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Abstract 

Recently the surprising discovery of Bootstrap Your Own Latent (BYOL) method by Grill et al. 

shows the negative term in contrastive loss can be removed if we add the so-called prediction head 

to the network architecture, which breaks the symmetry between the positive pairs. This initiated 

the research of non-contrastive self-supervised learning. It is mysterious why even when trivial 

collapsed global optimal solutions exist, neural networks trained by (stochastic) gradient descent 

can still learn competitive representations and avoid collapsed solutions. This phenomenon is one 

of the most typical examples of implicit bias in deep learning optimization, and its underlying 

mechanism remains little understood to this day. 
In this work, we present our empirical and theoretical discoveries about the mechanism of 

prediction head in non-contrastive self-supervised learning methods. Empirically, we find that 

when the prediction head is initialized as an identity matrix with only its off-diagonal 

entries being trained, the network can learn competitive representations even though the trivial 

optima still exist in the training objective. Moreover, we observe a consistent rise and fall 

trajectory of off-diagonal entries during training. Our evidence suggests that understanding the 

identity-initialized prediction head is a good starting point for understanding the mechanism of 

the trainable prediction head. 
Theoretically, we present a framework to understand the behavior of the trainable, but 

identity-initialized prediction head. Under a simple setting, we characterized the substitution 

effect and acceleration effect of the prediction head during the training process. The 

substitution effect happens when learning the stronger features in some neurons can substitute 

for learning these features in other neurons through updating the prediction head. And the 

acceleration effect happens when the substituted features can accelerate the learning of other 

weaker features to prevent them from being ignored. These two effects together enable the neural 

networks to learn all the features rather than focus only on learning the stronger features, which 

is likely the cause of the dimensional collapse phenomenon. To the best of our knowledge, this is 

also the first end-to-end optimization guarantee for non-contrastive methods using nonlinear 

neural networks with a trainable prediction head and normalization. 

Contents 

1 Introduction .................................................................................................................................. 1 

1.1 Comparison to Similar Studies ................................................................................................... 4 

2 Preliminaries on Non-contrastive Learning .......................................................................... 7 

3 Problem Setup .............................................................................................................................. 9 

arXiv:2205.06226v2  [cs.LG]  14 May 2022 



 

3.1 Learner Network ....................................................................................................................... 11 

3.2 Training Algorithm ................................................................................................................... 12 

4 Statements of Main Results...................................................................................................... 13 

5 The Four Phases of the Learning Process ............................................................................. 15 

5.1 Phase I: Learning the Stronger Feature................................................................................... 15 

5.2 Phase II: The Substitution Effect .............................................................................................. 16 

5.3 Phase III: The Acceleration Effect ............................................................................................ 16 

5.4 The End Phase: Convergence ................................................................................................... 17 

6 Additional Related Work ......................................................................................................... 18 

7 Conclusion and Discussion ...................................................................................................... 19 

8 Experiment Details .................................................................................................................... 19 

A Notations and Gradients .......................................................................................................... 20 

A.1 Gradient Computation .............................................................................................................. 21 

A.2 Some Useful Bounds for Gradients .......................................................................................... 24 

B Phase I: Learning the Stronger Feature ................................................................................ 26 

B.1 Induction in Phase I .................................................................................................................. 27 

B.2 Computing Variables at Phase I ............................................................................................... 27 

B.3 Gradient Lemmas for Phase I ................................................................................................... 30 

B.4 At the End of Phase I ................................................................................................................. 39 

C Phase II: The Substitution Effect of Prediction Head .......................................................... 44 

C.1 Induction in Phase II ................................................................................................................. 45 

C.2 Gradient Lemmas for Phase II .................................................................................................. 45 

C.3 At the End of Phase II ................................................................................................................ 50 

D Phase III: The Acceleration Effect of Prediction Head ....................................................... 57 

D.1 Induction in Phase III ............................................................................................................... 57 

D.2 Gradient Lemmas for Phase III ................................................................................................ 58 

D.3 At the End of Phase III .............................................................................................................. 63 

E The End Phase: Convergence ................................................................................................... 72 

E.1 Proof of Convergence................................................................................................................ 77 



 

F Learning Without Prediction Head ........................................................................................ 79 

G Tensor Power Method Bounds ............................................................................................... 80 

 



1 

1 Introduction 

Self-supervised learning is about learning representations of real-world vision or language data 

without human supervision, and contrastive learning [66, 45, 43, 24, 20, 34] is one of the most 

successful self-supervised learning approaches. It has been known that the behavior of contrastive 

learning depends critically on the minimization of the negative term, which corresponds to 

contrasting the representations of negative pairs, i.e., pairs of different data points. However, the 

surprising finding of the Bootstrap Your Own Latent (BYOL) method by Grill et al. [39] initiated the 

research of non-contrastive self-supervised learning, which refers to contrastive learning methods 

without using the negative pairs. BYOL achieved state-of-the-art results in various computer vision 

benchmarks and there are plenty of follow-up works [41, 26, 21, 17, 33, 91, 46, 65] making 

improvements in this direction. 

On a high level, in non-contrastive self-supervised learning, 

contrasting the negative pairs, it is extremely easy for neural 

networks to cheat the learning task by learning certain inferior 

representations. One trivial solution known as the complete 

collapse is when φ(·) is a constant vector whose variance is zero. Another trivial global optimal 

solution, typically learned by the neural network after training, is when all the coordinates φi(·) are 

exactly aligned, which is named as dimensional collapse by Hua 

et al. 

even though the prediction head can possibly learn the identity 

mapping and render itself useless. It is mysterious why even if 

the network can minimize the training objective by learning an 

identity prediction head and a collapsed encoder network φ(·), it 

still optimizes for a non-collapsed state-of-the-art representation 

instead when trained by (variants of) stochastic gradient descent 

(SGD). 

Since the proposition of BYOL, there have been lots of empirical 

studies trying to understand non-contrastive learning. The 

(b) Histograms of the correlations of 

encoder network neurons (before 

projection head). 
SimSiam method by Chen and He [26] shows the exponential mov- 

ing average (EMA) is not necessary for avoiding collapsed solutions while stop-gradient is necessary. 

Richemond et al. [72] empirically disproved the conjecture that information leakage from batch 

normalization (BN) is the reason why BYOL can avoid collapse. DINO [21] further explored replacing 

the normalized `2-loss by a cross-entropy loss. Zhang et al. [92] gives empirical evidence that using a 

single bias layer as a prediction head is capable of avoiding collapsed solutions. All the methods above 

 Figure 1: Dimensional Collapse. 

one wishes to learn a network φ such that φ(x) aligns in direction 

with φ(x0), where x and x0 are called the positive pair, generated by 

random augmentations from the same sample. Without 

Network trained without prediction 

head will learn extremely correlated 

neurons. 

[46]. Nevertheless, adding a trainable prediction head on top of 

(one branch of) φ(x) magically avoids learning such solutions, 

(a) Histograms of the correlations of 

projection head neurons. 
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use loss functions that are asymmetric with respect to the positive pair. If one wishes to work without 

both asymmetry and the negative pairs, one must add extra diversity-enforcing structures say 

neuron-wise regularization in Barlow Twins [91] or a more complicated output normalization scheme 

than BN [33, 46]. The seminal works [91, 46] provide empirical evidence that the prediction head 

encourages the network to learn more diversified features. But in theory, the question of how the 

prediction head helps in learning those diverse features is still unanswered. 

Despite the great empirical effort put to investigate these non-contrastive learning methods, there 

is very little theoretical progress towards explaining them. Most of existing theories focus on 

contrastive learning, especially from the statistical learning perspective [83, 85, 14, 84, 42, 86, 13, 15, 

50, 47, 63]. The theoretical tools used in these paper rely heavily on the properties of the minima of 

loss function. However, due to the existence of trivial dimensional collapsed global optimal solutions 

(even with the prediction head) of the non-contrastive methods, to the best of our knowledge, there 

is no well-established statistical framework for those methods yet. To explain the non-contrastive 

learning, it is inevitable to study how the solutions are chosen during the optimization. Therefore, we 

consider understanding the optimization process to be crucial for understanding these methods. 

Our research questions are: 

Our theoretical questions: the role of prediction head 
Why do most non-contrastive self-supervised methods learn collapsed solutions when the 

socalled prediction head is absent in the network architecture? How does the trainable prediction 

head help optimizing the neural network to learn more diversified representations in 

noncontrastive self-supervised learning? 

Theoretical challenges of our questions. Due to the existence of trivial collapsed optimal solutions 

of the non-contrastive learning objective, we need to understand the implicit bias in optimization 

posed by the prediction head. However, to the best of our knowledge, all of the previous implicit 

biases theories focus only on the supervised learning tasks, and thus cannot be applied to our question. 

Even though [89] has characterized the training trajectory of contrastive learning, its analysis cannot 

incorporate the training of the prediction head. In theory, the optimization of nonlinear neural 

networks with at least two trainable layers in self-supervised learning is still intractable. A detailed 

explanation of our challenges will be given in Section 2. 

There are already some theoretical papers [82, 87, 67] that try to address similar questions. While 

none of these papers studied the training process of the prediction head, our results provide a 

completely different perspective: We explain why training the prediction head can encourage the 

network to learn diversified features and avoid dimensional collapses, even 

 

when the trivial collapsed optima still exist in the training objective, which is not covered by the 

 

prior works. We defer the detailed comparison of similar works to Section 1.1. On a high level, the 

results in this paper are summarized as follows: 

Our empirical contributions. In non-contrastive self-supervised learning, we obtain the following 

experimental results: 

• We discover empirically that even when the prediction head is linear and initialized as an 

identity matrix with only off-diagonal entries being trainable, the performance of learned 
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representation is comparable to using the usual non-linear two-layer MLP or randomly 

initialized (trainable) linear prediction head. This disproves the belief that non-symmetric 

initialization of the online and target network is needed. See Figure 2. 

• We empirically verified that even when the prediction head is an identity-initialized matrix, it 

does not always converge to a symmetric matrix during training. This proves the trainable 

prediction head does not need to behave like a symmetric matrix during most of the training 

process. Therefore the theories based on symmetric prediction head [82, 87] cannot fully 

explain the behaviors of the trainable prediction head. See Figure 3 and Figure 4. 

Our theoretical contributions. We based our theory on a very simple setting, where the data consist 

of two features: the strong feature and the weak feature. Intuitively, we can think of the strong 

features in a dataset are the ones that show up more frequently or with large magnitude, 

 

 (a) CIFAR-10 Accuracy (b) CIFAR-100 Accuracy (c) STL-10 Accuracy 

 

 (d) CIFAR-10 Loss (e) CIFAR-100 Loss (f) STL-10 Loss 

Figure 2: Performances of using different prediction heads. Here in CIFAR-10, CIFAR-100 and STL-10, identity-

initialized linear prediction head can achieve good accuracies comparable to commonly used two-layer non-

linear MLP or randomly-initialized linear head. All the prediction heads are trainable, while for 

identityinitialized prediction head only the off-diagonal entries are trainable. Here BN or L2norm represents 

the output normalization, and EMA represents using exponential moving average to update the target network 

as in BYOL [41]. More details of these experiments can be seen in Section 8. 

and weak features as those that show up rarely or with small magnitude. We consider learning with 

a two-layer non-linear neural network with output normalization using (stochastic) gradient 

descent. Under this setting, we obtain the following results. 

• We prove that without a prediction head, even with BN on the output to avoid complete collapse, 

the networks will still converge to dimensional collapsed solutions, which provides a theoretical 

explanation to the dimensional collapse phenomenon observed in [46]. • We prove that the 

trainable prediction head, combined with suitable output normalization and stop-gradient 
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operation, can learn diversified features to avoid the dimensional collapse problem. We 

characterize two effects of prediction head: the substitution effect and the acceleration effect. 

The intuitions of these two effects are summarized below: 

The mechanism of the trainable prediction head 
In our setting, we prove that (1) without the prediction head, all the neurons will only learn the 

strongest feature in the data set thus causing dimensional collapses; (2) the trainable prediction 

head can help to learn weak features by leveraging two effects: the substitution effect and the 

acceleration effect. The substitution effect happens when by learning the prediction head, the 

learned stronger features in some neurons can substitute for learning the same features in other 

neurons, which decreases the learning speed of strong features in those neurons. And the 

acceleration effect happens when the strong features substituted via the prediction head can 

further accelerate the learning of weaker features in those substituted neurons. 

 

(a) koff-diag(E(t))kF and kE(t) − (E(t))>kF (b) kE(t) − (E(t))>kF/koff-diag(E(t))kF 

Figure 3: Trajectories of the identity-initialized prediction head. off-diag(E) is obtained by setting the diagonal 

of E to be zero. In (a), we discover that over all three datasets considered here, the Frobenius norm of our 

identity-initialized prediction head’s off-diagonal matrix clearly display a two stage separation, more precisely, 

a rise and fall pattern; In (b), The off-diagonal matrix of the prediction head is not symmetric in CIFAR-10 and 

CIFAR-100. Since the diagonal entries are fixed to one, our measure is more accurate in measuring the 

symmetricity of the prediction head matrix. 

Besides the above effects, we also explain, in our setting, how the two common components in 

non-contrastive learning: stop-gradient operation and output normalization, can assist the prediction 

head in creating those effects during the training process. We point out it is the interactions between 

these components, rather than their individual effects, that ensure the success of the training. We shall 

discuss this in more detail in Section 5.3. 

1.1 Comparison to Similar Studies 

In this section, we will clarify the differences between our results and some similar studies. Especially 

the theoretical papers by Tian et al. [82] and Wang et al. [87]. Pokle et al. [67] compared the 

landscapes between contrastive and non-contrastive learning and points out the existence of non-

collapsed bad minima for non-contrastive learning without a prediction head. 

We point out that all the claims below are derived only in our theoretical setting and are 

partially verified in experiments over datasets such as CIFAR-10, CIFAR-100, and STL-10. 
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Can eigenspace alignment explain the effects of training the prediction head? The paper [82] 

presented a theoretical statement that (symmetric) linear prediction head will converge to a matrix 

that commutes with the covariance matrix of linear representations at the end of training, and they 

provided experiments to support their theory. However, our theory suggests that the intermediate 

stage of training the prediction head matters more to the feature learning of the base network 

than the convergence stage. Indeed, as shown in Figure 3, in many cases, the trainable projection 

head will converge back to identity after training, which commutes with any covariance matrix. 

However, simply setting the prediction head to identity without training leads to significantly worse 

results. Therefore, we believe that it is critical to study the entire learning process to understand the 

role of the prediction head. We prove that in our setting, the substitution effect and the acceleration 

effect happen during the stage when the networks are trying to learn the weaker features, and after 

that, the prediction head will converge back to the identity matrix at the end of training (see 

Proposition 5.4). Again, we emphasize that our characterization of the prediction head trajectory is 

partially verified by the experiments in Figure 3a: the training trajectory of the prediction head 

displays a clear two-stage separation, which demonstrates that the convergence result (e.g., the 

eigenspace alignment result in [82]) is not sufficient to characterize the training process of prediction 

head. We conjecture the result in [82] on the prediction head is due to a similar convergence result 

we obtain at the end of training. 

Can the symmetric prediction head explain the trainable prediction head? In the paper [82], 

experiments over the STL-10 dataset showed that the linear prediction head tends to converge to a 

symmetric matrix during training. And the follow-up paper [87] established a theory under the 

symmetric prediction head (which is not trained but manually set at each iteration). However, similar 

to the reason why eigenspace alignment cannot fully explain the effects of the prediction head, the 

symmetric prediction head given in [87] might not explain the trainable prediction head as well. 

Under their linear network setting, where W is the weight matrix of the base encoder, they manually 

set the prediction head Wp at iteration t to be 

  (1.1) 

and the outputs of both online and target network are not normalized. Under this manual update rule 

of the prediction head, they proved a subspace learning result under gaussian data setting. 

Nevertheless, our experiments in Figure 2 and Figure 3b show that even if we initialize the 

prediction head using a symmetric matrix (identity), the trainable prediction head can be very 

asymmetric at the early training stage when the encoder network learn most of its features. 

Moreover, Figure 3b demonstrates that the prediction heads in CIFAR-10 and CIFAR-100 experiments 

do not converge to a symmetric matrix. In accord with these experiments, our theory suggests that 

the prediction head cannot converge to a symmetric matrix before the encoder network has 

successfully learned all the features. Moreover, the theory in [87] cannot distinguish between learning 

complete collapsed (zero) solutions and learning dimensional collapsed ones, therefore cannot 

explain why the prediction can help avoid the dimensional collapse. Actually, in the presence of 

feature imbalance (e.g.,  has huge eigen-gap), the symmetric prediction head in (1.1) is also 

likely to collapse into a rank-one matrix where W focus on learning the largest eigenvector of the 

covariance . 

The differences between our results and [87]‘s are in that we are based on nonlinear network 

architecture and a trainable prediction head. Indeed, our theory and experiments in Figure 7 show 
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that when feature imbalance happens (which is very common in vision datasets, see [25]), training a 

nonlinear network would cause discrepancies in the learning pace between different neurons. We 

proved that by learning to become asymmetric, the trainable prediction head can leverage such 

discrepancies and creates the substitution effect (see Lemma 5.2) and the acceleration effect (see 

Theorem 5.3). We believe this proves that asymmetry is the key to explaining the implicit bias of the 

trainable prediction head and our results establish the symmetry-breaking mechanism of the 

prediction head in non-contrastive learning. 

The role of stop-gradient and output-normalization. The seminal work [26] gave empirical results 

showing that stop-gradient operation is essential for avoiding the collapsed solutions. It is discussed 

in the theory of Tian et al. [82] that without the stop-gradient, the linear network will learn the zero 

(constant) solution. [87] also incorporated the stop-gradient into their theory, but they did not 

explain why stop-gradient is necessary for their setting. We provide a different perspective about why 

stop-gradient and output normalization (together) are necessary for noncontrastive learning. We 

proved in our setting, that the stop-gradient and output-normalization 

 

 (a) Average of off-diag entries (b) F-norm of off-diag matrix (c) Maximum of off-diag entries 

Figure 4: Trajectories of the identity-initialized prediction head with a (min,max) confidence band, average 

over 3 runs. In all three datasets, we observe a consistent rise and fall trajectory pattern. 

together can turn the features substituted via the prediction head into a factor in the gradient of the 

slower learning neurons, thereby creating the acceleration effect. If either one of these components 

is missing, the acceleration effect of the prediction head will not happen and all neurons in the 

network will focus on learning the strongest feature. Formal arguments will be given in Section 5.3. 

In contrast, [82, 87] did not incorporate the output normalization into their theory, even though 

their experiments have used certain forms of normalizations. We believe their method is closely 

related to the whitening method in [33]. To the best of our knowledge, our paper is the first to explain 

the effects of output-normalization in optimizing nonlinear neural networks in self-supervised 

learning. 

Dimensional collapse Currently the only theoretical investigation on the dimensional collapse is by 

Jing et al. [52], where they focus on the contrastive learning setting. We believe their result on the role 

of the projection head is meaningful to understanding non-contrastive learning. But we emphasize 

that the objective (2.2) suffer from much more extreme dimensional collapse, as shown in Figure 1. 

Thus the causes described in Jing et al. [52] such as strong data augmentations cannot fully explain 

the dimensional collapse in the non-contrastive setting. 
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2 Preliminaries on Non-contrastive Learning 
In this section, we formally define what is non-contrastive self-supervised learning. To do this, we 

first introduce contrastive learning following [24, 89] as background. We use [N] as a shorthand for 

the index set {1,...,N}. 

Background on contrastive learning. Letting φW (·) be the neural networks, contrastive learning 

aims to learn good representations φW via contrasting representations of similar data samples to 

those of dissimilar ones. Usually we are given a batch of data points {Xi}i∈[N], and we construct for each 

i ∈ [N] a positive pair (Xi
(1),Xi

(2)) (which are assumed to be simmilar) by applying ran- 

(1) (2) dom data augmentations to 
Xi, and collect negative pairs (Xi ,Xj ) for i 6= j ∈ [N] (which are assumed to be dissimilar). Now 

given the representations ], we train the network φW to 
minimize the following contrastive loss: 

 

{z } 

 

 (a) Features learned with prediction head (b) Features learned without prediction head 

Figure 5: Feature visualization of deep neural network. We visualized the features of an Wide-ResNet-16x5 

following the BYORL method by Gowal et al. [38], a adversarial robust version of BYOL. Features learned with 

prediction head obviously have more variety than features learned without the prediction head. Our feature 

visualization technique follows from [5]. 



8 

where sim(·,·) is the similarity metric, often defined as the cosine similarity, and τ is the so-called 

temperature hyper-parameter. Intuitively, minimizing the contrastive loss can be roughly viewed as 

trying to classify the representation zi as zi
0 instead of zj

0,j 6= i. It is a common belief that in order for 

the network φW to be able to “distinguish” data points Xi from Xj,j 6= i, merely minimizing the positive 

term of contrastive loss is not sufficient. 

As shown by the papers [25, 89], the performance of contrastive learning depends critically on the 

negative term. But the BYOL method [41] managed to remove the negative term without harm, by 

adding a trainable prediction head to the network architecture, which opened the new direction of 

non-contrastive self-supervised learning. 

Non-contrastive self-supervised learning. We choose the SimSiam method [26] as our primary 

framework, whose differerence with BYOL is a EMA component that is proven inessential in 

[26]. Following the same notations as above, except that zi
0 = StopGrad[φW (Xi

(2))] is detached from 

gradient computation, the loss objective become: (the symmetric network version) 

 L0SimSiam sim ) (2.2) 

which is just the positive term in contrastive loss (2.1) (not divided by τ). Removing the negative term 

results in the existence of plenty trivial global optimal solutions. For example, the complete collapse 

refers to when φW (·) is some constant vector function with zero variance. Another trivial solution 

called dimensional collapse [46], which is when all the coordinates [φW (·)]i has correlation ±1, 

meaning φW (·) lies in a one-dimensional subspace of the representation space. The dimensional 

collapsed solution can minimize the objective (2.2) even when the network output φW (·) is 

normalized by BN to avoid converging to a constant vector [46, 92]. 

However, by adding a trainable prediction head on top of zi, the training miraculously succeeds 

and outputs a state-of-the-art feature extractor. Let g(·) be a shallow feed-forward network (often one 

or two-layer, or even simply linear), we train g and φW simultaneously on the following objective: 

 LSimSiam sim(g(zi),zi0) (2.3) 

where  is still detached from gradient computation. The ) and the detached 

part zi
0 = StopGrad  )] are often called the online network and the target network respectively 

following [41], known as two branches of non-contrastive learning. Even when such a trainable 

prediction head is able to represent identity function, the network can still avoid the common 

collapsed solutions, which presents challenges in understanding their training process and the 

underlying mechanism of trainable prediction head. 

Challenges of understanding non-contrastive learning. Although the non-contrastive losses (2.2) 

and (2.3) seems just a term of the contrastive loss (2.1), their behaviors are vastly different. As 

established in [89], the negative pairs are needed for learning all the discriminative features. Without 

the negative term, the learner has no explicit incentive to learn all the discriminative features from 

the objective (2.3), especially when the trainable prediction head can possibly be an identity map. 



9 

Indeed, by setting g(·) to the identity map, problem (2.3) immediately turn back into (2.2) and has the 

same trivial collapsed global optima. It is one of the most typical examples of implicit bias of 

optimization in deep learning. 

Empirically, the seminal paper [26] discovered that even with trainable linear prediction head 

which can possibly learn identity mapping, neural networks trained by SGD still avoid such collapsed 

solutions. Moreover, as we show in this paper, even with an identity-initialized linear prediction head, 

as long as we train the prediction head via SGD, it still produces results comparable to when using 

other types of prediction head. Our empirical evidence in Figure 2 suggests that understanding the 

asymmetry provided by the off-diagonal entries in the identity-initialized linear prediction head 

suffices to explain (most of) the mechanisms of the prediction head. This observation significantly 

simplifies the theoretical problem and makes the complete characterization of the training dynamics 

of the prediction head possible. 

Nevertheless, understanding the trainable prediction head urges us to go beyond the traditional 

statistical framework and optimization landscape analysis. The recent development of the feature 

learning theory of neural networks [48, 5, 3, 89, 49] showed it is possible to directly analyze the 

training dynamics of neural networks in various supervised or self-supervised tasks. Inspired by this 

line of research and our observations, we consider understanding the optimization of 

identityinitialized prediction head the key to understanding the underlying mechanism of these 

methods, and the characterization of the training dynamics of the full network the major technical 

challenges. 

3 Problem Setup 

In this section, we present the setting of our theoretical results. We first define the data distribution. 

Notations. We use O,Ω,Θ notations to hide universal constants with respect to d and O,e Ωe,Θe 

notations to hide polynomial factors of logd. We denote a = o(1) if a → 0 when d → ∞. We use 

 

Figure 6: Illustration of the data distribution and data augmentations. Each data is equipped with a feature, 

either v1 or v2, and contains a lot of noise patches. After the data augmentations, the positive pair (X(1), X(2)) is 

constructed by randomly masking out half of non-overlapping patches for each positive sample. The reason for 
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constructing positive pair with non-overlapping patches is because of the strong noise assumption we made in 

Assumption 3.3 and the feature decoupling principle in [89]. 

the notations poly(d), polylog(d) to represent large constant degree polynomials of d or logd. We use 

N(µ,Σ) to denote standard normal distribution in with mean µ and covariance matrix Σ. We use the 

bracket h·,·i to denote the inner product and k · k2 the `2-norm in Euclidean space. And for a subspace 

V ⊂ Rd, we denote V ⊥ as its orthogonal complement. We use 1B to denote the indicator function of 

event B. 

Following the standard structure of image datasets, we consider data divided into patches, where 

each patch can contain either features or noises. 

Definition 3.1 (data distribution and features). Let X ∼ D be X = (X1,...,XP ) ∈ Rd×P where each Xi ∈ Rd is 

a patch. We assume that there are two feature vectors v1,v2 such that kv`k2 = 1,` = 1,2 and are 

orthogonal to each other. To generate a sample X, we uniformly sampled ` ∈ [2] and generate for each 

p ∈ [P]: 

 Xp = zp(X)v` + ξp1zp=0, EX∼D[zp(X)] = 0, ∀p ∈ [P] 

We denote S(X) = {p : zp(X) 6= 0} ⊆ [P] as the set of feature patches and assume zp(X) = zp0(X) ∈ 

{0,±α`},∀p,p0 ∈ S(X), i.e., all feature patches have the same direction of v` within the same X. We assume 

P = polylog(d), S(X) ≡ P0 = Θ(logd) for every X. The assumption of ξp will be given in Assumption 3.3. 

An intuitive illustration is given in Figure 6. 

Strong and weak features. We pick α1 = 2polyloglog(d) and α2 = α1/polylog(d). Hence v1 is the strong 

feature and v2 is the weak feature, and we want the learner network to learn both v1,v2 (but by different 

neurons) as their learning goal. This is a simplification of the real scenario where features show up 

more consistently across multiple patches of the images, while noises are local and roughly 

independent across different patches. Intuitively, we can think of the strong features in a dataset are 

the ones that show up more frequently or with larger magnitude, and weak features as those that 

show up rarely or with smaller magnitude, which is the common case in any practical dataset. 

Remark 3.2. Our analysis can be easily generalized to settings of either (1) when α1 = α2 but the 

sampling of ` ∈ [2] is of non-equal probability (i.e., dataset imbalance setting); or (2) when the two 

features always co-occur in the same sample but not of the same strength. But we still require 

 polylog(d) to simplify the analysis. 

Assumption 3.3 (noise). Denoting V = span(v1,v2), we assume ξp ∈ V ⊥ is independent for each p ∈ [P] 

\ S(X), where X = (Xp)p∈[P] ∼ D, and: 

(a) For any unit vector u ∈ V ⊥, E[hξp,ui] = 0, and E[hξp,ui6] = σ6 for some σ = Θ(1); 

(b) It holds for some ] it holds |E[hu1,ξpi3hu2,ξpi3]| ≤ % and |E[hu1,ξpi5hu2,ξpi]| ≤ % for any 

two vectors u1,u2 
∈ Rd that are orthogonal to each other. 

Remark 3.4. A simple example of our noise ξp is the spherical Gaussian noise in V ⊥. Our Assumption 

3.3b ensures that the prediction head cannot be used to cancel the noise correlation between different 
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neurons. We point out that the features in our data can be learned via clustering, but we emphasize 

that we do not intend to compare our algorithm with any clustering method in this setting since our 

goal is to study how the prediction head helps in learning the features. 

3.1 Learner Network 

Following the SimSiam framework, the online and target network share the same encoder network in 

our setting, as explained in Section 2. We consider the base encoder network f as a simple 

convolutional neural network: Let W = (w1,...,wm) ∈ Rd×m be the weight matrix, where wi ∈ Rd, the 

encoder network f is defined by 

 fj(X) := Pp∈[P] σ(hwj,Xpi), ∀j ∈ [m] 

Here we use the cubic activation function σ(z) = z3, as polynomial activations are standard in 

literatures of deep learning theory [9, 35, 54, 2, 56, 23] and also has comparable performance in 

practice [2]. The (identity initialized) prediction head is defined as a matrix E = [Ei,j](i,j)∈[m]2 with Ei,i ≡ 

1,i ∈ [m], where only the the off-diagonals Ei,j,i 6= j are trainable parameters. The online network Fe 

is defined by: given j ∈ [m], we let Fj(X) := fj(X) + Pr6=j Ej,rfr(X), and 

Fej(X) := BN(Fj(X)) = BN  

where the batch normalization BN here is defined as follows: Given a batch of inputs {zi}i∈[N], 

 BN  (3.1) 

And the target network G is defined as follows: Given j ∈ [m] 

Gej(X) := BN(Gj(X)) = BN  

 

Algorithm 1 Training Algorithm 

 

Require: data distribution D, objective LS (3.3), networks F,e Ge, hyper-parameters T,N,η,ηE,m, and a 

bool variable TrainPredHead = True. 

1: Initialize ] i.i.d., and E(0) = Im; 

2: for t ∈ {0,1,2,··· ,T − 1} do 

3: Sample X(t,i) ← (Xp
(t,i))p∈[P] ∼ D,∀i ∈ [N] i.i.d.; 

4: Sample {P(t,i)}i∈[N] i.i.d., and obtain St ← {X(t,i,1),X(t,i,2)}i∈[N] via data augmentations 
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; 

5: Perform stochastic gradient descent step to  by 

); 

6: if TrainPredHead = True then update the off diagonal of prediction head E(t) by 

]; 

7: else keep E(t+1) = Im. 

8: end if 

9: end for 

 

3.2 Training Algorithm 

Data augmentation. We use a very simple data augmentation: for each data X = (Xp)p∈[P], we randomly 

and uniformly sample half of the patches P ⊆ [P] to generate two samples (which is the so-called 

positive pair in contrastive learning): 

 X(1) = (Xp1p∈P)p∈[P], X(2) = (Xp1p/∈P)p∈[P] (3.2) 

An intuitive illustration is given in Figure 6. Our data augmentation approach is similar to the common 

cropping augmentation used in contrastive learning [22, 80] and the patch masking strategy in 

generative pretraining [16, 44] and NLP pretraining [30]. It is also analogous to the data 

augmentations being studied in theoretical literatures [89, 50, 62] of self-supervised learning, 

especially the RandomMask augmentation in [89]. 

Non-contrastive loss function. Now we define the loss function as follows: we sample N data points 

{Xi}i∈[N],Xi 
i.∼ Di.d. and apply our data augmentation (3.2) to obtain S = {X(i,1),X(i,2)}i∈[N]. 

Now we define 

  StopGrad  (3.3) 

,StopGrad[Ge(X(i,2))]i 

where the StopGrad operator detach gradient computation of the target network Ge(·). This form of 

objective (3.3) is first defined in Guo et al. [41] and is equivalent to (2.3) in Chen and He [26] when 

Fe and Ge share the same encoder network f(·) and their outputs are normalized. 

Intuition of the data augmentation. Our data augmentation is an analog of the the standard 

cropping data augmentation. In Definition 3.1, the features v1,v2 appear in multiple patches, but the 
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noises are independent across different patches (see Figure 6). As our data augmentation produces 

positive pairs with non-overlapping patches, learning to emphasize noises cannot align the 

representations of the positive pair, but learning either one of the features φ(X) = Pp σ(hv1,Xpi) or φ(X) 

= P
p σ(hv2,Xpi) is sufficient. We consider learning the same feature vi in all the neurons fj in the 

encoder network f as the dimensional collapsed solution. 

Initialization and hyper-parameters. At t = 0, we initialize W and and E(0) = 

Im and we only train the off-diagonal entries of E(t). For the simplicity of analysis, we let m = 2, which 

suffices to illustrate our main message. For the learning rates, we let ] be sufficiently 

small and ], which is smaller than η1. 

Optimization algorithm Given the data augmentation and the loss function, we perform (stochastic) 

gradient descent on the training objective (3.3) as follows: at each iteration t = 0,...,T − 1, we sample a 

new batch of augmented data St = {X(t,i,1),X(t,i,2)}i∈[N] and update 

 

If we do not train the prediction head, we just simply keep E(t) ≡ Im. We summarize our algorithm in 

Algorithm 1. 

4 Statements of Main Results 

In this section, we shall present our main theoretical results on the mechanism of learning the 

prediction head in non-contrastive learning. To measure the correlation between neurons, we 

introduce the following notion: letting 

Var(ψ(X)) := EX∼D[(ψ(X) − E[ψ(X)])2] 

be the variance of any function ψ of X ∼ D, we denote the correlation Corr(ψ(X),ψ0(X)) of any two 

function ψ,ψ0 over D as 

Corr  

Now we present the main theorem of training with a prediction head, and set m = 2. 

Theorem 4.1 (learning with prediction head and BN, see Theorem E.2). For every d > 2, let 

N ≥ poly  be sufficiently small, and  . Then with 

probability 

1−o(1), after runing Algorithm 1 for T = poly(d)/η many iterations, we shall have for some ` ∈ [2]: 

 
1 We conjecture that by modifying certain assumptions for the noise (especially by allowing the noise to span the 

feature subspace V ), one can prove a similar result for the case ηE = η. 
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 with 

Furthermore, the objective converges: ES∼DN [LS(W(T),E(T))] ≤ OPT . 

Theorem 4.1 clearly shows the network learn all the desired features, even under huge imbalance 

between v1 and v2. This leads to the following corollary. 

Corollary 4.2. Under the same hyper-parameter in Theorem 4.1, with probability 1 − o(1), after runing 

Algorithm 1 for T = poly(d)/η many iterations, we shall have that the learning avoids dimensional 

collapse: 

|Corr . 

In contrast, learning without the prediction head will result in learning only the strong feature v1 

in both neurons, which creates strong correlations between any two neurons. To emphasize that this 

problem cannot be alleviated by having more neurons, we let the number of neurons m be any positive 

integer in the following theorem. 

Theorem 4.3 (learning without prediction head but with BN, see Theorem F.1). Let N ≥ poly(d), η = 

o(1) and the number of neurons m > 0 be any positive integer. Suppose we freeze E(t) = Im for all t, then 

with probability 1 − o(1), after runing Algorithm 1 with TrainPredHead = False for T = poly(d)/η many 

iterations, we shall have: 

  with ) for all j ∈ [m] 

Furthermore, the objective converges: ES∼DN [LS(W(T),E(T))] ≤ OPT . This means the 

collapsed solution also reaches the global minimum of the objective. 

Note that since we have used BN as our output normalization instead of `2-norm, the learner is 

immune to complete collapse and must have a certain variance in the outputs. Immediately, we have 

the following corollary. 

Corollary 4.4. Under the same hyper-parameter in Theorem 4.3, with probability 1 − o(1), after runing 

Algorithm 1 with TrainPredHead = False for T = poly(d)/η many iterations, we shall have dimensional 

collapse: 

 |Corr , for all i,j ∈ [m]. 

Remark 4.5. Note that since we have used BN as our output normalization instead of `2-norm, the 

learner is regularized to avoid complete collapse and must have a certain variance in its neurons. It is 

easier to obtain a complete collapse result when the network has `2-normalized outputs and there is 

 
2 Under our data model Definition 3.1, non-overlapping data augmentation (3.2) and learner network definition, the 

global minimum of our objective (3.3) in population is the following quantity: 

OPT := min 
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a low-variance feature (but not of smaller magnitude) in the data set, which we refrain from proving 

here. 

How does using the prediction head or not create such a difference in features learned by the non-

contrastive methods? We shall give some intuitions by digging through the training process and 

separately discuss the four phases of the training process. 

 

(a) Identity-initialized (trainable) prediction head (b) Learning without prediction head 

Figure 7: The feature learning process over synthetic data. When trained with the prediction head, after the 

strong feature is learned in the faster learning neuron, the weak feature can be learned in the slower learning 

neuron. When trained without the prediction head, both neurons will learn the strong feature and ignore the 

weak feature. 

5 The Four Phases of the Learning Process 

We divide the complete training process into four phases: phase I for learning the stronger feature, 

phase II for the substitution effect, phase III for the acceleration effect, and the end phase for 

convergence. The first three phases explain how the prediction head can help learn the base encoder 

network, and the last phase of the training explains why the off-diagonal entries often shrink in the 

later stage of training. 

5.1 Phase I: Learning the Stronger Feature 

At the beginning of training, the stronger feature v1 enjoys a much larger gradient as opposed to the 

weaker feature v2, so naturally, v1 will be learned first. However, if for both neurons f1,f2 the speed of 

learning v1 is the same, then we cannot argue the difference between them and will not be able to 

show the substitution from either one to another. Indeed, let us assume at initialization, the neuron

 won the jackpot of having larger signal-to-noise ratio of hwj
(0),v1i between fj,j ∈ [2], then we can 

show the following result under our setting. 

Lemma 5.1 (learning the stronger feature, see Lemma B.13). After some t ≥ T1 = d2+o(1)/η, the feature 

v1 in neuron f1 will be learn to , while all other features for (j,`) 6= (1,1) 

are small. And the prediction head kE(t) − I2k2 ≤ d−Ω(1) is still close to the initialization. 
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In this phase, the prediction head has not come into play. The substitution effect can only happen 

after the feature v1 in neuron f1 is learned to a certain degree, and neuron f2 remains largely unlearned. 

5.2 Phase II: The Substitution Effect 

To illustrate the substitution effect, let us keep assuming that neuron  has already learned some 

significant amount of the strong feature v1, say  residual with |β1| = Ω(kresidualk). 
When this happens, we have the following result: (recall fj(·),j ∈ [2] are the neurons of the base 

encoder network) 

Lemma 5.2 (substitution effect, formal statement see Lemma C.8). After  in 

O(d2+o(1)/η) iterations (as shown by Lemma B.13), for much shorter time than learning , we shall 

have  increasing until  when X is equipped with feature v1. In other 

words,  is a substitute for the feature v1 that should be learned by f2. 

Intuition of the substitution effect. After the stronger feature is learned in neuron f1, the optimal 

way to align two positive representations F2(X(1)),G2(X(2)) is no longer learning features in weight w2, 

but use the prediction head to “borrow” the features in f1 and incorporate them into F2. This is how 

the substitution effect happens when trained with a prediction head. 

(t) 

phase, w2 and  Proof sketch for Lemma 5.2. Indeed, let us look at the learning of. In this 

are roughly learned to maximize the following quantity: 

 

As the neuron f1(·) is already learned with feature v1, in order to maximize the RHS, we can either try 

to maximize , or to maximize . In this case, 

the more efficient choice is to learn  to substitute for maximizing . Actually, because of 

the high signal-to-noise ratio of learning  than , feature  is learned with slower pace 

than , so that Lemma 5.2 can be shown. 

5.3 Phase III: The Acceleration Effect 
(t) 

After the substitution of v1 in F2, our concern is, whether or not w2 will learn v2 and only v2 eventually, 

so that we can obtain a diverse representation? The answer is yes, as we summarize in the following 

lemma. 

Lemma 5.3 (acceleration effect, formal statement see Lemma D.8). After  is learned in Lemma 

5.2, learning  will be much faster than v1, until  for some β2 = Θ(1). 

The acceleration effect is caused by the interactions between the prediction head, the stop 

gradient operation, and the normalization method (which in this case is the batch normalization). We 

shall explain these interactions with insights from our theoretical analyses below. 
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What is the role of the stop-gradient? Thanks to the StopGrad operation, when we compute the 

gradient −∇w2F2(X(1)) · StopGrad[G2(X(2))] to learn f2, this negative gradient will only try to maximize 

f2(X(1)) · f2(X(2)), rather than to maximize f2(X(2)) · F2(X(1)). This is because the stop-gradient is on G not 

on F: while F2 has a large component of v1 borrowed from f1 using E, G2 does not have this component. 

So the gradient of F2 is to align with the features in G2 that does not contain many v1, while the gradient 

of G2 is to aligned with the features in F2 that contains a lot of v1. Thus the stop gradient on G help 

ignore the feature borrowed from f1 using prediction head E and ensures the slower learning neuron 

f2 will focus on learning feature v2. 

What is the role of the output normalization? Again due to the StopGrad operation, the 

gradient of Fe2 is taken with respect to the ratio f2(X(1))/pVar[F2(X(1))]. As gradient descent tries to 

maximize this ratio, a direct computation gives 

 

From some calculation, we can obtain the above gradient is proportional to 

 

which borrow the substituted feature v3−` from f1(·) to adjust the gradient of v` in f2(·), via the prediction 

head . Without the output normalization, the learning of v1 will dominate that of v2 even when we 

train the prediction head. 

(t) 
Proof sketch for Lemma 5.3. At this stage, when we are updating the weights of w2 , we are 

simultaneuously maximizing f2(X(1))·f2(X(2)) and also minimizing the normalizing constants 

pVar[F2(X(1))]. This two goals are in slight conflict because of the normalization, and by careful 

calculation the gradients are roughly given by (interpreting the expectation as empirical) 

 

Because of the learning of f1 and the substitution effect, we now knows [  is much 

larger when ` = 2, which accelerates the learning of  to surpass that of v1 and leads to Lemma 
5.3. 

5.4 The End Phase: Convergence 

As the weak features are learned, we have already obtained a good encoder network f(·) as shown in 

Theorem 4.1. The rest of our analysis is to understand what the prediction head converges to in 

polynomial time. Actually, our Theorem E.2 also contains the following result: 

Proposition 5.4 (convergence of the prediction head, see Theorem E.2c). After some t ≥ T = poly(d)/η 

iterations, we shall have . 

This result also implies that after learning the weak feature v2 is complete, the off-diagonal entries 

of the prediction head will reverse their trajectory and converge to zero at the end of training. While 
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we admit that only some of our real-world experiments show the convergence to zero for the off-

diagonal entries of the prediction head, most of the experiments do display a rise and fall trajectory 

pattern of off-diagonal entries consistently. 

6 Additional Related Work 

Self-supervised learning The area of self-supervised learning has evolved at a tremendous speed in 

recent years. It has created huge success in natural language processing [30, 90, 18] and established 

a paradigm where the networks are first trained on an unsupervised pretext task and then be 

finetuned in downstream applications. In vision, supervised pretraining had been the go-to choice 

until representations learned by contrastive learning [79, 43, 24, 20, 27, 28, 34, 68, 33] became 

dominant in many downstream tasks. Another type of self-supervised learning is the generative 

learning [69, 16, 44], which also gives promising results in downstream adaptations. Interesting 

applications such as [68, 70] also illustrate the power of contrastive learning in multiple domains. 

Theory of self-supervised learning The theoretical side of self-supervised learning developed 

quickly due to the success of contrastive learning, which is closely related to the methods we are 

studying. Since Arora et al. [12], lots of papers have studied the properties of contrastive learning, as 

mentioned in the introduction. [25, 73] discussed many interesting phenomena associated with the 

negative term in contrastive learning. Saunshi et al. [75] provided pieces of evidence that contrastive 

loss is function class-specific rather than agnostic. Wen and Li [89] took a feature learning view to 

understand contrastive learning with neural networks, which inspired our analysis in the non-

contrastive setting. For generative self-supervised learning, [55, 78] provides downstream 

performance guarantees for generative pretrained models. [74, 88] studied the natural language tasks, 

where the data are sequentially structured. Liu et al. [62] gave a recovery guarantee for tensors in 

generative learning under hidden Markov models. [4] analyzed multi-layer generative adversarial 

networks and provided an optimization guarantee for their stochastic gradient descent ascent 

algorithm. 

Feature learning theory of deep learning Our theoretical results are also inspired by the recent 

progress of the feature learning theory of neural networks [59, 60, 5, 3, 53, 94, 48]. Li et al. [59] initiate 

the study of the speed difference in learning different types of features. [60] developed theory for 

learning two-layer neural networks over Gaussian distribution beyond the neural tangent kernel 

(NTK) [7, 8, 6, 32, 11]. Allen-Zhu and Li [5] studied the origin of adversarial examples and how 

adversarial training help in robustify the networks. [3] tried to explain ensemble and knowledge 

distillation under multi-view assumptions. Techniques in this paper are built on this line of research, 

as the non-convex nature of these analyses allows us to describe the interaction between neural 

networks, optimization algorithms, and the structures of data. [1, 2] also obtained results separating 

deep neural networks and shallow models such as kernel methods. Before this recent progress, [81, 

93, 19, 76, 31, 57, 58] also studied how shallow neural networks can learn on certain simple data 

distributions, but all of them focus on the supervised learning. There are also plenty of studies [77, 

40, 10, 64, 51, 71, 29] on the implicit bias of optimization in deep learning, but none of their techniques 

can be applied to the setting of self-supervised learning. 
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7 Conclusion and Discussion 

In this paper, we showed how the prediction head can ensure the neural network learns all the 

features in non-contrastive learning through theoretical investigation. Our key observation is that the 

prediction head can leverage two effects called substitution effect and acceleration effect during the 

training process. We also explained how the necessary components such as output normalization and 

stop-gradient operation are involved and how they interact during training. Furthermore, we proved 

that without the prediction head, all neurons of the neural network would focus on learning the 

strongest feature and result in a collapsed representation. We believe our theory, although based on 

a very simple setup, can provide some insights into the inner workings of non-contrastive 

selfsupervised learning. We also believe our theoretical framework can be extended to understanding 

other phenomena in the practice of deep learning. 

On the other hand, our results are still very preliminary, we point out the following open problems 

that are not addressed by this paper: 

• When the output normalization is `2-norm instead of BN. Experiments in Figure 2 seem to 

suggest that there is still a gap between using `2-norm and BN as output normalization methods. 

In this case, the acceleration effect may not happen in exactly the same way as in the BN case, 

but we believe they share the same underlying mechanism and can be proven in theory. 

• The mystery of the projection head. As our experiments in Figure 1 showed, the outputs of the 

projection head in the symmetric case (without the prediction head) suffer an extremely strong 

correlation even with batch normalization used. However, the impact on the base encoder is 

milder and thus the network can avoid complete collapse, shown in Figure 1 and Figure 2. It is 

mysterious how the projection head works in non-contrastive learning, and also how it 

compares to the case of contrastive learning, which has been studied by [24, 52]. • Learning 

non-linearly features. For the simplicity of analysis, we have assumed the features in the data 

set are linear. It is of interest to study whether neural networks trained by non-contrastive self-

supervised learning can learn non-linear representations better than traditional learning 

methods such as linear regression or kernel methods, as there has been a series of papers [1, 

36, 37, 2, 53] trying to understand it in the supervised setting. 

In the end, we also point out that theories based on a one-hidden-layer neural network and linear 

data composition assumption obviously cannot explain all the phenomena in deep learning. In 

supervised learning, the backward feature correction [2] process is observed and theoretically proven 

as a mechanism for learning hierarchical feature extractors. It is an important open direction to 

understand how a multi-layer network can learn the complicated features in non-contrastive 

selfsupervised learning. 

8 Experiment Details 

The framework we use in our experiments is shown in Figure 8. We use a modified version of the 

codebase shared by the authors of [33], Figure 8: Framework. 
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and we use the same data augmentation in their implementation. All our 

experiments (except for Figure 5 and Figure 7) use the following 

architecture and hyper-parameters: we choose standard ResNet-18 as 

base encoder architecture, 0.003 as the learning rate for Adam optimizer, 

a two-layer MLP with ReLU activation and 512 hidden neurons as the 

projection head, an identity-initialized but diagonally froze linear matrix 

(with shape (64x64)) as the prediction head and a non-tracking-stats, 

non-affine, non-momentum BN layer as the output normalization. Our 

experiments in Figure 3 use the same architecture and hyper-parameters, 

but some runs are trained with EMA with momentum 0.99, with output 

BN replaced by `2-norm or using different prediction heads (such as a two-layer MLP or a linear head, 

with Pytorch default initialization). Evaluation in Figure 2 is by training a linear classifier on top of 

frozen encoder with no data augmentation. 

Appendix: The Proofs 

We will be working with population gradients throughout the entire appendix. Indeed, since our 

algorithms use fresh random samples at each iteration, one can easily obtain from standard 

concentration inequalities an empirical estimate of population gradients up to poly
1

(d) error with 

N = poly(d) samples. So we can obtain the same proofs in finite sample case as long as the training 

ends before some T = poly(d)/η. Now we give some notations and warm-up calculations. 

A Notations and Gradients 

In this section, we will give some useful notations and warm-up computations for the technical proofs 

in subsequent sections. We summarize here the notations that will also be defined in later sections: 

Notations. We denote , and 

, 

B¯
j,`

3 = StopGrad[hwj,v`i3], Bj,` = hwj,v`i, Qj = (E[StopGrad[G2
j(X(2))]])−1/2. 

and 

Uj := E[Fj2(X(1))] = P`∈[2] C1α`6(Bj,`3 + Ej,3−jB33−j,`)2 + C2Ej,3−j 

Hj,` := C1α`6(Bj,`3 + Ej,3−jB33−j,`)2 + C2Ej,3−j, 

Kj,` := C1α`6(Bj,`3 + Ej,3−jB33−j,`)(Bj,33−` + Ej,3−jB33−j,3−`) 

3/2 
Moreover, we denote Φj := Qj/Uj , and (recall V := span(v1,v2)) 

 Rj := hΠV ⊥wj,wji R1,2 := hΠV ⊥w1,w2i  
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For any j ∈ [2], the gradient −∇wjL(W,E) can be decomposed as 

 

Sometimes we need to decompose Υj,` = Υj,`,1 +Υj,`,2 which is straightforward from its expression. 

In Section D, we further define 

 

 

for the gradients of the prediction head. 

A.1 Gradient Computation 

Let us L(W,E) to be the population version of the objective. Because E[Fj(X(1))] and E[Gj(X(2))] are both 

zero (which can be verified easily from the zero-mean assumptions of zp(X) and ξp), a direct 

computation gives: 

− X E[Fj(X(1)) · StopGrad[Gj(X(2))]] 

 L(W,E) = 2  

j∈[2] qE[Fj2(X(1))]qE[StopGrad[G2j(X(2))]] 

We first calculate the normalizing quantity E[Fj
2(X(1))]: 

 

(Because all signal patches has the same sign within the same data) 

 

(Because noise patches are independent and have mean zero) 

 

where we let 

 

On the other hand, we have 
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E[Fj(X(1)) · StopGrad[Gj(X(2))]] 

 

 

StopGrad[hwj,v`i3]  

= X α
`
6(hwj,v`i3 + Ej,3−jhw3−j,v`i3) · StopGrad[hwj,v`i3] · E [|S(X) ∩ P| · |S(X) \ 

P|] 

2 
`∈[2] 

Now, by denoting 

, 

B¯
j,`

3 = StopGrad[hwj,v`i3], Bj,` = hwj,v`i, Qj = (E[StopGrad[G2
j(X(2))]])−1/2. 

we denote Uj := E[Fj
2(X(1))], where the expanded expression is 

Uj = E[Fj2(X(1))] = X C1α`6(Bj,`3 + Ej,3−jB33−j,`)2 + C2Ej,3−j 

`∈[2] 

and we can rewrite the objective as follows 

  (A.1) 

Now denote 

Hj,` = C1α`6(Bj,`3 + Ej,3−jB33−j,`)2 + C2Ej,3−j, 

Kj,` = C1α`6(Bj,`3 + Ej,3−jB33−j,`)(Bj,33−` + Ej,3−jB33−j,3−`) 

It is easy to calculate 

Q−
j 

2 = E[StopGrad[G2
j(X(2))]] 
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where Ej = E[hwj,ξpi6]. And thus the gradient can be computed as (notice B¯
j,`

3 = Bj,`
3 ) 

(A.2) 

where 

∇wjEj,3−j = 6E[hwj,ξpi5ξp + Ej,3−jhwj,ξpi2hw3−j,ξpi3ξp] 

∇wjE3−j,j = 6E[E32−j,jhwj,ξpi5ξp + E3−j,jhw3−j,ξpi3hwj,ξpi2ξp] 

As for the gradient of the prediction head, we can calculate 

 

where Σj,` is defined in (A.2). In fact, all the above gradient expressions can be simplified by letting 
3/2 

Φj := Qj/Uj for j ∈ [2], which is what we shall do in later sections. 
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Summarizing the notations. We shall define some useful notations to simplify the proof. We define 

V = span(v1,v2). Let ΠA be the projection operator to subspace A ⊂ Rd, then 

 Rj := hΠV ⊥wj,wji R1,2 := hΠV ⊥w1,w2i  

A.2 Some Useful Bounds for Gradients 

In this section we use the superscript (t) to denote the iteration t during training. 

Below we present 
(t) a claim which comes from 

direct calculations of Σj,` and, which is very useful in the following sections. 

(t) 
Claim A.1 (on Σj,` and. Letbe defined as above, then we have 

; 

; 

 

; 

 
(t) 

Proof. The part on Σj,` is trivial from its expression, we shall focus on proving (b) – (d). 

On , then 

h∇wjEj,(t3)−j,wj(t)i = Θ(1)E[hwj(t),ξpi6 + Ej,(t3)−jhwj(t),ξpi3hw3(t−)j,ξpi3] 

= Θ(1)E[hwj(t),ξpi6] + O(Ej,(t3)−j)E[hwj(t),ξpi3(hw3(t−)j,ξpi3 

− h(I − w¯j,tw¯j,t> )w3(t−)j,ξpi3)] 

+ O(Ej,(t3)−j)E[hwj(t),ξpi3h(I − w¯j,tw¯j,t> )w3(t−)j,ξpi3] 

(t) 

Write ¯  , we can derive 
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  (by H¨older’s inequality) 

and by our assumption on noise ξp, we also have 

 

Combined with the fact that ), we can get 

 

when j0 = 3 − j, we also have 

h∇wjE3(−t)j,j,wj(t)i = Θ(1)E[(E3(t−)j,j)2hwj(t),ξpi6 + E3(t−)j,jhwj(t),ξpi3hw3(t−)j,ξpi3] 

= O((E3(t−)j,j)2)kΠV ⊥wj(t)k62 ± O(E3(t−)j,j)(R1(t,)2 + %)kΠV ⊥wj(t)k23kΠV ⊥w3(t−)jk23 

On : when j0 = j, we have 

h∇wjEj,(t3)−j,w3(t−)ji = O(1)E[hwj(t),ξpi5hw3(t−)j,ξpi + Ej,(t3)−jhwj(t),ξpi2hw3(t−)j,ξpi4] 

 = O(1)E[hwj(t),ξpi5h(I − w¯j,tw¯j,t> + ¯wj,tw¯j,t> )w3(t−)j,ξpi] (A.3) 

+ O(1)E[Ej,(t3)−jhwj(t),ξpi2hw3(t−)j,ξpi4] 

Using H¨older’s inequality and our assumpsion on ξp, we have 

 
In the meantime, we also have 

 

for the last term in (A.3), we can also use H¨older’s inequality to get 

 

Therefore, we can combine above analysis to get 

 

When j0 = 3 − j, we also have 
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which proves the claim.  

B Phase I: Learning the Stronger Feature 

In this section, we shall discuss the initial phase of learning the stronger feature. Firstly, we establish 

some properties at the initialization for our induction afterwards. 

Initialization properties. We prove the following properties for our network at initialization. 

 (0) (0) = I2. 

Recall our initialization is wj ∼ N(0,Id/d),∀j ∈ [2] and E 

Lemma B.1 (properties at initialization). Recall that without loss of generality we let 

. With probability 1 − o(1), the following holds: 

 for all j ∈ [2], and ; 

(b) maxj,` |Bj,`
(0)| ≤ O(plogd/d) and ; 

; 

 for all j ∈ [2]; 

 for all (j,`) ∈ [2] × [2]; 

 for all j ∈ [2]; 

 for all j ∈ [2]; 

 (0) 6/d3) for all (j,`) ∈ [2] × [2]. 

(h) Kj,` ≤ Oe(α` 

Let us first introduce a fact about Gaussian ratio distribution without proof. 
Fact B.2 (Gaussian ratio distribution). If X and Y are two independent standard Gaussian variables, 

then the probability density of  

Proof of Lemma B.1. a. Norm bound comes from simple χ2 concentration inequality and our 

initialization ). The inner product bound comes from Gaussian concentration. 

b. It is from a direct calculation under our initialization, and some application of Gaussian c.d.f. 

and a union bound. 
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c. It is from a probability distribution of Gaussian ratio distribution from Fact B.2 to bound the 

probability of ) (WLOG we let  

d. It can be directly proven from our assumption on noise ξp in the subspace V ⊥ and (a). 

 1  ∈ [2] and (0)

 = 0, it is easy to directly 

e. Since at the initialization we have Bj,` = Oe(√d),j,` upper bound the errors. 

f. Again from [2] at initialization and a direct upper bound. 

g. Proof is similar to (e). 

h. Directly from a naive upper bound using (b). 

 

B.1 Induction in Phase I 

We define phase I as all iterations t ≤ T1, where , we will prove the 

existence of T1 at the end of this section. We state the following induction hypotheses, which will hold 

throughout the phase I: 

Inductions B.3. For each t ≤ T1, all of the followings hold: 

 for each j ∈ [2]; 

; 

; 

 and ; 

 

Remark B.4. Since we have chosen ηE ≤ η and , Induction B.3d implies 

throughout t ≤ T1. 

We shall prove the above induction holds in later sections, but first we need some useful claims 

assuming our induction holds in this phase. 

B.2 Computing Variables at Phase I 

Firstly we establish a claim controlling the noise terms Ej,Ej,3−j during this phase. Claim B.5. 

At each iteration t ≤ T1, if Induction B.3 holds, then 
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; 

Proof. For (a), we can simply write down 

 

Note that by Induction B.3a we always have ), and by Lemma B.1a 

we also have , which implies 

 

By the elementary equality xn − yn = (x − y)P
0≤i≤n−1 xiyn−1−i, we can obtain (a). The proof of (b) is almost 

the same as (a), and the proof of (c) is just direct calculation.  

Equipped with Claim B.5, we can establish the following lemma, which will be frequently applied 

to bound the gradient in our induction argument. 

Lemma B.6 (variables control in phase I). Suppose Induction B.3 holds at some iteration t ≤ T1 , then 

we have: 

, then  polylog 1 

(d)); 

, then ; 

1 

polylog (d)) = Θ(C2), 

otherwise 

 

Proof. (a) From our assumptions that ) and (1), and also 

the fact that polylog , we can calculate 

Uj(t) = X C1α`6((Bj,`(t))3 + 

Ej,(t3)−j(B3(t−)j,`)3)2 + C2Ej,(t3)−j 

`∈[2] 
= C2Ej (1 ± polylog(d)) 

Meanwhile, we can also compute similarly 
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Qj(t) = X C1α`6(Bj,`(t))6 + C2Ej = C2Ej(t)(1 ± polylog 1 (d)) 

`∈[2] 

Therefore Φ  polylog 1 (d)))−2 as desired. 

(b) The proof is similar to that of (a). 

(c) when  (1), the proof is similar to (a). When (1), we have from 

Induction 

B.3a and ’s expression that 

 

And since , so for t ≤ T1, we have 

 ¬ ­ 
 (t) (t) 
 Hj,` ≥ C2Ej,3−j ≥ 2 j 

where ¬ is from Claim B.5b and ­ is from Induction B.3d. 

(d) Since we have assumed ), it is direct to bound  

 

(t) 
Claim B.7 (about Σj,` and. If Induction B.3 holds at iteration t ≤ T1, then 

; 

; 

 

; 

 

Proof. Notice that [2] for t ≤ T1, which is because of 

o(1) from Induction B.3a and max . Now we can apply Claim A.1 to obtain the 
bounds.  

 

3 3  

due to our choice ofis small, we can make sure when  
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B.3 Gradient Lemmas for Phase I 

We first present an interesting lemma regarding the effects of Batch-Normalization on the gradients 

of weights. The following lemma allow us maintain the norm of weights to above a constant 

throughout phase I. 

Lemma B.8 (effects of BN on gradients). For any W = (w1,w2) and E, it holds 

(a) Pj∈[2]h∇wjL(W,E),wji = 0; 

Further, if Induction B.3 holds for each t ≤ T1, we have 

 for each j ∈ [2]. 

Proof. Proof of (a): We first calculate the gradient term as follows: 

∇W L(W,E) = ∇W jX∈[2] q

EE[F[Fj2j((XX(1)
(1))])q· StopGradE[StopGrad[Gj[(GX2j

(2)(X)]](2))]] 

 

Since by our definition h∇W Fj(X(1)),Wi = P
i∈[2]h∇wi[Fj(X(1)),wii = 3[Fj(X(1)), we immediately have 

P
j∈[2]h∇wjL(W,E),wji = 0. 

Proof of (b): Firstly we define a new notion 

∇i,j = ∇wi q

EE[F[F2j((XX(1)(1))])q· StopGradE[StopGrad[Gj[(GX2j(2)(X)]](2))]] 

j 

Then it is straghtforward to verify that Pi∈[2]h∇i,j,wii = 0 for any j ∈ [2], which implies that |h∇j0,j,wj0i| = 

|h∇3−j0,j,w3−j0i|. So in order to obtain an upper bound for |h∇wjL(W,E),wji| = |Pj0∈[2]h∇j,j0,wji|, we only need 

to upper bound |h∇j,j0,w3−j0i|, each of which can be calculated as (ignoring all time superscript (t)) 
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Now we compute 

 
= X Ej,3−jC0α`6B33−j,`Bj,`3 

`∈[2] 

and 

   

E X hw3−j,Xpi) · Fj(X(1))   Ej,3−jσ( 
p∈[P]∩P 

   

= E  X Ej,3−jσ(hw3−j,Xpi) · X (σ(hwj,Xpi) + Ej,3−jσ(hw3−j,Xpi))  

 p∈[P]∩P p∈[P]∩P 

= X Ej,3−jC1α`6B33−j,`(Bj,`3 + Ej,3−jB33−j,`) + C2Ej,3−jE[hwj,ξpi3hw3−j,ξpi3 + Ej,3−jhw3−j,ξpi6] 

`∈[2] 

So we can further obtain the nominator in the expression of |h∇3−j,j,w3−ji| as 

   

E  X Ej,3−jσ(hw3−j,Xpi) · [G(X(2))]j  · E[F
j2(X(1))] 

p∈[P]∩P 

   

− E  X Ej,3−jσ(hw3−j,Xpi) · Fj(X(1))  · E[[Fj(X(1)) · [G(X(2))]j] 

p∈[P]∩P 

     

= X Ej,3−jC0α`6B33−j,`Bj,`3  · X C1α`6(Bj,`3 + Ej,3−jB33−j,`)2 + C2Ej,3−j  

 `∈[2] `∈[2] 

     



32 

− X Ej,3−jC1α`6B33−j,`(Bj,`3 + Ej,3−jB33−j,`)  · X C0α`6Bj,`3 (Bj,`3 + Ej,3−jB33−j,`)  

 `∈[2] `∈[2] 

   

− C2Ej,3−jE[hwj,ξpi3hw3−j,ξpi3 + Ej,3−jhw3−j,ξpi6] · X C0α`6Bj,`3 (Bj,`3 + Ej,3−jB33−j,`)  

`∈[2] 

= Ej,3−j X C0α`6B33−j,`(Bj,`3 Hj,3−` − Bj,33−`Kj,3−`) 
`∈[2] 

   

− C2Ej,3−jE[hwj,ξpi3hw3−j,ξpi3 + Ej,3−jhw3−j,ξpi6] · X C0α`6Bj,`3 (Bj,`3 + Ej,3−jB33−j,`)  

`∈[2] 

Now can sum over j0 ∈ [2] to get 

 
Next we are going to bound each term, for the first term of LHS we have 

 

where the last inequality is because 

• By Lemma B.6a,b, we have Φ  during t ≤ T1. 

•  from Induction B.3b,c. 

Similarly, we can also compute 

 

and 
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where ¬ is due to Lemma B.6c, ­ is from the same calculation in Claim B.7 for E[hwj,ξpi3hw3−j,ξpi3] and 

Induction B.3a. Now combining the above and Induction B.3e together we have 

 

which gives the desired bound.  

Next we give a lemma characterizing the gradient of feature v1 in this phase. 

Lemma B.9 (learning feature v1 in phase I). For each t ≤ T1, if Induction B.3 holds at iteration t, then 

using notations of (A.2), we have: 

 

 

Proof. From (A.2), we write down the gradient formula for  as follows: 

 

where (ignoring the superscript (t) for the RHS) 

 

We first prove (a), and we deal with each term individually: 

Comparing  and : When t ≤ T1,1, we have from Lemma B.6a that 

 1  1 1 1 (t) (t)

 1 

 ) = Φ2 H2,2(1 ± ) 

 polylogpolylog(d) polylog(d) 

Further, by Induction B.3b,c,d and our definition of stage 1, we know ). Now from 
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Induction B.3b that ), together we have 

 

When t ∈ [T1,1,T1], by Lemma B.6b we have 

 , and  

Now from our definition of stage 2, it holds that ) while ) by Induction 

B.3b, which gives 

 

(t) 
Comparingand: Now consider Υ1,1, by Lemma B.6, we can follow the 

same analysis as above to get 

  for any (j,`) ∈ [2] × [2] 

Combined with (1), we can derive 

 

 ) (since C1 = Oe(1) and α1,α2 = do(1)) 
(t) 

Comparingand: Till now (a) is proved, we can deal with (b) by only 

comparing Λ2,1 with 

. Similar to the above arguments, we have by Induction B.3b we know [2], 

and thus 

  for any (j,`) ∈ [2] × [2] 

By Induction B.3e we know ). Also, note that from Induction B.3b we have 

), and thus 

 

So together we have 
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Comparing  with : It suffices to notice that 

 

 (t) (t) 

Combining the bounds for Λ2,1 
and Γ

2,1, we obtain the proof of (b).  

Then we can also calculate the gradients of feature v2 in this phase. 

Lemma B.10 (learning feature v2 in phase I). For each t ≤ T1, if Induction B.3 holds at iteration t, then 

using notations of (A.2), we have for each j ∈ [2]: 

  (B.1) 

Proof. Again as in the proof of Lemma B.9, we expand the notations: (ignoring the superscript (t) for 

the RHS) 

 
 (t) (t) 

We first compare Λj,2 
and Γ

j,2 as follows: Lemma B.6 we have 

• ) by Induction B.3b; 

• From Lemma B.6a,b we can have Φ  

Together they imply: 

C0α26E3(t−)j,j(B3(t−)j,2)3(Bj,(t2))2Φ(3t−)jH3(t−)j,1 ≤ Oe(α1O(1)E3(t−)j,j)C0α26Φ(jt)Hj,(t2)(Bj,(t2))5 

 O(1) (t) (t) 
 = Oe(α1 Ej,3−j)Λj,2 (B.2) 

 (t) (t) (t) 
Now we turn to compare Λj,2 with Υj,2. We split Υj,2 into two terms Υj, 

 

(t) 
For Υj,2,1, we can calculate 
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) from Lemma B.6d) 

) from Induction B.3b) (B.3) 

(t) 
And for Υj,2,1, we use Induction B.3b and Lemma B.6d again to get 

 

and thus combined with Φ  [2] from Lemma B.6a,b, we can derive 

Υj,(t2),2 = C0α16Φ(3t−)jEj,(t3)−j(B3(t−)j,1)3(Bj,(t2))2K3(t−)j,2 

≤ Oe(α16E3(t−)j,j)C0α26Φ(jt)Hj,(t1)(Bj,(t2))5 

 = Oe(α16E3(t−)j,j)Λ(j,t2) (B.4) 

Now combine the results of (B.2), (B.3) and (B.4) finishes the proof of (B.1).  

Lemma B.11 (learning prediction head E1,2,E2,1 in phase I). If Induction B.3 holds at iteration t ≤ T1, 

then we have 

; 

 

Proof. We first write down the gradient for : (ignoring the time superscript (t)) 

−∇Ej,3−jL(W,E) = X C0Φjα`6Bj,`3 (B33−j,`Hj,3−` − B33−j,3−`Kj,3−`) − X Σj,`∇Ej,3−jEj,3−j 
 `∈[2] `∈[2] 

where . Thus we have 

 

and by Claim B.5 and Lemma B.6a,b 

 

Now let us look at ∇E1,2L(W(t),E(t)), first we consider the term 
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X C0Φ(1t)α`6(B1(t,`))3((B2(t,`))3H1(t,3)−` − (B
2(t,3)−`)3

K
1(t,3)−`) 

`∈[2] 

Using Lemma B.6 and Induction B.3b,c, we know 

•  and ) for t ∈ [T1,1,T1]; 

• ); 

•  

It can be computed that 

 

Now we turn to ∇E2,1L(W(t),E(t)), similarly we have 

 

and since ) by Lemma B.6c, we can go through the same arguments again 

to obtain 

 

Now the proof is complete.  

Also, we will need the following lemma controlling gradient bounds for the noise term. 

Lemma B.12 (update of  in phase I). Suppose Induction B.3 holds at iteration t ≤ T1, then we have 

 

 

Proof. Proof of (a): Firstly, by Claim B.7a, we can directly write 
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 (B.5) Now we discuss 

each summand respectively: for (j,`) = (1,1), we have 

 ) (B.6) 

where the last one is due to Induction B.3d. And for ` = 2, we can see from Induction B.3b and d, 

that max ) and (1) to give 

 

On one hand, when t ≤ T1,1, we have (1) for all (j,`) ∈ [2]2, so Lemma B.6a applies for 
(t) 

both Φj and results in Φ  (1). We can also apply Induction B.3c to 

have 

Oe(1). On the other hand, when t ∈ [T1,1,T1], we have by Induction B.3b and Lemma B.6a,b that 

, but now ), therefore 

 

So together, they imply 

 ) (B.7) 

and similarly, we have 

 ) (B.8) 

Next we turn to . When j = 1, we can apply Claim B.7d to get 

 ) (B.9) 

and when j = 2, we can apply Claim B.7e to get 

 ) (B.10) 
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Combining (B.5), (B.6), (B.7), (B.8), (B.9), and (B.10) completes the proof of (a). 

(t) 
Proof of (b): The Σj,` part is the same as in the proof of (a), so we only deal with and 

 here. For , we apply Claim B.7d to get 

  (B.11) 

and for , we have 

  (B.12) 

Inserting (B.6), (B.7), (B.8) and (B.11), (B.12) into the expression of h−∇w2L(W(t),E(t)),ΠV ⊥w1
(t)i finishes 

the proof of (b).  

B.4 At the End of Phase I 

Lemma B.13 (Phase I). Suppose  is sufficiently small, then Induction B.3 holds for at least all

, and at iteration t = T1, we have 

; 

; 

 and  for j ∈ [2]; 

 and ; 

 and . 

Proof. We begin by first prove the existence of ) if Induction 

B.3 holds whenever 01, then we will turn back to prove Induction B.3 holds throughout t ≤ 

T1. We split the analysis into two stages: 

Proof of : By Lemma B.9a we can write down the update of  as 

  (B.13) 

When (1), by Lemma B.6a,c we have Φ 

can lower bound the update as 

) and ), this means we 

 

since  is a constant, we know there exist some t0 ≥ 0 such that ). Also recall that 
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. So by Lemma G.1, where  polylog

1 (d) 

and (1), we have 

 

Since ( ) from our initialization, we have ) and thus T1,1 exists. Now we 

consider when ). Now by Lemma B.6b,c, we have Φ ), which gives an 
update: 

 

so again by Lemma G.1, choosing ), 

 

where ), so we have proved that T1 exist. Now we begin to prove that Induction B.3 

holds for all t ≤ T1. 

Proof of Induction B.3: We first prove (b)–(d), and then come back to prove (a) and (d). At t = 0, we 

know all induction holds from Properties B.1. Now we suppose Induction B.3 holds for all iterations 

≤ t − 1 and prove it holds at t. 

The growth of : Applying Lemma B.9, we have for t ≤ T1,1 

 

For some , we have  during , and 

 

which allow us to give an upper bound to  as 

 (when polylog 
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Since we also have 

1 

polylog 

Since )), we can now apply Corollary G.2 to the two sequence  and 

, where  polylog 1 (d)) to get 

  while  

Note that here the update of  at every step satisfies sign( ) which 

implies ). Now for every ], we can apply Lemma G.3 to get that 

 

Suppose we have proved that ) for each t ≤ T, we define a new sequence 

1 

 , polylog 

where  

It can be directly seen that  for all ]. Notice that now 

, we can now apply Corollary G.2 again to get 

|B2(T,1) − B2(0),1| ≤ |Be2(T,1) − Be2(0),1| ≤ √  1 (for every T ≤ 

T1,1) dpolylog(d) 

Now we deal with t ∈ [T1,1,T1]. During this stage, we can directly apply Corollary G.2 to  and 

, where ), to get that 

 |B2(T,1) − B2(0),1| ≤ |Be2(T,1) − Be2(0),1| ≤ √  1

 (for every T ≤ T1) 

dpolylog(d) 

And thus by Lemma B.1, we have  

The growth of  and : By Lemma B.10, we can write down the update as 
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Since ) and ) because we chose ηE ≤ η, we only need 

to care about (  in the update expression. Now define , we have 
1 

• For , by Corollary G.2 and setting 

 

1. polylog(d) (by Lemma 
B.6a,c), we have 

  for all , which implies Bj, )] by 

Lemma B.1. 

• For ], we can use Corollary G.2 again and let , we know . 

 , 

which implies )] for all 

This proves Induction B.3b. Indeed, simple calculations also proves Induction B.3c, since the update 

of  is always larger than others’ during t ≤ T1. 

For Induction B.3d: From Lemma B.11, we can write down the update 

! 

for some constants C1,C2 = Θ(1). Applying Lemma G.3 to , we can obtain 

 

So here it suffices to notice that whenever ) (which is obviously satisified at t = 
0), we would have 

 

In that case, we will always have (since  

 
Similarly for ∇E2,1L(W(t),E(t)), we can write down 

 

1 √ 
d  ( d ) 

Setting C t =(1 − e O ( 1 
d ))Φ 

( t ) 
1 C 0 α 6 

1 H 
( t ) 
1 , 2 , S t = O ((1+ α 6 

1 ) 
α 6 2 Φ ( t ) j H ( t ) j, 1 
α 6 1 Φ ( t ) 1 H ( t ) 

1 , 2 
) ≤ O ( α O (1) ) ,wecanhave 

| B 
( t ) 
j, 2 − B 

( t 0 2 ) 
j, 2 |  1 √ 

d  ( d ) B 
( t ) 
j, 2 ∈ [Ω( 1 √ 

d log d ) ,O ( 
√ 

log d √ 
d t ∈ [ t 0 

2 ,T 1 ]. 

| B 
( t ) 
j, 2 − B 

(0) 
j, 2 |≤ O ( 

α 6 2 
α 6 1 

1 √ 
d ) 

( t 0 2 ) 
2 = B 

(0) 
j, 2 ± 1 √ 

d  ( d ) ∈ [Ω( 1 √ 
d log d ) ,O ( 

√ 
log d √ 

d 
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by Lemma G.3, we have 

 

and since from previous comparison results we know that 

 

we can then prove the claim. 

For Induction B.3a: We can write down the update of  as follows: 

kwj(t+1)k22 = kwj(t) − η∇wjL(W(t),E(t))k22 

= kwj(t)k22 − ηh∇wjL(W(t),E(t)),wj(t)i + η2k∇wjL(W(t),E(t))k22 

from (A.2) and Induction B.3a,b,c at iteration t and our assumption on ξp, we know 

 

which allow us to choose  to be small enough so that . Then by Lemma 

B.8b, we have 

(t+1) 2 kwj(0)k22 ± η X|h∇wjL(W(s),E(s)),wj(s)i| ± poly1(d) 

kwj k2 = 
s≤t 

1 

poly(d) 

Since from the above analysis of the update of , we know (1). Moreover, we also 

know that  is increasing and sign(Λ ) for any s,t ≤ T1. Thus they imply 

(1), which can be combine with Induction B.3d to prove the claim. 

Proof of Induction B.3e: We can write down the update of  as follows 

hΠV ⊥w1(t+1),w2(t+1)i = hΠV ⊥w1(t) − ΠV ⊥η∇w1L(W(t),E(t)),ΠV ⊥w2(t) − ΠV ⊥η∇w2L(W(t),E(t))i 

= R1(t,)2 − ηh∇w1L(W(t),E(t)),ΠV ⊥w2(t)i − ηh∇w2L(W(t),E(t)),ΠV ⊥w1(t)i 

+ η2hΠV ⊥∇w1L(W(t),E(t)),ΠV ⊥∇w2L(W(t),E(t))i 

By Cauchy-Schwarz inequality and the same analysis above we have 

|hΠV ⊥∇w1L(W(t),E(t)),ΠV ⊥∇w2L(W(t),E(t))i| ≤ k∇w1L(W(t),E(t))k2k∇w2L(W(t),E(t))k2 
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≤ Oe(d) 

so by our choice of η 

X η2|hΠV ⊥∇w1L(W(t),E(t)),ΠV ⊥∇w2L(W(t),E(t))i| ≤ 1 poly(d) t≤T1 

and by Lemma B.12 we have 

 

which implies 

|hΠV ⊥w1(t+1),w2(t+1)i| ≤ |hΠV ⊥w1(0),w2(0)i| + XX η|h∇wjL(W(s),E(s)),ΠV ⊥w3(s−)ji| + poly 1(d) 

s≤t j∈[2] 

1 

poly(d) 

which completes the proof of Induction B.3. As for (a) – (e) of Lemma B.13, they are just direct 

corrolary of our induction at t = T1.  

C Phase II: The Substitution Effect of Prediction Head 

In this phase, As  is learned to become very large ( ). The focus now shift to grow

, because we want  to dominate . We can write down the 

gradient of  as 

−∇E2,1L(W(t),E(t)) = X C0Φ(2t)α`6(B2(t,`))3((B1(t,`))3H2(t,3)−` − (B2(t,3)−`)3K2(t,3)−`) − X Σ(2t,`)∇E2,1E2(,t1) 

 `∈[2] `∈[2] 

Now let us define 

  (C.1) 

We will prove that  reaches at most O(pηE/η) and the following induction hypothesis 

holds throughout t ∈ [T1,T2]. In this phase, the learning ofis much faster than the growth of the 

√  
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first feature v1 such that T2 − T1 = o(T1/ d), which is due to the acceleration effects brought by = 

Ω(1) during this phase. 

C.1 Induction in Phase II 

We will be based on the following induction hypothesis during phase II. 

Inductions C.1 (Phase II). When t ∈ [T1,T2], we hypothesize the followings would hold 

 for (j,`) 6= (1,1) and ; 

; 

; 

 and . 

Under Induction C.1, we have some results as direct corollary. 

Claim C.2. At each iteration t ∈ [T1,T2], if Induction B.3 holds, then 

; 

 for each j ∈ [2]; 

Proof. It is trivial to derive (a) from the expression of  and our assumption of ξp. For (b) it suffices 

to directly calculate the expression of  along with Induction C.1b.  

Lemma C.3 (variables control in phase II). In Phase II (t ∈ [T1,T2]), if Induction C.1 holds, then 

; 

 

. 

Proof. The proof of (a) directly follows from Induction C.1a,c and Claim C.2. The proof of (b) follows 

directly from the expression of Kj,` and Induction C.1a,d. The proof of (c) is also similar.  

C.2 Gradient Lemmas for Phase II 

Lemma C.4 (learning prediction head E1,2,E2,1 in phase II). If Induction C.1 holds at iteration t ∈ [T1,T2], 

then we have 

(a) 

(b) 
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Proof. We first write down the gradient for : (ignoring the time superscript (t)) 

−∇Ej,3−jL(W,E) = X C0Φjα`6Bj,`3 (B33−j,`Hj,3−` − B33−j,3−`Kj,3−`) − X Σj,`∇Ej,3−jEj,3−j 

`∈[2] `∈[2] where

. Thus we have 

 

and by Claim A.1 and Induction C.1a, if (j,`) 6= (1,1) 

 

Therefore for j = 1: 

 

Now by Induction C.1a,c and Lemma C.3b,c we have ( , 

which leads to the bounds 

 ,  

which implies 

 

Combining above together, we have 

 

For −∇E2,1L(W(t),E(t)), the expression is slightly different, we first observe that by Induction C.1a 

 

Meanwhile, by Induction C.1a and Lemma C.3b,c , we have 

, 

Moreover, we can also calculate Σ , 

which gives 
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Now we combine the above results and get 

 

 

Lemma C.5 (reducing noise in phase II). Suppose Induction C.1 holds at t ∈ [T1,T2], then 

; 

 

And furthermore 

; 

 

Proof. The proof can be obtained directly from some calculation using Claim A.1 as follows: 

Proof of (a): From (A.2), we can obtain that 

h−∇w1L(W(t),E(t)),ΠV ⊥w1(t)i = −XΣ(j,`t)h∇w1Ej,(t3)−j,w1(t)i 

j,` 

Now from Claim A.1a and Induction C.1a, we know ( ) and the following 

  for any (j,`) 6= (1,1) 

From Induction C.1a,c, we know ((  and = Θ(1), which by 

Claim C.2a,b and Lemma C.3a gives Φ ). Combine the bounds above, we can obtain 

Σ . We can then directly apply Claim A.1 to prove Lemma C.5a as follows 
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(Since  by Induction C.1c,d) 

(t) 
Proof of (b): For Lemma C.5b, we can use the same analysis for Σ1,1 above and Claim A.1(d,e) to get 

(again we have used Σ  

 

Proof of (c): Similarly to the proof of (a), we can also expand as follows 

 

Proof of (d): Similarly, we can calculate (again by Σ  

 

which completes the proof.  

Lemma C.6 (learning feature v2 in phase II). For each t ∈ [T1,T2], if Induction C.1 holds at iteration t, 

then we have for each j ∈ [2]: 
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Proof. Again as in the proof of Lemma B.9, we expand the notations: (ignoring the superscript (t) for 

the RHS) 

  (C.2) 

where 

 

Now we further write Υ j, , where 

 ,  

According to (C.2), we can first compute 

 

Then we can apply Induction C.1a,c,d, Claim C.2a,b and Lemma C.3a,c to get 

 

where the last inequality is due to Lemma C.3a,c. Similarly, we can also compute for Γj,  : 

 

This completes the proof Lemma C.7 (learning feature v1 in Phase II). For each t ∈ [T1,T2], if 

Induction C.1 holds at iteration t, then we have: 

; 
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Proof. As in the proof of Lemma C.6, we expand the gradient terms: 

  (C.3) 

where 

 

Indeed, when j = 1, by Induction C.1a and Lemma C.3a,c, we can compute 

 

and with additionally Lemma C.3b, we also have 

 

which gives the proof of (a). For (b), we can also apply Induction C.1a and Lemma C.3a,c to get 

 

this finishes the proof.  

C.3 At the End of Phase II 

Now we shall present the main theorem of this section, which gives the result of prediction head  

growth after the feature v1 is learned in the first stage. 

Lemma C.8 (Phase II). Suppose  is sufficiently small, then Induction C.1 holds for all iteration 

t ∈ [T1,T2], and at iteration t = T2, the followings holds: 

 for (j,`) 6= (1,1) 

, and ; 

 and  

Where the part of learning  is what we called substitution effect. One can easily verify that 

 when X is equipped with feature v1, as stated in Lemma 5.2. 

Proof. We first will prove Induction C.1 holds for all iteration t ∈ [T1,T2]. We shall first prove that if 

Induction C.1 continues to hold when , we shall have [ ] decreasing at an exponential 

rate. 
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Proof of the decrease of : Firstly, we write down the update of  using Lemma C.5a: 

 

(t) from the expression of Σ1,1 in (A.2), and by Induction C.1a and Lemma 
C.3a,c, we can compute 

 

Moreover, from Induction C.1c we know that 

 

Therefore whenever  (which t ≤ T2 suffices), we shall have always have 

 

which implies, if we set , then for all ], we will have 

(C.4) 

 )

 (since 

From the last inequality we know that after ), we shall have  

Moreover, suppose , (which just mean ) for some iteration s ∈ [T1,T2]) we 

also have 

 

So when ) iterations, we will have 

for all t ∈ [s,T2], which means we have a lower bound  throughout t ∈ [T1,T2]. This 

proves Lemma C.8a and also our induction on . 

Proof of induction for : By Lemma C.4a, we can write 
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Since again from Induction C.1b,c that

 (1)], we 

can obtain the update of  as 

 

where 0 and Ce = Θ(1)e is larger than the hidden constant (including 

the polylog(d) factors) of ) in Lemma B.13d. And then we can compute 

  (due to calculations in (C.4)) 

 ) (because  is very small) 

Now by Lemma B.13d, we know ; then we begin our induction that 

 at for all iterations t ∈ [T1,T2]. Now assume we have , from 

above calculations it holds that )). Then we would have 

 

(because of the range of  and  

This proved that  and also the induction can go 

 
4If we want , then as long as  is small enough, we can always assume to have found 

some iteration t0 ∈ (T1,t] such that , and we set t = t0 and start our argument from that iteration. 
on until t = T2. 

Proof of the growth of  and : According to Lemma C.4b, we can 

write down the update of  as 
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Then, from Lemma C.3a,c and Induction C.1, we have 

polylog (  

 d3 2α1 

and also 

 

Now by Lemma C.3a and Induction C.1a, it allow us to simplify the update to 

 ) (by Induction C.1 and Claim 

C.2) 

Now since sign( ), we know there is an iteration ) such that 

for all ], it holds 

 

and thus sign( ) and  will be increasing during ]. Thus as 

long as  continues to hold, after at most ) iterations starting from T1, we shall 

have  

However, in order to actually prove ), we will need to ensure that (1) there 

exist some constant C = Ω(pηE/η) such that  while  for all s ∈ [T1,t]; 

(2) we shall have a upper bound ). They will be done below. 
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Proof of  and : In fact, Induction C.1c are already proved 

since we have already calculated the dynamics of  and its upper bound and lower bound. In this 

part we are going to prove  ) (which means that  can 

be achieved in ) many iterations). From Lemma C.5c, we can write down the update for  
as 

 

where we have used the fact that 

) from our assumption on the 
(t) noise ξp and a simple bound for Σj,` as we have done before. Next 

we can resort to Induction C.1d 

that  to derive 

 

which is because (1) and Σ 0 as we have calculated in the proof 

of Induction C.1a above. Similarly, we can also bound 

 

Moreover, because ) and  from Induction C.1, we 

have for each t ≤ T2: 

 

Thus combining all the bounds above, we have proved that for each t ∈ [T1,T2], it holds 

R2(t) = R2(T1) − X Θ(ηΣ(2t,)1)[R2(t)]3 ± o(1) 

s∈[T1,t] 
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where the last equality is because sign( ) by Induction C.1a. Now from what we 

have proved above on the growth of  that sign( 

throughout the rest of phase II (which is just  ]). Recall that 

 (t) (T20,1) X (s) (s) 3 (s) 3 

 , and E2,1 − E2,1 = Θ(ηEC0C2)Φ2 (B2,1) (B1,1) 

s∈[T20,1,t] 

The above arguments implie for  

 

Now we can confirm 

(1) there exist a constant C = Θ(pηE/η) such that  falls below ; 

) due to the growth ) for  

which are the desired results. 

Proof of Induction C.1a: We first obtain from Lemma C.7a that the update of  can be 

written as 

 

Now by what we have calculated above in (C.4), the total decrease of  is (since  is monotone in 
this phase) 

X Θ(ηΣ(1t,)1)[R1(t)]3 ≤ O(R
1(T1) − R1(T2)) ≤ O(1) 

t∈[T1,T2] 

And also since ), we can bound 

 

(t) 
Now we consider how the Γ1,1 term accumulates 
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where in ¬ we have used ) and sign( ) when t ∈ 

]. These calculations tell us ) = Θ(1) for all iterations 

t ∈ [T1,T2]. Similarly from Lemma C.7b, for  we can also write 

 

From similar calculations, it holds ), which proves that  

o(1)) when t ∈ [T1,T2]. Now we turn to feature v2. By Lemma C.6 we have for j ∈ [2]: 

 

where the last inequality is from Lemma C.3a and Induction C.1c,d. Thus when t ≤ T2 = T1 + ) 
we would have 

 (1)) since ) by Lemma B.13c 

Together they proved Induction C.1a and Lemma C.8a. Moreover, we have also 

Proof of Induction C.1b: Firstly, we write down the update of  using Lemma C.5b,d as follows: 

 

where in the last inequality we have used 

|hΠV ⊥∇w1L(W(t),E(t)),ΠV ⊥∇w2L(W(t),E(t))i| 

≤ kΠV ⊥∇w1L(W(t),E(t))k2kΠV ⊥∇w2L(W(t),E(t))k2 ≤ Oe(d) 
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Now from Induction C.1c,d that = Θ(1) and

), we can further obtain , and 

the bound 

 

Notice here that there exist a constant C = Θ(1), whenever , it 

will holds 

 

Thus we can go through the same analysis as in the proof of induction for  to derive that 

 

which is the desired result. Note that at the end of phase II 

Induction C.1a =⇒ Lemma C.8a 

Induction C.1b,c =⇒ Lemma C.8b 

Induction C.1d =⇒ Lemma C.8c 

We now complete the proof of Lemma C.8.  

D Phase III: The Acceleration Effect of Prediction Head 

We shall prove in this section that the growth of  in the previous phase creates an acceleration 

effect to the growth of , which will finally outrun the growth of  to win the lottery. We define 

  (D.1) 

and we call iterations t ∈ [T2,T3] as the phase III of training and t ≥ T3 as the end phase of training. 

D.1 Induction in Phase III 

Inductions D.1 (Phase III). During t ∈ [T2,T3], we hypothesize the following conditions holds. 

; 

 and ; 

. 

As usual, before we prove the induction, we need to derive some useful claims. But firstly we shall 

give a much cleaner form of ∇Ej,3−jL(W(t),E(t)) to help us understand the learning process of phase III 

and the end phase. 
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Fact D.2. Let us write 

 

Then the gradient of  can be written as 

−∇Ej,3−jL(W(t),E(t)) = −Ξ(jt)Ej,(t3)−j + X ∆(j,`t) − X Σ(j,`t)∇Ej,3−jEj,(t3)−j 

 `∈[2] `∈[2] 

Proof. By expanding the gradients of , we can verify by checking each monomial of polynomials 

of Bj,` to obtain the first term, and leave the  part for the second term.  

Lemma D.3 (variables control at phase III). For t ∈ [T2,T3], if Induction D.1 holds at iteration t, then we 

have 

; 

; 

; 

; 

 

Proof. Assuming Induction D.1 holds at t ∈ [T2,T3], we can recall the expression of these variables and 

prove their bounds directly. The bounds for Φ1 and H1,1 comes from = Θ(1) and 

(1). The bounds for Q2,U2 comes from our definition of T3 in (D.1). The rest of 

the claims can be derived by similar arguments using Induction D.1.  

D.2 Gradient Lemmas for Phase III 

In this subsection, we would give some gradient lemmas concerning the dynamics of our network in 

Phase III. 

Lemma D.4 (learning feature v2 in phase III). For each t ∈ [T2,T3], if Induction D.1 holds at iteration t, 

then we have: 

; 

 

Proof. Since , let us write down the definition of 

 respectively: 
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Again we decompose Υj,  as in the proof of Lemma C.6, where 

 ,  

This gives 

 

When j = 1, from Induction D.1 and Lemma D.3a (which gives Φ ), we can crudely obtain 

 

So we have 

 

When j = 2, we can also derive using Lemma D.3 about  and Induction D.1 about  and some 
rearrangement to obtain 

 

which leads to the approximation 

 
Similarly, we can also calculate 
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When j = 1, following similar procedure as above, we can apply Induction D.1 and Lemma D.3 to give 

 

Note that the first term on the RHS dominates the term  in the approximation for 

Λ  due to Induction D.1a,b. When j = 2, since Φ  in this 

phase and (1), we can derive 

 

It can be seen that (  by Induction D.1 and Lemma D.3. And by similar 

arguments we can have (1 . Combining all the results above, we 
can finish the proof.  

Lemma D.5 (learning feature v1 in Phase III). For each t ∈ [T2,T3], if Induction D.1 holds at iteration t, 

then we have: (recall that ∆-notation is from Fact D.2 ) 

; 

 

Proof. Recall that . Similar to the proof of Lemma D.4, we 

can decompose Υj,  and do similar calculations: 

 

When j = 1, from Induction D.1 and Lemma D.3a we know Φ  during t ∈ [T2,T3], which 

allow us to derive 

 

 

And 

 

which can be summarized as 
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A similar calculation also gives 

 

Now we turn to the other terms in the gradient, from similar calculations in the proof of Lemma C.6, 

we have 

 

which also similarly gives 

 

and 

 

which finishes the proof.  

Lemma D.6 (reducing noise in phase III). Suppose Induction D.1 holds at t ∈ [T2,T3], then we have 

; 

 

; 

 

Proof. The proof of Lemma D.6 is very similar to Lemma C.5, but we write it down to stress some 

minor differences. As in (A.2), we first write down 

h−∇w1L(W(t),E(t)),ΠV ⊥w1(t)i = −XΣ(j,`t)h∇w1Ej,(t3)−j,w1(t)i 
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j,` 

Proof of (a): Combine the bounds above, we can obtain for each . 

We can then directly apply Claim A.1 to prove Lemma D.6a as follows 

 

(Since  by Induction D.1) 

(t) 
Proof of (b): For Lemma C.5b, we can use the same analysis for Σ1,1 above and Claim A.1d,e to get 

(again we have used Σ  

 

Proof of (c): Similarly to the proof of (a), we can also expand as follows 

 

 

Proof of (d): Similarly, we can calculate 

 



63 

which completes the proof.  

Lemma D.7 (learning the prediction head in phase III). If Induction D.1 holds at iteration t ∈ [T2,T3], 

then using the notations from Fact D.2, we have 

 

Proof. By Fact D.2, we only need to bound the last term , which can be directly 

obtained from applying Claim A.1.  

D.3 At the End of Phase III 

In order to argue that = Ω(1) at the end of phase III, we need to define some auxiliary notions. 

Recall that T3 is defined in (D.1), and now we further define 

 

It can be observed that if Induction D.1 holds for t ∈ [T2,T3] and our learning rate η is small enough, 

we shall have T2 < T3,1 ≤ T3,2 < T3. Now we are ready to present the main lemma we want to prove in 

this phase. 

Lemma D.8 (Phase III). Let T3 be defined as in (D.1). Suppose  is sufficiently small, then 

Induction D.1 holds for all iteration t ∈ [T2,T3], and at iteration t = T3, the followings holds: 

 for j 6= `; 

, and ; 

 and . 

Moreover,  is increasing and  is decreasing. The part of learning  till Ω(1) and keeping  

close to its initialization is what’s been accelerated by the prediction head . 

The proof of Lemma D.8 will be proven after we have proven Induction D.1, which will again be 

proven after some intermediate results are proven. 

Lemma D.9 (The growth of  before T3,1). Let T3,1 be defined as in (D.2). If Induction 

D.1 holds for t ∈ [T2,T3,1], then we have  and  and T3,1 ≤ 
O 

. 

Proof. Firstly by Lemma D.6b , we can write down the update of  Lemma C.8) 
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Next, by Claim A.1 and Lemma D.3a combined with Induction D.1a,b, we have  

), which leads to the bound 

 

Similarly, we can bound the following term 

 

Moreover, from Induction D.1c that , we can also calculate for each t ∈ [T2,T3,1]: 

 

Thus by combining the results above, we have the update of ] as follows: 

 

  (D.3) 

which implies that  is decreasing throughout phase III. From Lemma D.3a and Induction D.1b, we 

know that for t ∈ [T2,T3,1]: 

 

which implies (also using a bit of Claim A.1 and Induction D.1a) 

 

(because ) and  

(t) 
And for Σ2,2, from some simple calcualtions (using Claim A.1), we have 



65 

• when , we would have Σ ); 

• otherwise, we have Σ  

So by (D.3), we know R2 is decreasing for t ∈ [T2,T3,1] by at least 

 ) (D.4) 

). By this update, we can where

prove  

In order to do that, we can first see that for some )], 

we shall have . Indeed, suppose otherwise , then (D.4) implies 

 

which means there must exist an iteration

 )] such that  (so the above update 

bound is still valid when the RHS is for  

and . Next we need to prove that at , it holds . Let us 
discuss several possible cases: 

1. Suppose ) (by Induction D.1a and Lemma D.8), then we 

already have  and ; 

2. Suppose otherwise , then we shall have Σ ). So the update of  
during t ∈ [T2,T3,1] can be written as 

 

Let  be an iteration between T2 and , we shall have 

 ) and  

which also implies ). In this case, let us look at the 

update of ]. By Lemma D.42, we have 
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It is not hard to see  is monotonically increasing. Also by Induction D.1a and Lemma 

D.3a, if we sum together the update between  and  as follows: (suppose the sign of 

 is positive for now, the negative case can be similarly dealt with) 

 

which is a contradiction to our assumption . Since  is 

monotonically increasing, we know there must exist some iteration  such that  

, which means . 

Thus we proved the bound of  

Using similar arguments, we can prove that . Indeed, we can set T3,3 := min{t : 

. From our arguments in this proof, we know Σ ) for t ≤ T3,3. 

Now we can further choose  for some  to be some iteration with 

for ] and ). Now we can work out the update of  during 

] again to see that ). This would prove 

that  and . So we also have  because of the definition of 

T3,1. But since T3,3 ≥ T3,1 by our arguments above and the fact that  is increasing, we shall have 

  

Now we proceed to characterize the learning of  during t ∈ [T3,1,T3,2]. 

Lemma D.10 (The growth of  until T3). Let T3,1,T3,2 be defined as in (D.2). If Induction D.1 

holds true for all t ∈ [T2,T3], then we have  and . 

Proof. We first calculate the bound for T3,2. After T3,1, since  is increasing while  is decreasing 

by Induction D.1. So by Lemma D.3a, we have 



67 

 

So according to Lemma D.4, we would have for all t ∈ [T3,1,T3,2): 

 

where we have used ( ) from Induction D.1a. So when t ∈ [T3,1,T3,2], we can 
(t) write down the explicit form of 

Λ2,2 and use Lemma D.3d to derive 

 

Thus after ) many iterations, we would have . Now let us deal 

with the growth of ]. During this stage, since  is still increasing and 

 by Induction D.1, we have from Lemma D.3a that 

 

And we can redo the calcualtions as above to get ) since  and |B1
(t

,1
)| 

are both Θ(1) according to Induction D.1a,b  

Proving The Main Lemma. Now we finally begin to prove Lemma D.8. 

Proof of Lemma D.8. We start with proving Induction D.1. 

Proof of Induction D.1a: From Lemma D.5, we know the update of  can be written as 

 

Since from Lemma D.9 and Lemma D.10, we know ) and from Claim A.1 and 

Induction D.1a,c we have Σ ), we shall have 

 

Further more, by applying Lemma G.3 to  with q0 = q − 2, and notice that sign( 

) for all t ∈ [T2,T3], we also have 
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Now we turn to the last two terms. We first see that from the expression (D.3) of ’s update, we 

have that (note that sign(  

 

where we have used the fact that Σ  and  

from (D.3) (which holds for all t ∈ [T2,T3]). And also, the analysis above shows that 

 

for all t ∈ [T2,T3], which means that either  and we have 

 holds throughout t ∈ [T2,T3], or that ), in 

which case we would have  to be actually decreasing (as  is increasing). Now that since 

= Θ(1), we can easily see by our definition of T3 and the monotonicity of  after going below

) that = Ω(1) for all t ∈ [T2,T3]. 

Next let us look at the change of . From Lemma D.5, we can write down the update of 

: 

 

For the first term, according to Lemma D.9 and Lemma D.10 and

 (1) for all t ∈ [T2,T3] by Induction D.1c, we have Φ  for all t ∈ 
[T2,T3] and 

 

And similarly as in the proof of induction for , we have 

 

which proved the induction for  since  

Next we go on for the induction of , we write down its update: 
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By Lemma D.9 and Lemma D.10, we have for any t ∈ [T2,T3] 

1 

polylog(d) 

and also 

 

Now we consider the term Θ( , we have by Induction D.1a that 

 

where we have used our induction hypothesis that (1)). Using Lemma G.3 by 

setting = 3, and , it holds that 

 (t)  
 B 2  B(T2) 2 B(0) 2 

where in the second inequality we have used Lemma B.13c, Lemma C.8a and Lemma B.1, and in the 

last our choice of ηE/η ≤ 
polylog

1 
(d). This ensures the induction can go on until t = T3. And we 

finished our proof of Induction D.1a. 

Proof of Induction D.1b: Let us write down the update of  using Lemma D.7: 

 

X 

s ∈ [ T 2 ,t ] 
η e O ( 

α 
O (1) 
1 

d 5 / 2 ) ≤ √ 
d 

 
 
 
 
 
 

X 

s ∈ [ T 2 ,t ] 
Θ( 

( 1 , 2 ) 

( B 
( t ) 
2 , 2 ) 2 

) E 
( t ) 
2 , 1 η Λ 

( t ) 
2 , 2   

 
 

≤ O ( p η E /η ) 
( 1 , 2 ) 

| B 
( T 2 ) 
2 , 2 | 

≤ O ( p η E /η ) 
( 1 , 2 ) 

| B 
(0) 
2 , 2 | 

≤ 
1 

√ 
d  ( d ) 
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where in the last inequality we have used  from Induction D.1c and Σ ), 

 from Claim A.1 and Induction D.1a. Now we can use the same analysis in the 

proof of Lemma C.8 on  to prove the desired claim, which we do not repeat here. 

As for , we can obtain similar expressions: 

 

Now we can obtain bounds for each terms as 

 

and by (D.3) in Lemma D.9, we also have for any t ∈ [T2,T3] 

 
And also by using our induction and by (D.3) in Lemma D.9: 

 

Finally, we can calculate 

 

By resorting to the defintion of T3 and go through similar analysis as for the induction of , we can 

obtain that  is either above (1)) or is decreasing and always above . 
This proves Induction D.1b. 

Proof of Induction D.1c: The proof of induction of  is half done in Lemma D.9, we only need to 

complete the part when t ∈ [T3,1,T3], since by (D.3), we always have  to be decreasing by 

R2(t+1) = R2(t)(1 − X Θ(ηΣ2(s,`))[R2(t)]2) 

`∈[2] 

And when t ∈ [T3,1,T3], we have 
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 X (s) 3/8+o(1) 

 Θ(ηΣ2,` ≤ Oe(ηd ) 
`∈[2] 

So if we suppose , we shall have for T3 − T3,1 = O(d1/4+o(1)/η) many iterations that 

  (by Lemma D.9) 

So it negates our supposition, which completes the proof of the induction for  

Now we turn to the proof of induction for , we write down its update: (as in Lemma C.8) 

 

It is straightforward to derive 

 
and when t ∈ [T2,T3,1]: 

 

and when t ∈ [T3,1,T3]: 

 

So these combined with Lemma C.8 proved that ) for all t ∈ [T2,T3]. We can go through 

some similar analysis about  to get that  for all t ∈ [T2,T3]. 

Finally we begin to prove the induction of . Similarly as in the proof of Lemma C.8, we first 

write down 

 

Note that since

 and ), it holds 
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so the update becomes 

 

Now we can use the same arguments as in the proof of  in Lemma C.8 to conclude. 

Proof of Lemma D.8a,b,c: Indeed, at the end of phase III: 

Induction D.1a =⇒ Lemma D.8a 

Induction D.1b =⇒ Lemma D.8c 

Induction D.1c =⇒ Lemma D.8b 

Now we have completed the whole proof.  

E The End Phase: Convergence 

When we arrive at t = T3, we have already obtained the representation we want for the encoder 

network f(X), where v1 and v2 are satisfactorily learned by different neurons. In the last phase, we 

prove that such features are the solutions that the algorithm are converging to, which gives a stronger 

guarantee than just accidentally finding the solution at some intermediate steps. 

To prove the convergence, we need to ensure all the good properties that we got through the 

training still holds. Fortunately, mosts of Induction D.1 still hold, as we summarized below: 

Inductions E.1. At the end phase, i.e. when t ∈ [T3,T], Induction D.1a continues to hold except that

, Induction D.1b will hold except that for  only the upper bound still holds, and the 

upper bounds in Induction D.1c still hold while the lower bounds for poly(d). 

Moreover, there is a constant C = O(1) such that when , we would have  

. 

Now we present the main theorem of the paper, which we shall prove in this section. 

Theorem E.2 (End phase: convergence). For some  and T = poly(d)/η, we have for all 

t ∈ [T4,T] that Induction E.1 holds true and: 

(a) Successful learning of both  while . 
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(b) Successful denoising at the end:  for all j ∈ [2]. 

(c) Prediction head is close to identity:  for all j ∈ [2]; 

In fact, (b) and (c) also imply for some sufficiently large t = poly(d)/η, it holds  and 

 for all j ∈ [2]. 

And we have a simple corollary for the objective convergence. 

Corollary E.3 (objective convergence, with prediction head). Let OPT denote the global minimum of 

the population objective (A.1). It is easy to derive that OPT . We have for some 

sufficiently large t ≥ poly(d)/η: 

L(W(t),E(t)) ≤ OPT  

poly(d) 

Now we need to establish some auxiliary lemmas: 

Lemma E.4. For some t ∈ [T3,poly(d)/η], if Induction E.1 holds from T3 to t, we have Lemma D.6 holds 

at t. 

Proof. Simple from similar calculations in the proof of Lemma D.6 .  

Lemma E.5. For some t ∈ [T3,poly(d)/η], if Induction E.1 holds from T3 to t, we have for each j ∈ [2] 

that X X ηΣ(s)[R(s)]3 ≤ O(Rj(T3)), ∀j ∈ [2] j,` j 

s∈[T3,t] `∈[2] 

Proof. Notice that when Induction E.1 holds, we always have 

X(Σ(j,`t) + Σ(3t−)j,`(E3(t−)j,j)2) = (1 ± o(1)) X Σ(j,`t) 

 `∈[2] `∈[2] 

we can use Lemma E.4 to obtain the update of  as in the calculations when we obtained (D.3): 

R2(t) = R2(T3) − X X Θ(ηΣ2(s,`))[R2(s)]3 

s∈[T3,t) `∈[2] 

which means that  is decreasing from T3 to t. Summing up the update, the part of  is solved. 

For the part of , we separately discuss when  is larger than or smaller than 

. When the former happens, which we know from Induction E.1 that it 

cannot last until some  many iterations, we have for  
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Now for  we can simply go through similar calculations as in the proof of Induction D.1c to 

obtain 

 

So by applying Lemma E.4a and Lemma D.6, we have 

R1(t) = (1 ± o(1))R1(T3) − X X Θ(ηΣ(j,`s))[R1(s)]3 

s∈[T3,t) `∈[2] 

which proves the claim.  

Lemma E.6. For some t ∈ [T3,poly(d)/η], if Induction E.1 holds from T3 to t. Then we have  is 

decreasing until . Moreover, we have for each 
t ∈ [T3,T] that 

 

Proof. We can go through the same calculations in the proof of Induction D.1b (using Fact D.2) to 

obtain 

 

where we have used in the second equality that  and also 

 for both j ∈ [2] when Induction E.1 holds. Note that from above calculations, 
there exist a constant C such that if

, we have  to be decreasing. Now it 
suffices to observe that: 
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which is from Induction E.1, Induction D.1c and Lemma E.4. Also note that Σ  

 at this stage, we have 

 

(t) 

Recalling the expression of Ξj finishes the proof.  

Lemma E.7. Recall T2 defined in (C.1) and T3 defined in (D.1), we have 

 

To prove this lemma, we need a simple claim. 

Claim E.8. If {xt}t<T ,xt ≥ 0 is an increasing sequence and C = Θ(1) is a constant such that√ 

 

xt+1 − xt ≤ O(η) and Pt<T xt(xt+1 − xt) = C, then for each δ ∈ (d
1,1) it holds |xT − C| ≤ 

d . 

Proof. Indeed, for every g ∈ 0,1,..., we define Tg := min{t : xt ≥ (1 + δ)gx0}. and define b := min{g : ((1 + 

δ)gx0)2 ≥ C − δ2}. Now for any g < b, we have 

 

By our definition of Tg, we can further get 

 

And also we have C ≤ (maxt≤T xt)P
t<T (xt+1 − xt) = x2

T , so we have , where b = 

O(log(C)/log(1 + δ)) ≤ O(logd), which proves the claim.  

Proof of Lemma E.7. From the proof of Lemma C.8 and Lemma D.8 we know that 

 

And since from the proof of Lemma C.8 we know that 

 

We can define some alternative variables  updated as  and  
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. It is easy to see that . From above calculations, 

we know ), which by Claim E.8 implies 
that 

 

And when we turn back, we shall have

. Now we can use similar 

techniques on  and . Indeed, from (C.4) and similar arguments in phase I, we know for all t ∈ 

[T1,T2] 

 ) (E.1) 

So one can obtain that at some iteration ), we shall have ) for all t ≥ t0. 

Now let us consider the growth of  before t0, which clearly constitutes of 

 

where the last one comes from the proof of Lemma B.13. Moreover by using the same arguments in 

the proof of Lemma C.8 we can easily prove that 

 ) =  

And for t ∈ [t0,T2], we also have by (E.1) that 

 

Recall ) by (E.1) and ) for t ≥ t0. 

Now we can finally go through the same analysis using Claim E.8 on  and  during t ∈ [0,t0] as 
above to obtain that 
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Combining the results, we finishes the proof.  

Now we are prepared to prove Theorem E.2. 

E.1 Proof of Convergence 

Proof of Theorem E.2. First we start with the s. Indeed, we can go through similar calculations to 

see that all gradients h−∇wjL(W(t),E(t)),v`i can be decomposed into 

 

where Λ  and Γ  can be expressed as 

 

 

Firstly, for all the terms that contain factors of ( ), we can apply 

Lemma E.6, our Induction E.1 assumption and ] to obtain that their 

(multiplicated by η) summation over t ∈ [T3,T] is absolutely bounded by Oe(d
1). So we can move on to 

deal with all other terms. When j = `, Using Lemma E.6, we have 

 

And the sign of LHS is sign( ). Moreover, for j = ` = 1, from Lemma E.7 and Lemma E.6 we also have 

 

Since we have 
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And since by Induction C.1 we have = Θ(1) during t ∈ [T1,T2] and 

√  

R(T1) − o(1) = 2 − o(1). For all the other terms in the gradient , we can apply Lemma E.6, our 

Induction E.1 assumption and (1) so we have for t ∈ [T3,T] 

 

which also proved (1) since all the terms on the RHS are absolutely O(1) bounded. Since 

one can see from Lemma E.6 that  is decreasing before it reaches d1). Moreover this proves 

 for all t ∈ [T3,T], and also the fact that 

 

The case of  is much more simple as ) throughout t ∈ [T3,T] by Lemma E.6 and 

Lemma D.8c, Now we can go through the similar calculations again to obtain that = Θ(1) for 

all t ∈ [T3,T]. When j 6= `, all the terms calculated in the expansion of Λ(
j,`

t) −Υ(
j,`,

t) 
1 and Γ(

j,`
t) −Υj,`,

(t) 
2 

contain factors of ( ) or ( ). So we can similarly use Lemma E.6 as before to 

derive that )) for all t ∈ [T3,T] and j ∈ [2]. 

As for the prediction head, the induction of  follows from exactly the same proof in Lemma 

D.8. The part of  is half done in Lemma E.6. It suffices to notice that Ξ ) and if 

 for some C = O(1), then 

 

So after  many epochs will we have 
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as desired. And the rest of the induction of  is the same as in the induction arguments of in 

Lemma D.8. 

The induction of  and  is exactly the same as those in the proof of Lemma D.8 except 

here we only need ] after T4. Indeed, from the update of  (which 
can be easily worked out), we have 

 

Now after  many epochs, we can obtain from similar arguments in Lemma D.8 that 

] and . The induction can go on untill t = poly(d)/η. 

For the convergence of  and  after t = T4, notice that their change depends on 

, which stays very small after T4, we have that (1) for all j ∈ [2]. 

This finishes the whole proof.  

F Learning Without Prediction Head 

When we do not use prediction head in the network architecture, the analysis is much simpler. We 

can reuse most of the gradient calculations in previous sections as long as we set E(t) to the identity. 

Note that here we allow m ≥ 1 to be any positive integer. 

Theorem F.1 (learning without the prediction head). Let m be any positive integer. If we keep 

E(t) ≡ Im during the whole training process, then for all ,poly(d)/η], we shall have 

 and  for all j ∈ [m] with probability 1 − o(1). 

Moreover, for a longer training time t = poly(d)/η, we would have  for all j ∈ [m]. 

Moreover, it is direct to obtain a objective convergence result similar to Corollary E.3. 

Corollary F.2 (objective convergence, without prediction head). Let OPT denote the global minimum 

of the population objective (A.1). When trained with E(t) ≡ Im, we have for some sufficiently large t ≥ 

poly(d)/η: 

L(W(t),Im) ≤ OPT  

poly(d) 

Proof of Theorem F.1. The proof is easy to obtain since it is very similar to some proofs in previous 

sections, and we only sketch it here. Indeed, using the calculations in Lemma D.5 and Lemma D.4 

and set ] to zero. We shall have (note that here  for any r 6= j) 

 

Now we can go through the similar induction arguments as in the proof of Lemma B.13 (with TPM 

lemma to distinguish the learning speed) to obtain that for each j ∈ [m]: 

 ] (when  
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When this is proven, we can also reuse the calculations as in the proof of Lemma C.5 to obtain that 

 

So again after some ), we shall have ). While the decrease of  is 

happening, we can make induction that (1)), since if it holds for all previous 
iterations before t, then 

X η|h−∇ jL(W(s),E(s)),v i| = X ηC0α26Φj(s)|Bj,(s2)|5C2Ej(s) w 2 

 s≤t−1 s≤t−1 

 ¬ 1 

where ¬ is due to Corollary G.2, where  and  and St ≤

 1 , y ≤ 

O(logd)x0. which finishes the proof. 

G Tensor Power Method Bounds 

In this section, we give two lemmas related to the tensor power method that can help us in previous 

sections’ proofs. 

Lemma G.1 (TPM, adapted from [3]). Consider an increasing sequence xt ≥ 0 defined by xt+1 = xt +ηCtxq
t 

for some integer q ≥ 3 and Ct > 0, and suippose for some A > 0 there exist t0 ≥ 0 such that xt0 ≥ A. Then for 

every δ > 0, and every η ∈ (0,1): 

 

This lemma has a corollary: 

Corollary G.2 (TPM, from [3]). Let q ≥ 3 be a constant and x0,y0 = o(1) and A = O(1). Let 

{xt,yt}t≥0 be two positive sequences updated as 

•  for some Ct > 0; 

• yt+1 = yt + ηStCtyt
q for some St > 0. 

Suppose  polylog
1 

(d)), then yt ≤ Oe(y0) for all t such that xt ≤ A. 

Moreover, if , we would have . 

Moreover, we prove the following lemma for comparing the updates of different variables. 

 ( d ) 0 
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Lemma G.3 (TPM of different degrees). Consider an increasing sequences xt ≥ 0 defined by xt+1 = xt + 

ηCtxq
t, for some integer q > q0 ≥ 3 and q0 ≤ q − 2, and Ct > 0, and further suppose given A = O(1), there 

exists t0 ≥ 0,xt0 ≥ A. Then for every δ > 0 and every η ∈ (0,1): 

 

where b = Θ(log(A/x0)/log(1 + δ)). When A = x0dΘ(1) , η = o(A
1qδ) and q = O(1), then 

 

Proof. For every g ∈ 0,1,..., we define Tg := min{t : xt ≥ (1 + δ)gx0}. and define b := min{g : (1 + δ)g ≥ A}, 

we can write down the following two inequalities according to the update of xt: 

X ηCt[(1 + δ)gx ]q ≤ (1 + δ)xTg − xTg + ηAq ≤ δ(1 + δ)gx0 + ηAq 
0 

t∈[Tg,Tg+1] 

X ηCt[(1 + δ)g+1x0]q ≥ (1 + δ)xTg − xTg − ηAq ≥ δ(1 + δ)gx0 − ηAq 

t∈[Tg,Tg+1] 

where g+1 ≤ b. Dividing both sides by [(1+δ)gx0]q−q0 in the first inequality and [(1+δ)g+1x0]q−q0 in the 

second, we have 

 

Therefore if we sum over g = 0,...,b, then 

! 
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For the lower bound, we also have 

 

Inserting b = Θ(log(A/x0)/log(1 + δ)) proves the lower bound. For the last one we can choose 

 to get: 

b = Θ(polylog , 

which proves the claim.  
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