven inessential in

[26]. Following the same notations as above, except that z?0 = StopGrad[@w (Xi?)] is detached from
gradient computation, the loss objective become: (the symmetric network version)

1

TN
Losimsiam i€[N] 51m(~”i~2-;:) (2.2)

which is just the positive term in contrastive loss (2.1) (not divided by 7). Removing the negative term
results in the existence of plenty trivial global optimal solutions. For example, the complete collapse
refers to when @w () is some constant vector function with zero variance. Another trivial solution
called dimensional collapse [46], which is when all the coordinates [¢@w (+)]: has correlation #1,
meaning @w (+) lies in a one-dimensional subspace of the representation space. The dimensional
collapsed solution can minimize the objective (2.2) even when the network output ¢w () is
normalized by BN to avoid converging to a constant vector [46, 92].

However, by adding a trainable prediction head on top of z;, the training miraculously succeeds
and outputs a state-of-the-art feature extractor. Let g(:) be a shallow feed-forward network (often one
or two-layer, or even simply linear), we train g and gwsimultaneously on the following objective:

1

AT

Lsimsiam  i€[N] sim(g(zi),zio) (2.3)

‘ (1)
where?i is still detached from gradient computation. The 9(zi) = g o ow(X; ) and the detached

partz0= StopGrad[f.bW (Xz'(Z) )] are often called the online network and the target network respectively
following [41], known as two branches of non-contrastive learning. Even when such a trainable
prediction head is able to represent identity function, the network can still avoid the common
collapsed solutions, which presents challenges in understanding their training process and the
underlying mechanism of trainable prediction head.

Challenges of understanding non-contrastive learning. Although the non-contrastive losses (2.2)
and (2.3) seems just a term of the contrastive loss (2.1), their behaviors are vastly different. As
established in [89], the negative pairs are needed for learning all the discriminative features. Without
the negative term, the learner has no explicit incentive to learn all the discriminative features from
the objective (2.3), especially when the trainable prediction head can possibly be an identity map.



Indeed, by setting g(+) to the identity map, problem (2.3) immediately turn back into (2.2) and has the
same trivial collapsed global optima. It is one of the most typical examples of implicit bias of
optimization in deep learning.

Empirically, the seminal paper [26] discovered that even with trainable linear prediction head
which can possibly learn identity mapping, neural networks trained by SGD still avoid such collapsed
solutions. Moreover, as we show in this paper, even with an identity-initialized linear prediction head,
as long as we train the prediction head via SGD, it still produces results comparable to when using
other types of prediction head. Our empirical evidence in Figure 2 suggests that understanding the
asymmetry provided by the off-diagonal entries in the identity-initialized linear prediction head
suffices to explain (most of) the mechanisms of the prediction head. This observation significantly
simplifies the theoretical problem and makes the complete characterization of the training dynamics
of the prediction head possible.

Nevertheless, understanding the trainable prediction head urges us to go beyond the traditional
statistical framework and optimization landscape analysis. The recent development of the feature
learning theory of neural networks [48, 5, 3, 89, 49] showed it is possible to directly analyze the
training dynamics of neural networks in various supervised or self-supervised tasks. Inspired by this
line of research and our observations, we consider understanding the optimization of
identityinitialized prediction head the key to understanding the underlying mechanism of these
methods, and the characterization of the training dynamics of the full network the major technical
challenges.

3 Problem Setup

In this section, we present the setting of our theoretical results. We first define the data distribution.

Notations. We use 0,(),0 notations to hide universal constants with respect to d and O,e Qe,0¢

notations to hide polynomial factors of logd. We denote a = o(1) if a = 0 when d — . We use

X x® x@

1 2 a; vy & a1 &
Random Data
Augmentations

a;v, &s 93 ! a; v, §s &6
e
vy &s v a1 s vy
a1 vy » Feature Patch & —» Noise Patch » Masked Patch

Figure 6: Illustration of the data distribution and data augmentations. Each data is equipped with a feature,
either vior vz, and contains a lot of noise patches. After the data augmentations, the positive pair (X®), X(?) is
constructed by randomly masking out half of non-overlapping patches for each positive sample. The reason for



constructing positive pair with non-overlapping patches is because of the strong noise assumption we made in
Assumption 3.3 and the feature decoupling principle in [89].

the notations poly(d), polylog(d) to represent large constant degree polynomials of d or logd. We use
N(u,X) to denote standard normal distribution in with mean u and covariance matrix . We use the
bracket h-,i to denote the inner product and k - k2 the ;-norm in Euclidean space. And for a subspace
V c R4, we denote V ! as its orthogonal complement. We use 1zto denote the indicator function of
event B.

Following the standard structure of image datasets, we consider data divided into patches, where
each patch can contain either features or noises.

Definition 3.1 (data distribution and features). Let X ~ D be X = (X3,..,Xr) € R™*Pwhere each X; € Rlis
a patch. We assume that there are two feature vectors vy,v2 such that kvk, = 1," = 1,2 and are

orthogonal to each other. To generate a sample X, we uniformly sampled € [2] and generate for each
p € [P]:

Xp=zp(X)v-+ &plap=0, EX~D[2,(X)] = O, Vp € [P]

We denote S(X) = {p : z,(X) 6= 0} € [P] as the set of feature patches and assume z,(X) = zpo(X) €
{0,xa},Vp,p° € S(X), i.e., all feature patches have the same direction of v-within the same X. We assume
P = polylog(d), S(X) = Po= 0(logd) for every X. The assumption of &, will be given in Assumption 3.3.
An intuitive illustration is given in Figure 6.

Strong and weak features. We pick a; = 2P°V°8°€(d) and a; = ai/polylog(d). Hence v is the strong
feature and v, is the weak feature, and we want the learner network to learn both v4,v; (but by different
neurons) as their learning goal. This is a simplification of the real scenario where features show up
more consistently across multiple patches of the images, while noises are local and roughly
independent across different patches. Intuitively, we can think of the strong features in a dataset are
the ones that show up more frequently or with larger magnitude, and weak features as those that
show up rarely or with smaller magnitude, which is the common case in any practical dataset.
Remark 3.2. Our analysis can be easily generalized to settings of either (1) when a; = a2 but the
sampling of * € [2] is of non-equal probability (i.e., dataset imbalance setting); or (2) when the two
features always co-occur in the same sample but not of the same strength. But we still require
a1, @2 2> polylog(d) to simplify the analysis.

Assumption 3.3 (noise). Denoting V = span(v4,v2), we assume &, € VV L is independent for each p € [P]
\ S(X), where X = (X;)pep ~ D, and:

(a) For any unit vector u € V4, E[hé,ui] = 0, and E[hé,uif] = o¢ for some o = O(1);

1
(b) It holds for some? €0, 42| it holds |E[huy,&i3huy,&pi3]| <€ % and |E[huy,&iShuy&pi]| < % for any
two vectors uy,uz € Rithat are orthogonal to each other.

Remark 3.4. A simple example of our noise &,is the spherical Gaussian noise in V L. OQur Assumption
3.3b ensures that the prediction head cannot be used to cancel the noise correlation between different
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neurons. We point out that the features in our data can be learned via clustering, but we emphasize
that we do not intend to compare our algorithm with any clustering method in this setting since our
goal is to study how the prediction head helps in learning the features.

3.1 Learner Network

Following the SimSiam framework, the online and target network share the same encoder network in
our setting, as explained in Section 2. We consider the base encoder network f as a simple
convolutional neural network: Let W = (wy,..,wn) € Ré*m be the weight matrix, where w; € R4, the
encoder network fis defined by

£ =P e o(hw Xoi), vj € [m]

Here we use the cubic activation function o(z) = z3, as polynomial activations are standard in
literatures of deep learning theory [9, 35, 54, 2, 56, 23] and also has comparable performance in
practice [2]. The (identity initialized) prediction head is defined as a matrix E = [Eij]je[m)z with E;; =

1,i € [m], where only the the off-diagonals E;;i 6= are trainable parameters. The online network Fe

is defined by: given j € [m], we let Fj(X) := fi(X) + Pr6=j E;.f(X), and

[ > (0w, X)) + Y Biro((wy, Xp>)]
Fej(X) := BN(Fj(X)) = BNt re[F] r#£j
where the batch normalization BN here is defined as follows: Given a batch of inputs {z}ie[w,
(7-) = s % Z?E[\] “i
zi) = =
1 2 (L ..
BN \/T Zie[;\-’] 2 (N ZiE[N] ~v) (3.1)

And the target network ( is defined as follows: Given j € [m]

> a((w, Xp))]

Gej(X) 1= BN(G/(X)) = BNLG[F]

Algorithm 1 Training Algorithm

Require: data distribution D, objective Ls (3.3), networks F,e Ge, hyper-parameters T,N,n,nzm, and a
bool variable TrainPredHead = True.

(0) icly
1: Initialize®s  ~ N0 1a/d) Vi € M55 4. and Fo)= I,
2:fort€{0,1,2,---,T-1} do
3: Sample X0 « (X,(t0) e, ~ D,Vi € [N] i.i.d,;

4: Sample {Pt0}iepn ii.d, and obtain S; « {X(¢i1),X(¢:2)},en via data augmentations
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X (il o (X;,()L’i)]lpg'p(t,i))pe[p]._ X®62) (X?(f‘i)ﬂpgp(r.;))pe[p]

. : WO = (),
5: Perform stochastic gradient descent step to i /i€lm| by

+1 , ,
w_g—f+ ) w_,gr) — NV, Ls, (W ®, E(t));

6: if TrainPredHead = True then update the off diagonal of prediction head E( by

BNV 1, BNV« BY —npVp, L, (WO, ED), Vji4i, ije [y,

7: else keep E(t*1) = [,
8: end if
9: end for

3.2 Training Algorithm

Data augmentation. We use a very simple data augmentation: for each data X = (X,)pe[p), we randomly
and uniformly sample half of the patches P C [P] to generate two samples (which is the so-called
positive pair in contrastive learning):

X = (Xp1peP)pelP], X@ = (X,1,/€P)pelP] (3.2)

An intuitive illustration is given in Figure 6. Our data augmentation approach is similar to the common
cropping augmentation used in contrastive learning [22, 80] and the patch masking strategy in
generative pretraining [16, 44] and NLP pretraining [30]. It is also analogous to the data
augmentations being studied in theoretical literatures [89, 50, 62] of self-supervised learning,
especially the RandomMask augmentation in [89].

Non-contrastive loss function. Now we define the loss function as follows: we sample N data points

{Xi}iem Xit™ Did and apply our data augmentation (3.2) to obtain S = {XG:1),X02)},en;.

Now we define

1 ~ .
7 — (i,1)y _ - . 2
Ls(W.E) = 5 |Fexteny @xea|
i€[N] StopGrad 2 (3:3)
5 1 =0y (3,1
:Z—F_Z(F(X( ) |
i€[N] ,StopGrad[Ge(XCt2)]i

where the StopGrad operator detach gradient computation of the target network Ge(+). This form of
objective (3.3) is first defined in Guo et al. [41] and is equivalent to (2.3) in Chen and He [26] when

Fe and Ge share the same encoder network f{+) and their outputs are normalized.

Intuition of the data augmentation. Our data augmentation is an analog of the the standard
cropping data augmentation. In Definition 3.1, the features v4,v; appear in multiple patches, but the
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noises are independent across different patches (see Figure 6). As our data augmentation produces
positive pairs with non-overlapping patches, learning to emphasize noises cannot align the

representations of the positive pair, butlearning either one of the features ¢(X) = Pp o(hvy,Xpi) or o(X)

= Pp o(hvyXpi) is sufficient. We consider learning the same feature v;in all the neurons f;in the
encoder network f as the dimensional collapsed solution.

0 1
Initialization and hyper-parameters. At ¢t = 0, we initialize W and E as Wy N (0.3 )and E© =

Imand we only train the off-diagonal entries of E(®. For the simplicity of analysis, we let m = 2, which

(0

1
suffices to illustrate our main message. For the learning rates, we let e, paly(d)] be sufficiently

. ) n
ne € [ o(1) 1
small and a7 polylog(d)

], which is smaller than nt.

Optimization algorithm Given the data augmentation and the loss function, we perform (stochastic)
gradient descent on the training objective (3.3) as follows: at each iteration t = 0,..,T - 1, we sample a
new batch of augmented data S, = {X(ti1),X(4i2)};cn and update

WD = w® — ey Ls, (WO, E®), BV = BY — 5V, Ls, (WO, EW), Vi j, i) € [m]

If we do not train the prediction head, we just simply keep E® = [,,. We summarize our algorithm in
Algorithm 1.

4 Statements of Main Results

In this section, we shall present our main theoretical results on the mechanism of learning the
prediction head in non-contrastive learning. To measure the correlation between neurons, we
introduce the following notion: letting

Var(y (X)) := Ex-o[(¥(X) - E[¥(X)])?]

be the variance of any function i of X ~ D, we denote the correlation Corr(y(X),(X)) of any two
function ,1p%over D as

f " E[(¢(X) — E[¢(X)]) (' (X) — E[¢'(X)])]
P(X), (X)) =
Corr(' W) v/ Var(¢(X))+/Var(¢/(X))

Now we present the main theorem of training with a prediction head, and set m = 2.

Theorem 4.1 (learning with prediction head and BN, see Theorem E.2). For every d > 2, let

n n
ne (0 e € [Q?UJ’ polylog(d)]

1
N = poly(d)’ ’poly(d)] be sufficiently small, and . Then with
probability

1-0(1), after runing Algorithm 1 for T = poly(d)/n many iterations, we shall have for some " € [2]:

1 We conjecture that by modifying certain assumptions for the noise (especially by allowing the noise to span the

feature subspace V'), one can prove a similar result for the case ne=rn.
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~ 1
T ) T Bil, |82l = ©(1), |le1]l2. lle2]l2 < O(—=
w® = B +e1, i = Bavs_g + it 1B1: 152 = ©(1), [lell2, [lezllz < (ﬂ)

— + < O(5)?
Furthermore, the objective converges: Es-pn [Ls(W(T,E(M)] < OPT © poly(d) = " logd/ |

Theorem 4.1 clearly shows the network learn all the desired features, even under huge imbalance
between v; and v2. This leads to the following corollary.

Corollary 4.2. Under the same hyper-parameter in Theorem 4.1, with probability 1 - o(1), after runing
Algorithm 1 for T = poly(d)/n many iterations, we shall have that the learning avoids dimensional
collapse:

1
(f1(X), (X)) < O(—)
|Corr V',

In contrast, learning without the prediction head will result in learning only the strong feature v;
in both neurons, which creates strong correlations between any two neurons. To emphasize that this
problem cannot be alleviated by having more neurons, we let the number of neurons m be any positive
integer in the following theorem.

Theorem 4.3 (learning without prediction head but with BN, see Theorem F.1). Let N 2 poly(d), n =
0(1) and the number of neurons m > 0 be any positive integer. Suppose we freeze E® = I, for all t, then
with probability 1 - o(1), after runing Algorithm 1 with TrainPredHead = False for T = poly(d)/n many
iterations, we shall have:

T('T)_F_” . ,(‘3 = 5 |2<O
wp T =Bt e i & » [l f d) for all j € [m]

1 1
Furthermore, the objective converges: Es-pn [Ls(WD,E(M)] < OPT T poy(@) = 0(10" ) This means the
collapsed solution also reaches the global minimum of the objective.

Note that since we have used BN as our output normalization instead of ;-norm, the learner is
immune to complete collapse and must have a certain variance in the outputs. Immediately, we have
the following corollary.

Corollary 4.4. Under the same hyper-parameter in Theorem 4.3, with probability 1 - o(1), after runing
Algorithm 1 with TrainPredHead = False for T = poly(d)/n many iterations, we shall have dimensional
collapse:

1
; s >1—0(—
|Corr(f (), F(X0) 21 (ﬁ, forall ij € [m].

Remark 4.5. Note that since we have used BN as our output normalization instead of “;-norm, the
learner is regularized to avoid complete collapse and must have a certain variance in its neurons. It is
easier to obtain a complete collapse result when the network has “-normalized outputs and there is

2 Under our data model Definition 3.1, non-overlapping data augmentatlon (3 2) and learner network definition, the

global minimum of our objective [@SBN)I;;@pppp]la"tig‘r}]i&t}ge_fojllgul‘?rgﬂ ua h|vaS AV o ! )
W, E

ES(X)Nn P2 ~ llogd

OPT := min
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a low-variance feature (but not of smaller magnitude) in the data set, which we refrain from proving
here.
How does using the prediction head or not create such a difference in features learned by the non-
contrastive methods? We shall give some intuitions by digging through the training process and

separately discuss the four phases of the training process.

Synthetic: Prediction Head Synthetic: W.O. Prediction Head
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(a) Identity-initialized (trainable) prediction head (b) Learning without prediction head

Figure 7: The feature learning process over synthetic data. When trained with the prediction head, after the
strong feature is learned in the faster learning neuron, the weak feature can be learned in the slower learning
neuron. When trained without the prediction head, both neurons will learn the strong feature and ignore the

weak feature.

5 The Four Phases of the Learning Process

We divide the complete training process into four phases: phase I for learning the stronger feature,
phase II for the substitution effect, phase III for the acceleration effect, and the end phase for
convergence. The first three phases explain how the prediction head can help learn the base encoder
network, and the last phase of the training explains why the off-diagonal entries often shrink in the

later stage of training.

5.1 Phase I: Learning the Stronger Feature

At the beginning of training, the stronger feature v enjoys a much larger gradient as opposed to the
weaker feature v, so naturally, vi will be learned first. However, if for both neurons fi,f; the speed of
learning vi is the same, then we cannot argue the difference between them and will not be able to
show the substitution from either one to another. Indeed, let us assume at initialization, the neuron
2, (0) . . . . . : .

W1~ won the jackpot of having larger signal-to-noise ratio of hw;9,vii between f;j € [2], then we can
show the following result under our setting.

Lemma 5.1 (learning the stronger feature, see Lemma B.13). After some t = T1 = d2+°(1)/n, the feature

(6 I C7 B

viin neuron fywill be learn to (w1 > v1) = (1) while all other features (wysve) = Q(l)for (,) 6= (1,1)
are small. And the prediction head KE® - Ik, < d-?() is still close to the initialization.
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In this phase, the prediction head has not come into play. The substitution effect can only happen
after the feature viin neuron fiis learned to a certain degree, and neuron f; remains largely unlearned.

5.2 Phase II: The Substitution Effect

f
To illustrate the substitution effect, let us keep assuming that neuron “% )has already learned some
significant amount of the strong feature vy, say @1~ = B1v1 + residual with |B1] = Q(kresidualk).
When this happens, we have the following result: (recall fj(-),j € [2] are the neurons of the base
encoder network)

(t
Lemma 5.2 (substitution effect, formal statement see Lemma C.8). After [{w; )s'1’1)| = Q(1) i

()
0(d?+()/n) iterations (as shown by Lemma B.13), for much shorter time than learning (wi”, v ), we shall

" ES) XD > | fo(X D))

have |E2=1 increasing until‘ when X is equipped with feature vi. In other

i(t) 1
WOFdS,EZlfl (x™) is a substitute for the feature vi that should be learned by f>.

Intuition of the substitution effect. After the stronger feature is learned in neuron f;, the optimal
way to align two positive representations F>(X(1),G2(X®) is no longer learning features in weight w,
but use the prediction head to “borrow” the features in fi and incorporate them into F». This is how
the substitution effect happens when trained with a prediction head.
hoi ©
= t
Proof sketch for Lemma 5.2. Indeed, let us look at the learning of. In this phase, w, and E3a
are roughly learned to maximize the following quantity

B(XM) . Gay(X?) (fz(X(l))JrE 1f1(X ) % fa(X2)
sze[?} (_r{,’((w() f(‘)E]+Eg (w ve)? (w L'g>3)

As the neuron fi() is already learned with feature v, in order to maximize the RHS, we can either try

B (), 0) - (v >~E§%<u“> v)?

t) G
to max1mlzeZéE[2] {wy ’Lf) , or to max1mlze In this case,

|E

the more efficient choice is to learn!=2, l|t0 substltute for max1m121ng<wz : U > Actually, because of

(t) (t)
the hl%h signal-to-noise ratio of learning®2 thanE21 feature(Ws :v¢) is learned with slower pace

B

than™2,1, so that Lemma 5.2 can be shown.

5.3 Phase III: The Acceleration Effect

®
After the substitution of v1 in F», our concern is, whether or not w; will learn v, and only v; eventually,
so that we can obtain a diverse representation? The answer is yes, as we summarize in the following

lemma.
. g .
Lemma 5.3 (acceleration effect, formal statement see Lemma D.8). After 2.1 is learned in Lemma
() )
5.2, learning V2 ' Wy " will be much faster than v, untillws” — Bava | < 0(1)for some 2= 0(1).

The acceleration effect is caused by the interactions between the prediction head, the stop
gradient operation, and the normalization method (which in this case is the batch normalization). We
shall explain these interactions with insights from our theoretical analyses below.
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What is the role of the stop-gradient? Thanks to the StopGrad operation, when we compute the
gradient -V,2F>(X(1)) - StopGrad[G2(X?)] to learn f;, this negative gradient will only try to maximize
(X)) - £,(X@), rather than to maximize f,(X®) - F>(X(1). This is because the stop-gradient is on G not
on F: while F;> has a large component of v; borrowed from f; using E, G2 does not have this component.
So the gradient of F» is to align with the features in G, that does not contain many v;, while the gradient
of G, is to aligned with the features in F that contains a lot of vi. Thus the stop gradient on G help
ignore the feature borrowed from fi using prediction head E and ensures the slower learning neuron
f>will focus on learning feature v;.

What is the role of the output normalization? Again due to the StopGrad operation, the

gradient of Fe; is taken with respect to the ratio f2(X(1)/PVar[F,(X())]. As gradient descent tries to

maximize this ratio, a direct computation gives
LX) Vi, o(XW) - Var(F (X)) — fo(XW) -V, Var (B (X))

Vo N ar (X)) Var(F,(X(1))3/2

From some calculation, we can obtain the above gradient is proportional to
See (B8] 0], 030312 + Var[£2(X D)) (Vg fo(X D), w0

which borrow the substituted feature vz--from fi(-) to adjust the gradient of v-in f(+), via the prediction

(t)
head®2.1, Without the output normalization, the learning of v, will dominate that of v, even when we
train the prediction head.

®
Proof sketch for Lemma 5.3. At this stage, when we are updating the weights of w,, we are

simultaneuously maximizing f>(X())-f,(X(?)) and also minimizing the normalizing constants

Pvar[F,(X1)]. This two goals are in slight conflict because of the normalization, and by careful
calculation the gradients are roughly given by (interpreting the expectation as empirical)

(~VusLs,ve) < E [ ([ES) (wl”, va_ )2 + Var[fo(XD)]) - o(X D) (=T fo(X D), )|

(£) g (&) . \372
Because of the learning of f; and the substitution effect, we now knows [EQ,I(U"1 1 03—0)"] is much
£

larger when "= 2, which accelerates the learning of?2 i wy " to surpass that of v; and leads to Lemma
5.3.

5.4 The End Phase: Convergence

As the weak features are learned, we have already obtained a good encoder network f{-) as shown in
Theorem 4.1. The rest of our analysis is to understand what the prediction head converges to in
polynomial time. Actually, our Theorem E.2 also contains the following result:

Proposition 5.4 (convergence of the prediction head, see Theorem E.2c). After some t = T = poly(d)/n

t) 71 1
iterations, we shall haveHE L < poly(d),

This result also implies that after learning the weak feature v, is complete, the off-diagonal entries
of the prediction head will reverse their trajectory and converge to zero at the end of training. While
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we admit that only some of our real-world experiments show the convergence to zero for the off-
diagonal entries of the prediction head, most of the experiments do display a rise and fall trajectory
pattern of off-diagonal entries consistently.

6 Additional Related Work

Self-supervised learning The area of self-supervised learning has evolved at a tremendous speed in
recent years. It has created huge success in natural language processing [30, 90, 18] and established
a paradigm where the networks are first trained on an unsupervised pretext task and then be
finetuned in downstream applications. In vision, supervised pretraining had been the go-to choice
until representations learned by contrastive learning [79, 43, 24, 20, 27, 28, 34, 68, 33] became
dominant in many downstream tasks. Another type of self-supervised learning is the generative
learning [69, 16, 44], which also gives promising results in downstream adaptations. Interesting
applications such as [68, 70] also illustrate the power of contrastive learning in multiple domains.

Theory of self-supervised learning The theoretical side of self-supervised learning developed
quickly due to the success of contrastive learning, which is closely related to the methods we are
studying. Since Arora et al. [12], lots of papers have studied the properties of contrastive learning, as
mentioned in the introduction. [25, 73] discussed many interesting phenomena associated with the
negative term in contrastive learning. Saunshi et al. [75] provided pieces of evidence that contrastive
loss is function class-specific rather than agnostic. Wen and Li [89] took a feature learning view to
understand contrastive learning with neural networks, which inspired our analysis in the non-
contrastive setting. For generative self-supervised learning, [55, 78] provides downstream
performance guarantees for generative pretrained models. [74, 88] studied the natural language tasks,
where the data are sequentially structured. Liu et al. [62] gave a recovery guarantee for tensors in
generative learning under hidden Markov models. [4] analyzed multi-layer generative adversarial
networks and provided an optimization guarantee for their stochastic gradient descent ascent
algorithm.

Feature learning theory of deep learning Our theoretical results are also inspired by the recent
progress of the feature learning theory of neural networks [59, 60, 5, 3,53, 94, 48]. Li et al. [59] initiate
the study of the speed difference in learning different types of features. [60] developed theory for
learning two-layer neural networks over Gaussian distribution beyond the neural tangent kernel
(NTK) [7, 8, 6, 32, 11]. Allen-Zhu and Li [5] studied the origin of adversarial examples and how
adversarial training help in robustify the networks. [3] tried to explain ensemble and knowledge
distillation under multi-view assumptions. Techniques in this paper are built on this line of research,
as the non-convex nature of these analyses allows us to describe the interaction between neural
networks, optimization algorithms, and the structures of data. [1, 2] also obtained results separating
deep neural networks and shallow models such as kernel methods. Before this recent progress, [81,
93,19, 76, 31, 57, 58] also studied how shallow neural networks can learn on certain simple data
distributions, but all of them focus on the supervised learning. There are also plenty of studies [77,
40,10,64,51,71,29] on the implicit bias of optimization in deep learning, but none of their techniques
can be applied to the setting of self-supervised learning.
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7 Conclusion and Discussion

In this paper, we showed how the prediction head can ensure the neural network learns all the
features in non-contrastive learning through theoretical investigation. Our key observation is that the
prediction head can leverage two effects called substitution effect and acceleration effect during the
training process. We also explained how the necessary components such as output normalization and
stop-gradient operation are involved and how they interact during training. Furthermore, we proved
that without the prediction head, all neurons of the neural network would focus on learning the
strongest feature and result in a collapsed representation. We believe our theory, although based on
a very simple setup, can provide some insights into the inner workings of non-contrastive
selfsupervised learning. We also believe our theoretical framework can be extended to understanding
other phenomena in the practice of deep learning.
On the other hand, our results are still very preliminary, we point out the following open problems
that are not addressed by this paper:
e When the output normalization is -norm instead of BN. Experiments in Figure 2 seem to
suggest that there is still a gap between using >-norm and BN as output normalization methods.
In this case, the acceleration effect may not happen in exactly the same way as in the BN case,
but we believe they share the same underlying mechanism and can be proven in theory.

e The mystery of the projection head. As our experiments in Figure 1 showed, the outputs of the
projection head in the symmetric case (without the prediction head) suffer an extremely strong
correlation even with batch normalization used. However, the impact on the base encoder is
milder and thus the network can avoid complete collapse, shown in Figure 1 and Figure 2. It is
mysterious how the projection head works in non-contrastive learning, and also how it
compares to the case of contrastive learning, which has been studied by [24, 52]. ¢ Learning
non-linearly features. For the simplicity of analysis, we have assumed the features in the data
set are linear. It is of interest to study whether neural networks trained by non-contrastive self-
supervised learning can learn non-linear representations better than traditional learning
methods such as linear regression or kernel methods, as there has been a series of papers [1,
36, 37, 2, 53] trying to understand it in the supervised setting.

In the end, we also point out that theories based on a one-hidden-layer neural network and linear
data composition assumption obviously cannot explain all the phenomena in deep learning. In
supervised learning, the backward feature correction [2] process is observed and theoretically proven
as a mechanism for learning hierarchical feature extractors. It is an important open direction to
understand how a multi-layer network can learn the complicated features in non-contrastive
selfsupervised learning.

8 Experiment Details

The framework we use in our experiments is shown in Figure 8. We use a modified version of the
codebase shared by the authors of [33], Figure 8: Framework.
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and we use the same data augmentation in their implementation. All our
experiments (except for Figure 5 and Figure 7) use the following
architecture and hyper-parameters: we choose standard ResNet-18 as "P,ed‘moﬂ

» loss =

Head stop-gradient

base encoder architecture, 0.003 as the learning rate for Adam optimizer, .
a two-layer MLP with ReLU activation and 512 hidden neurons as the ‘
projection head, an identity-initialized but diagonally froze linear matrix

(with shape (64x64)) as the prediction head and a non-tracking-stats, e ] it
non-affine, non-momentum BN layer as the output normalization. Our —— :
experiments in Figure 3 use the same architecture and hyper-parameters, x® x@

but some runs are trained with EMA with momentum 0.99, with output i

BN replaced by >-norm or using different prediction heads (such as a two-layer MLP or a linear head,
with Pytorch default initialization). Evaluation in Figure 2 is by training a linear classifier on top of
frozen encoder with no data augmentation.

Appendix: The Proofs

We will be working with population gradients throughout the entire appendix. Indeed, since our
algorithms use fresh random samples at each iteration, one can easily obtain from standard
concentration inequalities an empirical estimate of population gradients up to pauy, Lg error with

EMA
Projection | (oPtionall
>

Head

Projection
Head

'y Y

N = poly(d) samples. So we can obtain the same proofs in finite sample case as long as the training
ends before some T = poly(d)/n. Now we give some notations and warm-up calculations.

A Notations and Gradients

In this section, we will give some useful notations and warm-up computations for the technical proofs
in subsequent sections. We summarize here the notations that will also be defined in later sections:

Notations. We denotefi = El(w;. &)%), Ejz—j=E [(<'w.'f" &) + Ejs—j(ws—;, 5;))3)2], and

E[|IS(X)NP|-|S(X)\P E[|S(X)NnP|?
Co= EISONPLISCONPY - ( _EISGONPP] (o
2 2 ,
B_,-,'3 = StopGrad[hw;vi3], B;=hw;vi, Q= (E[StopGrad[G%(X@)]])-/
and
Uj:= E[Fj2(X(1))] = Pe[2) Cias(Bj 3 + Ej3-jB33-j)2 + C2E;3-j
Hj := Cias6(Bj 3 + Ej3-jB33-j)2 + C2Ej 3+,
Kj := Cia6(Bj 3 + Ej3-jB33-j,")(Bj33-"+ Ej;3-jB33-j3-")
3/2
Moreover, we denote ®;:= Q;/U; ,and (recall V:=span(vy,v2))
— (LI 1wy, wa)
Ry =
Rj:= hllv.wj,wji R1,2 := hllv.iwi,wzi 1Ly Leor |2y L wa |2
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For any j € [2], the gradient -V,,L(W,E) can be decomposed as
~Vu, LW, E) =Y (Aje+Ti0—Tive— > TjriVu,Epsj
te[2] (3".0)€2]x[2]
Aji = Co®joyB; ) Hjs
o= Co®s ;B3 j;0)B3  BjHs j3 4
T = Coas_y (q’ 1B} 3BT Ko+ Ps B B3 5 B3 Ks i)
Ejp = CpCr®, a{ Jf(B o+ Ej3_ JBS Jg)

Sometimes we need to decompose Y; =Y;:1 +Y;:> which is straightforward from its expression.
In Section D, we further define

= = CoCratale’ ((BI)°(BY) )b+(B§f})“(B§2)ﬁ)

A,(iff = Coq’jt)“?( j.fﬂ) (BYY,; )°Cat;

=7 3—J

for the gradients of the prediction head.

A1l Gradient Computation

Let us L(W,E) to be the population version of the objective. Because E[F;(X(1)] and E[G;(X(?)] are both
zero (which can be verified easily from the zero-mean assumptions of z,(X) and &,), a direct
computation gives:

_X E[F{(XM) - StopGrad[G;(X@)]]

LW,E) =2

jel21 qE[Fj2(X(1))]qE[StopGrad[G2j(X())]]

We first calculate the normalizing quantity E[F2(X(1)]:

E[FJQ(X(U)] f— E Z J((“’!j',X}gl))) + qusijo'(hl;gij’X}gl)))
pe(F]

= Z [1S(X) NPPag ((w), ve)® + Ej3—j{ws—j,ve)*)?]
Fe[Z]
(Because all signal patches has the same sign within the same data)
E [|P\ S(X)|((w;, &) + Ejz—j{ws—j,6)°)?]
(Because noise patches are independent and have mean zero)

= af((wj,v)* + Ej,:ifJ'(’wsfje'Uf)S)QE “S(Xg) Ll + (P = [S(X))Ejs—j
Le(2]

where we let
Eis i TE[((w), &) + Bisj{ws j.6)°)]
= IE [(7”3':5P> + 283 :r<7”355p> (w3, 6:0) + B Jﬂ —j{ws—j, &p) ]

On the other hand, we have

21



E[F(X™) - StopGrad[G(X®)]]

=E || D o((w;, X)) + Ejzjo((ws;, X)) | x | Y ol(w;, X5))

PE[P] PE[P]
1 3 3
=§ZIE Z o ((wj, ve)® + Ej3—j{ws—j,v0)%) x Z oy
te2]  |peS(x)NP PES(X)\P
StopGrad[hw;vi3]
=X @6(hw,,vi3 + Ej3-jhws_;vi3) - StopGrad[hw;vi3] - E [1SX) NP+ |S(X) \
PI]
2
€[2]
Now, by denoting
E[IS(X)NP|-|S(X)\P E [|S(X)NPJ?
oy = EBCONPLISCONPI ¢ _BISCINPE] ¢ p g
B_j,‘3 = StopGrad[hw;vi3], B;:=hw;vi, Q;= (E[StopGrad[G%(X)]])-V=

we denote U;:= E[F2(X(1)], where the expanded expression is

Uj= E[Fj2(X(1))] = X Ciar6(Bj 3 + Ej3-jB33-j,)2 + C2Ej3-j
€[2]

and we can rewrite the objective as follows

LW,E)y=2->"%

1/2
jel2) tel2 U (A1)

QJCOOF BJI+E13 —J sJP)

Now denote
Hj = Cia6(B;j'3 + Ej3-jB33-j,)2 + C2Ej 3,
Kj = Cia6(B; 3 + Ej3-jB33-j) (B;33-'+ Ej3-jB33-j3-)
It is easy to calculate

Q2= E[StopGrad[G(X®)]]
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2
( 5 o)
€[P]
Z LLJ,UE 6]E |S( )mlp‘Q] +]E'[|P\S(X)|(u“_}:£ﬂ>b]
lef2
=Y CIQEBJ.,E + 3¢
£e(2]

where E;= E[hw;,&,i%]. And thus the gradient can be computed as (notice B_j,‘3 =B;3)

CoQaSH; 5 ¢B? CoQs_iF3_;;aSB3 . ,B? Hs 5
—Vu,jL(W,E) _ Z ( 0Qjay ‘ J3=t J,E) v+ Z ( 0Q3—;E3—j,; 3'3—3,2 0 43—7.3 5) v

3/2 3/2
ref2) vy tel2) Us;

COQJ% EBJS fB Kjo  CoQs—jEs- 110‘3 eBs —j,3— eB Kii—jaﬁ) "

S N
3/2 3/2
te(2] ( U; U3—j

j
CoCaQyafBY ((BY  + Ey sy B3 1))

i'el2) ef2] 7
=) Mo+ Tje=Tidve— D BV, Eray
te2 (", )€l2)x[2] (A2)

where

VwiEj3-j= 6E[hw;,&pisép + Ej3-jhwyj, Epizhws-j &pizép]

VwjE3-jj = 6E[E32-jhwj,&pisép + E3-jjhw3-j épizshwy,pizp]

As for the gradient of the prediction head, we can calculate
CoQ;aB3,B3 U
_VFJd jL(W‘E) = Z DQJ L R e B

3/2
= v/

CoQja B3 ((BY )+ Ejsz—iB3 ;) Ype Cro4(Bly + Bjz ;B3 ;)B4

*Z B : — U:s/z

£e(2] J
-2 Ud/? B13-53373
£e(2 J
B Z CoQjafB3 (B3 _; Hjz—— Bj ;3 ;Kjz )
= 3/2
£e[2] Uj
= D e (2w, &) (wsj. &) + 2B (ws—;, )"
£e(2]

where X, is defined in (A.2). In fact, all the above gradient expressions can be simplified by letting
3/2
D;:=Q;/U; for j € [2], which is what we shall do in later sections.
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Summarizing the notations. We shall define some useful notations to simplify the proof. We define
V = span(vy,v2). Let 14 be the projection operator to subspace A C R4, then

= Ty 1wy, wa)

. . Ry = I ) I, L w
Rj:= hIlv.wjwji R1,2:= hllv.w1,wz2i [Ty L wr |2 [Ty ws |2

A.2 Some Useful Bounds for Gradients

In this section we use the superscript © to denote the iteration t during training.
Below we present Vi, ij?;;,jr

® a claim which comes from
direct calculations of Z;-and, which is very useful in the following sections.

« t) (t)
Claim A.1 (on ;' and. Vi, g;’ 34 /) Ry, B3 Letbe defined as above, then we have

( (f))ix+E[f)

13 (By2; (B @)

(a) ZM fO(Z

(BY))° ",
() (Vu, &9 Myruf’) = O(RYT) + O(E)3 ?)(Rngr@[Rr)]W{RmWQ
() (Vu, & owl) = o((EBY, )RV + 0B, )RS+ o) RV [RYP?

(@) (Vu, € wl))) = (O(F) + o) [RVP2RY V2 + 0B RO [RY I

(¢) (Vu, €7 wy = (B 2(0(R) + o) [RVP/2[RY WMO(E(_M)R”[ W)
]

Proof. The part on X, is trivial from its expression, we shall focus on proving (b) - (d).

) D)
On<v”a"€3(’w3 A w( =7 ,then

33=7

hVwEj(e3)-,wji = ©(1)E[hwj(),épi6 + Ej(e3)-thwj(e),§pishwsa(e-); pis]
= O(1)E[hwyj(0),&pi6] + O(Ej(t3)-j) E[hwj(e),pi3(hws3(t-;,Epis
- h(I - wiw e )w3(e-);,épis)]
+ O(Ej (t3)~) E[hwyj(e), &pish (I - wjew je> Yws(-);,Epis]
®

W HVJ‘ Wy

Wit = oy, )
Write Iy, 1w, ”2, we can derive
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E[(w!”, &,)3 (w1, &) — (I — wjpw))ws . 6,)%)]

= E[(w!", &) (w;0] ) -, €)0((w . 6,))]
R
= O(——2-E[(\”, &) (w7
Iy 120”13 -
Rr®
< O(——5 B[}, &) SEl(w}” ;,,)°]3
HHL LW; ”z

t): Ok
< O(R1,2)||Hvlw§ )”g“HVi w:(g_)j Hg (by H'older’s inequality)

and by our assumption on noise &, we also have

t
E[(U{E L&) (I - w;,twﬂ)%g 1+&)°1 < 0(o)I1Ly Lw Y13y 2wl ;I3
w 6 (1)
Combined with the fact that]E[< &)l = O(HHV“‘ H?) we can get
t t t t £)
(Vs €5 wf’y = (||nww§)u )£ O(ES3 ) (R + o)y w310y w0l |3

when jo= 3 - j, we also have
hVwE3(-0,wji = ©(1)E[(E3(t-)i)2hwj(e),épie + E3(¢-);ihwj(o),Epishw3(t-);, Epis]

= O((E3(t-)y)2) kv iwjmke2 = O(E3(-)ij) (R1(t)2 + % )KIIv iwj(nk23kIlv iw3(e-)ik23

() ()
<V“’J£J 300 Wa— J> when jo= j, we have

hVwEj(¢3)-,w3(e-)i = O(1)E[hwj(e), Epishws(e-);,Epi + Ej(£3)-hwij(e),Epizhws (e-);,pia]
= O(1)E[hwj(o),épish(I = wjtw jt> + "Wjtw jt> JW3(¢t-)j, Epi| (A.3)
+ O(1)E[Ej (e3)-hwj(0), Epizhws3 (t-;,Epis]

Using H'older’s inequality and our assumpsion on &, we have

t
E[(u-’ﬁ-)aﬁ;)) (I — ) )wy J1€p>] S QHva’ I3y 1wl jllz
In the meantime, we also have

E[(w", )% (0] w1, 6)] = ORI DE[w?, &) [RP] V2R 112 = oR ) [RPP2RY ]2

for the last term in (A.3), we can also use H"older s inequality to get
BB, &) (i), )] S Bl _El(w(”, &)1 Bl wl? ;)17 S B3 RV (RS )

3 33=3 73— 1%
Therefore, we can combine above analysis to get
(Vu, €0 ul) ) = (ORY) + o) [RVP2RY V2 + (B _)RVIRY 2

When jo= 3 - j, we also have
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(V€32 w5 5) = GEI(ESY, ) fp>< 250 6) + B (00, 62w &)
—6(E(! ) (O(R [R ")]a/2[RU }I/Q—FE( ")[R(f) ]2

3—7.J %11

which proves the claim. O

B Phase I: Learning the Stronger Feature

In this section, we shall discuss the initial phase of learning the stronger feature. Firstly, we establish
some properties at the initialization for our induction afterwards.

Initialization properties. We prove the following properties for our network at initialization.

(0) 0 =],
Recall our initialization is w; ~N(0,14/d),Vj € [2] and E

Lemma B.1 (properties at initialization). Recall that without loss of generality we let |Bl,1| -

, (0)
max;efs) |Bj1 | yiep probability 1 - o(1), the following holds:

(a) lw” 3 =1+ 0( A7 wy)] < O().

f)forallje[ 2], and“

. (0) 1 (0)
(b) max;-|B;©)| < O(Plogd/d) and ™5t 1Bj¢ | = igeg) maxje | B; /1.

(0 ()
(c) 1B 2 IBEII(1 + k),

(@) & = (1= 0(3)o w18 = O1) for arr e 21;

(e) HY) = e (14 O(% Vi) for all (i) € [2] * [2;

(1) U0 = cag” 1+ O(5h)) for all j € [2]

(9) (QS’O))*2 = 025;”)(1 + O(?Ti;))for allj € [2];

© o/d5) for all () € [2] x [2].
(h) K< Oe(a

Let us first introduce a fact about Gaussian ratio distribution without proof.

Fact B.2 (Gaussian ratio distribution). If X and Y are two independent standard Gaussian variables,

then the probability density on X/Y is p(z) = T'T(1+r¢2) z € (~00,00).

Proof of Lemma B.1. a. Norm bound comes from simple x? concentration inequality and our

P age s . 1, ~
initialization"i N(O’ d) The inner product bound comes from Gaussian concentration.

b. It is from a direct calculation under our initialization, and some application of Gaussian c.d.f.
and a union bound.
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c. Itis from a probability distribution of Gaussian ratio distribution from Fact B.2 to bound the

((]) (]) [])
probability of BLil/1B21]l = (1+ 100 Togd) (WLOG we 1et|JB 1| = maxje[y | B 1|)-

d. It can be directly proven from our assumption on noise &,in the subspace V +and (a).

0) - 1 Eﬁ”ﬁ j € [2] and
=0, it is easy to directly

e. Since at the initialization we have B; = Oe(Va),j," upper bound the errors.

BY) - = O(J5), Vit €

f. Again from [2] at initialization and a direct upper bound.

g. Proofis similar to (e).

h. Directly from a naive upper bound using (b).

B.1 Induction in Phase I

i .l
We define phase I as all iterations t < T, where Ty := min{t : By > 0'01}, we will prove the
existence of T; at the end of this section. We state the following induction hypotheses, which will hold

throughout the phase I:

Inductions B.3. For each t < Ty, all of the followings hold:

(@) N0yl = w2+ O + 72) for eachj e [21;

(b). |B1. 1B 1BSY] = 6(n) ,.

(¢). 1B = Q) max(1B{3), 1B, 1BLY),

(@) 18131 < Ole + Jo) 1L gl P41 < OCh)

(e). R, RY =0(1), |R{}| < O(e+ )

B

< J33=J

| = o(1)

Remark B.4. Since we have chosen 1z < n and ¢ , Induction B.3d implies |

throughout t < T.

We shall prove the above induction holds in later sections, but first we need some useful claims
assuming our induction holds in this phase.
B.2 Computing Variables at Phase |

Firstly we establish a claim controlling the noise terms E;E;3-;during this phase. Claim B.5.

At each iteration t < Ty, if Induction B.3 holds, then
t t t ~
(a) &7 =& £ O(Tyepy |B§,3| +0(0+ L)
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(c) 4 =& £ OB ;(e+ F) + (B2,
Proof. For (a), we can simply write down
& = El(w;, )] = 0|y w”|§

o
w2 = [lw” 2 + O

L
Note that by Induction B.3a we always have et vd), and by Lemma B.1a

0 _ 0

we also haveHw' l2 = (1 £ O(\/_))Hu I2 , which implies
(t £) (t t
Iy 0~ [y 0l? s = ol — 0?2 £ 0 3 B

itef2)?
1
= w2 — w2+ O Y BY))+ 0o+ =)
J.Le(2)? )
—0(—)£0( Y BY) 00+ )
d gt Vd

By the elementary equality x" - yn= (x —y)Pos,-sn—l xiyn-1-i, we can obtain (a). The proof of (b) is almost
the same as (a), and the proof of (c) is just direct calculation. [J

Equipped with Claim B.5, we can establish the following lemma, which will be frequently applied
to bound the gradient in our induction argument.

Lemma B.6 (variables control in phase I). Suppose Induction B.3 holds at some iteration t < T1, then
we have:

FrIwy (t) (1)
(a) if VL€ [2],a4| B; | < O(1 ) then ® (02 Dy-2(1 g )
(d)),
0731 € RIB12 003 oy 8 - O+ Sy Ot
(¢) if gl BY)| < 0(1), HY) = Co€V (1 + 1 H') € [Q(C2), 0(af)]
polylog @) = 0(C2),
otherwise

(d) |K}}| < O(af/d*?)

B, 1BSY1BY)| < O(Z

: aBY <0
Proof. (a) From our assumptions that vd)and “171,1 = (1), and also

e = (6% = Q(1), Oy = O

the fact that®s polylog(d-)) > C1, we can calculate

_ (t)
=0(C1) + C2&,"” + O(e + —= f Uiy = X Cias((Bj (0))3 +
o I Ej(¢3)-j(B3(t-)j,)3)2 + C2Ej(£3)-j

€[2]
= C2Ej (1 + polylog(d))

Meanwhile, we can also compute similarly
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Qi =X Cia6(Bj ()6 + C2Ej= C2Ej()(1 £ polylog— 1 (d))

€2]

Y= Q1w = (Cag (1 £

Therefore @i 1(d)))-2 as desired.

polylog

(b) The proof is similar to that of (a).

(t) (t)
() when® P11 = O(l), the proof'is similar to (a). When aBi; =0 (1), we have from
Induction
g
B.3a andfj.¢’s expression that

HY) = Craf((BY)* + EY)

t :
7,3 j(B:(i—)j.f)a)Q + Oy 8(32 O(a’?)

Ty = min{t : B} > 0.01}

And since ,so for t < Ty, we have

® ® ce? |b 34l = QC)

Hj = C2Ej3-= 2j

where - is from Claim B.5b and - is from Induction B.3d.

(i) (t) 6 /1.5
(d) Since we have assumed‘ |B 1‘ |B | = O(ﬁ) it is direct to bound |K | < O(O‘ [d>7).

O
© V&P )

w r3—
Claim B.7 (about Z;-and. If A Induction B.3 holds at iteration t < Ty, then

(B(t))b F_Et; J B“);k) B“))J@

(BIDS <I>“),

(a) =Y) = O(A{) BY')

(b) (Vu, &35 wl”) = 0(1) £ O(E_)(R{} + o),

J3 7
(¢) (Vu, & 0y = O((EY . )?) + O(EY )(R?;m

3—74.7

() [(Vu, &1 5wl ) = O(RY) + o) + O(EL_)),

(e) [(Vu, €5, wi) ) = O(RY) + o) (B ) + O(EY, )
Ity l2 = (1)) €
it 1B < 0,023

||2—\/_i

.Now we can apply Claim A.1 to obtain the

Proof. Notice that for t < Ty, which is because ofH wj

0(1) from Induction B.3a and ma
bounds. O

1
33" = Soy(@

R . () - (Ty) ‘
due to our choice ofis small, we can make sure when1 = min{t : By; = 0.01}, By < 0.02.
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B.3 Gradient Lemmas for Phase I

We first present an interesting lemma regarding the effects of Batch-Normalization on the gradients
of weights. The following lemma allow us maintain the norm of weights to above a constant
throughout phase I.

Lemma B.8 (effects of BN on gradients). For any W = (wy,w2) and E, it holds
(@) PierhVu,L (W, E),wji = 0;
Further, if Induction B.3 holds for each t < T1, we have
t) gt ’)
(b) (Vi L(H B u )l <O(Q+ \/-)lAlllzjg jg j|f0reach]€[2]

Proof. Proof of (a): We first calculate the gradient term as follows:

Vw L(W,E) = Vw jXe[2] q

EE[F[sz;((xxmmmq StopGradE[StopGrad[G,-[(ze,{z)mn(z)m
_ 3~ EUTw (X)) - 60X B

i€l (E[FZ(X)])32 [E[GZ(X )]
-y E[(Viw F;(XM)) - Fi(XW)] - E[[F(X W) - [G(X®);]
=D (E[FZ(XW)))3/2 [E[G3(X@)]

Since by our definition hVy F;(XW),Wi = P,-e[z]hVW,-[Fj(X(l)),W,-i = 3[F(XM), we immediately have

Pje [Z]hVWjL ( VV,E), Wji =0

Proof of (b): Firstly we define a new notion

Vij=Vwiq
EE[F[F2i((XX()m)])q- StopGradE[StopGrad[Gj[(GX2j(2)(X)]](2)]]

j

Then it is straghtforward to verify that P,-G[Z]hV,; »wil = 0 for any j € [2], which implies that |hVjo,wji| =

|hV3_jo;,w3_joi|. So in order to obtain an upper bound for |hV,,L(W,E),wiji| = |pj0€[2]thJ0,Wji|, we only need
to upper bound |hV;j,ws3_ji|, each of which can be calculated as (ignoring all time superscript )
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u {ZPE[P]H’P Ejsjo({ws—j, Xp)) - [G(X(z) ] ] E[FZ(X ﬂ
(E[F2(XM)])¥2, [E[G3(X )
E | S peipine Bis—go((ws—, Xp)) - Fi(XD)| - E[[F(XD) - [G(X @)

(E[F2(XW)))32, [B[G3(X®)]

(V3_jj,w3—j)| =

Now we compute

I Z ((ws—js ))[G(X )]J =K Z j,3—i0 ({ws—j, Xp)) Z o((wj, Xp))
pe[P]NP pe[PINP pe[PI\P
=X Ej3-jCoa'6B33-j'Bj,3
'€[2]
and

EX hws-jXpi) - Fi(X()B B Ej3-jo(
pPE[P]NP

= E@ X Ej3-jo(hw3-;,Xpi) - X (o(hwjXpi) + Ej3-jo(hw3-;,Xpi)) &
PE[PINP PE[P]NP

= X Ej3-jCia6B33-j(Bj 3 + Ej3-jB33-j,) + C2Ej3-jE[hwj &pishw3—;,&pi3 + Ej3-jhw3-j,épie]
‘€[2]

So we can further obtain the nominator in the expression of |hVs_;,ws_ji| as

ED X Ej3-jo(hws-i Xel) - [G(X@)12 " E[F2(Xw)]
PE[P]INP

- EB X Ej3~jo(hws-;Xpi) - Fi(X()B - E[[F(X®W) - [6(X@)]]]
PE[PINP

= BX Ej3-jCoasB33-j'B;3 @ - @IX Ciare(Bj 3 + Ej3-jB33-j, )2 + C2Ej3-j@
'€[2] €[2]
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- BX Ej3-jC1a6B33-j(Bj 3 + Ej3-jB33-;,)@ - AX CoasBj3 (Bj 3 + Ej3-jB33-j,")
€[2] €[2]

- C2Ej3-jE[hwyj, &pizhwz-;, &pi3 + Ej3-jhws-jépis] - BIX CoareBj 3 (B) 3 + Ej,3-jB33-;, )
‘€[2]

= Ej3-j X Coa6B33-j (B3 Hj3- - Bj33-'Kj3-")
‘€[2]

- C2Ej3-jE[hwyj, &pizhwz-;, &pi3 + Ej3-jhws-j épis] - BIX CoareBj 3 (B) 3 + Ej,3-jB33-;,)[
‘g[2]

Now can sum over j° € [2] to get
|V, L(W, E), )|

<D CoBjaj |®;00B3 Bl His |+ Y Y |CoEjs—j®;0iB] ;,Bly Kjs |

J€[2] fe[2] J€[2] tel2]
+ Z Z ‘CQ 13— i E[(w;, &p) <w3—j15;ﬂ>3 + Ejﬁi—j<w3—jvép>ﬁ]ciﬂg (BS!‘ + Ejs- JBS 3£)|
jel2] tef2]
Next we are going to bound each term, for the first term of LHS we have
. . £
Z Z |C“ELS*;.‘(I’jang—j,FBj,ﬁHj,B—ﬂ| < Z Z |Ej3-51Aj.l ng
J€(2] £e[2] j€(2] eef2]
B3 D,
< Aral Y |Bjall B:’f a '
1,1
JE[Z]
\f 73— Jl

J€[2]
where the last inequality is because

t t o
¢ By Lemma B.6a,b, we have CD,S' )/(I)g ) < O(a?(l)) < aot

. (BB < 0L (B

during t < Ti.

from Induction B.3b,c.
Similarly, we can also compute

Z Z|CGE?% j®jai By MBJJ Kjze| < ZZEﬂ ilAvLal

j€[2] e(2] Jj€(2] te(2]

d01
<O( AL D |Ejs ]

JE[2]

B3 3
3 j.EBj,SfERJJ*g
5 }
Bl 1 HJ,B—F

and
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Y D |CeE s El(w;), &) (ws—j, &) + Eja—j(ws—j,6)°1Coal B} (B} + Ejs—;B3_j )|

je) tep

p B}, + Ejs-iB3

< Z Z |Ej3— Nl |—2 o L E[(wy, &) (ws—j, &) + Ejg—j(ws—j, &)°|
J€[2] £€[2] .l

@ Bﬁf + E'.;}_-st_,ﬁ

< DD B bl [ (O(Riz + o) + O(Ej3-)
j€l2] tef2] 3l

SO(R]?+Q|AH|Z|33J|

J€(2]

where - is due to Lemma B.6c, - is from the same calculation in Claim B.7 for E[hw;&yi3hws_;&,i3] and

Induction B.3a. Now combining the above and Induction B.3e together we have

(Vi LW, E), w;)| < 0o+ —=)|Ar| > |Ejsl
vd JE(2]

which gives the desired bound. O

Next we give a lemma characterizing the gradient of feature v, in this phase.

Lemma B.9 (learning feature vi in phase I). For each t < Ty, if Induction B.3 holds at iteration t, then
using notations of (A.2), we have:

() (~Vu, LW, EG) 01) = (1 £ 0(1))A0}

(BS)?
(b) (=Vuu LW, BO),01) = (1 O(J)AZ] +T5) < (1 O(J)AL + s BIOAL
: . B
Proof. From (A.2), we write down the gradient formula for™ .1 as follows:
(~Vu, Lp(WO, EO) vy) = AY) 411 — 1)
where (ignoring the superscript @ for the RHS)
A = Co®;a$B Hy s
L L) = Cods_ By j0SBY ;B3 Hy_j»
Tj,% = Cool (©;B25B7 | Kjy + ®3_jEs_; ;B 2B} K3 ;1)
We first prove (a), and we deal with each term individually:
(t) (t)
Comparing AMland 111 When ¢ < T1,1, we have from Lemma B.6a that
oV H = (% )= a0+ 1 11 GING
1 el (d) chell
) =¢, Hzlz(l + 7)
polylogpolylog(d) polylog(d)
) ~
Further, by Induction B.3b,c,d and our definition of stage 1, we know ~1.,2 = O(d) Now from
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t
By <

Induction B.3b that O( V/d), together we have

(t)
(t t 1 £ 1ot 0~ A
LY = Conf By @4 Hyy (By)*(B1')® < O(2)Cont ) H{(B'))" = O(—*)
When t € [T1,1,T1], by Lemma B.6b we have
, 1
o\ (") > O < > w(57) 1

- ) 2 1) & (1) r4(t ~
(Cra§(B{)0 +0(C)2" ~ A andEé&@é)Hégsog)

IA
,Q

BY > oL BY) !
Now from our definition of stage 2, it holds that™1.1 = *"\a1) while By Vd) by Induction
B.3b, which gives
(t)
~ 1 ‘ A
LY = Coof By @ Hyy (BY) (BI')? < O(5)Cont ) H{3(B]'))* = O(—;*)

(t (t ©
Ayl Tia Comparingand: Now consider Y11, by Lemma B.6, we can follow the
same analysis as above to get

O
(t) p-(t t t
eK!) < O(%L 7 o H{')

for any (j,") € [2] x [2]

ng} <o

Combined with (1), we can derive

T} = Coad (@1 {1 (B (B + B0l ki (B (BL)?)

af"ag (1) 176) g3
0( B2 )COOH‘I’ Hy, 2 Bl 1)’
t
oA
d3/2—o(1) ) (since C1= 0e(1) and ay,az = d°M)
AD ) ©
2,1 2,1 Comparingand: Till now (a) is proved, we can deal with (b) by only
comparing Az with
T K9 — 5G9y vje
2.1, Similar to the above arguments, we have by Induction B.3b we know a1 = YU VI S,
and thus
ab
oK) < O(—%)0y 1Y)
= (0;”/2) 2 for any (j,") € [2] x [2]

Ei% < 6(Q+ !

By Induction B.3e we know Vd). Also, note that from Induction B.3b we have

(£)\5
(B ) /d) < O (BQ-I) ), and thus
) ( 1 al
BV K (B (BS))? < O+ .

305 8 H30(B1)° < O

() ry(t) ¢ ()5
d}/z)‘iz HZ.Q(BQ,]_)

So together we have
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t ; t) ¢-(1t L)y: L)\¢ Wt t) y-(1t L)\: t)y2
)| = |cua3 (@F 'K (BB + B0 K (B} (BY))?) |

6 ") f) (’)
o dw)m
. r(*) . A(t)
Comparing ~ 2.1 with “*1.1: It suffices to notice that
()2
t £) 178 (1) (B21)” | )y 4(t
P53 < B Cond@l HYS| B (BY)* = —5—|ESIIAL|
By;)?
® ®
Combining the bounds for Az: 319 T, | we obtain the proof of (b). O

Then we can also calculate the gradients of feature v, in this phase.

Lemma B.10 (learning feature v, in phase I). For each t < Ty, if Induction B.3 holds at iteration t, then
using notations of (A.2), we have for each j € [2]:

(=Vu, LWW, B0 ) = (1i0(ﬂ])(E + (B} )) A

33 T+ (B.1)

Proof. Again as in the proof of Lemma B.9, we expand the notations: (ignoring the superscript ® for
the RHS)

A?z = Coad;H;, B,

Fj.? = CU“Q‘I’J'ES*j-jBg—j,zB?,zHiifj,l

T% = Coo (9B} By K2+ ®3 ;B3 ;B3 ;1 BjoKs j2)

G ®

and

We first compare A2 j2as follows: Lemma B.6 we have

.B() ZSO(

i 2) by Induction B.3b;
(t) (1) e (1)
¢ From Lemma B.6a,b we can have ®3-i = O(a )(I) Vi€ [2].

Together they imply:

Coa26E3(t-)j,j(B3(t-),2)3(Bj (£2)) 2@ (3t-)jH3(t-)j,1 < Oe(a10(1)E3(t-)j,j) Coaze6 P (jt)Hj (t2) (Bj (t2)) 5
o1 @ ®

= Oe(a1 Ej3-j)Aj2 (B.2)
® ® ® (1) T(’
Now we turn to compare A;; with Y;2. We split Yz into two terms Y;, 2,10 75,2,2
£) t t £)\2 -t
T§I%1 = Coal®; l)(B( ) (B“)) KJ(LQ) TJ(?%Q = Cpatay) b;)“(Bs i) (Bg(',g)zKL(%—)j-Q

®
For Yj21, we can calculate
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T\ | = Coatal (B3 (BY)) 2K )

6
Of(BI)))Coage B (BY)  (0(:5k) < O((BY))?
= O(af(B\)*)AY)
= C’laz (1)\3 6g(1) 1 () (t)\2 -(1) Ciaf
= ol d3/2 )(B 1) < alq) (Bj'z) (AJ[ = O( dg/z)from Lemma B.6d)

) from Induction B.3b) (B.3)

®
And for Yj3,1, we use Induction B.3b and Lemma B.6d again to get
By, *(BY) 2K, < O(C1a$(BY)%)

and thus combined with ®3-j from Lemma B.6a,b, we can derive

Yj(¢2),2 = Coa16D (3t-)iEj (t3)-j(B3(t-)j,1)3( By (t2)) 2K3(t-)j.2
< Oe(a16E3(t-)jj) Coaze D (i) Hj (¢1) (B} (£2)) 5
= Oe(a16E3(t-)jj) Ait2) (B.4)

Now combine the results of (B.2), (B.3) and (B.4) finishes the proof of (B.1). O

Lemma B.11 (learning prediction head E1,E>1in phase 1). If Induction B.3 holds at iteration t < Ty,
then we have

() go(t) (t) p(t) (®) (B{')?
(a) _vEl.zL(W , BV} = O{Al.lBl,l) O(El z) + O( Bm) ) + O(R ) '
N ,__ (B(t))d .
() =V, LW, BO) = O A + Seegay oAy By (~OUES) + O(RY)))

(t)
Proof. We first write down the gradient for Esi, (ignoring the time superscript )

=VEis5L(W,E) = X Co®jareBj 3 (B33-j, 'Hj,3-' — B33-j3-'Kj;3-") — X %, 'VE;3-Ej3-j
‘€[2] €[2]
whereVEss—;Eis—i = B [2(w;, &) (w3, &) + 2Ej3- (w35, &)°] Thus we have

Vi, 0 = OMEY_ + O(R))

Ejs-i%j3—j J3.3=7

and by Claim B.5 and Lemma B.6a,b

(t)\6 (t)
(BM«)‘ +Ej;

(B(L Jf) (B(-' )3 o

() () (1) j
s — oY B
7.0 1,121, (Bifl}ﬁ <1>§”

<o\ B}")

Now let us look at Vg1,.L(W,E®), first we consider the term
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X Coduoas(B1))3((B2(e))3Hie3)- - (Pare)-)3Kiia)-)
€[2]

Using Lemma B.6 and Induction B.3b,c, we know
o Y < O(H) at £ < Tuy angHi) < O(aH Y for ¢ e [1,, 71,
. BY). Bl By < O(B)) < O(BY,
K1 < Oaf/d2),

[t can be computed that
(t)
~ B.
(t 1)\3, plt t 2,1 t) 3, ()6 1y (t
Conal(BI) B HY < 5(1) (()) Conad (B )
1,1

of (B q)

> |coo (B BIEL | < O(Hh) —5=coaaf (B )
Le(2] ( 1,1
Now we turn to Vg1 L(W®,E®), similarly we have
(t)
: : 3.0t ~ B3 - oy (t
Conf b (B (B < O(1) (m) Coaf ot (B )
1,1
(t) (t)
and sincef2,1 = O(Cr) = O(HL2) by Lemma B.6¢, we can go through the same arguments again
to obtain
1) 6/ M3, 30| - & Bg%g 1) 6 ()6 oyt
vttty ] < o0 (522 cuolPuscn o
By
0 ,5(B t) ~ of ng ’ ) 6/ )6t
oo ag(B{) ()P KL | < Of W)(—(;)) Co®}af(B1)) H})
By

Now the proof is complete.

Also, we will need the following lemma controlling gradient bounds for the noise term.

(t)
Lemma B.12 (update of%1.2in phase I). Suppose Induction B.3 holds at iteration t < T1, then we have
(a) (=, LOWO, EO), T w)] < O(d= + e)AﬁiiBEfi

(b) (=Y, LIW®, EO) 11,00)| < O(J7 + o)A B!

Proof. Proof of (a): Firstly, by Claim B.7a, we can directly write
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(Vo LW EO) Ty wly = =3 50w, wi)

_? wi Jc’, J
j.
(t)\6 (t) (3 (1)
(£) pa(t) (B E) +Ej3 7( 3— Jf) (B ) ®; & (1
—ALBi Z (B(r)) (I)(f <Vu:1gj,3f_;‘:w1 )
(J.0)€[2]? L1 1 (B.5) Now we discuss

each summand respectively: for (j,) = (1,1), we have

(BY))S + EY (B, )*(BY))® 0 (By)*
(31,1)b (Bl 1) dd/z(Bl,])d) (B.6)
where the last one is due to Induction B.3d. And for "= 2, we can see from Induction B.3b and d,
1 (t)
that max/:0)7#(1.1) IB I (v/_) and Fi3-i = (1) to give
(B + By (BB ) 51, 1 @
(BY))" o =07 (B1)° @
o B(.t) < (0 . .
On one hand, when t < Ty,1, we have 246 ="(1) for all (j,") € [2]% so Lemma B.6a applies for
Q] (t) ;- () (t) 1 ()
both ®; and resultsin ® 2 /€7 =0 (1). We can also apply Induction B.3c to Bj,Q/BLl =

have

Oe(1). On the other hand, when t € [T1,1,T1], we have by Induction B.3b and Lemma B.6a,b that
t t =01 ) o1 ~ . 1/2
‘I)g )/‘I’E) < O(a ( )) = dc(l), but nowBl,l =d°W > O(d / ), therefore
~ 1.1 oY 1

Y B e = O B
So together, they imply
(B2 + Bys (B ) (B & _ 5 1
(BE{) o) T @B (B.7)
and similarly, we have
(B + EQB B e 5 1
(B{'})S o) T aR(B)y (B.8)

\v g(ﬂ (f))

Next we turn to< w1g,3—j1 Whenj =1, we can apply Claim B.7d to get

(Vun €, 0y = O(RY) + 0) + O(EY) = 0(0 + —=) + O(E) < 00 +

Vd f d) (B.9)

and when j = 2, we can apply Claim B.7e to get

(£) (1) (t)y2 (t) 1 !
Vi, Es 1, Wy ) = —(E. O(R}5 + o) + O(Fs, 0 o+ + O
( 2,1» %2 > ( Z.l) ( 1,2 ) ( 21) (12)( \/a) ( E) ( . )
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Combining (B.5), (B.6), (B.7), (B.8), (B.9), and (B.10) completes the proof of (a).

(t) ()
(®) (V& g,y )
Proof of (b): The %; part is the same as in the proof of (a), so we only deal with and

) . () (ty (&)
(Vi1 w1 >here. For (Vo€ 1003 ), we apply Claim B.7d to get

t t
(Vs wi’y = O(R{Y + ) + O() B (B.11)
o (t
and for(v“"'z 5{; wi )>, we have
<V'u:2£ff%7 wiy = O(Rit,f)z + 9)(E£fi)2 + O(l)Eég (B.12)

Inserting (B.6), (B.7), (B.8) and (B.11), (B.12) into the expression of h-V,.L(W®,E®),ITy.w; Vi finishes
the proof of (b). O

B.4 At the End of Phase I

1
Lemma B.13 (Phase I). Suppose S Soly(d) is sufficiently small, then Induction B.3 holds for at least all

— O
t<T1=0( n ), and at iteration t = Ty, we have

(a) By =0(1) ,
()l = 1+ 0o + ).

(c) Bm _ r(ﬁ)andB( )_B(U)(1i o(1 ))forjE[Z]i

(d) Ezh) = O(”ﬁ(‘j./n) and Eﬁg) <Ole+ ﬁ) ’

R} =0(o+

() R, RS = 0(1) 73

and

T := min{t : lt} > 0.01} = O(£

Proof. We begin by first prove the existence of n) if Induction

()
B.3 holds whenever B1.1 = 0- ‘01, then we will turn back to prove Induction B.3 holds throughout t <

Ti. We split the analy51s into two stages:

<O(%), - BY')

Proof of = By Lemma B.9a we can write down the update of 1.1 as

, 1.4 1
B = BH—kn(l:I:O(a))A(ﬂ)l—BH—H(I:I:O(E))@“)CO oSH)(B!) (5.13)

(f)
When 04131,1 S O(l), by Lemma B.6a,c we have &
can lower bound the update as

() _ o1 )
L O(sz) and’l12 = Q(C2) this means we
6
t+1 t nCoa )5
B 2 B + (T 5)(B1Y)
/9
Coaf (t"
since C-zl is a constant, we know there exist some t0> 0 such thatB 11 2 Q(m) Also recall that
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v ij
Ty 1 := min{t : qu > Q- O = Q(CLL) o =

1
} So by Lemma G.1, where” — poly(@) polylog

1(d)

dA Q( )log(A/B ) O(l),wehave

Cs O(n) 1 ~ 1
Tii=0(—"%) >, nC <0l )(0(1)+ 5 =— < O( )
oat, Lot ot B ) (BT T a8
4 1 d?
Since (Bl 1) = Qgﬁ) from our initialization, we have! 11 = = Of n) and thus T4 exists. Now we
t 3y —

consider whenBl 12 Q(m) Now by Lemma B.6b,c, we have Cbg ) > Q((C2 + af) 2), which gives an
update:

BEY > BY 4 'flcucr? V(B3

1,1 (CZ + afl))g 1,1
( Cgal

so again by Lemma G.1, choosing Cr= (C2t+a)?),

7, = QUG+ a})?) S o< o)+ 0 | O 5 of . ab

y Co(lﬁ
! 2 €[Q(L).001]

0%y « O(£ . . .
where "' 71 1), so we have proved that T exist. Now we begin to prove that Induction B.3

holds for all t < T;.

Proof of Induction B.3: We first prove (b)-(d), and then come back to prove (a) and (d). At t=0, we
know all induction holds from Properties B.1. Now we suppose Induction B.3 holds for all iterations
<t-1and prove it holds at t.

(t)
The growth ofD2.1; Applying Lemma B.9, we have for t < T1

~ 1 '
B{Y > B + (1 - 0(5)AY)
(By1)”

1 O 4,
v g

By < By} +n(1+0( E{OAL

t 2
ti := min{t : B ) = (I } we haveEl(% < O(B$ 39) ~ Wdurlngf < fl and
t t
(35,1)2 AW < (BE 12
(ng 271~ d0.49(B(t))2

Bt
which allow us to give an upper bound to~2.1 as

For some

1
(4049

A" < O(—55)A

(+0%Mgw(%%@%

(1+
BYTY < (14 0(=2))AY) + O(=55)AS)

f

~ 1 t t 1

d“ o)A

(when polylog
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Since we also have

~ 1 1 . ,
B > (1= O(A) = 1= 00 Coatel - 1 B ———
polylog
(0) (0) 1 (t4+1)
Since Biy =z By (1+ Q(mg 4)), we can now apply Corollary G.2 to the two sequence‘B and
(t) o(t)
B S = Thrgn(1+
2,1, where 578 polylog 1(d) to get
) o 1 B < 5 L
BLL 2 e = 7
BY (t4+1) )y _ o (t)
Note that here the update of P21 at every step satisfies sign(B - B;)) = t’15311(}32,1) which

) _ a1
implies 21 O(\f) Now for everyT € [th Tl] we can apply Lemma G.3 to get that

(B, 1) () 4 (2) 1 1 1
> EpsATy < O(e+ —=)0(— )max{(Bz <0 (Zosram)
telt) 1] (BE 3) vd 5 i) = d :
B < O(L
Suppose we have proved that™ 2! = 7 Vd) for each t < T, we define a new sequence
t t ()5
BITY = B 4 n(1+ O( 40 )2 CoafCog’ 1+ 1 )(Ba)
, polylog
B — B (B3 L 0 (1)
B2 1 = l Z (1) \2 142A11 = (1 to (U)Bﬁ
where telty, T (B 1’
BS) - BY)| > |BY) - BYY)| ,
It can be directly seen that 72,1 2,11 = 122 2,11for all t € [t1,T).  Notice that now
~(th) Q(1) pt)

By =d ( )Bl-l , we can now apply Corollary G.2 again to get

|B2(1,1) - B2(0),1| < |Be2(,1) - Be2(0)1| S Vo 1 (forevery T <

T1,1) dpolylog(d)
: : : . B

Now we deal with t € [T4,1,T1]. During this stage, we can directly apply Corollary G.2 to~'2.1 and

) g o)

(1) St =~ < O(a
Bl,ll where ‘I’(z )H'g,g ! ), to get that
|B2(1,1) = B2(0),1| < |Be2(T,1) - Be2(0),1] < Y A— 1
(for every T < T1)
dpolylog(d)
B = B (1 £ o(1))

And thus by Lemma B.1, we have™21 = ~21 '

(t) (t)
The growth ofP1.2and P22 By Lemma B.10, we can erte down the update as

B B*)+n(1i0(a (E

i +(BIH) Al

3JJ
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(t) ~ A L t) « A (t) 7(t)
By1 < 0( Eiy < Olet+ )Bi By < O(d) because we chose ng<n, we only need

= min{t : B f) > Q( =)}

Since \/_ )

, we have
1

(t)\3
to care about (Bl,l) in the update expression. Now define

. For t <t , by Corollary G2 and setting

W8 () 100 _ A/l (t) ' (f) _
ozl < o(gh < = = b € = - Ot 5 -
af e Hy') (t) (0) a$
1. polylog(d) (by Lemma |B |< 0 (;ﬁz ‘ﬂ;)
B.6a,c), we have (tz) O lf 1
=Bj; * dpolylog(d) © Q07 dlog d) o(
dpolylog(d) for allt < t5 which implies B; )] by
Lemma B.1.
. _ pl) (t3) (1) p(th)
e Fort € [t5. Tl], we can use Corollary G.2 again and let”? — By, 1, we knowD1i = d ( )Bﬁ .

a8y )
Setting C¢ =(1 - Q[ﬁ))fmeo 1H¥%, St = 0((1+ a1)T‘[T1(7)L) 0 (a° W), wecanhave
® _ (fz) f_1 (f) 4;1&:1 C
IB;2 2’| - dpolylog(d) Bj 2 € [Q( dlogd) 0 (™ te€aTa] |
which implies )] for all

This %)roves Induction B.3b. Indeed, simple calculations also proves Induction B.3c, since the update

ofB 1.1is always larger than others’ during t < T;.

For Induction B.3d: From Lemma B.11, we can write down the update
(f))

Vi, LW O, EO) = oA BY) (01E§f% +0(

Ok

(B(f)

o} B
for some constants C1,C2 = ©(1). Applying Lemma G.3 to '

(1)43 (t)\3

By3) (B)5) ~ ne/n. 1 ~ nE/T

AW ( 1,2/ NE (t) 1,2 ne/n ne/n

> 0(meA B i = > O(nAYY) — <O0(—s75 )—B(O) <O+
t<T ( 1,1) t<T ( 1,1) 1,1

1B < 282 (RY)

, we can obtain

So here it suffices to notice that whenever 2+ 9) (which is obviously satisified at ¢ =

0), we would have
t t 1
OB (—O(EY) + Co(RY) + 0)) = 0| BIDO(RY + o) < O} B{)O(0 + =)

S

. 1% )
In that case, we will always have (since™1.2

(1)
1 (B}3)? ) (s B 1 np 1
t+)< ZO AﬁtlB%) +ZO ’r)pAE B]( }(RIQ-'_'Q)SO(Q_FE)T_LH(T)
t<T (B ) <t .
Similarly for V. L(W(,E®), we can write down
(B1y)?

— Vg, LW®, EW) = O( AL+ 3 caal)BY) (—O(E(”Ry)) ¥ O(RE;))

(B{)? te2]
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by Lemma G.3, we have

==
=
(S}
P
=
&)
““—_
=
p—

(B{})? Y
> ns0( %f) AL < O

t<Ty (

and since from previous comparison results we know that

D D nmCaAy By = T8 S S nCaAy By < o1/

t<Th £€[2] t<T 1€]2]

we can then prove the claim.
. . f“u.(") |12
For Induction B.3a: We can write down the update of!™j 12 as follows:
kwije+ k22 = kwije) = nVwL(W(0),E(t)) k22

= kwjk22 — nhVwL(W(0),E®),wij©i + n2kVw,L(W (1), E®)) k22

from (A.2) and Induction B.3a,b,c at iteration ¢t and our assumption on &p, we know
IV, LW, EW) |13 < O(d)
. 1
which allow us to choose” = pob(@ to be small enough so thatT’dT1 = Tpoly(@)
B.8b, we have

. Then by Lemma

(e+1) 2 kwijo)k2z + n X|hVwiL(W(s),E(s),wj(s)i| £ polyl(d) —
kwjkz =

sst

<||u(“>||2irzc>(o+7\A“|Z| ol !
s<t j€l2] poly(d)

t)
Since from the above analysis of the update ofBl 1, we know Ef<Tl Al 1S O(l) Moreover, we also

|B | ())—blll((
know that ~'1,11is 1ncreasmg and sign(A1.1 gn(Ay, 1) for any s,t < T1. Thus they imply
(s)
Zsst AT =] Zsst Al,ll - 0(1), which can be combine with Induction B.3d to prove the claim.

1 — 1wl wd)

Proof of Induction B.3e: We can write down the update offli2 = ) as follows

hIlv w1+, w2+ )i = hIlv w1 — DvipVwiL(W(e),E©), v iw2() — Tv inVwL(W(s),E(®)i
= R1(t)2 = nhVwiL(W(0), E(®),ITv .w2(0)i = nhVw2L(W(s),E®),ITv .w1()i

+ n2hIlv VwiL(W(e),E©),I1v Vw2 L(W(8),E(®)i

By Cauchy-Schwarz inequality and the same analysis above we have

[hITv VuwiL(W(e),E@®),ITv Vw2 L(W(), E(®)i| <€ kVwiL(W(s),E®))k2kVwL(W(e),E())k2
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< Oe(d)

so by our choice of n

X nz|hIlv VwiL(W(e), E®),ITv . Vw2L(W(e), E(®)i| < 1 poly(d) t=T:
and by Lemma B.12 we have
1
(Vo LW, EOY, 111wy — (Vo LW D, EO) Ty 0y | < nOAY) B (0 + L
which implies
[hITv swi(e+1),w2(e+1)i| < [hITv iwi0),w2©)i| + XX n|hVwL(Wis),E(s)),ITv .w3(s-)ji| + poly 1(d)
sstje[2]
<0 ) + Z nO(A 1 1 1 1 - !
s<t poly(d)
~ 1| (t+1)
<0 +0 B
(\/E) ( \/a) 1,1
~ 1
<0O(p+ —
< Of \/E)

which completes the proof of Induction B.3. As for (a) - (e) of Lemma B.13, they are just direct
corrolary of our inductionat t =T1. [

C Phase II: The Substitution Effect of Prediction Head
(t)
In this phase, As Bl1is learned to become Verg large ( 1 l 2|

(t) (t)\3 (t)
Ell, because we want le ((By ) + E2 1 (B ) in Hy to dominate ‘52 1, We can write down the
t

‘wl ”2) The focus now shift to grow

gradient of2.1 a5

-VE21L(W(©),E®) = X Codoas(B2(tY)3((B1(t))3Hz2(t3)-" - (B2(t3)-)3K2(t3)-") — X Z(2t)VE21E2( 1)

'€[2] €[2]
Now let us define

1
Ty := min{t : R.g) < @|E§f;|} 1)

(T2)
We will prove that?2.1 reaches at most 0(Png/n) and the following induction hypothesis

(t)
E.
holds throughout t € [Ty, T2]. In this phase, the learning ~ ' ofis much faster than the growth of the

Vo
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(t)
first feature vq such that T, - T1 = o(T1/ d), which is due to the acceleration effects brought by Bia=

Q(1) during this phase.
C.1 Induction in Phase II

We will be based on the following induction hypothesis during phase II.

Inductions C.1 (Phase II). When t € [T, T2], we hypothesize the followings would hold
t T1) = .

(a) B} = 0(1), B = BV (14 0(1)) = O(J5) o 6 (1.1 qna SEn(B) = sign(BJ})

(b) ‘R(lz _ O(Q+ \}_)01 (U{R(f)]l/Q[Rg‘)]l/Q

(¢) R € [Qgi). O], By € [sgg/ne/n). 0(1)
() B} < Ole+ LRI L ES < O(/am/n)

Under Induction C.1, we have some results as direct corollary.

Claim C.2. At each iteration t € [Ty, T2), if Induction B.3 holds, then
(a) & = O(CH[R)T?),

(b) &Y

195 = & £ 00+ JIRPPPIRY?) + OB IR, ))

foreachj € [2];
Proof. It is trivial to derive (a) from the expressmn ofSJ and our assumption of . For (b) it suffices
to directly calculate the expression of “ 5( g jalong with Induction C.1b.
Lemma C.3 (variables control in phase I1). In Phase II (t € [T1,T2]), if Induction C.1 holds, then
(a) @ = O(), o) = O((CaIRY + Craf(ES))?) ),
(0) ) = OlaldPP), K§) = O(ES) ol b + affa¥)
(c) HY| = 0(Craf), H{ = O(RY'F), Hy) = O(CIRY'P), Hl| = O(ColRY] + Craf(])%)

Proof. The proof of (a) directly follows from Induction C.1a,c and Claim C.2. The proof of (b) follows
directly from the expression of K;-and Induction C.1a,d. The proof of (c) is also similar. ]

C.2 Gradient Lemmas for Phase 11

Lemma C.4 (learning prediction head E12,E>11in phase II). If Induction C.1 holds at iteration t € [T1,T],
then we have

0(1) o » »
@ -~ VELLWO.EO) = (100 (B[R + OB + )[R (RY?)
O(1
£ 50(EL) masR0P, 0y
1,1 \/E d5/2 )
0(1)

) Ve LW ED) = (1 0(CL)Cod af (BY) (BY) Hy)

+ 0= (ESRYP + ORY, + o) [RV1P2RY?)
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(t)
Proof. We first write down the gradient for Bz, (ignoring the time superscript ()

-VEj3-iL(W,E) = X Co®jareB) 3 (B33-j 'Hj3-'— B33-j3-'Kj3-) — X % 'VE;3-Ej3-j
€2l Ce[2] where

V€35 = B [2(w), &) (ws—j, &) + 2Ej5-j (w3, §p>6]. Thus we have

Vi, €y = 2B R+ ORY) + o) R (RS2
and by Claim A.1 and Induction C.1a, if (j,) 6= (1,1)
t) (t : t)N: t t
50 — oy B+ Bia (BB 00 1 9
2o = (1) © o o =l5m) (t)
(Bm) ¢, (1’1
Therefore forj=1:
(t) O( : () (t)
> EVELEY = (14 O(Tm BV, 60
£e(2)
B t))BH(t) < max{O(C' [R(t] 6(”—?)}
Now by Induction C.1a,c and Lemma C.3b,c we have (7'1.¢/ “"1,3—£ = ¢ 2 32/,

which leads to the bounds

(BB | < Oy max(RIOP, 5} (BB K] < O(5)
13—t = Jd3/2 T , 2,3—¢ 1,3—¢ 3
which implies
o(1)
2 t : 4 ne/n o
S Conat BB~ (B ) K| S OCEEDS ) max( (7P, %)
Lef2] '
Combining above together, we have
— VELZL(VV(”, E(f))
o
= (14 o(—— 1 ))E()( Qb("»)[R(f)] :I:O(F() )[RU)]S/?{R‘(L)}SNia(nE/n)maX{[ t)]3 o ()})
d3/2 12t 1 2 Nz ‘ dJ/?

For Vg1 L(W©,E®), the expression is slightly different we first observe that by Induction C.1a

(t) (t)
Azz < O(dd/Q)AZ,].

Meanwhile, by Induction C.1a and Lemma C.3b,c, we have

Releh

=(t) AL
=) < 6%

)CoCa®y [RY

’

t 5 (1) 5 (¢ ) ~. af t t al t
Moreover, we can also calculate 2(2)1 = C’OCQQ(IESQ)&)(B;})%) = O(d_wl?)q)() 23)2 = (Ff)q)g),

which gives
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Zzﬂvgﬂ =30 (—0ERE + ORY) + o) RV RVP/2)
€[2]

Now we combine the above results and get
O(l)

Vi, LWO, EO) = (14 0(%L—))Codal (B (BL))?el)

d3/2

+ 0= (IES) R + ORY) + o) [RVP2[RI/2)

O]
Lemma C.5 (reducing noise in phase II). Suppose Induction C.1 holds at t € [T1,T>], then
t t (t B2 t t)1: t):
(0) {=Vur LW, EO), Ty s w’) = 5 0(=[RY PO B+ =27 ) Ry a+ o) (R P2 RY)?),

|E.(r)‘2
() (~Vou, LIW®, EO) 111 wl)y = 0 (—0(R%)+0(0) [RT/2RY1V2+O(| L)1+ 224 RV [RY)2)

And furthermore

(€) (~Vuo LW, EO), Tyuw’y = —0((RYF) (20 ((E(})?) ZES})

)

o( Z =Y R+ o) [R“ ]5/2[3 )

(@) (=Y LW, EO) 11y 0f) = (x “)0 )+ 305 (~e(RY) + 0) RSP R
fe(2]
(£) (1) ()12
+O(Zz VB RY[RS })
.k

Proof. The proof can be obtained directly from some calculation using Claim A.1 as follows:
Proof of (a): From (A.2), we can obtain that

h=VwiL(W(©),E®),ITv iw1@mi = -XZ(, 9hVwiEj (£3)-, wi(oi

A

(t)\3 1
Now from Claim A.1a and Induction C.1a, we know (BJ f) = O(d-‘i/?) and the following
(t)\6 (t) (1) 313 g () ()
0. (B, )+E (B3~ )2 (B E)(I) ~ B3 o P
=y = o)~ e < O

s © = 0)
(By,1) P 17 forany () 6= (1,1)

(t) () p(t)y: 3 (t)
By f)?’ + By (BY] )3)2 <OGEn)Eriand  RY'=0(1), which by
Claim C.2a,b and Lemma C.3a gives CI):z /(I) V< O(U‘1 ) Combine the bounds above, we can obtain

(t) O( (f) /di/Z} ( )
DV 33— 1,1, We can then directly apply Claim A.1 to prove Lemma C.5a as follows

(*vurlL(H/ t), E(t)), Hviul )>

From Induction C.1a,c, we know ((
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= (1= OB (- O(RT) £ OB (R + o) [RY1/2(RY/2)

+O(ES) /)2 (- o(ESD)RYP + O(EL) R + o) [RYPRRYP?)

=) (- [R? + 0B + ';}2' )R+ o)[R “W[R”’P/Q)

2| < d- Q1)

(Since ‘E by Induction C.1c,d)

®
Proof of (b): For Lemma C.5b, we can use the same analysis for Z1,; above and Claim A.1(d,e) to get

(t) E® (t) (t)
(again we have used Xj.¢ — O( 33— J)le o(X11))
(= Vo, LIW® | B0, vag))
)
1

= (1 +0(E) ((- O(NRPPRN + B RO[RYP)

+ 0B /a2 ((- Q(R”)Hou (B RPPIRST? + B R RP)
|E (t)|2

S (=ORYY) + O() RV PRS2 + O( B + —5- RV RS )

d3/2

Proof of (c): Similarly to the proof of (a), we can also expand as follows
<_VW2L(T/V(U ’ E(t))a HVJ- wg)>

f ! t
= (1 0(EY) =N (— (R PO((E)) + OB (B + o) [B PR P?)
: . —(t . .
- Z Eéfé(mé“]d + O(ES))(RY) + o) IR P2 RS2

[R(”} (=9 +ZEQF)iO(ZENEf§ ®D + o[ RVPARY?)

£e[2]

) _ A (t) _ (t)
Proof of (d): Similarly, we can calculate (again by Xi.¢ — O(Ej;_;)%11 = o(21)))
(=i, LW E“-)) Iy cwi?)

= > s ((-0®D) + 0 EDRSPARY? + B R [RY?)
+ 3 (-0 + ()RS PRI + ES RY (R

= (1 O(E{))s] (—6(BY) £ 0(o) (B[R P2(RY]V2 + B} R (R

+ 3 55 (-0 + ()RS AR + (R (R

Lg(2)
= (2e((ED) + 3 =) (-0@®()) + 0() RS PRRP + o Yo sE) B (RP?)
e2] R4
which completes the proof. O

Lemma C.6 (learning feature v, in phase II). For each t € [T1,T2], if Induction C.1 holds at iteration t,
then we have for each j € [2]:
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6 | (*) |2

~ (Y5
|<—ijL(W“),E<”),v2>\SO(di/21>(c1> DB+ BSP) + @5 (B IR P + =)

Proof. Again as in the proof of Lemma B.9, we expand the notations: (ignoring the superscript @ for
the RHS)

(~Vu, LW O, EW) vy) = A A €2)

where
A = Coade ) (B)°
1) = Coa§al! )JE‘gt)JJ(Bét)j2):%(B§t2))2H§t)
4] o (o BB+ 80 (8, FBIL, )

7,1

=1+

Now we further write Y 2 2,2, , where

, = B

t t
OB ABY )Y,

1), = Coafe ) (BI)YBDPK]y X,

According to (C.2), we can first compute
A =18 = CoaSe V(B H - ¢y %(.”(B( D3(BIO)K)

= CoaS0"(BI))” (C1aS(BY)? + B (B, )% + el )
- Coat@! (B (B]Y)*C S((B“)) + B}

0 (B (B + BN _(BY )
= CoaCrafe]! (B]3)° (Ef%_jwéﬂj DB+ (E)) (B“_L V%)

— CpaSC1a q’t)(BﬁtQ) ( 3 32) E,Et; j ((Bjtl) +E§,ﬂ ( 3- 31) (B,Etl) )
+ CoaSel(BY))S el

Then we can apply Induction C.1a,c,d, Claim C.2a, b and Lemma C.3a,c to get

453 = D51 < O )@ (1B |+ [RP)

('d5/2

(t) (t)
where the last inequality is due to Lemma C.3a,c. Similarly, we can also compute forT; 2 Tj22

|F;(Jt% 322| < ‘C QS(D.(_’»)JE@) (Bgt)j2) (B(t}) 3 j]‘

3=1.J
+ ‘C o (Dgi JE(U (Bét_)j,l)s(ng) Két—jﬂ‘

3—74.J
aSag © o 1Bl
~ oo 3 8y
SO( d5/2 ) |Ed JJl [R ] d3/2 )
This completes the proof [Lemma C.7 (learning feature vy in Phase II). For each t € [T1,T2], if

Induction C.1 holds at iteration t, then we have:
(a) (~Vu, LW©O, EO) v1) = 0 [RYP + TV + O /a5/2),
(b) (~Vu, LW®, EW) vy) = O™ /d2) + O(%) By [RY)?
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Proof. As in the proof of Lemma C.6, we expand the gradient terms:

(= Vo, LW O, ED),vy) = AL 4 U0 ) (€3)

where
AY = CoaleH ) (BY))

) = ¢ hq)g>J;;§f)“(3§t_>j,1>*(3f) m .,

t (t t t t t) t ~(t
T = Coat (e (B (B2 K + o B (B ) (B KD )

Indeed, when j = 1, by Induction C.1a and Lemma C.3a,c, we can compute
t ; t t t t)1:
AY) = Coafel? (B HY) = O )DIRY

and with additionally Lemma C.3b, we also have

o(1
W

d5/2

11 = [coad (2B B2 K + 2 BB B2 KS) | < O )
which gives the proof of (a). For (b), we can also apply Induction C.1a and Lemma C.3a,c to get
A5} = Coafel H(BYD)® < O(af™ /d*?)
N N0 R

o} = Coadel? BB (B2 H) < O Bl 1
1

1) = Coa? (0§ (BEY (B K + o BB (BY)PK() < O(S )
this finishes the proof. O

C.3 At the End of Phase 11

(t )
Now we shall present the main theorem of this section, which gives the result of prediction head Ej,

growth after the feature v is learned in the first stage.

_ 1
Lemma C.8 (Phase II). Suppose 1= poly{@) js sufficiently small, then Induction C.1 holds for all iteration
t € [T4,T2], and at iteration t = T, the followings holds:
(T2) _ (T2) _ (1) _ oL
(Lt) Bl,] - 0(1) Bj:f' - Bj,f (1 + 0(1)) - O(\/_)fOY'(] ‘) 6= (1’1)

o 1) _
(b) R{™ < O(n), RY™ = ©(yas/) pgB1s < Ole+ 73

(c) 1B | = Oo+ ) RVPRIRYP L |ESD)| = ©(v/nm/n)

B
Where the part of learning E21 is what we called substitution effect. One can easily verify that

(t) 1 1
| Es 1 /1 (XD > (X)) when X is equipped with feature v, as stated in Lemma 5.2.

Proof. We first will prove Induction C.1 holds for all iteration ¢t € [T1,T2]. We shall first prove that if

t t
RY > |EY)]

t
Induction C.1 continues to hold when , we shall have [Rg )] decreasing at an exponential

rate.
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t t
Proof of the decrease ofRE ): Firstly, we write down the update ofRi )using Lemma C.5a:
E EW 2

d3‘/2

REH—]):R({)_'_ 2(!)9( [R“)] :EO(IE |+ )(R(L) ){ }%/Q[RU)]%/Q)

(¢) from the expression of X11in (A.2), and by Induction C.1a and Lemma
C.3a,c, we can compute

CoC
2 = e(chcyal) = o( 01 2)

aq

Moreover, from Induction C.1c we know that

0 P
(1B ] + ) IRVPRRYP <

~ 1 e )22 /90 (1)1
73 < (6 (ddﬂ) +O0(o+ ﬁﬂh’«% 1372y RO RY)2
Y 2 ! (f) 3/2y1 plt)3/2
< (O(d;;/z)+o(9+ \/E)[ ] ){ ‘1 }
R >’ .
Therefore whenever =1 = 43/ (whlch t<T, sufflces) we shall have always have

(R + 00O 75 + Ole+ IR PR < o RYP)

T = min{t : R

which implies, if we set ‘W “af } , then for allt € (71, T3], we will have

, B
R = RY 0= [RIP + O(B) + o (B + o) [R1 RS PP)
= R — oz RVP (C4)
CoCy 1
(t) otz (t) 1
= Rl (1 _@( al? )d3/2052 Rl = d5”/4))
(since
Ty =T + O (1) af®
From the last inequality we know that after . (nai m) we shall have Ri” < O 57T
Moreover, supposes < T2 (which just mean Ry < Ol af) for some iteration s € [T}, T2]) we
also have
L R
(t) -, nCoCa . 1
ERI (1_0( 0}4 )W)
dl ” ('L) > ("') _ @ 'f[CUCZ To—T > ("‘)
Sowhenl2 = T1+ O 7 )lterations, we will have R(l) z /o O(d:’”ﬂ}i)) z QR
t 1
for all t € [s,T;], which means we have alower bound = '~ @¥/*af throughout t € [T}, T2]. This

()
proves Lemma C.8a and also our induction onfii’,

(t)

E1,2: By Lemma C.4a, we can write

Proof of induction for
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O()

Ve, LWO, EO) = (14 0(“L s (—2EL[RY]P £ ORY + o) [RVIP2(RY)2)

]s/z
OB, s of
1.10{ \/_Z )de{[R } d"/z}

— —o(= IRV PES + 0 (R + Rl PR + OCEL (7))

R < 0le+ J). B = 0. RS € [Vne/n.0(3) e

Since again from Induction C.1b,c that

E®
can obtain the update of ~1,2 as
3 . : ~ 1 . : ~ e/ .
B = B0 - 0mssIRY) £ 0= (o + B IIRY P + OCELDRLP)
. 1 E
= Bia(1 = 0= [RY]) 00+ —=)np S R/
= B{}(1 - 0= [RYP) + nen) 1)

=

I = Clo+ L) RP/2 >

where 0 and Ce = ©(1)e is larger than the hidden constant (including

B < Of

1
the polylog(d) factors) of =21 e+ v/d) in Lemma B.13d. And then we can compute

~ 1 o e
T = Co+ —=) RV

Vd
> L ny3/2 (1) y[ p(t)2\3/2
= Clo+ )R - 0z D [RP)
Nz L (due to calculations in (C.4))
(t) 372 52(0)\3/211 (013 o5 _ o
= Jip(1 = O =X )" )R] ) (because” 1.1 = poly(d) is very small)

fl)l < le U’)l <

; then we begin our induction that 12

Now by Lemma B.13d, we know |
|E1 2| 1(loglogd) ]1(

(loglog d)

t)
Jl 2 at for all iterations t € [T1,T2] Now assume we have , from

(t+1)
above calculations it holds that [Eis | = |E1 2‘(1 O(TIEI I[Rl ] )). Then we would have
gt |E(t+1)|

S 2 (1= 0w P E R 2 (- B(eZ RT) 2
1.2

t)
1%
t t
(because of the range ong : anng ))

|E{3 V| S loglogd - J{'3 " < 0o+ L) [R{™ V)V

This proved that and also the induction can go

5 IO B
41f we want [F1,2| > (loglog d)Jl.%, then as long as” ~ #ob(@ is small enough, we can always assume to have found

) 1 . (t)
some iteration t0 € (T4,¢] such that |E1 s | = 3(loglog (1)‘]1‘2, and we set t = t0and start our argument from that iteration.
on until t = T».

gt < a’
Proof of the growth of E3iand =T+ O(HTH{) : According to Lemma C.4b, we can

£
write down the update of ~2.1as



0(1

~Vp, LW, EV) = (14 0(%L-)AY)

13/2

iO(E (IEg’{ [RYP3 iO(R(’ o) [RVPIRYP2)

Then, from Lemma C.3a,c and Induction C.1, we have

1

PR w—r /21O (), 4 t
OB IRV £ OR + o) [RUPPIRYP) <0, ey <o | ey
polylog (
d? f"%d32a1
and also
(1io(d03))00 2 af(By1)*(BY)  Hy| = O( dw)@“

Now by Lemma C.3a and Induction C.13, it allow us to simplify the update to
EYTY = BY) — npVe, , LW, EV)

= EY) + (1+ —5—)npCoCaalal) (BY)3(BMY)2el)

1
Q)
L

> Em + 7759( )ngH(Bl 1)%1gn(B(q

43/2 6 ) (by Induction C.1 and Claim

Cc.2)

1/2 0(1)
dt/ oy

U)) = "lgn(B( i Tra<h +O(T) such that

Now since 51gn( 31 41 ), we know there is an iteration
for all® € [72.15 %), it holds

BN = BV + S emeCoCaad)el) (B (B[R
te[11,13,]

_ (T1) Q 1
- IE | + Z T?Ee(d3/2ao(1))
SE[T1 Tj 1] 1

o)
T
e oo —)

)y _ " (t) (t)
and thus sign(EQ.-l) - HJE[‘Z] E"l‘ﬂ’rn(BJll) and 1Bl will be increasing duringt € [Tz, T2]. Thus as

t) (t) o4
long as = |Es) continues to hold, after at most (?ra‘f) iterations starting from T1, we shall

(T2)) _ ¢/
However, in order to actually prove ‘Ell | =0(Vnr/ N, we will need to ensure that (1) there

R(s)

(t)
exist some constant C = Q(Pnz/n) such that|E2 11>C while logd |E2 1l forall s € [Ty t];

(2) we shall have a upper bound'E 1| < O(y ”E/?) They will be done below.
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(Ty) _ o B d3/24 O(IJ
Proof off21 = O(V1E/1) ang T2 = Th + O(—— ): In fact, Induction C.1c are already proved

since we have already calculated the dynamlcs of Rg )and its upper bound and lower bound. In this

(f o 12
T = T1+0( "

(t)
part we are going to prove ) (which means thatf’s” < [E2.1]can

~ " d3/2,12

: . T . . . R
be achieved in n ) many iterations). From Lemma C.5c, we can write down the update for ‘2
as

RIFY = RY —op(v,,, LW, B0 11 Lué )+ 02|y s Vi, LW EO)| 2

= RY —po(IRY)3 )(2520 )+ > =S {)
fe(2]

where we have used the fact that
1) (1 t )12 t): o _
j:r]O(E SOEY (R + o) [RVP(RYP/2) + oh(d)

1Ty szL(W(t E®) 13 < O( ) from our assumption on the

(9 noise &y and a simple bound for £;-as we have done before. Next
we can resort to Induction C.1d

) < 0o+ IR

that | to derive

s S)\¢ ~ 1 El s
> mEfe(E) < Y O+ el R
sE€[T1.1] SE[T 1] ‘

< 0(* + é) = o(1)

() p(th3 (#)
which is because Zie[ﬂ T3] OME )R] = 0(1) andX 11 ~0 as we have calculated in the proof

of Induction C.1a above. Similarly, we can also bound

s s s s oy 1
S SOIERIR + ) ROPRYP < 3D O + sl T < Ole+ ) = ol)
se[Tt] s€[T,t]

, o)
) and IEéfil <0(1), @y < af"

Ty < Ty + O(Loer

Moreover, because n from Induction C.1, we

have for each t < T5:

s (s)13/21 p(s)13/2 (s) A 1
> aSOIES RS + o) [RYT2(RS) = dm ) > %30+ —=)

S€[T,t] sE[T,1]
1 dd/ga
< O(g) - Ole+ ) - O )
< 0o+ —=)ad® = o(1)

Vd

Thus combining all the bounds above, we have proved that for each t € [Ty, T2], it holds

R2(t) = R2(m1) - X O(nZ2¢)1)[R2(8)]3 £ 0o(1)

SE[T4,t]
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=RV — 3 0(nCCe)EY oSl (BY)}(BY])PIRY + o(1) (C.5)
SE[Tl,i]

T . I T . T
( 0 _ Z E(f) d5/2 )@U [R ] Slgn(Egi) . 51g11(B;11)) . &gn(Bil‘}) +o(1) (C.6)
s€[T1,t]

)y — o (1)
where the last equality is because sign(Bj 0= blgn(Bj £ P by Induction C.1a. Now from What we
t

) (t) () 1) p(T1)
have proved above on the growth of E31 that sign( Eyy) = sign(B1B; ) = "1811(511 By 1Y)
throughout the rest of phase II (which is ]ust7c € [T21 TZ]) Recall that

(T3,4) T
Ry " = Ré Y+ o(1) © (221 X ) )3 ()3
, and E21-E21 = O(neCoC2)d2 (B21) (B11)
SE[T20,1,t]
The above arguments 1mp11e for € (T30, To)::
1) s s S)y )y )7
RYT =RV — 37 00 By @) (BB IR +o(1)
9€[T$1 t]
= R - O( HIE ) — o(1)

Now we can confirm

( ) (t)
(1) there exist a constant C = ®(Png/n) such thatP21 = € i 57 ga115 below 10gd| 2, 1|

492012 D = EY |+ ne6
(2) Ty = T1+6( o ) due to the growth‘ 21 | = Bzl +ne (Wza”\/m) fort € [T2.1, T2]-

which are the desired results.

(t)
Proof of Induction C.1a: We first obtain from Lemma C.7a that the update of Bl can be
written as

BT = B+ (0= )sign(BIDRY] + 1) £ 0afV /a?))

(t) (£)
Now by what we have calculated above in (C.4), the total decrease of 1 is (sinceRl is monotone in
this phase)

X 0(Zae))[Rio]z < 0y - Rymy) < 0(1)
te[T1,Tz2]

rif'/zﬂl
), we can bound

And also sincel2 = T1 + o(

-~ _ _ _ o g3/2 _
>> Olat/d?) < Oaf /a6 5) < O(af )

lE[T],Tg]

®
Now we consider how the I'1 ; term accumulates
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e t L)\ t t
) = ( DS )ncoa%;a@;)(B;mw;;
fE[T]_ T2 fE[Tl Té 1] LE[T.EJ ,TQ]

@

= al —)+ Z 0 (T[CU(.M o t)|B(t)| |B |‘5H2(t2) blgIl(B( ))
tE[Té,hT‘Z]

= +o(1) + O(1)sign(B}")

(t) )y _ ion( RBM
where in - we have used|E2,1| < 0O(1) < O(B 1 1) and 51gn(E2 1) = Hj€[2 E’1gn(Bj,l) when t e
(t) (11) (T1)
{TQ,',I'-Tz] By = +O0(1)sign(By | )io(al) 0(1) for all iterations
(t)
€ [T, T2]. Similarly from Lemma C.7b, for52.1 we can also write

6
~ 0O ; ~ .
By} +n0(ay W /d¥?) + O(Sh B @ (R

. These calculations tell us
T+1
Bé,] )=

(1) _ plT) 4 77,00
From similar calculations, it holdsB2.1 - BZﬁll +0(ay/d

(t) T )
), which proves thatB21 = Bay (1%
0(1)) when t € [T, Tz]. Now we turn to feature v,. By Lemma C.6 we have for j € [2]
b6
(=Y, LW, BO),05)] < O(ZH

) /) (1) (t)13 r |E:gt) 4l
(@ (B + (R + @) (B2 IR )P + —5))
O‘Zal
0“2
d“"f@n]
where the last inequality is from Lemma C.3a and Induction C.1c,d. Thus when t < T, =T + ( n o)
we would have
(T1) O
BY =BT+ 0 = 1+ (1) _ g(_L
32 32 ( ) ( 0(1)) since Bj 9(\/3) by Lemma B.13c

Together they proved Induction C.1a and Lemma C.8a. Moreover, we have also

Proof of Induction C.1b: Firstly, we write down the update of Rl 2 using Lemma C.5b,d as follows:
RSV = R, = p(Vu LW, EO) T 1wy — (W, LOW®, EO), 11,

sui?)
+'r] 2y s Vi, LW W EOY 110 Vo, LW ED))
3 —(t ()15 I |‘2
:Ri%mz&’ﬁ((—e(fe‘lé)iO(e))[R(”]'”[Ré 12+ 0(EG+ 3 R IRSP)
L 5 ’
+n(SO(ED) + Y 2)) (—O@)) + 0(e) R PRI
g2

where in

the last inequality we have used
) pO) Rl n quality
Z'UEJFEJ'ﬂ —j [Rl ] + poly(d)i
|hITv :VuwiL(W(e),E©), 11V . VwL(W(8), E(6)i]
< KIv . VwiL(W(e), E®))k2KIlv Vw2 L(W(e),E(©) k2 < Oe(d)
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(1)
Now from Induction C.1c,d that R, = 0(1) and

(t) A 1 (t)13/2 /— af
|E1\2| S O(Q+ ﬁ){Rl } / 3 |E | < O T}E ) we can further Obtalnlzl 2‘ ( dl?/z )|Z and
the bound
BTV = R (1- 0=)RYT - 0 (B + 20)[RY?)

£50(o)[RY] 2RIV (0=)IRN? + (210 ((E()?) + 43 ) RS 2)

R > Clo+ L) RS2 (R

Notice here that there exist a constant € = ©(1), whenever ,it
will holds
BTV = RY (1- 00 RYP) — ez (B{)? + =) R ?)
6
. 2 b (83 f -
= &1 - 00 R - 0=} (B{))? + SLE)IRYP)
. . . . B\ .
Thus we can go through the same analy51s asin the proof of induction for*1.2 to derive that
| <O(O—+— )R") 1/2 R(f) 1/2
9 7 [Ry /7[Ry
which is the desired result. Note that at the end of phase Il
Induction C.1a ==  LemmaC.8a
Induction C.1b,c ==  Lemma C.8b
Induction C.1d ==  Lemma C.8¢c
We now complete the proof of Lemma C.8. O
D Phase III: The Acceleration Effect of Prediction Head

We shall prove in this section that the growth ofEQ 1in the preV1ous Fhase creates an acceleration

Bl
effect to the growth of By, 2, which will finally outrun the growth of 2 :1to win the lottery. We define

Ty := min{ |B 2|> m1n{|B | _‘Eg?l}}
ne  ~ (D.1)

and we call iterations t € [T, T3] as the phase III of training and ¢ = T3 as the end phase of training.

D.1 Induction in Phase III
Inductions D.1 (Phase III). During t € [T, Ts], we hypothesize the following conditions holds.
(a) 1BY11 = ©(1). By} = By (1 £0(1)), Bi) = B{y (1 £ 0(1). |B5)] € [|B35], 0(1)],
() |ES)] = ©(\/ne/n). sign(ES)) = sign(ES?) 4 dE1Y < Olo+ IRV PARY P2
(c) R € (1), (%), [RY] € [ 25, O(kav/nu/m)]
As usual, before we prove the induction, we need to derive some useful claims. But firstly we shall

give a much cleaner form of Vg3 ,L(W®,E®) to help us understand the learning process of phase III
and the end phase.
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Fact D.2. Let us write
=0 - cnclalaz@“)(wii) (B + (BY)°(B{1)°)

A?? = o2 (B (BY . )*Cagll)

Il
Then the gradient offj.3-j can be written as

=VEis L(W(e),E®) = —E(0Ejt3)- + X AGt) - X 2,0 VE;35Ej (¢3)-
'€[2] '€[2]

(t)
Proof. By expanding the gradients ofELS*j, we can verify by checking each monomial of polynomials

£

of B; to obtain the first term, and leave the “j.3—J part for the second term. []

Lemma D.3 (variables control at phase III). For t € [T, T3], if Induction D.1 holds at iteration t, then we
have

(a) 9 = B(zk). [Q4)72 = O(CLIRY + C1a§(B53)°). U3 = O(Ca(of(BL])? + a§(B13)")),
1 . ~ b
(b) H{!) = 6(C1af), H{) < O(CH[RYP) + O(54);

() Hﬁ? = O(C1af (B, 1) = O(CalRYP)

E(f t
(@) x\) < o2z,

7

1
(e) 6(” = (1+0(1)E!"” = O(G[RV])

J3=3

Proof. Assuming Induction D.1 holds at t € [T, T3], we can recall the expression of these variables and
(t)
prove their bounds directly. The bounds for ®1and Hy,1 comes from 1Bi1le 0(1) and

(t) () _
|Bial | B sl = ©(1). The bounds for Q,,U, comes from our definition of T3in (D.1). The rest of
the claims can be derived by similar arguments using Induction D.1. O

D.2 Gradient Lemmas for Phase III

In this subsection, we would give some gradient lemmas concerning the dynamics of our network in
Phase III.

Lemma D.4 (learning feature v, in phase III). For each t € [T,, T3], if Induction D.1 holds at iteration t,
then we have:

B (a3 [ad
(0) (~Fan LOVO, BO), ) = (5 AL + O P2 + (%)
22 ;
(b) (=Vu, LW, EO),03) = (1% O(4))AL)
_ (1) )Y ey — A ( (t)
Proof. Since( Vi, L(W W, ED),v5) = AJ - T 2, let us write down the definition of

) pt) )
Aj,2’ T2 Tja respectively:
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t

AY = Chala® HO(BO)

I} = Coafof Ef;””(Bé?ﬂ)‘*(B( )HS;,

1) = Coat (2B BPRY + ol B0, (B, P BUPELY, )
Again we decompose Y,;(t) - TJ(' % 1T T% 2 asin the proof of Lemma C.6, where

Y31 = Coof@(BIDYBRPKYS T, = 0B

t t
3— ]](Bi't jl) (B:g—)j,2)2K.‘g—)j,2

This gives
Ay =15, = Co f@(-%B;?)SH}? - oot (BJ))*(BJ3)*K )
- CUQQC atl)(b(t)( 7 2)5 (Egtﬁ. _](Bét)j I)S(B(tl}d + ( 7, 3 _j) (Bét—)] 1)6)
— Coa§Cra$e (BB L) B (B + B (B, )P (B
)

+ Coadel) (BY))P0ely

(t) o)
Whenj = 1, from Induction D.1 and Lemma D.3a (which gives ®1~ < @ @, ), we can crudely obtain

0 1)
el B

Coa§Crabel” (B)) (ESYBIDA B + (B (BL))°)|

Coa§Crafel” (B{))X(BSY) B’ ((B?i) + BB BI))| < o

o 6(1)(’) ng Cg(’)‘ _ [Rgﬂ)]B

So we have

6 O( )
x g
A =110 = O B RV + O(FL )AL B

720

(t)
When j = 2, we can also derive using Lemma D.3 about"*2,1and Induction D.1 about?2.1and some

rearrangement to obtain )
Coaso (B [Craf (B (B (B + (BED(BIDC) + Ca&fl)] = (14 0(2))AL)

, P e ~
CoasCratel’ (BB EY ((B)° + B (BI)A(BI)?)| < O

)1 (1)
2,1\‘1’2

which leads to the approximation

0(1
~ 1
Ay = Y10 = (1 O(3)AY, + O(=-) | E57 @)
Similarly, we can also calculate

t i t t
I‘.gg_’r;(rt%Q_CaZ(Dé)gEé)jj (Bé)j,l) (3.52)) K'g )32

t k t t 3 i t
= Coa§Crafey’ (B )Y (B9 EY (Eé,ljj( DB, +(E§2jj)2(B§-\%) )

(BY,;2)*(B3)*Hy? ;= Coafory? Eé”m

— Coa§Crafel) (B1) (EEL”)Q (B, 00+ L, (B (B,1)?)
+ Coaddy) BV (BYY )3 (B))20he!
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When j = 1, following similar procedure as above, we can apply Induction D.1 and Lemma D.3 to give

) ~lt) B 0 a? W) 2t
P],Q - TI,Q,Q = (-)((B(;))Q)EQ 1A2 2 + O( )|E |2(I)2
2.2

ia(al )Agt2|E12

Note that the first term on the RHS dominates the term in the aP roximation for

(t) (t) (1) L 2PW g
A2~ Tizg due to Induction D.1a,b. Whenj = 2, since ®! — O(@) <ay @y Hy) in this
phase and |B1=1| - (1), we can derive

0(1)
~ 00 ‘
P52 = T3l < O(=5) (1)@} + o7V (E1))° AL

(t) (1) 2
It can be seen that (El 2@y < (E 1) <I>2 by Inductlon D.1 and Lemma D.3. And by similar

L= ()(1 (t)
1EO(DAY) > 024 ) | BSY | @

d3

arguments we can have (
can finish the proof[]

. Combining all the results above, we

Lemma D.5 (learning feature v1 in Phase III). For each t € [T, T3], if Induction D.1 holds at iteration t,
then we have: (recall that A-notation is from Fact D.2 )

N ‘ (B(f))i o0 f') B(f') .
() (=Vun VO, BO), 00) = (S [RYP) £ O( i + J)ot’ ALy + [ AL — JiAL)

1,1

o(1) - ()(1)

(b) (~Vuy LOWO, EO) 1) = 022 )[RV + (L)AL + 0%y

)

t Y o ) , (t)
Proof: Recall that<*v‘”jL(W( LEW) v) = Aj1+T51 =151 Similar to the proof of Lemma D.4, we

(t) _ (1) (t)
can decompose Y; 1 Y511+ Y1 2and do similar calculations:

AY -1, = ChCrafade (B0 (£ B, B +(EF":)_,->2(B§*_L-2)6)

- CoCrafadel (BB PED (B + B (B, (B)?)
s (1t (ON: i
+ Coafol (B 0aely_
) . o

When j = 1, from Induction D.1 and Lemma D.3a we know &1
allow us to derive

CoCrafasel” (B{))” (E{)(BI (B +(
< O({1(E})?) + CoCradal(B'))* E'5(By)

T, oo :
Da?OAGIES) + o RIP)

And
CoCrafagel” (BB Y ((BI)° + EY(BIY (BY)*)| < O WNE IAY)

which can be summarized as
(B (t) ) 3

1 Y, O
A =11 = e RN + O 5 (t))3+<32=1)*+ﬁ)|fs£f%|al WAL
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A similar calculation also gives

(1) (t) A O(l) () plt)3 0(1) (t) O f)
A2,1_T2,1,1:O( )‘I’ [Bz} iO( 1 ) |E |:|:O( )A

15,/2

Now we turn to the other terms in the gradient, from similar calculations in the proof of Lemma C.6,
we have

t ¢ - L t) (1) 3 ¢ 1)\ 6
F;(,i _T“(f,iz = CUO‘SClO‘ (I’S.)J(Ba 31) (B( ) E3 JJ( 3— “( 2) (Bg 32) +(Etg—)j,j)2(B;(i,g)6)
— Coa§Cratel) (B (B, )2 (B ,)° + BS, (BI)* (B ,)°)

+ Coafay) Ey)“( MBI

which also similarly gives

0 o0 _ Bl o B ot )
I'ia T1;12 = ()/—\21 (t) A22:|:O( 4372 )A2:2
311
and
0 e o500 ~
T51— 1510l < O(*L— TR ((E )2+ [ELIRYT) < O 5)
which finishes the proof. O

Lemma D.6 (reducing noise in phase III). Suppose Induction D.1 holds at t € [T, T3], then we have

(@) (=T, LWO, ED), 11y 0i”) = —0(RUT) (51 + D =5(EL))?)
tef2]

t)

io(zz(ﬂEjg _ R(2+ o)[R 3)}3/‘2[}?“)]3/2)
(0) (~Vu, LW, BD) Ty ) (zii + > SUELD?) (~(RY)) + 0(0) (R P[RS

g2

Z E t)E 2 (t)[Rét)]Z)

J3—J
(3:6)#(1,2)

(€) (~Vu, LW®, EO), 10w’y = —o((RYP) (Y £e((Ed)?) + 3 58)

fe(2] fe(2)
(ZE EY B+ oROPPRP?)

’

(d) <—me<r4f<t>,E<ﬂ),vai”>:( OB + - 5 (~0(RY) + 0() [RE12RY) 2
Leg2)
(t) 1 (£) ()
Z 2 EﬂJB [R })
(4,6)#(1,2)

Proof. The proof of Lemma D.6 is very similar to Lemma C.5, but we write it down to stress some
minor differences. As in (A.2), we first write down

h=-VwiL(W(e),E®),IIv w1 = —=XZ(, ohVwiEj (£3)-,wi()i
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i

. . e [2} Z(t) _ 6(E(f)/d3/2)z(f)
Proof of (a): Combine the bounds above, we can obtain for each’ R 1,2 L1,
We can then directly apply Claim A.1 to prove Lemma D.6a as follows

(=Y, LIWO EO) 11,1 w0y
= ié’(EEf%/dB”))z:‘“(—e([R-(”P) +O(BY) Ry + )[RV RY?)

+ () + 23,%)( 0( IRV + O(EL) (R + o) R (RT?)
= -0z} + 5] + [R“)P +0(3 s BN (B + o [RVPRYP?)

7.k

|E(ﬂ| < dfﬂ(l)

(Since by Induction D.1)

®
Proof of (b): For Lemma C.5b, we can use the same analysis for 21,1 above and Claim A.1d,e to get

(t) (t)
(again we have used Zl 2 O(E /dS/Q)El,l)
(—leL(VV(t), E(t)),]'[ uug’))
= (1 O(E /)2 (-0(RY) + 0()IR PR + LRV [RYP)
f
+ (2} +253) (O + 0 (B (12812 + B R [RP)

. —(t 5
= (=1 + 7 =UUED)?) (e (Ri) + O() [RP2[RY)2)
£e(2]
+o( > sWE ROEY?)
(7,0#(2,1)

Proof of (c): Similarly to the proof of (a), we can also expand as follows
(~Vu, LW, EO), Ty )
= (1+ O(B;y/d**)x S‘i% (- [RYPO((ED?) + OB R + o) [RVT2RY?)

=3 SO (IRPP £ 0B R + o) [RY P (RY)2)
fe(2]

= —@([Ré ' )(ggfl ) + Z E ) (ZE ﬁtg i B ) +g)[R )]%/Q{Rét)]B/Q)

le[2]

Proof of (d): Similarly, we can calculate
(—Vu, LW E®), Hvagf)>

= (1 O(E{}/d*)s) (~0(R}) + () (B RS PRIRI + B RVIRV])

+ Z E(”( O(RyY) + (o) [RY1P2(RY) 2 + BB [R)?)

—(t - -
(22”10 )+ 3 5)) (—0(RL)) + 0(0) R P2 (R) /2
£g(2)
(t) ) p(t)
Z E}EEJ d—J ( [RE }2)
(3.6)#(2,1)
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which completes the proof. O

Lemma D.7 (learning the prediction head in phase III). If Induction D.1 holds at iteration t € [T, T3],
then using the notations from Fact D.2, we have

©)(— g
~VE,, , LIWY, ED) 9(22 (—E;3_;

_(f () (f
- EJ 35 T Z A
e(2]

(RS 1 + O(RY) + )[RV TR

S rein EO0VE LEY_
Proof. By Fact D.2, we only need to bound the last term <~¢€[2] ~j.¢ ¥ £1.2%].3—5, which can be directly

obtained from applying Claim A.1. O

D.3 At the End of Phase 111

(12)
In order to argue that Bys'o (1) at the end of phase III, we need to define some auxiliary notions.
Recall that T3 is defined in (D 1), and now we further define

T 1 := min{t : C1a8(B ( ) 6>y R, (13 7Y — min {¢ : B > = HllIl E B (D.2)
2 32 3

[t can be observed that if Induction D.1 holds for t € [T2, T3] and our learning rate 1 is small enough,
we shall have T2 < T31 < T32 < T3. Now we are ready to present the main lemma we want to prove in
this phase.

1
Lemma D.8 (Phase III). Let T3 be defined as in (D.1). Supposen ~ poly(d) s sufficiently small, then
Induction D.1 holds for all iteration t € [T, T3], and at iteration t = Ts, the followings holds:

(T3 T T
(a) 1B} = 0(1), B3| = 0(1), B = B (1 £0(1) £y, i
. ~ ~ (T3) - A
(b) R{™ = O(x), R{™ € [O(ﬁ):OWN ana F12” < 0le+ 75)
1 (t) (th3/2 _ A
(c) |E;12 |—O(\/1]E/T)and|E |_O( +ﬁ)[ ]W[R ]W:O(%).
1B . RO : - 1BY|,. .
Moreover, 2.2l is increasing and *'2 " is decreasing. The part of learning =221 till (1(1) and keeping™2.1

(t)
close to its initialization is what’s been accelerated by the prediction head2.,

The proof of Lemma D.8 will be proven after we have proven Induction D.1, which will again be
proven after some intermediate results are proven.

(t)
Lemma D.9 (The growth of B22 before T31). Let T31 be defined as in (D.2). If Induction
(1'51) a (T3,1) 1 ”O(l)
D.1 holds for t € [T, T3], then we haveRQ < g andB‘l2 € {W’ O (G di/d )] and Tz1 <
1.625 , (1) 0
T+ O(—1—)

(). (oo
Proof. Firstly by Lemma D.6b , we can write down the update of %2 *: (as In Lemma C.8)

5 (t) (1) (t) (t13/21 p(t)y3/2 Ui
iO(gnz VB (RO + o IRVPPRYPE) £
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B = 1) - o) (e + )

2
e(2]

~ (t)
2 1\ (t) &y
( 23/2 )21 ](I)( <

Next, by Claim A.1 and Lemma D.3a combined with Induction D.1a,b, we have

(t)
0(22,1), which leads to the bound
0(1)
o(1) t )¢ )1 1 t )1 x t )1
s R PRSP < (G me RS < O s 17y

. ~ 45 1
1S O((E1)) < 0 + D)oy

Similarly, we can bound the following term
S B IR + o RUPIRP? < O +
te2]

()(1) Z [R(i 9] R }

le(2]

1 (1) R}3
d9/4 Z nE) R }

Le(2]

A O(l)
(0* + d)

O

o(1)

(8%
(S mSs R

[ A
(@]

. R < g
Moreover, from Induction D.1c that*2 = £¥1°, we can also calculate for each t € [T2,T31]:
o(1 ,
o gy Ry

. . ~ 1
nE BRG] + o[ RYPRRY2 < Olo+ —)al

t
Thus by combining the results above, we have the update ong Vatte T2, T3] as follows:

R = BY —ne((RYP) (s1he((ED?) + 3 1)
tef2]

= RY — (x4 + 25 (R (D.3)

t
which implies thath : is decreasing throughout phase III. From Lemma D.3a and Induction D.1b, we
know that for t € [T, T31]:
. 1
@g) _ Qét)/[Uéf)]‘w -0 — —
Co[Ry PP (Craf(Ey)?)>?

which implies (also using a bit of Claim A.1 and Induction D.1a)

SR = (14 O(dg )ESAL)

=1+ O(d?p )1+ O(ds/z ))00020(13‘1’?)‘%2(3@)B(Bgi)?’[RQ
Cy Ry
;)2
1/2) p(T2) ;
M [R(i)]B/Q
3723 g E
Cr 7 eq|Ey |
1 T T
(12)(1:&0( 1)), B} = o(B\": )andEéIl O(ES)sign(B{™) B{™2)))

— 0 )CoaS EY)(BL)*(BS))?

() _
(because B3y =B

®
And for X, from some simple calcualtions (using Claim A.1), we have
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(t) a1 (T2) ()
. WhenlB? 2| = al |B | , we would have 2.2 = 0(22 1);

(t) ) _ (t)
¢ otherwise, we have X2.1 5 = O(X55).

So by (D.3), we know R:is decreasing for t € [Tz, T31] by at least

CUCl/le(Tz)li%

(t+1) (t)
Ry < R —no(— 20—
CYad|ES?)

R < B (01— ng[RY) 2
) (D4)

T
¢i= (( (1/2|B(:)|3 :é(\/r;/fm
C‘/Q %IE(‘B)‘

3203 )
where @707y By this update, we can

Ts1 < Ta+0(

d3/2+1/ﬁa?(1)
prove 7

/ 3/2 /oy /1
tyy € [T2+0(—a nel) T, "‘O(d alﬂ ru:/'i)]
R(L’;,l < d_1/ R( 3,1~ 1) > d_]/ ) .
we shall have!i2 . Indeed, suppose 0therw1se 2 , then (D.4) implies

Rét 3,1) SRSSJ 1)(1 . C[ (t3,1 1)]1/2) <R(51 1)(1 _

. i —Ty—1
(T2) CoCy*nfne,. n \

C3f2d3/2a3

t?z.1_75_]
C C \/
< O( V TIE /T?) (1 — 02 T]/WE) 7 )

cf/ 22ad A

In order to do that, we can first see that for some

1
'U,m)

which means there must exist an iteration
a®/2 Oq\/rw/?? d¥2al\/ne/n (th ,—1) .
tyr € [T+ o( ), o+ 6( 1 )] such thatf2 Mz at (so the above update

bound is still valid when the RHS is for"t = t&l -1)

(t54) _ Y ) (t)
and 2" < 7 Next we need to prove that at! = 131, it holds Cra3(By,)° = Co[ Ry ] . Let us

discuss several possible cases:
)

B3] = 2B = eyt
1. Suppose 22 1 = d/7) (by Induction D.1a and Lemma D.8), then we

(t (th )
already haveC195(Bs “ )0 > Oy [sz VP gD <t 1

(5, 1) a T1)1/2
2. Suppose otherwiselB | = s |B | , then we shall have 22 2

during t € [T2,T31] can be written as
Ry = BY —emzih) R = BY (1 - 00)[Ry)]'/?)

< O(EZ 1). So the update ofR( )

T . pld) —1/4 '
Lettse = min{t : Ry" < 2d } be an iteration between T »and’3.1, we shall have

‘ (th 5) (th
S RYP2 = o(ry* - BY) = ©(—

dl/4 (t )
tE[th 40th ] ) and Ry €0, 990!1/1, ) 1d1/’1]
" #.o—0 di/8y =X (,{3"'2""1/8(11:15\/-1111;/7]
which also implies™3:.1 ~ "3.2 ( ¢ )= 7 ). In this case, let us look at the

(t)
update ofP2.2 at t € [12. T3] By emma D.42, we have
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B = BY) + (1 + O(=)AY)

(t)
It is not hard to see |BZ2‘ is monotonically increasing. Also by Induction D.1a and Lemma
! /
D.3a, if we sum together the update between'3.2 and?3.1 as follows: (suppose the sign of

(t52)

B2 s positive for now, the negative case can be similarly dealt with)
(T2)\2
(th ) ~ 1 nCoCrafal(Ey ) 5
Bys+ 3 1£0(@Ah= 3T e(——— (B
L€t 20151 tE[th 5th 4] Ca[Ry'P(Craf(E5 )23/
(t)
, , nCoarial B:
EB§T§‘2)+(B$2))4 Z 1L g g 5

VE
o1? ey P IRY 2| B

tE[ts 0.t5 4]
(Jz) H ( afcxg ))
22
=, d3/2+1/8 /TIE/T.?
ajal )é(,ﬂ/?“f Ve /n/m)

d3/2H1/8. [Ty

> 6

1 ~
> Q)

‘B(tjl) n||B 1)|1/2

()
= a2 . Since |B22

which is a contradiction to our assumption ,l is

1] i
monotonically increasing, we know there must exist some iteration t = 31 guch that B2l 2
“1|B |1 /2 Ty1 <ty

o9

, which means

T31<T2+9(

d3/2a 0(1)
Thus we proved the bound of

m
R (Ts.1) p (}?(1)

Us)mg similar arguments, we can prove that **2 = it Indeed we can set T33:= min{t :

(51 ar | p(T1)1/2 (
|B 2 a2 B2 | } From our arguments in this proof, we know Z 2 < O, ) fort < T3

( ) — i

t3 3 = minft : < a} for some® = 4177 to be some iteration with
(\/Elogd t)

n¢ ). Now we can work out the update ofD2.2 during

Na

Now we can further choose
Rg) > afopt € [T2 1"{3,3] andté,g —hh=

B3| < BYP (1408 (i) ™ < O( L
2,2 I ="22 d?a?/2y/ng/n - \/E).This would prove

IB TS 3)' < (U
d1/4 because of the definition of

!
€ [T, f3.3] again to see that

R(Tg“g) (yo(l)

l ¥ 0
that!s.s = T3 and < ~J7T. So we also have

T31. But since T33 >( T31 by our arguments above and the fact that |BE 2| is increasing, we shall have

T
B € (e, S0

(t)
Now we proceed to characterize the learning of 2.2 during t € [T31,T3,2]-

(t)
Lemma D.10 (The growth ofB2.2 until T3). Let T31,T32 be defined as in (D.2). If Induction D.1

g0 RIeH
T50 Tg] +O( 4

n )andT3<T32+O( . )

(t)
Proof. We first calculate the bound for T3,. After T3, since B33 is increasing WhlleRg : is decreasing

by Induction D.1. So by Lemma D.3a, we have

holds true for all t € [T2,Ts], then we have” 3
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QY172 = 0(C1a8(BYY)%), @Y = QY /U1 = o((C}*adal| BY) P ES)1?) !

So according to Lemma D.4, we would have for all t € [T31,T32):

_ 1
(=Vun LW, EW), 02) = (1% 0(1)AY) = O 75— (By)) *sign(By))
Ci" o |Ey |

A(£) 43 [(12)\3
)7 = = O((Ey )’ ) from Induction D.1a. So when t € [T51,T32], we can

(®) write down the explicit form of
Az2and use Lemma D.3d to derive

where we have used (‘E’

Cl‘-"?|E£1112)|2 t)y:
L )(BY)?

) (t)
B3 V| = [BYY] + 10(—575 ) (B
crPadlEs

(T
> |By)| (1+<—)(C o) 1B “)|)
1

(f) 1 1
> |Bss| |1+ O(——F—==) ==
| ( ! ((71(10(1))051/4)

~q1/4a00) (t)

Thus after ( n )many iterations, we would have'JBz 2‘ 23 ml(n){‘E ll By, |} Now let us deal
1

with the growth of|Bz 2‘ at t € [T, T3, 3]. During this stage, sinceD2.2 s still increasing and

B = |5y

|by Inductlon D.1, we have from Lemma D.3a that

= QY /PP = o )>0(—

—5m7)
0120,10(])

02 IZ(BS%)”

o)

! L a1 / (t)
And we can redo the calcualtions as above to getT‘* = T32+0(74 ) since 1/1eE2,1| ang | Bt )]
are both 0(1) according to Induction D.1a,b [

Proving The Main Lemma. Now we finally begin to prove Lemma D.8.

Proof of Lemma D.8. We start with proving Induction D.1.

(t)
Proof of Induction D.1a: From Lemma D.5, we know the update of B11 can be written as
(t)\3 (1) (t)
(B 1 B,
7N Sl - D

(B3} Vd ¥

BTV = BY + 0= [RV)?) + 10(

be 6(031.52500(1)
3 < O0(——1—

Since from Lemma D.9 and Lemma D.10, we know 7 )and from Claim A.1 and

) RO <« Fror
Induction D.1a,c we have X1.1 &) < O(F d%2%), we shall have

1.625 ,0(1) Oo(1)
(9) <d d oy = 10 1 _
E @ "7211 ] ) = O( N )O( 42-25 ) = \/a O(l)

s€[Ta,t)

0

. (ty _
Further more, by applying Lemma G.3 to™? 2.2 with q° = g - 2, and notice that sign( Bjﬂ) -

(1)
sign(B;5") for all ¢ € [T, Ts], we also have
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(5)\3 0(1)

B -

E O(—( 1"2) )aeo(l)nA(s) SO(Ql )
(5)hg /21 2,2

SE[To,t) (Bz,z)"

(t)
Now we turn to the last tw(o) tefr)ns. We first see that from the expression (D.3) of iy s update, we
OFNOIN
have that (note that sign(bllA?,l) =1)

(b)
E; 1 .
> i X eumiInr) - ey D) — o (sl
(9 9 (12)
s€[Tn,t) |Bl 1| €T |Bl.l |
()13 _ 1 (t) A (s)p(s)13 (1)
where we have used the fact that 2.1 [Ry']" = (1+0(3)) E5, A 2 1 andz'sE[Tz t) UZ {B "5 Ry

from (D.3) (which holds for all t € [T, T3]). And also, the analysis above shows that
(s)

B
t T / 2,2 5
|B§i - |Bi,12)‘ + O( T?E/TF) - E (%) 1 ‘E’%
1,1

SE[To,t]
) i AS) S T bS]
for all t € [T, Ts], which means that either s€lT2] |B( )| = Zesela) {102 and we have
B()
(s)
e 200Ny, > Q\/nE/1
|B I =z |B |holds throughoutte [T2,T5], or that <t |B( )| 2 ), in

| B! BY By

which case we would have 1| to be actually decreasing (as™ 2. 2 is increasing). (1\)Iow that since

(T(jl) we can easﬂy see by ou(r) defmltlor(l o)f Ts and the monotonicity ofBl 1 after going below
2 t
By = QVIE/M) that B} = 049812 (1) for all t € [Ty Ts].
B
Next let us look at the change of 2:1. From Lemma D.5, we can write down the update of

By,
a ; 1) N O 1 ( (13 ~ (}O(l) ( _ 77(}0(1)
By 21+O(d/2) Ry + O(=—)nAy) + O(*—5—)

t o1
Ry <0 \/fiF/ff = 0(1) for all t € [T, T5] by Induction D.1c, we have ¢2)[R P<aforante
[T2,T3] and
O(1) 1.625 O(l) 0(1) ety
~faadl ) pe3 « 54y
e[%:t}O(d @y [Ry]P < Of ; )nO(d/g)_O( dT/g)
8 2,

(t)
And similarly as in the proof of induction forBl-.l, we have

() 1) (#) a()(l) _ na()(l) a()(l)
>0 0L mAs <O(FLo). YT O(F—) < 0(F—)
s€(Ta,t] s€[That] ‘
Tz)
B(t) ( z |7 ( )

which proved the induction for*'2.1 smce
(t)
Next we go on for the induction of? 1,2, we write down its update:
( B(t) ) O( 0(1)
B!'sY = BY) + 0(—2)E{)nAl) + n()( ES) 2oy + 0( )

()2
2,2
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By Lemma D.9 and Lemma D.10, we have for any t € [T, T3]

0(1)
X [
() < V=
SE[T2,t] d d
1
polylog(d)
and also
oV (1)12,(1) oy (1) 124t
~ t t Wt [
> n0(EEareY < | >0+ Y pyradlI X1 2
s [TQ..',] sE [TQ,TS)‘]] .':'E[Tgﬂ ,Tg]
~ QO(I) o) O(l)
< nO(“) - (Tha = T) - O(afVd¥®) 4+ nO(=g) (T3 = Tu)
~ a?(l)
<0("-)
(B (1), 4 (t
Sl EainAs)
Now we consider the term G)( 2) , we have by Induction D.1a that

12 1A
> ol ) VESIAYY| < O(ae/m(BY)) Y 0 fo

t
ol (é?% EPRUE

B”:B

2)
where we have used our induction hypothesis that 2 (1 ?(1)). Using Lemma G.3 by

_ plt) _ (1) p(T2)
setting 't — By q'- 3, andA =0(1) = d ( )B‘M , it holds that

(12 6 (t (12) ( 12) / 1
X o( (o )E() 2)2 so(" 175/17) (Tz) <o / ) (0) < v=
semae]  (B22)? 1B, | B, dpolylog(d)
®
B 2 B(m)2 B(0)2

where in the second inequality we have used Lemma B.13c, Lemma C.8a and Lemma B.1, and in the

last our choice of N5/ = polyios L @- This ensures the induction can go on until £ = T3. And we

finished our proof of Induction D.1a.

E®
Proof of Induction D.1b: Let us write down the update off12 using Lemma D.7:
Bl = By —np=)) + Z Os=\) (~EOIRST + ORY) + o [RVFZIRY ) + Y npal)
113p)
E£ l—r}E_ ZOT}ZH R(t})
Le(2]

Z nE E R(f %/Z[R( )]"1/2

(d;/z )(I)(f) [R(t)]

1 ]
Ve (R RY?

= E?z(l - WEH(” @(’?Ezm )[R;t)]s) + 5(9 + 73
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t) ) (t)
where in the last inequality we have used Ré > Ry’ from Induction D.1c and £1.1 = Q( l )

2 < O(-Lg)x!"
2,1 = ¥4 g3/2/~11from Claim A.1 and Induction D.1a. Now we can use the same analysis in the

E®

proof of Lemma C.8 on""1.2 to prove the desired claim, which we do not repeat here.

(t)
As forE‘Z‘l we can obtain similar expressions

By = B (1 - npEy) 29 neSg)IRT)

L0+ —) Y e(ngzgfg)[RJ)JS/z[RSW + 3 Ay,

\/a Le(2] Le(2]
Now we can obtain bounds for each terms as
0o(1) 1.625 0(1)
(S) (s) nEal ~ d o 1

s€[Ta.t] £e[2)

and by (D.3) in Lemma D.9, we also have for any t € [T, T3]

Y O o+ ADILICE SENROPLROPE <00+ —) 3 3 0@psS)RSP
s€(To,t] Pe[z Cos€[Te,t] £e(2)
= Lo
<0O(p+ —)R:
= (IQ \/a) 2
- 1
<00+ —=
(0 ﬂ)

And also by using our induction and by (D.3) in Lemma D.9:

ne/n s s s NE/1N (T 7? 77
Z Z TJEAM_ < Z E(/t)lo s )-I—T]Zg 2)[R( )} EJ?‘I/ZZ) Réf 2 <0 By _ =o(v/ne/n)

s€[Th.t] £€[2) s€[Ta,t) | | 2,1 | 10%’ d

Finally, we can calculate
(t)

e B
A NE £22 2
> =Bl = Y —22nALY

(t
s€[To,1] s€[To.1] " E2.1

B

By resorting to the defintion of T3 and go through similar analysis as for the 1nduct10n of 1.1, we can

obtain that‘ ‘5’2 1|ls either above |b2 1 |(1 + ©(1)) or is decreasing and always above 2 |b
This proves Induction D.1b.

(t)
Proof of Induction D.1c: The proof of induction off%3 " is half done %rg Lemma D.9, we only need to
4
complete the part when t € [T3 1, T3], since by (D.3), we always havef’s " to be decreasing by

Rz(t+1)= R2(9(1 - X O(nZ2(s))[R2(8]2)

‘€[2]

And when t € [T31, T3], we have
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X (s) 3/8+0(1)
o2 < Pe(nd )
‘e[2]
(13) 1

So if we supposeR2 = Vd, we shall have for Ts - Ts1 = 0(d'/4+°(1)/n) many iterations that

R§t+l) > Rgi"%l)(l _ Ty—T51 > S)(R(j? 1))

d> /3) = dua (by Lemma D.9)

) .
So it negates our supposition, which completes the proof of the induction forfty” int € T3, Tj].

(t)
Now we turn to the proof ofinduction fOI‘Rl we Write down its update: (as in Lemma C.8)

R = RY —eRVP) (2] + Y 5(EL)?)
e2]
0 &) plt) (th3/21 p(t): [/ .
Itis straightforward to + O(;nz )E§3 (5 + o)1 W”[Ré )]%/2) + poly(d) derive
ZEHEt I R(f) {R(f)]m{ ]a/2<0 )gzzt t) [Rt)]a
(2] Le(2]

and when t € [Ty, T31]:

S S EIESNR + o[RS PRS2 < Oe + wd"i;ﬁ’;/“ PO ILR
sE[Ty,t] £€[2) SE([Ta,t] £€(2]
and when t € [T31,T3]: ‘ _ _
> T AT + R < O+ ) 0t <o)

s€[To,t] £€(2]

RY < o4

So these combined with Lemma C.8 proved that 43/1) for all t € [T, T3]. We can go through

. . R RrY 1
some similar analysis about2 " to get that''1 = dforall t € [T, T3].

Finally we begin to prove the induction offt12, Similarly as in the proof of Lemma C.8, we first
write down

RV = RY) = (Vo LW D, EO) 11y 1wy — (Vo LIW®, EO) 11w
+ 2 (o Vo LW EOY 11,1V, LW O BO))

ARY —(t YqF /e .
= R+ (= + 3 SUEL)?) (~0(Ri) + 0(0) RV [RY) 2
+a(s6(ED)? + > ) (—e(RY) + 0(e) [RY1PAR) 2
te[2]

(1) (1)
Note that since +O( Z Z EJi -3
(7,0)#(1,2)

B < Ole+ SRS/ (RY 2

()1 pth2 () ()2 n
(RSP + ROROP)

(t) 1
and” = Olm), it holds
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BN RVRIP < Y gsEY RPRY?

Z r)Em

(7.6)#(1,2) (7,0)#(1,2)
<o|ZHIRTP+ 3w Oo+ =) B} (")
e[2] :
so the update becomes
Rgfzﬂ) = Rgf)z 1 —TIO( 11t Z E E{ 2) 4( } - TIO(E?] 24 Z E )[Rg)]2

+ 100+ —=)[RI]1? R“ 20 (=) + E(té(b21)2)[1?§”]2
tef2
)[R(‘ PRSP (2 (B2 + 3 =8 R
g2

é

+70(0+

5

Bt
Now we can use the same arguments as in the proof ole,2 in Lemma C.8 to conclude.

Proof of Lemma D.8a,b,c: Indeed, at the end of phase III:

Induction D.1a == Lemma D.8a
Induction D.1b == Lemma D.8c
Induction D.1c == Lemma D.8b
Now we have completed the whole proof. O

E The End Phase: Convergence

When we arrive at ¢ = T3, we have already obtained the representation we want for the encoder
network f{X), where vi and v; are satisfactorily learned by different neurons. In the last phase, we
prove that such features are the solutions that the algorithm are converging to, which gives a stronger
guarantee than just accidentally finding the solution at some intermediate steps.

To prove the convergence, we need to ensure all the good properties that we got through the
training still holds. Fortunately, mosts of Induction D.1 still hold, as we summarized below:

Inductions E.1. At the end phase, i.e. when t € [T5,T], Induction D.1a continues to hold except that

B33 = 01 Inducti - |31 -
2,2 Induction D.1b will hold except that for!"=2.1lonly the upper bound still holds, and the
) plt
upper bounds in Induction D.1c still hold while the lower boundsfor )v is 1/poly(d)
t> Ty + 2L | E(”

Moreover, there is a constant C = O(1) such that when , we would have

O(o+ ﬁ)[RE”]S/Q[Rg)]S/Z.

Now we present the main theorem of the paper, which we shall prove in this section.

d2+o(l) 2+o(1)
Theorem E.2 (End phase: convergence). For someT =T+ =~ n and T = poly(d)/n, we have for all

t € [T, T] that Induction E.1 holds true and:
" -
B3I, 1B = O(d)

(a) Successful learning of both ' while
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(1) (13) o1 (t)2
R < RY™(1 - 0(L)R
S B ("_?M il )foraIIjE[Z].

<0(o \/7){ (lt)]:j/Q[Rgf)]a/z

(b) Successful denoising at the end:

(c) Prediction head is close to identity: I Js 3 J| for aIIj € [2];

) -
Infact (b) and (c) also imply for some sufficiently large t = poly(d)/n, it holdsRJ = poly(d) and

|E,5 il = Poly poly(d) for all j € [2].

And we have a simple corollary for the objective convergence.

Corollary E.3 (objective convergence, with prediction head). Let OPT denote the global minimum of

=228 = O(p;

the population objective (A.1). It is easy to derive that OPT — @). We have for some

sufficiently large t = poly(d)/n:

L(W(,E®) < OPT +
poly(d)

Now we need to establish some auxiliary lemmas:
Lemma E.4. For some t € [Ts,poly(d)/n], if Induction E.1 holds from Tz to t, we have Lemma D.6 holds
att.

Proof. Simple from similar calculations in the proof of Lemma D.6 . O
Lemma E.5. For some t € [T3,poly(d)/n], if Induction E.1 holds from Tz to t, we have for each j € [2]
that X X nZ)[R(s)]3< O(Rj(19)), Vj€E[2]) j

SE[Ty ] €[2]

Proof. Notice that when Induction E.1 holds, we always have

X(ZGo+ Z6-) (E3t))2) = (1 £ o(1)) X 20
‘€[2] ‘€[2]

(t)
we can use Lemma E.4 to obtain the update of B2 as in the calculations when we obtained (D.3):

R2(t) = R2(13) - X X O(nZ2(s))[R2(5)]3

SE[T3t) '€[2]

which means that Ry 2 is decreasing from T3 to t. Summlng up the update, the part of Ry 2 is solved.

(t)
For the part of Rl , we separately discuss when |E2 15

Olo+ ﬁ){R?)l‘W[R«E")W

is larger than or smaller than

When the former happens, which we know from Induction E.1 that it

0(1)
cannot last until some =Ts+ =L — ’.' many iterations, we have fort € [T-‘%-tfi]
o(1)
2(s) 1 pls) (5)13/2 32 - A I e (Ts) L p(Ts)
> Z nzﬂbﬁ RS + o) [RYPPRY) SO(QJrﬂ) R dB

s€[T3.t) (4.0 €[
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Now fort = i we can simply go through similar calculations as in the proof of Induction D.1c to
obtain

S PR IRD + o REPRRIPR <Y O+ 7 2y nERPIRYP
sefth.t) (5,0)€[2]? se[t].t) (4,0)€(2)?
<O(o+ ﬁ) R( ?)sgﬁ%}i)[ SS)]:_’)
1

So by applying Lemma E.4a and Lemma D.6, we have

R1®=(1 2 0(1))R1(13) - X X O(nZ())[R1(s)]3

SE[Ts,8) '€[2]

which proves the claim. O

(t)
Lemma E.6. For some t € [Ts,poly(d)/n], lflnductlon E.1 holds from Ts to t. Then we have |Ej=3*j| is

| < ORY) + o) [RVPRYP2 + O( )[RV

decreasing untlll 3> 3 i . Moreover, we have for each

t € [T, T] that

(s) (fd) ~ 1
Z nEE; E 5 | < |EjY+ 0(e+ —=) < O(Vne/n)
s€[T3,t] \/a

Proof. We can go through the same calculations in the proof of Induction D.1b (using Fact D.2) to
obtain
(t+1) (t) =(t) (t)
Ejaj=Ejz;(1—neg;") + Z LEESY.

+ > OmES)) (- E(”

7, ;—j[Rgt)J] + O(R( + 0) [Rgt)}i%/Q[Rgt)]g/z)

' —(t 1)1 plt ~ 1 TR0
= E;:;—j(l — 77E:,§. ) _ nE@(Zg:} [Réljp)) + O(—(p/z} Z WEE_E-};[Rg 3

fe(2]
+O0(ne= ) (R + )[RV RYP/

(t) (th3
where we have used in the second equality that 2re Bje < ( 7) Leep B 31 [ I and also
(*) ()
Yja—j < O(z7 d372 )EJ}J’ for both j € [2] when Induction E.1 holds. Note that from above calculations,
there exist a constant C such that if —

| > C(RYY+0)[RVP2RY P2+ 3 1o nedl) |

| Ja i 74, we have

suffices to observe that

t 9 .
S 0= )R + o BRVTPRRYT? < 3 0pzl) + et (B + o (RVP + [RYT?)
SE[T3,t] SE[T3,1]

ll to be decreasing. Now it

~ 1
<O+ ﬁ)
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U) 3
which is from Induction E.1, Induction D.1c and Lemma E.4. Also note that XJ. J[ ]

O(dofl)):(f) )
43/1/=j at this stage, we have

(t) (T3) =(s) 72(s) A 2
Bylis=Eiay = 2. 5B+ 0+ \f
s€[Ts.t)
®
Recalling the expression of Z;  finishes the proof. O

Lemma E.7. Recall T, defined in (C.1) and Tz defined in (D.1), we have
(t)

i ¥ L) 1
Y% 7?/77E?%‘%,§‘E2,1| < 50 Eiat 20

t<T> 1,1

To prove this lemma, we need a simple claim.

Claim E.8. If {X:}««r,X: > 0 is an increasing sequence and C = ©(1) is a constant such thatV

Xee1— X< O(n) and Pert(xm - X¢) = C, then for each § € (dl,l) it holds |xr- C
O(0% + 23 + 0(*%-))

d.
Proof. Indeed, for every g € 0,1,..., we define Ty := min{t : x;2 (1 + 6)9x0}. and define b := min{g : ((1 +

I\

6)9x0)%2 2 C - 62}. Now for any g < b, we have

5 1 . 1
> wl@ —a) = aq (a7, —a7,) = (L+8)96(1+6)7 g - 7= S(1+0)29 a2 - y
LE[Tg, Tg+1]
By our definition of Ty, we can further get
: b b
C:th(ﬂft+] —xt}zz Z Te(Tpp1 — 14) > (1+(5) —mz—a 20—52—32{2]— p

t<T 9=1t€[Ty,Tg41]

, . b
And also we have C < [maxtsrxt)PKT (Xe+1 = x¢) = X217, so we have |r% —-Cl <0+ 3’3 + & where b =
O(log(C)/1og(1 + &)) < O(logd), which proves the claim. ]

Proof of Lemma E.7. From the proof of Lemma C. 8 and Lemma D.8 we know that

(t) 1
max | E)] < 3 (1% g sl AL+ Olo + )

t<Ty oy vd
And since from the proof of Lemma C.8 we know that
T 0 ~ 1
RS = RY — 37 (14 0()mmlef] +Ote + )
t<T3 d
_ 501 W AD 4 5 L
= (1£0(575)) ) E218y; £ 0(e+ )
t<Ts
(t) plt+l) @) (t) t+1
We can define some alternative variables’2, lupdated as™2.1 Eaq +nEA ) and R( )=
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~ (t) _ () 1 (t)
() _ pt) A0 Ey) — E5 | € 50 maxi<ry | Es |
Ry’ — By, 18y, 1 Itis easy to see that| &1 % i ay’™ =3 * From above calculations,

£ (gt _ gt (1)
we know% ZtE m1s) P21 (B Ey) = It +0(o+ \f)+o( d'/1), which by Claim E.8 implies
that
S _ /B 1. _ 5 1 1
Vn/nelEy | =\ Ry io(m)—\@ﬂ:O(Q-ﬁ- ﬁ)io(m)

And when we turn back, we shall have
\/7?/77}:7 maxy<ry |E2 1| < \/2+ sz(L)

(t) (t)
techniques onPi1and i . Indeed, from (C.4) and similar arguments in phase I, we know for all t €

[T, T]

. Now we can use similar

t+1 0 1 s)ols) | = 1
R = R = 3701+ O nnEf + Olo+ =
s<t :
R < B 00 RYP)
aq ) (E.1)
=T O O(l) R(t) <0 1
So one can obtain that at some iteration 1t ( " ~ 7 ),weshallhave "1 — (ﬁ) forall t = ¢0.

(t)
Now let us consider the growth ofB1.1 before t%, which clearly constitutes of
t T [ t t
B =Bl + 30 (A1) - i)

te[Th,t")
() 4 nEi) 0 (1) (1)
= B z e 3 81 251gn(B R SN S
te[Ty t! ) 1By 1l
B eflmall) X a(rlh- D) + o)
t<t/ | Le[T,t") : \/E

where the last one comes from the proof of Lemma B.13. Moreover by using the same arguments in
the proof of Lemma C.8 we can easily prove that

t t
> @ -1

tG{T1 1)

)

Sl

(t

<1 5 -

<07 = 5 Rely > 1B - 1B - O
) = .',<!'| 1.1

And for t € [0, T3], we also have by (E.1) that
(t)

NE1N Lt t) ot 1
> Mlane s ietzoch

te[t/ 1] |B1,1| te[t' T»)

R(

1
Vi) by (B1)and B = O for ez 10
(t)
B

t
1.1 andR(l )during t € [0,t9] as

Recal] ZiE[U t') (1 + O(dd,’z ))Tzl.,)lgl(l,g + O(Q +

Now we can finally go through the same analysis using Claim E.8 on
above to obtain that

t
ne{)

(t) ~ 1 ~ 1
51,22(1—O(W

t<Ts IBI.I
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Combining the results, we finishes the proof. O

Now we are prepared to prove Theorem E.2.

E.1 Proof of Convergence

(t)
Proof of Theorem E.2. First we start with thePis, Indeed, we can go through similar calculations to

see that all gradients h-V.,L(W®,E®),vi can be decomposed into
(=Y, LIWO, EO) 0y = (A = 1) )+ (@) 1))
where Agﬁ‘:ﬂi2 N ;’ff) Land thg - Tétg‘ 2 can be expressed as
A — 10 = Cra§Cradel (BY) (Eﬁ‘% B B )P + (BB, )

3—
t t t : 4 :
G (B + B (B, 4 ) (BY)_))

~ CpalCrafa!) (B(") (B, )*ES}
+ Coa§a\(BY))P o€l
t) t) (t t) t t t : 2 : t) 5
rf) -1, = Coa§Crafa)) J(Bg_)ﬂ) BIPEY 5 (B, (BB, )* + (B2, )*(BY_)°)

— Coa§Crate) (BN (ES )2 (B 5 )¢ + B, (B )*(BY, 5 %)

5, (¢ ) L (¢ t)
+ Coas® B (B, )P (BI)Coel!
(2 plt) 2 (t)y2 )2
Firstly, for all the terms that contain factors of (B )* (B3~ ~J; 0)” (or (Bj /) (Bj,Sff?) ), we can apply

d‘E 54l < O(1),Vt € [T"T] to obtain that their

Lemma E.6, our Induction E.1 assumption an
(multiplicated by n) summation over t € [T5,T] is absolutely bounded by Oe¢(4l). So we can move on to

deal with all other terms. When j = ', Using Lemma E.6, we have

A )5 A t n=; f
Z 7700@801@?@;[)|BJ(‘2| (Ef:;—j)g(B:(af)j.:aff)ﬁ - Z (Jr,) (E;gf‘c)i—;i)Q

te(Ts.T) te[Ts,1) [ Bl
T:
<\ JELIEE |+ Ole+—2) = 0()
BW
And the sign of LHS is 51gn( i:¥). Moreover, forj= "= 1, from Lemma E.7 and Lemma E.6 we also have
7 -
" uCoadCrafel B PED2BIY° < /1| S meE B
te (13,7 1E | i

n ~ 1
< \/—IEéff)|+O(e+ )

Z 77211 1
— 52(1)
ay

t<Ts |B

Since we have
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1L nZh) e,

T f t
Bg,f) = Z 12 + Z Z ( ;g,:i—j)z
s<T» |Bl 1| s<T» |BL Ll teT | j.l7.|
And since by Induction C.1 we have = 1,11 ©(1) during t € [T, T2] and te[Ty, 1o 1521 =
A
R(M-0(1) = 2-o0(1). For all the other terms in the gradient, we can apply Lemma E.6, our
Induction E.1 assumption and | J 5 Jl < 0(1) so we have for t € [T5,T]
—~()
: UZ 7}2 ; n=> p 5
B = 3 Tl 30 TR - S s )2 o)
s<Ty |Bl 1| s<Ty |B , te[T5,T) | j:El
> sy (1) AT LA 1
7]/UEH13X|E21|+ 521 — \EJ;J|+O(Q+—)—0(1)
<, |BY) L
n z 1
> Z —o(1) =2 (1)
S‘<T2 ]_ ll

which also proved |Bl=1| - 0[1) sincfe all the terms on the RHS are absolutely O(1) bounded. Since

one can see from Lemma E.6 that ‘E‘Z,l | is decreasing before it reaches 41). Moreover this proves

% 77/’]E|E 1< Bl 1for all t € [T5,T], and also the fact that
B{) > (1), Vte|T3T]

B . : EY) < 0(!
The case of~2.2is much more simple as—1.2 = *\d) throughout t € [T3T] by Lemma E.6 and

(t)
Bj 2= 0(1) for

all t € [T5,T]. When j 6=, all the terms calculated in the expansion of A(9 -Y(:9 1 and '8 -Y;:0 ,

()2 (Y2 _ Al
) - O( By, 2) - O(E). So we can similarly use Lemma E.6 as before to

Lemma D.8c, Now we can go through the similar calculations again to obtain that

contain factors of (B d) or (

t (T3 ()
B\) =B (1+0(%—

derive that 737 f d ))forallt € [T5T] andj € [2].

£
As for the prediction head, the induction of 1.2 follows from exactly the same proof in Lemma

(t) ,
D.8. The part of £31is half done in Lemma E.6. It suffices to notice that = 0‘2) and if

|E 1| Z C(Rl 2t o)lR t)]w[R f)]w for some C = 0(1) then
By = Eyy (1 - npEy) - npO(S5)[RYF)) + O( dz/z ) > neSy[RYT
tef2]
+ O(npSh) (Byy + o) (R (RY) 2
))

f](l 1

< By (1= 6(C

K20

1
So after n# many epochs will we have

: 0] 013/21 pt13/2 — 7 1 81320 m(t)3):
B3 < (log d) Rz + ol (RYPPR)/? < Ofe+ o) R/ RS/
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(t)

(t)
as desired. And the rest of the induction of“2.1is the same as in the induction arguments of Eq 3in

Lemma D.8.
t (t (%)
The induction ofR(1 ), Ry andf12is exactly the same as those in the proof of Lemma D.8 except
(t) /) 11 o(1)
Ry /Ry’ € [—ony ()(1) s (Y

(t)
here we only need ] after T4 Indeed, from the update of i (which

can be easily worked out), we have

(t+1) _ p® 1 _ a(msOypd2 (1)
RV =RV -6z )RV1?) = RV (1 - 6(%

; ; )[RYP2)

n
b
&
d2attM
: o : R / R
Now after 7 many epochs, we can obtain from similar arguments in Lemma D.8 that +*1 2

1 1
—5s ) ~ 1
[“?m ! ] and’’; " = 4. The induction can go on untill t = poly(d) /7.

(t) (t)
For the convergence of Biland P22 after ¢ = T4, notice that their change depends on

By =(t)
3, L3=i =) () _ (T4
=T B7) ™7 Wwhich stays very small after Ty, we have that 157 IS o@y forallje 21,

This finishes the whole proof. O
F Learning Without Prediction Head

When we do not use prediction head in the network architecture, the analysis is much simpler. We
can reuse most of the gradient calculations in previous sections as long as we set E( to the identity.
Note that here we allow m = 1 to be any positive integer.

Theorem F.1 (learning without the prediction head). Let m be any positive integer. If we keep

E® = [, during the whole training process, then for allt € [Q( 7 ) ,poly(d)/n], we shall have

(t) (t) O(-L ) _ 1
1Bjal = ©), |Bj3] = (\/E) and ;" = Ol=m )for all j € [m] with probability 1 - o(1).

() « _1__
Moreover, for a longer training time t = poly(d)/n, we would have R < pely(d) for all j € [m].

Moreover, it is direct to obtain a objective convergence result similar to Corollary E.3.

Corollary F.2 (objective convergence, without prediction head). Let OPT denote the global minimum
of the population objective (A.1). When trained with E® = I,, we have for some sufficiently large t 2

poly(d)/n:

L(W©,1,,) < OPT +
poly(d)

Proof of Theorem F.1. The proof is easy to obtain since it is very similar to some proofs in previous

sections, and we only sketch it here. Indeed, using the calculations in Lemma D.5 and Lemma D.4
a%je[m eW = gt .
and set e YR ] to zero. We shall have (note that here®ir = *i for any r 6=j)

(=Vu, LW ED) 0g) = CoCaaf (B0 el = ©(CoCaafa (B[R]

Now we can go through the similar induction arguments as in the proof of Lemma B.13 (with TPM
lemma to distinguish the learning speed) to obtain that for each j € [m]:

Bl =00), B =Bl +0(1), Ve m (when! 2 %)
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When this is proven, we can also reuse the calculations as in the proof of Lemma C.5 to obtain that
RV = RV (1 - oms)RY) = RY(1 - 0(nCoCaafe (B [RV)2), ) € [m]

J

_ O (t) 5 (deW (t)
- O( ), we shall have R;” < 0(% d ). While the decrease of R s

0
B = BY(1+0

So again after some t

happening, we can make induction that|
iterations before t, then

(1)), since if it holds for all previous

X n|h=V L(W(s),E),vi| = X nCoaz6Dij(s)| Bj(s2)|5C2Ej(s) w 2

s<t-1 s<t-1
< B
< polylog(a) 524
e — (t) O (t)
where - is due to Corollary G.2, where *t = ‘B;i~1|and b = ‘B;rﬁ‘and S < polylog(d) 0 .
1 ,y S

O(logd)xo. which finishes the proof.

G Tensor Power Method Bounds

In this section, we give two lemmas related to the tensor power method that can help us in previous
sections’ proofs.

Lemma G.1 (TPM, adapted from [3]). Consider an increasing sequence x:2 0 defined by X¢.1 = Xe +1Cex9;
for some integer q = 3 and C:> 0, and suippose for some A > 0 there exist t° = 0 such that x« = A. Then for

every § >0, and every n € (0,1):

S(1+46)7! (1+8)zo\7 "\  O(nA?) log(A/xo) 1
2 ”sz((1+5)w—1(1_( A ) )_ 0 1og(1+5))‘wg—l

120,00 <A
1+6)1  O(nA)log(A/x 1
Z nCe < (( i )l + (,U )10%(1 /Jg)) =
(>0,0:<A q- zo log(l+4)/) 2l

This lemma has a corollary:

Corollary G.2 (TPM, from [3]). Let q = 3 be a constant and xo,yo=0(1) and A = O(1). Let
{xy}e=0 be two positive sequences updated as

— 4
o Tit1 = T + N0 for some Cp> 0;

* V1 =Y+ nS:Cy for some S > 0.

1
Suppose T0 2 Yo(maxy.,, <4 S¢)a-1(1 + polylog—— 1 (a)), then y:< Oe(yo) for all t such that x:< A.
1 [wol
Moreover, if T0 = yo(maxy.s, <a St) a1 log(d) e would have lye = w0l < polylog(d)

Moreover, we prove the following lemma for comparing the updates of different variables.
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Lemma G.3 (TPM of different degrees). Consider an increasing sequences x;2 0 defined by X1 = X¢+
nCwx4, for some integer q > q°= 3 and q° < q - 2, and C;> 0, and further suppose given A = O(1), there
exists t° 2 0,x0= A. Then for every § >0 and every n € (0,1):

ST nCaf < (1+60)7 (0(1) + A7) ——

1>0,2:<A Lo

’ R 41— (]_ + (S)—h(q—q'—l) 1
D nCaf = (1+6)7" (5(1+o) ! L p—
10,2, <A 1—(1+6) le=a'—1) 14

-0

where b = O(log(4/x0)/1og(1 + §)). When A = xod®W), n = 0(4lqs) and q = O(1), then
q 1
Z T]C;I; = @(m)
t>0,2: <A Ty
Proof. For every g € 0,1,..., we define Ty := min{t : x;= (1 + §)9x0}. and define b := min{g : (1 + §)9= A4},

we can write down the following two inequalities according to the update of x::

XnC[(1 + 8)gx Ja< (1 + 6)xTy— xTg+ NAg< 8(1 + 6)gx0 + nAq
0
t€[ Ty Ty+1]

XnCe[(1 + 6)g+1xo]a= (1 + 8)xTg— XTg— NAg 2 6(1 + 8)gx0 - nAq
t€[ Ty Ty+1]
where g+1 < b. Dividing both sides by [(1+8)9x0]4-20in the first inequality and [(1+8)9+1x0]9-90in the

second, we have

: ) 1 nA9
9. 14
Z NCil(1 +0)7xo]" < (14 9)9ta—da'—1) x[c!}—q’—l 21771

t€[Tg,Tg+1] 0
, §(1+4)1 1 nA?
Z 7]01[(1 + 5)94_13’1()}!? > 1 T - 7
(g+1)(g—q'-1) g—q'—1 q—q'—1
te[Ty, Tg+1] (1 + 5) Ty Lo

Therefore if we sum over g = 0,...,b, then
Z nCizd < Z nCe[(1 + 6)7+ zg]?

1200 <A 120, <A
= (1407 Y nC(1+ )]
20,2 <A
, ) 1 nA9
<(146)7 ) ( —+ ——
= —g'—1)  q—q'—1 —q—1
oo (14 4)9la—q )37?; q 21
/ 0 1
— $\4 q
=(1+0)70 ((1 T +nbA ) mg_q,_l
' 1 1
<(1+9)70 (7 + nbA") —
qg—q -1 xd ™! ! I
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For the lower bound, we also have
>0 nCurf 2 (1487 3T nGl(1+8)" gl

20,2 <A 20,2, <A
o S(1+409)7! 1
2 (1+4)" Z ( Na—en ~ ") ==
) (1 + §)(gtDlg—a'~1) Ig q
L 1= (14 §)bla—d'=1) 1
— q 1 .y q S
=(1+9) (5(1 +4) (11071 nbA Igiq,il

1—(1+6)(a—a-D q—q'—1

, 1-(1+4§ —b(g—g'—1) 1
—(146)¢ (5(1+5)1 (1+9) —nbAq) L
(E[)

Inserting b = ©(log(4/x0)/log(1 + &)) proves the lower bound. For the last one we can choose

§ = 1
viegd to get:
§(1 — (14 §) bla—d'-1) )
AU T ) an), 49 =)
b = O(polylog 1—(1+9)-laa ,
which proves the claim. O
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