

The Mechanism of Prediction Head in Non-contrastive Self-

supervised Learning

 Zixin Wen Yuanzhi Li

 zixinw@andrew.cmu.edu yuanzhil@andrew.cmu.edu

 Carnegie Mellon University Carnegie Mellon University

May 13, 2022

Abstract

Recently the surprising discovery of Bootstrap Your Own Latent (BYOL) method by Grill et al.

shows the negative term in contrastive loss can be removed if we add the so-called prediction head

to the network architecture, which breaks the symmetry between the positive pairs. This initiated

the research of non-contrastive self-supervised learning. It is mysterious why even when trivial

collapsed global optimal solutions exist, neural networks trained by (stochastic) gradient descent

can still learn competitive representations and avoid collapsed solutions. This phenomenon is one

of the most typical examples of implicit bias in deep learning optimization, and its underlying

mechanism remains little understood to this day.
In this work, we present our empirical and theoretical discoveries about the mechanism of

prediction head in non-contrastive self-supervised learning methods. Empirically, we find that

when the prediction head is initialized as an identity matrix with only its off-diagonal

entries being trained, the network can learn competitive representations even though the trivial

optima still exist in the training objective. Moreover, we observe a consistent rise and fall

trajectory of off-diagonal entries during training. Our evidence suggests that understanding the

identity-initialized prediction head is a good starting point for understanding the mechanism of

the trainable prediction head.
Theoretically, we present a framework to understand the behavior of the trainable, but

identity-initialized prediction head. Under a simple setting, we characterized the substitution

effect and acceleration effect of the prediction head during the training process. The

substitution effect happens when learning the stronger features in some neurons can substitute

for learning these features in other neurons through updating the prediction head. And the

acceleration effect happens when the substituted features can accelerate the learning of other

weaker features to prevent them from being ignored. These two effects together enable the neural

networks to learn all the features rather than focus only on learning the stronger features, which

is likely the cause of the dimensional collapse phenomenon. To the best of our knowledge, this is

also the first end-to-end optimization guarantee for non-contrastive methods using nonlinear

neural networks with a trainable prediction head and normalization.

Contents

1 Introduction .. 1

1.1 Comparison to Similar Studies ... 4

2 Preliminaries on Non-contrastive Learning .. 7

3 Problem Setup .. 9

arXiv:2205.06226v2 [cs.LG] 14 May 2022

3.1 Learner Network ... 11

3.2 Training Algorithm ... 12

4 Statements of Main Results.. 13

5 The Four Phases of the Learning Process ... 15

5.1 Phase I: Learning the Stronger Feature... 15

5.2 Phase II: The Substitution Effect .. 16

5.3 Phase III: The Acceleration Effect .. 16

5.4 The End Phase: Convergence ... 17

6 Additional Related Work ... 18

7 Conclusion and Discussion .. 19

8 Experiment Details .. 19

A Notations and Gradients .. 20

A.1 Gradient Computation .. 21

A.2 Some Useful Bounds for Gradients .. 24

B Phase I: Learning the Stronger Feature .. 26

B.1 Induction in Phase I .. 27

B.2 Computing Variables at Phase I ... 27

B.3 Gradient Lemmas for Phase I ... 30

B.4 At the End of Phase I ... 39

C Phase II: The Substitution Effect of Prediction Head .. 44

C.1 Induction in Phase II ... 45

C.2 Gradient Lemmas for Phase II .. 45

C.3 At the End of Phase II .. 50

D Phase III: The Acceleration Effect of Prediction Head ... 57

D.1 Induction in Phase III ... 57

D.2 Gradient Lemmas for Phase III .. 58

D.3 At the End of Phase III .. 63

E The End Phase: Convergence ... 72

E.1 Proof of Convergence.. 77

F Learning Without Prediction Head .. 79

G Tensor Power Method Bounds ... 80

1

1 Introduction

Self-supervised learning is about learning representations of real-world vision or language data

without human supervision, and contrastive learning [66, 45, 43, 24, 20, 34] is one of the most

successful self-supervised learning approaches. It has been known that the behavior of contrastive

learning depends critically on the minimization of the negative term, which corresponds to

contrasting the representations of negative pairs, i.e., pairs of different data points. However, the

surprising finding of the Bootstrap Your Own Latent (BYOL) method by Grill et al. [39] initiated the

research of non-contrastive self-supervised learning, which refers to contrastive learning methods

without using the negative pairs. BYOL achieved state-of-the-art results in various computer vision

benchmarks and there are plenty of follow-up works [41, 26, 21, 17, 33, 91, 46, 65] making

improvements in this direction.

On a high level, in non-contrastive self-supervised learning,

contrasting the negative pairs, it is extremely easy for neural

networks to cheat the learning task by learning certain inferior

representations. One trivial solution known as the complete

collapse is when φ(·) is a constant vector whose variance is zero. Another trivial global optimal

solution, typically learned by the neural network after training, is when all the coordinates φi(·) are

exactly aligned, which is named as dimensional collapse by Hua

et al.

even though the prediction head can possibly learn the identity

mapping and render itself useless. It is mysterious why even if

the network can minimize the training objective by learning an

identity prediction head and a collapsed encoder network φ(·), it

still optimizes for a non-collapsed state-of-the-art representation

instead when trained by (variants of) stochastic gradient descent

(SGD).

Since the proposition of BYOL, there have been lots of empirical

studies trying to understand non-contrastive learning. The

(b) Histograms of the correlations of

encoder network neurons (before

projection head).
SimSiam method by Chen and He [26] shows the exponential mov-

ing average (EMA) is not necessary for avoiding collapsed solutions while stop-gradient is necessary.

Richemond et al. [72] empirically disproved the conjecture that information leakage from batch

normalization (BN) is the reason why BYOL can avoid collapse. DINO [21] further explored replacing

the normalized `2-loss by a cross-entropy loss. Zhang et al. [92] gives empirical evidence that using a

single bias layer as a prediction head is capable of avoiding collapsed solutions. All the methods above

 Figure 1: Dimensional Collapse.

one wishes to learn a network φ such that φ(x) aligns in direction

with φ(x0), where x and x0 are called the positive pair, generated by

random augmentations from the same sample. Without

Network trained without prediction

head will learn extremely correlated

neurons.

[46]. Nevertheless, adding a trainable prediction head on top of

(one branch of) φ(x) magically avoids learning such solutions,

(a) Histograms of the correlations of

projection head neurons.

2

use loss functions that are asymmetric with respect to the positive pair. If one wishes to work without

both asymmetry and the negative pairs, one must add extra diversity-enforcing structures say

neuron-wise regularization in Barlow Twins [91] or a more complicated output normalization scheme

than BN [33, 46]. The seminal works [91, 46] provide empirical evidence that the prediction head

encourages the network to learn more diversified features. But in theory, the question of how the

prediction head helps in learning those diverse features is still unanswered.

Despite the great empirical effort put to investigate these non-contrastive learning methods, there

is very little theoretical progress towards explaining them. Most of existing theories focus on

contrastive learning, especially from the statistical learning perspective [83, 85, 14, 84, 42, 86, 13, 15,

50, 47, 63]. The theoretical tools used in these paper rely heavily on the properties of the minima of

loss function. However, due to the existence of trivial dimensional collapsed global optimal solutions

(even with the prediction head) of the non-contrastive methods, to the best of our knowledge, there

is no well-established statistical framework for those methods yet. To explain the non-contrastive

learning, it is inevitable to study how the solutions are chosen during the optimization. Therefore, we

consider understanding the optimization process to be crucial for understanding these methods.

Our research questions are:

Our theoretical questions: the role of prediction head
Why do most non-contrastive self-supervised methods learn collapsed solutions when the

socalled prediction head is absent in the network architecture? How does the trainable prediction

head help optimizing the neural network to learn more diversified representations in

noncontrastive self-supervised learning?

Theoretical challenges of our questions. Due to the existence of trivial collapsed optimal solutions

of the non-contrastive learning objective, we need to understand the implicit bias in optimization

posed by the prediction head. However, to the best of our knowledge, all of the previous implicit

biases theories focus only on the supervised learning tasks, and thus cannot be applied to our question.

Even though [89] has characterized the training trajectory of contrastive learning, its analysis cannot

incorporate the training of the prediction head. In theory, the optimization of nonlinear neural

networks with at least two trainable layers in self-supervised learning is still intractable. A detailed

explanation of our challenges will be given in Section 2.

There are already some theoretical papers [82, 87, 67] that try to address similar questions. While

none of these papers studied the training process of the prediction head, our results provide a

completely different perspective: We explain why training the prediction head can encourage the

network to learn diversified features and avoid dimensional collapses, even

when the trivial collapsed optima still exist in the training objective, which is not covered by the

prior works. We defer the detailed comparison of similar works to Section 1.1. On a high level, the

results in this paper are summarized as follows:

Our empirical contributions. In non-contrastive self-supervised learning, we obtain the following

experimental results:

• We discover empirically that even when the prediction head is linear and initialized as an

identity matrix with only off-diagonal entries being trainable, the performance of learned

3

representation is comparable to using the usual non-linear two-layer MLP or randomly

initialized (trainable) linear prediction head. This disproves the belief that non-symmetric

initialization of the online and target network is needed. See Figure 2.

• We empirically verified that even when the prediction head is an identity-initialized matrix, it

does not always converge to a symmetric matrix during training. This proves the trainable

prediction head does not need to behave like a symmetric matrix during most of the training

process. Therefore the theories based on symmetric prediction head [82, 87] cannot fully

explain the behaviors of the trainable prediction head. See Figure 3 and Figure 4.

Our theoretical contributions. We based our theory on a very simple setting, where the data consist

of two features: the strong feature and the weak feature. Intuitively, we can think of the strong

features in a dataset are the ones that show up more frequently or with large magnitude,

 (a) CIFAR-10 Accuracy (b) CIFAR-100 Accuracy (c) STL-10 Accuracy

 (d) CIFAR-10 Loss (e) CIFAR-100 Loss (f) STL-10 Loss

Figure 2: Performances of using different prediction heads. Here in CIFAR-10, CIFAR-100 and STL-10, identity-

initialized linear prediction head can achieve good accuracies comparable to commonly used two-layer non-

linear MLP or randomly-initialized linear head. All the prediction heads are trainable, while for

identityinitialized prediction head only the off-diagonal entries are trainable. Here BN or L2norm represents

the output normalization, and EMA represents using exponential moving average to update the target network

as in BYOL [41]. More details of these experiments can be seen in Section 8.

and weak features as those that show up rarely or with small magnitude. We consider learning with

a two-layer non-linear neural network with output normalization using (stochastic) gradient

descent. Under this setting, we obtain the following results.

• We prove that without a prediction head, even with BN on the output to avoid complete collapse,

the networks will still converge to dimensional collapsed solutions, which provides a theoretical

explanation to the dimensional collapse phenomenon observed in [46]. • We prove that the

trainable prediction head, combined with suitable output normalization and stop-gradient

4

operation, can learn diversified features to avoid the dimensional collapse problem. We

characterize two effects of prediction head: the substitution effect and the acceleration effect.

The intuitions of these two effects are summarized below:

The mechanism of the trainable prediction head
In our setting, we prove that (1) without the prediction head, all the neurons will only learn the

strongest feature in the data set thus causing dimensional collapses; (2) the trainable prediction

head can help to learn weak features by leveraging two effects: the substitution effect and the

acceleration effect. The substitution effect happens when by learning the prediction head, the

learned stronger features in some neurons can substitute for learning the same features in other

neurons, which decreases the learning speed of strong features in those neurons. And the

acceleration effect happens when the strong features substituted via the prediction head can

further accelerate the learning of weaker features in those substituted neurons.

(a) koff-diag(E(t))kF and kE(t) − (E(t))>kF (b) kE(t) − (E(t))>kF/koff-diag(E(t))kF

Figure 3: Trajectories of the identity-initialized prediction head. off-diag(E) is obtained by setting the diagonal

of E to be zero. In (a), we discover that over all three datasets considered here, the Frobenius norm of our

identity-initialized prediction head’s off-diagonal matrix clearly display a two stage separation, more precisely,

a rise and fall pattern; In (b), The off-diagonal matrix of the prediction head is not symmetric in CIFAR-10 and

CIFAR-100. Since the diagonal entries are fixed to one, our measure is more accurate in measuring the

symmetricity of the prediction head matrix.

Besides the above effects, we also explain, in our setting, how the two common components in

non-contrastive learning: stop-gradient operation and output normalization, can assist the prediction

head in creating those effects during the training process. We point out it is the interactions between

these components, rather than their individual effects, that ensure the success of the training. We shall

discuss this in more detail in Section 5.3.

1.1 Comparison to Similar Studies

In this section, we will clarify the differences between our results and some similar studies. Especially

the theoretical papers by Tian et al. [82] and Wang et al. [87]. Pokle et al. [67] compared the

landscapes between contrastive and non-contrastive learning and points out the existence of non-

collapsed bad minima for non-contrastive learning without a prediction head.

We point out that all the claims below are derived only in our theoretical setting and are

partially verified in experiments over datasets such as CIFAR-10, CIFAR-100, and STL-10.

5

Can eigenspace alignment explain the effects of training the prediction head? The paper [82]

presented a theoretical statement that (symmetric) linear prediction head will converge to a matrix

that commutes with the covariance matrix of linear representations at the end of training, and they

provided experiments to support their theory. However, our theory suggests that the intermediate

stage of training the prediction head matters more to the feature learning of the base network

than the convergence stage. Indeed, as shown in Figure 3, in many cases, the trainable projection

head will converge back to identity after training, which commutes with any covariance matrix.

However, simply setting the prediction head to identity without training leads to significantly worse

results. Therefore, we believe that it is critical to study the entire learning process to understand the

role of the prediction head. We prove that in our setting, the substitution effect and the acceleration

effect happen during the stage when the networks are trying to learn the weaker features, and after

that, the prediction head will converge back to the identity matrix at the end of training (see

Proposition 5.4). Again, we emphasize that our characterization of the prediction head trajectory is

partially verified by the experiments in Figure 3a: the training trajectory of the prediction head

displays a clear two-stage separation, which demonstrates that the convergence result (e.g., the

eigenspace alignment result in [82]) is not sufficient to characterize the training process of prediction

head. We conjecture the result in [82] on the prediction head is due to a similar convergence result

we obtain at the end of training.

Can the symmetric prediction head explain the trainable prediction head? In the paper [82],

experiments over the STL-10 dataset showed that the linear prediction head tends to converge to a

symmetric matrix during training. And the follow-up paper [87] established a theory under the

symmetric prediction head (which is not trained but manually set at each iteration). However, similar

to the reason why eigenspace alignment cannot fully explain the effects of the prediction head, the

symmetric prediction head given in [87] might not explain the trainable prediction head as well.

Under their linear network setting, where W is the weight matrix of the base encoder, they manually

set the prediction head Wp at iteration t to be

 (1.1)

and the outputs of both online and target network are not normalized. Under this manual update rule

of the prediction head, they proved a subspace learning result under gaussian data setting.

Nevertheless, our experiments in Figure 2 and Figure 3b show that even if we initialize the

prediction head using a symmetric matrix (identity), the trainable prediction head can be very

asymmetric at the early training stage when the encoder network learn most of its features.

Moreover, Figure 3b demonstrates that the prediction heads in CIFAR-10 and CIFAR-100 experiments

do not converge to a symmetric matrix. In accord with these experiments, our theory suggests that

the prediction head cannot converge to a symmetric matrix before the encoder network has

successfully learned all the features. Moreover, the theory in [87] cannot distinguish between learning

complete collapsed (zero) solutions and learning dimensional collapsed ones, therefore cannot

explain why the prediction can help avoid the dimensional collapse. Actually, in the presence of

feature imbalance (e.g., has huge eigen-gap), the symmetric prediction head in (1.1) is also

likely to collapse into a rank-one matrix where W focus on learning the largest eigenvector of the

covariance .

The differences between our results and [87]‘s are in that we are based on nonlinear network

architecture and a trainable prediction head. Indeed, our theory and experiments in Figure 7 show

6

that when feature imbalance happens (which is very common in vision datasets, see [25]), training a

nonlinear network would cause discrepancies in the learning pace between different neurons. We

proved that by learning to become asymmetric, the trainable prediction head can leverage such

discrepancies and creates the substitution effect (see Lemma 5.2) and the acceleration effect (see

Theorem 5.3). We believe this proves that asymmetry is the key to explaining the implicit bias of the

trainable prediction head and our results establish the symmetry-breaking mechanism of the

prediction head in non-contrastive learning.

The role of stop-gradient and output-normalization. The seminal work [26] gave empirical results

showing that stop-gradient operation is essential for avoiding the collapsed solutions. It is discussed

in the theory of Tian et al. [82] that without the stop-gradient, the linear network will learn the zero

(constant) solution. [87] also incorporated the stop-gradient into their theory, but they did not

explain why stop-gradient is necessary for their setting. We provide a different perspective about why

stop-gradient and output normalization (together) are necessary for noncontrastive learning. We

proved in our setting, that the stop-gradient and output-normalization

 (a) Average of off-diag entries (b) F-norm of off-diag matrix (c) Maximum of off-diag entries

Figure 4: Trajectories of the identity-initialized prediction head with a (min,max) confidence band, average

over 3 runs. In all three datasets, we observe a consistent rise and fall trajectory pattern.

together can turn the features substituted via the prediction head into a factor in the gradient of the

slower learning neurons, thereby creating the acceleration effect. If either one of these components

is missing, the acceleration effect of the prediction head will not happen and all neurons in the

network will focus on learning the strongest feature. Formal arguments will be given in Section 5.3.

In contrast, [82, 87] did not incorporate the output normalization into their theory, even though

their experiments have used certain forms of normalizations. We believe their method is closely

related to the whitening method in [33]. To the best of our knowledge, our paper is the first to explain

the effects of output-normalization in optimizing nonlinear neural networks in self-supervised

learning.

Dimensional collapse Currently the only theoretical investigation on the dimensional collapse is by

Jing et al. [52], where they focus on the contrastive learning setting. We believe their result on the role

of the projection head is meaningful to understanding non-contrastive learning. But we emphasize

that the objective (2.2) suffer from much more extreme dimensional collapse, as shown in Figure 1.

Thus the causes described in Jing et al. [52] such as strong data augmentations cannot fully explain

the dimensional collapse in the non-contrastive setting.

7

2 Preliminaries on Non-contrastive Learning
In this section, we formally define what is non-contrastive self-supervised learning. To do this, we

first introduce contrastive learning following [24, 89] as background. We use [N] as a shorthand for

the index set {1,...,N}.

Background on contrastive learning. Letting φW (·) be the neural networks, contrastive learning

aims to learn good representations φW via contrasting representations of similar data samples to

those of dissimilar ones. Usually we are given a batch of data points {Xi}i∈[N], and we construct for each

i ∈ [N] a positive pair (Xi
(1),Xi

(2)) (which are assumed to be simmilar) by applying ran-

(1) (2) dom data augmentations to
Xi, and collect negative pairs (Xi ,Xj) for i 6= j ∈ [N] (which are assumed to be dissimilar). Now

given the representations], we train the network φW to
minimize the following contrastive loss:

{z }

 (a) Features learned with prediction head (b) Features learned without prediction head

Figure 5: Feature visualization of deep neural network. We visualized the features of an Wide-ResNet-16x5

following the BYORL method by Gowal et al. [38], a adversarial robust version of BYOL. Features learned with

prediction head obviously have more variety than features learned without the prediction head. Our feature

visualization technique follows from [5].

8

where sim(·,·) is the similarity metric, often defined as the cosine similarity, and τ is the so-called

temperature hyper-parameter. Intuitively, minimizing the contrastive loss can be roughly viewed as

trying to classify the representation zi as zi
0 instead of zj

0,j 6= i. It is a common belief that in order for

the network φW to be able to “distinguish” data points Xi from Xj,j 6= i, merely minimizing the positive

term of contrastive loss is not sufficient.

As shown by the papers [25, 89], the performance of contrastive learning depends critically on the

negative term. But the BYOL method [41] managed to remove the negative term without harm, by

adding a trainable prediction head to the network architecture, which opened the new direction of

non-contrastive self-supervised learning.

Non-contrastive self-supervised learning. We choose the SimSiam method [26] as our primary

framework, whose differerence with BYOL is a EMA component that is proven inessential in

[26]. Following the same notations as above, except that zi
0 = StopGrad[φW (Xi

(2))] is detached from

gradient computation, the loss objective become: (the symmetric network version)

 L0SimSiam sim) (2.2)

which is just the positive term in contrastive loss (2.1) (not divided by τ). Removing the negative term

results in the existence of plenty trivial global optimal solutions. For example, the complete collapse

refers to when φW (·) is some constant vector function with zero variance. Another trivial solution

called dimensional collapse [46], which is when all the coordinates [φW (·)]i has correlation ±1,

meaning φW (·) lies in a one-dimensional subspace of the representation space. The dimensional

collapsed solution can minimize the objective (2.2) even when the network output φW (·) is

normalized by BN to avoid converging to a constant vector [46, 92].

However, by adding a trainable prediction head on top of zi, the training miraculously succeeds

and outputs a state-of-the-art feature extractor. Let g(·) be a shallow feed-forward network (often one

or two-layer, or even simply linear), we train g and φW simultaneously on the following objective:

 LSimSiam sim(g(zi),zi0) (2.3)

where is still detached from gradient computation. The) and the detached

part zi
0 = StopGrad)] are often called the online network and the target network respectively

following [41], known as two branches of non-contrastive learning. Even when such a trainable

prediction head is able to represent identity function, the network can still avoid the common

collapsed solutions, which presents challenges in understanding their training process and the

underlying mechanism of trainable prediction head.

Challenges of understanding non-contrastive learning. Although the non-contrastive losses (2.2)

and (2.3) seems just a term of the contrastive loss (2.1), their behaviors are vastly different. As

established in [89], the negative pairs are needed for learning all the discriminative features. Without

the negative term, the learner has no explicit incentive to learn all the discriminative features from

the objective (2.3), especially when the trainable prediction head can possibly be an identity map.

9

Indeed, by setting g(·) to the identity map, problem (2.3) immediately turn back into (2.2) and has the

same trivial collapsed global optima. It is one of the most typical examples of implicit bias of

optimization in deep learning.

Empirically, the seminal paper [26] discovered that even with trainable linear prediction head

which can possibly learn identity mapping, neural networks trained by SGD still avoid such collapsed

solutions. Moreover, as we show in this paper, even with an identity-initialized linear prediction head,

as long as we train the prediction head via SGD, it still produces results comparable to when using

other types of prediction head. Our empirical evidence in Figure 2 suggests that understanding the

asymmetry provided by the off-diagonal entries in the identity-initialized linear prediction head

suffices to explain (most of) the mechanisms of the prediction head. This observation significantly

simplifies the theoretical problem and makes the complete characterization of the training dynamics

of the prediction head possible.

Nevertheless, understanding the trainable prediction head urges us to go beyond the traditional

statistical framework and optimization landscape analysis. The recent development of the feature

learning theory of neural networks [48, 5, 3, 89, 49] showed it is possible to directly analyze the

training dynamics of neural networks in various supervised or self-supervised tasks. Inspired by this

line of research and our observations, we consider understanding the optimization of

identityinitialized prediction head the key to understanding the underlying mechanism of these

methods, and the characterization of the training dynamics of the full network the major technical

challenges.

3 Problem Setup

In this section, we present the setting of our theoretical results. We first define the data distribution.

Notations. We use O,Ω,Θ notations to hide universal constants with respect to d and O,e Ωe,Θe

notations to hide polynomial factors of logd. We denote a = o(1) if a → 0 when d → ∞. We use

Figure 6: Illustration of the data distribution and data augmentations. Each data is equipped with a feature,

either v1 or v2, and contains a lot of noise patches. After the data augmentations, the positive pair (X(1), X(2)) is

constructed by randomly masking out half of non-overlapping patches for each positive sample. The reason for

10

constructing positive pair with non-overlapping patches is because of the strong noise assumption we made in

Assumption 3.3 and the feature decoupling principle in [89].

the notations poly(d), polylog(d) to represent large constant degree polynomials of d or logd. We use

N(µ,Σ) to denote standard normal distribution in with mean µ and covariance matrix Σ. We use the

bracket h·,·i to denote the inner product and k · k2 the `2-norm in Euclidean space. And for a subspace

V ⊂ Rd, we denote V ⊥ as its orthogonal complement. We use 1B to denote the indicator function of

event B.

Following the standard structure of image datasets, we consider data divided into patches, where

each patch can contain either features or noises.

Definition 3.1 (data distribution and features). Let X ∼ D be X = (X1,...,XP) ∈ Rd×P where each Xi ∈ Rd is

a patch. We assume that there are two feature vectors v1,v2 such that kv`k2 = 1,` = 1,2 and are

orthogonal to each other. To generate a sample X, we uniformly sampled ` ∈ [2] and generate for each

p ∈ [P]:

 Xp = zp(X)v` + ξp1zp=0, EX∼D[zp(X)] = 0, ∀p ∈ [P]

We denote S(X) = {p : zp(X) 6= 0} ⊆ [P] as the set of feature patches and assume zp(X) = zp0(X) ∈

{0,±α`},∀p,p0 ∈ S(X), i.e., all feature patches have the same direction of v` within the same X. We assume

P = polylog(d), S(X) ≡ P0 = Θ(logd) for every X. The assumption of ξp will be given in Assumption 3.3.

An intuitive illustration is given in Figure 6.

Strong and weak features. We pick α1 = 2polyloglog(d) and α2 = α1/polylog(d). Hence v1 is the strong

feature and v2 is the weak feature, and we want the learner network to learn both v1,v2 (but by different

neurons) as their learning goal. This is a simplification of the real scenario where features show up

more consistently across multiple patches of the images, while noises are local and roughly

independent across different patches. Intuitively, we can think of the strong features in a dataset are

the ones that show up more frequently or with larger magnitude, and weak features as those that

show up rarely or with smaller magnitude, which is the common case in any practical dataset.

Remark 3.2. Our analysis can be easily generalized to settings of either (1) when α1 = α2 but the

sampling of ` ∈ [2] is of non-equal probability (i.e., dataset imbalance setting); or (2) when the two

features always co-occur in the same sample but not of the same strength. But we still require

 polylog(d) to simplify the analysis.

Assumption 3.3 (noise). Denoting V = span(v1,v2), we assume ξp ∈ V ⊥ is independent for each p ∈ [P]

\ S(X), where X = (Xp)p∈[P] ∼ D, and:

(a) For any unit vector u ∈ V ⊥, E[hξp,ui] = 0, and E[hξp,ui6] = σ6 for some σ = Θ(1);

(b) It holds for some] it holds |E[hu1,ξpi3hu2,ξpi3]| ≤ % and |E[hu1,ξpi5hu2,ξpi]| ≤ % for any

two vectors u1,u2
∈ Rd that are orthogonal to each other.

Remark 3.4. A simple example of our noise ξp is the spherical Gaussian noise in V ⊥. Our Assumption

3.3b ensures that the prediction head cannot be used to cancel the noise correlation between different

11

neurons. We point out that the features in our data can be learned via clustering, but we emphasize

that we do not intend to compare our algorithm with any clustering method in this setting since our

goal is to study how the prediction head helps in learning the features.

3.1 Learner Network

Following the SimSiam framework, the online and target network share the same encoder network in

our setting, as explained in Section 2. We consider the base encoder network f as a simple

convolutional neural network: Let W = (w1,...,wm) ∈ Rd×m be the weight matrix, where wi ∈ Rd, the

encoder network f is defined by

 fj(X) := Pp∈[P] σ(hwj,Xpi), ∀j ∈ [m]

Here we use the cubic activation function σ(z) = z3, as polynomial activations are standard in

literatures of deep learning theory [9, 35, 54, 2, 56, 23] and also has comparable performance in

practice [2]. The (identity initialized) prediction head is defined as a matrix E = [Ei,j](i,j)∈[m]2 with Ei,i ≡

1,i ∈ [m], where only the the off-diagonals Ei,j,i 6= j are trainable parameters. The online network Fe

is defined by: given j ∈ [m], we let Fj(X) := fj(X) + Pr6=j Ej,rfr(X), and

Fej(X) := BN(Fj(X)) = BN

where the batch normalization BN here is defined as follows: Given a batch of inputs {zi}i∈[N],

 BN (3.1)

And the target network G is defined as follows: Given j ∈ [m]

Gej(X) := BN(Gj(X)) = BN

Algorithm 1 Training Algorithm

Require: data distribution D, objective LS (3.3), networks F,e Ge, hyper-parameters T,N,η,ηE,m, and a

bool variable TrainPredHead = True.

1: Initialize] i.i.d., and E(0) = Im;

2: for t ∈ {0,1,2,··· ,T − 1} do

3: Sample X(t,i) ← (Xp
(t,i))p∈[P] ∼ D,∀i ∈ [N] i.i.d.;

4: Sample {P(t,i)}i∈[N] i.i.d., and obtain St ← {X(t,i,1),X(t,i,2)}i∈[N] via data augmentations

12

;

5: Perform stochastic gradient descent step to by

);

6: if TrainPredHead = True then update the off diagonal of prediction head E(t) by

];

7: else keep E(t+1) = Im.

8: end if

9: end for

3.2 Training Algorithm

Data augmentation. We use a very simple data augmentation: for each data X = (Xp)p∈[P], we randomly

and uniformly sample half of the patches P ⊆ [P] to generate two samples (which is the so-called

positive pair in contrastive learning):

 X(1) = (Xp1p∈P)p∈[P], X(2) = (Xp1p/∈P)p∈[P] (3.2)

An intuitive illustration is given in Figure 6. Our data augmentation approach is similar to the common

cropping augmentation used in contrastive learning [22, 80] and the patch masking strategy in

generative pretraining [16, 44] and NLP pretraining [30]. It is also analogous to the data

augmentations being studied in theoretical literatures [89, 50, 62] of self-supervised learning,

especially the RandomMask augmentation in [89].

Non-contrastive loss function. Now we define the loss function as follows: we sample N data points

{Xi}i∈[N],Xi
i.∼ Di.d. and apply our data augmentation (3.2) to obtain S = {X(i,1),X(i,2)}i∈[N].

Now we define

 StopGrad (3.3)

,StopGrad[Ge(X(i,2))]i

where the StopGrad operator detach gradient computation of the target network Ge(·). This form of

objective (3.3) is first defined in Guo et al. [41] and is equivalent to (2.3) in Chen and He [26] when

Fe and Ge share the same encoder network f(·) and their outputs are normalized.

Intuition of the data augmentation. Our data augmentation is an analog of the the standard

cropping data augmentation. In Definition 3.1, the features v1,v2 appear in multiple patches, but the

13

noises are independent across different patches (see Figure 6). As our data augmentation produces

positive pairs with non-overlapping patches, learning to emphasize noises cannot align the

representations of the positive pair, but learning either one of the features φ(X) = Pp σ(hv1,Xpi) or φ(X)

= P
p σ(hv2,Xpi) is sufficient. We consider learning the same feature vi in all the neurons fj in the

encoder network f as the dimensional collapsed solution.

Initialization and hyper-parameters. At t = 0, we initialize W and and E(0) =

Im and we only train the off-diagonal entries of E(t). For the simplicity of analysis, we let m = 2, which

suffices to illustrate our main message. For the learning rates, we let] be sufficiently

small and], which is smaller than η1.

Optimization algorithm Given the data augmentation and the loss function, we perform (stochastic)

gradient descent on the training objective (3.3) as follows: at each iteration t = 0,...,T − 1, we sample a

new batch of augmented data St = {X(t,i,1),X(t,i,2)}i∈[N] and update

If we do not train the prediction head, we just simply keep E(t) ≡ Im. We summarize our algorithm in

Algorithm 1.

4 Statements of Main Results

In this section, we shall present our main theoretical results on the mechanism of learning the

prediction head in non-contrastive learning. To measure the correlation between neurons, we

introduce the following notion: letting

Var(ψ(X)) := EX∼D[(ψ(X) − E[ψ(X)])2]

be the variance of any function ψ of X ∼ D, we denote the correlation Corr(ψ(X),ψ0(X)) of any two

function ψ,ψ0 over D as

Corr

Now we present the main theorem of training with a prediction head, and set m = 2.

Theorem 4.1 (learning with prediction head and BN, see Theorem E.2). For every d > 2, let

N ≥ poly be sufficiently small, and . Then with

probability

1−o(1), after runing Algorithm 1 for T = poly(d)/η many iterations, we shall have for some ` ∈ [2]:

1 We conjecture that by modifying certain assumptions for the noise (especially by allowing the noise to span the

feature subspace V), one can prove a similar result for the case ηE = η.

14

 with

Furthermore, the objective converges: ES∼DN [LS(W(T),E(T))] ≤ OPT .

Theorem 4.1 clearly shows the network learn all the desired features, even under huge imbalance

between v1 and v2. This leads to the following corollary.

Corollary 4.2. Under the same hyper-parameter in Theorem 4.1, with probability 1 − o(1), after runing

Algorithm 1 for T = poly(d)/η many iterations, we shall have that the learning avoids dimensional

collapse:

|Corr .

In contrast, learning without the prediction head will result in learning only the strong feature v1

in both neurons, which creates strong correlations between any two neurons. To emphasize that this

problem cannot be alleviated by having more neurons, we let the number of neurons m be any positive

integer in the following theorem.

Theorem 4.3 (learning without prediction head but with BN, see Theorem F.1). Let N ≥ poly(d), η =

o(1) and the number of neurons m > 0 be any positive integer. Suppose we freeze E(t) = Im for all t, then

with probability 1 − o(1), after runing Algorithm 1 with TrainPredHead = False for T = poly(d)/η many

iterations, we shall have:

 with) for all j ∈ [m]

Furthermore, the objective converges: ES∼DN [LS(W(T),E(T))] ≤ OPT . This means the

collapsed solution also reaches the global minimum of the objective.

Note that since we have used BN as our output normalization instead of `2-norm, the learner is

immune to complete collapse and must have a certain variance in the outputs. Immediately, we have

the following corollary.

Corollary 4.4. Under the same hyper-parameter in Theorem 4.3, with probability 1 − o(1), after runing

Algorithm 1 with TrainPredHead = False for T = poly(d)/η many iterations, we shall have dimensional

collapse:

 |Corr , for all i,j ∈ [m].

Remark 4.5. Note that since we have used BN as our output normalization instead of `2-norm, the

learner is regularized to avoid complete collapse and must have a certain variance in its neurons. It is

easier to obtain a complete collapse result when the network has `2-normalized outputs and there is

2 Under our data model Definition 3.1, non-overlapping data augmentation (3.2) and learner network definition, the

global minimum of our objective (3.3) in population is the following quantity:

OPT := min

15

a low-variance feature (but not of smaller magnitude) in the data set, which we refrain from proving

here.

How does using the prediction head or not create such a difference in features learned by the non-

contrastive methods? We shall give some intuitions by digging through the training process and

separately discuss the four phases of the training process.

(a) Identity-initialized (trainable) prediction head (b) Learning without prediction head

Figure 7: The feature learning process over synthetic data. When trained with the prediction head, after the

strong feature is learned in the faster learning neuron, the weak feature can be learned in the slower learning

neuron. When trained without the prediction head, both neurons will learn the strong feature and ignore the

weak feature.

5 The Four Phases of the Learning Process

We divide the complete training process into four phases: phase I for learning the stronger feature,

phase II for the substitution effect, phase III for the acceleration effect, and the end phase for

convergence. The first three phases explain how the prediction head can help learn the base encoder

network, and the last phase of the training explains why the off-diagonal entries often shrink in the

later stage of training.

5.1 Phase I: Learning the Stronger Feature

At the beginning of training, the stronger feature v1 enjoys a much larger gradient as opposed to the

weaker feature v2, so naturally, v1 will be learned first. However, if for both neurons f1,f2 the speed of

learning v1 is the same, then we cannot argue the difference between them and will not be able to

show the substitution from either one to another. Indeed, let us assume at initialization, the neuron

 won the jackpot of having larger signal-to-noise ratio of hwj
(0),v1i between fj,j ∈ [2], then we can

show the following result under our setting.

Lemma 5.1 (learning the stronger feature, see Lemma B.13). After some t ≥ T1 = d2+o(1)/η, the feature

v1 in neuron f1 will be learn to , while all other features for (j,`) 6= (1,1)

are small. And the prediction head kE(t) − I2k2 ≤ d−Ω(1) is still close to the initialization.

16

In this phase, the prediction head has not come into play. The substitution effect can only happen

after the feature v1 in neuron f1 is learned to a certain degree, and neuron f2 remains largely unlearned.

5.2 Phase II: The Substitution Effect

To illustrate the substitution effect, let us keep assuming that neuron has already learned some

significant amount of the strong feature v1, say residual with |β1| = Ω(kresidualk).
When this happens, we have the following result: (recall fj(·),j ∈ [2] are the neurons of the base

encoder network)

Lemma 5.2 (substitution effect, formal statement see Lemma C.8). After in

O(d2+o(1)/η) iterations (as shown by Lemma B.13), for much shorter time than learning , we shall

have increasing until when X is equipped with feature v1. In other

words, is a substitute for the feature v1 that should be learned by f2.

Intuition of the substitution effect. After the stronger feature is learned in neuron f1, the optimal

way to align two positive representations F2(X(1)),G2(X(2)) is no longer learning features in weight w2,

but use the prediction head to “borrow” the features in f1 and incorporate them into F2. This is how

the substitution effect happens when trained with a prediction head.

(t)

phase, w2 and Proof sketch for Lemma 5.2. Indeed, let us look at the learning of. In this

are roughly learned to maximize the following quantity:

As the neuron f1(·) is already learned with feature v1, in order to maximize the RHS, we can either try

to maximize , or to maximize . In this case,

the more efficient choice is to learn to substitute for maximizing . Actually, because of

the high signal-to-noise ratio of learning than , feature is learned with slower pace

than , so that Lemma 5.2 can be shown.

5.3 Phase III: The Acceleration Effect
(t)

After the substitution of v1 in F2, our concern is, whether or not w2 will learn v2 and only v2 eventually,

so that we can obtain a diverse representation? The answer is yes, as we summarize in the following

lemma.

Lemma 5.3 (acceleration effect, formal statement see Lemma D.8). After is learned in Lemma

5.2, learning will be much faster than v1, until for some β2 = Θ(1).

The acceleration effect is caused by the interactions between the prediction head, the stop

gradient operation, and the normalization method (which in this case is the batch normalization). We

shall explain these interactions with insights from our theoretical analyses below.

17

What is the role of the stop-gradient? Thanks to the StopGrad operation, when we compute the

gradient −∇w2F2(X(1)) · StopGrad[G2(X(2))] to learn f2, this negative gradient will only try to maximize

f2(X(1)) · f2(X(2)), rather than to maximize f2(X(2)) · F2(X(1)). This is because the stop-gradient is on G not

on F: while F2 has a large component of v1 borrowed from f1 using E, G2 does not have this component.

So the gradient of F2 is to align with the features in G2 that does not contain many v1, while the gradient

of G2 is to aligned with the features in F2 that contains a lot of v1. Thus the stop gradient on G help

ignore the feature borrowed from f1 using prediction head E and ensures the slower learning neuron

f2 will focus on learning feature v2.

What is the role of the output normalization? Again due to the StopGrad operation, the

gradient of Fe2 is taken with respect to the ratio f2(X(1))/pVar[F2(X(1))]. As gradient descent tries to

maximize this ratio, a direct computation gives

From some calculation, we can obtain the above gradient is proportional to

which borrow the substituted feature v3−` from f1(·) to adjust the gradient of v` in f2(·), via the prediction

head . Without the output normalization, the learning of v1 will dominate that of v2 even when we

train the prediction head.

(t)
Proof sketch for Lemma 5.3. At this stage, when we are updating the weights of w2 , we are

simultaneuously maximizing f2(X(1))·f2(X(2)) and also minimizing the normalizing constants

pVar[F2(X(1))]. This two goals are in slight conflict because of the normalization, and by careful

calculation the gradients are roughly given by (interpreting the expectation as empirical)

Because of the learning of f1 and the substitution effect, we now knows [is much

larger when ` = 2, which accelerates the learning of to surpass that of v1 and leads to Lemma
5.3.

5.4 The End Phase: Convergence

As the weak features are learned, we have already obtained a good encoder network f(·) as shown in

Theorem 4.1. The rest of our analysis is to understand what the prediction head converges to in

polynomial time. Actually, our Theorem E.2 also contains the following result:

Proposition 5.4 (convergence of the prediction head, see Theorem E.2c). After some t ≥ T = poly(d)/η

iterations, we shall have .

This result also implies that after learning the weak feature v2 is complete, the off-diagonal entries

of the prediction head will reverse their trajectory and converge to zero at the end of training. While

18

we admit that only some of our real-world experiments show the convergence to zero for the off-

diagonal entries of the prediction head, most of the experiments do display a rise and fall trajectory

pattern of off-diagonal entries consistently.

6 Additional Related Work

Self-supervised learning The area of self-supervised learning has evolved at a tremendous speed in

recent years. It has created huge success in natural language processing [30, 90, 18] and established

a paradigm where the networks are first trained on an unsupervised pretext task and then be

finetuned in downstream applications. In vision, supervised pretraining had been the go-to choice

until representations learned by contrastive learning [79, 43, 24, 20, 27, 28, 34, 68, 33] became

dominant in many downstream tasks. Another type of self-supervised learning is the generative

learning [69, 16, 44], which also gives promising results in downstream adaptations. Interesting

applications such as [68, 70] also illustrate the power of contrastive learning in multiple domains.

Theory of self-supervised learning The theoretical side of self-supervised learning developed

quickly due to the success of contrastive learning, which is closely related to the methods we are

studying. Since Arora et al. [12], lots of papers have studied the properties of contrastive learning, as

mentioned in the introduction. [25, 73] discussed many interesting phenomena associated with the

negative term in contrastive learning. Saunshi et al. [75] provided pieces of evidence that contrastive

loss is function class-specific rather than agnostic. Wen and Li [89] took a feature learning view to

understand contrastive learning with neural networks, which inspired our analysis in the non-

contrastive setting. For generative self-supervised learning, [55, 78] provides downstream

performance guarantees for generative pretrained models. [74, 88] studied the natural language tasks,

where the data are sequentially structured. Liu et al. [62] gave a recovery guarantee for tensors in

generative learning under hidden Markov models. [4] analyzed multi-layer generative adversarial

networks and provided an optimization guarantee for their stochastic gradient descent ascent

algorithm.

Feature learning theory of deep learning Our theoretical results are also inspired by the recent

progress of the feature learning theory of neural networks [59, 60, 5, 3, 53, 94, 48]. Li et al. [59] initiate

the study of the speed difference in learning different types of features. [60] developed theory for

learning two-layer neural networks over Gaussian distribution beyond the neural tangent kernel

(NTK) [7, 8, 6, 32, 11]. Allen-Zhu and Li [5] studied the origin of adversarial examples and how

adversarial training help in robustify the networks. [3] tried to explain ensemble and knowledge

distillation under multi-view assumptions. Techniques in this paper are built on this line of research,

as the non-convex nature of these analyses allows us to describe the interaction between neural

networks, optimization algorithms, and the structures of data. [1, 2] also obtained results separating

deep neural networks and shallow models such as kernel methods. Before this recent progress, [81,

93, 19, 76, 31, 57, 58] also studied how shallow neural networks can learn on certain simple data

distributions, but all of them focus on the supervised learning. There are also plenty of studies [77,

40, 10, 64, 51, 71, 29] on the implicit bias of optimization in deep learning, but none of their techniques

can be applied to the setting of self-supervised learning.

19

7 Conclusion and Discussion

In this paper, we showed how the prediction head can ensure the neural network learns all the

features in non-contrastive learning through theoretical investigation. Our key observation is that the

prediction head can leverage two effects called substitution effect and acceleration effect during the

training process. We also explained how the necessary components such as output normalization and

stop-gradient operation are involved and how they interact during training. Furthermore, we proved

that without the prediction head, all neurons of the neural network would focus on learning the

strongest feature and result in a collapsed representation. We believe our theory, although based on

a very simple setup, can provide some insights into the inner workings of non-contrastive

selfsupervised learning. We also believe our theoretical framework can be extended to understanding

other phenomena in the practice of deep learning.

On the other hand, our results are still very preliminary, we point out the following open problems

that are not addressed by this paper:

• When the output normalization is `2-norm instead of BN. Experiments in Figure 2 seem to

suggest that there is still a gap between using `2-norm and BN as output normalization methods.

In this case, the acceleration effect may not happen in exactly the same way as in the BN case,

but we believe they share the same underlying mechanism and can be proven in theory.

• The mystery of the projection head. As our experiments in Figure 1 showed, the outputs of the

projection head in the symmetric case (without the prediction head) suffer an extremely strong

correlation even with batch normalization used. However, the impact on the base encoder is

milder and thus the network can avoid complete collapse, shown in Figure 1 and Figure 2. It is

mysterious how the projection head works in non-contrastive learning, and also how it

compares to the case of contrastive learning, which has been studied by [24, 52]. • Learning

non-linearly features. For the simplicity of analysis, we have assumed the features in the data

set are linear. It is of interest to study whether neural networks trained by non-contrastive self-

supervised learning can learn non-linear representations better than traditional learning

methods such as linear regression or kernel methods, as there has been a series of papers [1,

36, 37, 2, 53] trying to understand it in the supervised setting.

In the end, we also point out that theories based on a one-hidden-layer neural network and linear

data composition assumption obviously cannot explain all the phenomena in deep learning. In

supervised learning, the backward feature correction [2] process is observed and theoretically proven

as a mechanism for learning hierarchical feature extractors. It is an important open direction to

understand how a multi-layer network can learn the complicated features in non-contrastive

selfsupervised learning.

8 Experiment Details

The framework we use in our experiments is shown in Figure 8. We use a modified version of the

codebase shared by the authors of [33], Figure 8: Framework.

20

and we use the same data augmentation in their implementation. All our

experiments (except for Figure 5 and Figure 7) use the following

architecture and hyper-parameters: we choose standard ResNet-18 as

base encoder architecture, 0.003 as the learning rate for Adam optimizer,

a two-layer MLP with ReLU activation and 512 hidden neurons as the

projection head, an identity-initialized but diagonally froze linear matrix

(with shape (64x64)) as the prediction head and a non-tracking-stats,

non-affine, non-momentum BN layer as the output normalization. Our

experiments in Figure 3 use the same architecture and hyper-parameters,

but some runs are trained with EMA with momentum 0.99, with output

BN replaced by `2-norm or using different prediction heads (such as a two-layer MLP or a linear head,

with Pytorch default initialization). Evaluation in Figure 2 is by training a linear classifier on top of

frozen encoder with no data augmentation.

Appendix: The Proofs

We will be working with population gradients throughout the entire appendix. Indeed, since our

algorithms use fresh random samples at each iteration, one can easily obtain from standard

concentration inequalities an empirical estimate of population gradients up to poly
1

(d) error with

N = poly(d) samples. So we can obtain the same proofs in finite sample case as long as the training

ends before some T = poly(d)/η. Now we give some notations and warm-up calculations.

A Notations and Gradients

In this section, we will give some useful notations and warm-up computations for the technical proofs

in subsequent sections. We summarize here the notations that will also be defined in later sections:

Notations. We denote , and

,

B¯
j,`

3 = StopGrad[hwj,v`i3], Bj,` = hwj,v`i, Qj = (E[StopGrad[G2
j(X(2))]])−1/2.

and

Uj := E[Fj2(X(1))] = P`∈[2] C1α`6(Bj,`3 + Ej,3−jB33−j,`)2 + C2Ej,3−j

Hj,` := C1α`6(Bj,`3 + Ej,3−jB33−j,`)2 + C2Ej,3−j,

Kj,` := C1α`6(Bj,`3 + Ej,3−jB33−j,`)(Bj,33−` + Ej,3−jB33−j,3−`)

3/2
Moreover, we denote Φj := Qj/Uj , and (recall V := span(v1,v2))

 Rj := hΠV ⊥wj,wji R1,2 := hΠV ⊥w1,w2i

21

For any j ∈ [2], the gradient −∇wjL(W,E) can be decomposed as

Sometimes we need to decompose Υj,` = Υj,`,1 +Υj,`,2 which is straightforward from its expression.

In Section D, we further define

for the gradients of the prediction head.

A.1 Gradient Computation

Let us L(W,E) to be the population version of the objective. Because E[Fj(X(1))] and E[Gj(X(2))] are both

zero (which can be verified easily from the zero-mean assumptions of zp(X) and ξp), a direct

computation gives:

− X E[Fj(X(1)) · StopGrad[Gj(X(2))]]

 L(W,E) = 2

j∈[2] qE[Fj2(X(1))]qE[StopGrad[G2j(X(2))]]

We first calculate the normalizing quantity E[Fj
2(X(1))]:

(Because all signal patches has the same sign within the same data)

(Because noise patches are independent and have mean zero)

where we let

On the other hand, we have

22

E[Fj(X(1)) · StopGrad[Gj(X(2))]]

StopGrad[hwj,v`i3]

= X α
`
6(hwj,v`i3 + Ej,3−jhw3−j,v`i3) · StopGrad[hwj,v`i3] · E [|S(X) ∩ P| · |S(X) \

P|]

2
`∈[2]

Now, by denoting

,

B¯
j,`

3 = StopGrad[hwj,v`i3], Bj,` = hwj,v`i, Qj = (E[StopGrad[G2
j(X(2))]])−1/2.

we denote Uj := E[Fj
2(X(1))], where the expanded expression is

Uj = E[Fj2(X(1))] = X C1α`6(Bj,`3 + Ej,3−jB33−j,`)2 + C2Ej,3−j

`∈[2]

and we can rewrite the objective as follows

 (A.1)

Now denote

Hj,` = C1α`6(Bj,`3 + Ej,3−jB33−j,`)2 + C2Ej,3−j,

Kj,` = C1α`6(Bj,`3 + Ej,3−jB33−j,`)(Bj,33−` + Ej,3−jB33−j,3−`)

It is easy to calculate

Q−
j

2 = E[StopGrad[G2
j(X(2))]]

23

where Ej = E[hwj,ξpi6]. And thus the gradient can be computed as (notice B¯
j,`

3 = Bj,`
3)

(A.2)

where

∇wjEj,3−j = 6E[hwj,ξpi5ξp + Ej,3−jhwj,ξpi2hw3−j,ξpi3ξp]

∇wjE3−j,j = 6E[E32−j,jhwj,ξpi5ξp + E3−j,jhw3−j,ξpi3hwj,ξpi2ξp]

As for the gradient of the prediction head, we can calculate

where Σj,` is defined in (A.2). In fact, all the above gradient expressions can be simplified by letting
3/2

Φj := Qj/Uj for j ∈ [2], which is what we shall do in later sections.

24

Summarizing the notations. We shall define some useful notations to simplify the proof. We define

V = span(v1,v2). Let ΠA be the projection operator to subspace A ⊂ Rd, then

 Rj := hΠV ⊥wj,wji R1,2 := hΠV ⊥w1,w2i

A.2 Some Useful Bounds for Gradients

In this section we use the superscript (t) to denote the iteration t during training.

Below we present
(t) a claim which comes from

direct calculations of Σj,` and, which is very useful in the following sections.

(t)
Claim A.1 (on Σj,` and. Letbe defined as above, then we have

;

;

;

(t)

Proof. The part on Σj,` is trivial from its expression, we shall focus on proving (b) – (d).

On , then

h∇wjEj,(t3)−j,wj(t)i = Θ(1)E[hwj(t),ξpi6 + Ej,(t3)−jhwj(t),ξpi3hw3(t−)j,ξpi3]

= Θ(1)E[hwj(t),ξpi6] + O(Ej,(t3)−j)E[hwj(t),ξpi3(hw3(t−)j,ξpi3

− h(I − w¯j,tw¯j,t>)w3(t−)j,ξpi3)]

+ O(Ej,(t3)−j)E[hwj(t),ξpi3h(I − w¯j,tw¯j,t>)w3(t−)j,ξpi3]

(t)

Write ¯ , we can derive

25

 (by H¨older’s inequality)

and by our assumption on noise ξp, we also have

Combined with the fact that), we can get

when j0 = 3 − j, we also have

h∇wjE3(−t)j,j,wj(t)i = Θ(1)E[(E3(t−)j,j)2hwj(t),ξpi6 + E3(t−)j,jhwj(t),ξpi3hw3(t−)j,ξpi3]

= O((E3(t−)j,j)2)kΠV ⊥wj(t)k62 ± O(E3(t−)j,j)(R1(t,)2 + %)kΠV ⊥wj(t)k23kΠV ⊥w3(t−)jk23

On : when j0 = j, we have

h∇wjEj,(t3)−j,w3(t−)ji = O(1)E[hwj(t),ξpi5hw3(t−)j,ξpi + Ej,(t3)−jhwj(t),ξpi2hw3(t−)j,ξpi4]

 = O(1)E[hwj(t),ξpi5h(I − w¯j,tw¯j,t> + ¯wj,tw¯j,t>)w3(t−)j,ξpi] (A.3)

+ O(1)E[Ej,(t3)−jhwj(t),ξpi2hw3(t−)j,ξpi4]

Using H¨older’s inequality and our assumpsion on ξp, we have

In the meantime, we also have

for the last term in (A.3), we can also use H¨older’s inequality to get

Therefore, we can combine above analysis to get

When j0 = 3 − j, we also have

26

which proves the claim.

B Phase I: Learning the Stronger Feature

In this section, we shall discuss the initial phase of learning the stronger feature. Firstly, we establish

some properties at the initialization for our induction afterwards.

Initialization properties. We prove the following properties for our network at initialization.

 (0) (0) = I2.

Recall our initialization is wj ∼ N(0,Id/d),∀j ∈ [2] and E

Lemma B.1 (properties at initialization). Recall that without loss of generality we let

. With probability 1 − o(1), the following holds:

 for all j ∈ [2], and ;

(b) maxj,` |Bj,`
(0)| ≤ O(plogd/d) and ;

;

 for all j ∈ [2];

 for all (j,`) ∈ [2] × [2];

 for all j ∈ [2];

 for all j ∈ [2];

 (0) 6/d3) for all (j,`) ∈ [2] × [2].

(h) Kj,` ≤ Oe(α`

Let us first introduce a fact about Gaussian ratio distribution without proof.
Fact B.2 (Gaussian ratio distribution). If X and Y are two independent standard Gaussian variables,

then the probability density of

Proof of Lemma B.1. a. Norm bound comes from simple χ2 concentration inequality and our

initialization). The inner product bound comes from Gaussian concentration.

b. It is from a direct calculation under our initialization, and some application of Gaussian c.d.f.

and a union bound.

27

c. It is from a probability distribution of Gaussian ratio distribution from Fact B.2 to bound the

probability of) (WLOG we let

d. It can be directly proven from our assumption on noise ξp in the subspace V ⊥ and (a).

 1 ∈ [2] and (0)

 = 0, it is easy to directly

e. Since at the initialization we have Bj,` = Oe(√d),j,` upper bound the errors.

f. Again from [2] at initialization and a direct upper bound.

g. Proof is similar to (e).

h. Directly from a naive upper bound using (b).

B.1 Induction in Phase I

We define phase I as all iterations t ≤ T1, where , we will prove the

existence of T1 at the end of this section. We state the following induction hypotheses, which will hold

throughout the phase I:

Inductions B.3. For each t ≤ T1, all of the followings hold:

 for each j ∈ [2];

;

;

 and ;

Remark B.4. Since we have chosen ηE ≤ η and , Induction B.3d implies

throughout t ≤ T1.

We shall prove the above induction holds in later sections, but first we need some useful claims

assuming our induction holds in this phase.

B.2 Computing Variables at Phase I

Firstly we establish a claim controlling the noise terms Ej,Ej,3−j during this phase. Claim B.5.

At each iteration t ≤ T1, if Induction B.3 holds, then

28

;

Proof. For (a), we can simply write down

Note that by Induction B.3a we always have), and by Lemma B.1a

we also have , which implies

By the elementary equality xn − yn = (x − y)P
0≤i≤n−1 xiyn−1−i, we can obtain (a). The proof of (b) is almost

the same as (a), and the proof of (c) is just direct calculation.

Equipped with Claim B.5, we can establish the following lemma, which will be frequently applied

to bound the gradient in our induction argument.

Lemma B.6 (variables control in phase I). Suppose Induction B.3 holds at some iteration t ≤ T1 , then

we have:

, then polylog 1

(d));

, then ;

1

polylog (d)) = Θ(C2),

otherwise

Proof. (a) From our assumptions that) and (1), and also

the fact that polylog , we can calculate

Uj(t) = X C1α`6((Bj,`(t))3 +

Ej,(t3)−j(B3(t−)j,`)3)2 + C2Ej,(t3)−j

`∈[2]
= C2Ej (1 ± polylog(d))

Meanwhile, we can also compute similarly

29

Qj(t) = X C1α`6(Bj,`(t))6 + C2Ej = C2Ej(t)(1 ± polylog 1 (d))

`∈[2]

Therefore Φ polylog 1 (d)))−2 as desired.

(b) The proof is similar to that of (a).

(c) when (1), the proof is similar to (a). When (1), we have from

Induction

B.3a and ’s expression that

And since , so for t ≤ T1, we have

 ¬ ­
 (t) (t)
 Hj,` ≥ C2Ej,3−j ≥ 2 j

where ¬ is from Claim B.5b and ­ is from Induction B.3d.

(d) Since we have assumed), it is direct to bound

(t)
Claim B.7 (about Σj,` and. If Induction B.3 holds at iteration t ≤ T1, then

;

;

;

Proof. Notice that [2] for t ≤ T1, which is because of

o(1) from Induction B.3a and max . Now we can apply Claim A.1 to obtain the
bounds.

3 3

due to our choice ofis small, we can make sure when

30

B.3 Gradient Lemmas for Phase I

We first present an interesting lemma regarding the effects of Batch-Normalization on the gradients

of weights. The following lemma allow us maintain the norm of weights to above a constant

throughout phase I.

Lemma B.8 (effects of BN on gradients). For any W = (w1,w2) and E, it holds

(a) Pj∈[2]h∇wjL(W,E),wji = 0;

Further, if Induction B.3 holds for each t ≤ T1, we have

 for each j ∈ [2].

Proof. Proof of (a): We first calculate the gradient term as follows:

∇W L(W,E) = ∇W jX∈[2] q

EE[F[Fj2j((XX(1)
(1))])q· StopGradE[StopGrad[Gj[(GX2j

(2)(X)]](2))]]

Since by our definition h∇W Fj(X(1)),Wi = P
i∈[2]h∇wi[Fj(X(1)),wii = 3[Fj(X(1)), we immediately have

P
j∈[2]h∇wjL(W,E),wji = 0.

Proof of (b): Firstly we define a new notion

∇i,j = ∇wi q

EE[F[F2j((XX(1)(1))])q· StopGradE[StopGrad[Gj[(GX2j(2)(X)]](2))]]

j

Then it is straghtforward to verify that Pi∈[2]h∇i,j,wii = 0 for any j ∈ [2], which implies that |h∇j0,j,wj0i| =

|h∇3−j0,j,w3−j0i|. So in order to obtain an upper bound for |h∇wjL(W,E),wji| = |Pj0∈[2]h∇j,j0,wji|, we only need

to upper bound |h∇j,j0,w3−j0i|, each of which can be calculated as (ignoring all time superscript (t))

31

Now we compute

= X Ej,3−jC0α`6B33−j,`Bj,`3

`∈[2]

and

E X hw3−j,Xpi) · Fj(X(1)) Ej,3−jσ(
p∈[P]∩P

= E X Ej,3−jσ(hw3−j,Xpi) · X (σ(hwj,Xpi) + Ej,3−jσ(hw3−j,Xpi))

 p∈[P]∩P p∈[P]∩P

= X Ej,3−jC1α`6B33−j,`(Bj,`3 + Ej,3−jB33−j,`) + C2Ej,3−jE[hwj,ξpi3hw3−j,ξpi3 + Ej,3−jhw3−j,ξpi6]

`∈[2]

So we can further obtain the nominator in the expression of |h∇3−j,j,w3−ji| as

E X Ej,3−jσ(hw3−j,Xpi) · [G(X(2))]j · E[F
j2(X(1))]

p∈[P]∩P

− E X Ej,3−jσ(hw3−j,Xpi) · Fj(X(1)) · E[[Fj(X(1)) · [G(X(2))]j]

p∈[P]∩P

= X Ej,3−jC0α`6B33−j,`Bj,`3 · X C1α`6(Bj,`3 + Ej,3−jB33−j,`)2 + C2Ej,3−j

 `∈[2] `∈[2]

32

− X Ej,3−jC1α`6B33−j,`(Bj,`3 + Ej,3−jB33−j,`) · X C0α`6Bj,`3 (Bj,`3 + Ej,3−jB33−j,`)

 `∈[2] `∈[2]

− C2Ej,3−jE[hwj,ξpi3hw3−j,ξpi3 + Ej,3−jhw3−j,ξpi6] · X C0α`6Bj,`3 (Bj,`3 + Ej,3−jB33−j,`)

`∈[2]

= Ej,3−j X C0α`6B33−j,`(Bj,`3 Hj,3−` − Bj,33−`Kj,3−`)
`∈[2]

− C2Ej,3−jE[hwj,ξpi3hw3−j,ξpi3 + Ej,3−jhw3−j,ξpi6] · X C0α`6Bj,`3 (Bj,`3 + Ej,3−jB33−j,`)

`∈[2]

Now can sum over j0 ∈ [2] to get

Next we are going to bound each term, for the first term of LHS we have

where the last inequality is because

• By Lemma B.6a,b, we have Φ during t ≤ T1.

• from Induction B.3b,c.

Similarly, we can also compute

and

33

where ¬ is due to Lemma B.6c, ­ is from the same calculation in Claim B.7 for E[hwj,ξpi3hw3−j,ξpi3] and

Induction B.3a. Now combining the above and Induction B.3e together we have

which gives the desired bound.

Next we give a lemma characterizing the gradient of feature v1 in this phase.

Lemma B.9 (learning feature v1 in phase I). For each t ≤ T1, if Induction B.3 holds at iteration t, then

using notations of (A.2), we have:

Proof. From (A.2), we write down the gradient formula for as follows:

where (ignoring the superscript (t) for the RHS)

We first prove (a), and we deal with each term individually:

Comparing and : When t ≤ T1,1, we have from Lemma B.6a that

 1 1 1 1 (t) (t)

 1

) = Φ2 H2,2(1 ±)

 polylogpolylog(d) polylog(d)

Further, by Induction B.3b,c,d and our definition of stage 1, we know). Now from

34

Induction B.3b that), together we have

When t ∈ [T1,1,T1], by Lemma B.6b we have

 , and

Now from our definition of stage 2, it holds that) while) by Induction

B.3b, which gives

(t)
Comparingand: Now consider Υ1,1, by Lemma B.6, we can follow the

same analysis as above to get

 for any (j,`) ∈ [2] × [2]

Combined with (1), we can derive

) (since C1 = Oe(1) and α1,α2 = do(1))
(t)

Comparingand: Till now (a) is proved, we can deal with (b) by only

comparing Λ2,1 with

. Similar to the above arguments, we have by Induction B.3b we know [2],

and thus

 for any (j,`) ∈ [2] × [2]

By Induction B.3e we know). Also, note that from Induction B.3b we have

), and thus

So together we have

35

Comparing with : It suffices to notice that

 (t) (t)

Combining the bounds for Λ2,1
and Γ

2,1, we obtain the proof of (b).

Then we can also calculate the gradients of feature v2 in this phase.

Lemma B.10 (learning feature v2 in phase I). For each t ≤ T1, if Induction B.3 holds at iteration t, then

using notations of (A.2), we have for each j ∈ [2]:

 (B.1)

Proof. Again as in the proof of Lemma B.9, we expand the notations: (ignoring the superscript (t) for

the RHS)

 (t) (t)

We first compare Λj,2
and Γ

j,2 as follows: Lemma B.6 we have

•) by Induction B.3b;

• From Lemma B.6a,b we can have Φ

Together they imply:

C0α26E3(t−)j,j(B3(t−)j,2)3(Bj,(t2))2Φ(3t−)jH3(t−)j,1 ≤ Oe(α1O(1)E3(t−)j,j)C0α26Φ(jt)Hj,(t2)(Bj,(t2))5

 O(1) (t) (t)
 = Oe(α1 Ej,3−j)Λj,2 (B.2)

 (t) (t) (t)
Now we turn to compare Λj,2 with Υj,2. We split Υj,2 into two terms Υj,

(t)
For Υj,2,1, we can calculate

36

) from Lemma B.6d)

) from Induction B.3b) (B.3)

(t)
And for Υj,2,1, we use Induction B.3b and Lemma B.6d again to get

and thus combined with Φ [2] from Lemma B.6a,b, we can derive

Υj,(t2),2 = C0α16Φ(3t−)jEj,(t3)−j(B3(t−)j,1)3(Bj,(t2))2K3(t−)j,2

≤ Oe(α16E3(t−)j,j)C0α26Φ(jt)Hj,(t1)(Bj,(t2))5

 = Oe(α16E3(t−)j,j)Λ(j,t2) (B.4)

Now combine the results of (B.2), (B.3) and (B.4) finishes the proof of (B.1).

Lemma B.11 (learning prediction head E1,2,E2,1 in phase I). If Induction B.3 holds at iteration t ≤ T1,

then we have

;

Proof. We first write down the gradient for : (ignoring the time superscript (t))

−∇Ej,3−jL(W,E) = X C0Φjα`6Bj,`3 (B33−j,`Hj,3−` − B33−j,3−`Kj,3−`) − X Σj,`∇Ej,3−jEj,3−j
 `∈[2] `∈[2]

where . Thus we have

and by Claim B.5 and Lemma B.6a,b

Now let us look at ∇E1,2L(W(t),E(t)), first we consider the term

37

X C0Φ(1t)α`6(B1(t,`))3((B2(t,`))3H1(t,3)−` − (B
2(t,3)−`)3

K
1(t,3)−`)

`∈[2]

Using Lemma B.6 and Induction B.3b,c, we know

• and) for t ∈ [T1,1,T1];

•);

•

It can be computed that

Now we turn to ∇E2,1L(W(t),E(t)), similarly we have

and since) by Lemma B.6c, we can go through the same arguments again

to obtain

Now the proof is complete.

Also, we will need the following lemma controlling gradient bounds for the noise term.

Lemma B.12 (update of in phase I). Suppose Induction B.3 holds at iteration t ≤ T1, then we have

Proof. Proof of (a): Firstly, by Claim B.7a, we can directly write

38

 (B.5) Now we discuss

each summand respectively: for (j,`) = (1,1), we have

) (B.6)

where the last one is due to Induction B.3d. And for ` = 2, we can see from Induction B.3b and d,

that max) and (1) to give

On one hand, when t ≤ T1,1, we have (1) for all (j,`) ∈ [2]2, so Lemma B.6a applies for
(t)

both Φj and results in Φ (1). We can also apply Induction B.3c to

have

Oe(1). On the other hand, when t ∈ [T1,1,T1], we have by Induction B.3b and Lemma B.6a,b that

, but now), therefore

So together, they imply

) (B.7)

and similarly, we have

) (B.8)

Next we turn to . When j = 1, we can apply Claim B.7d to get

) (B.9)

and when j = 2, we can apply Claim B.7e to get

) (B.10)

39

Combining (B.5), (B.6), (B.7), (B.8), (B.9), and (B.10) completes the proof of (a).

(t)
Proof of (b): The Σj,` part is the same as in the proof of (a), so we only deal with and

 here. For , we apply Claim B.7d to get

 (B.11)

and for , we have

 (B.12)

Inserting (B.6), (B.7), (B.8) and (B.11), (B.12) into the expression of h−∇w2L(W(t),E(t)),ΠV ⊥w1
(t)i finishes

the proof of (b).

B.4 At the End of Phase I

Lemma B.13 (Phase I). Suppose is sufficiently small, then Induction B.3 holds for at least all

, and at iteration t = T1, we have

;

;

 and for j ∈ [2];

 and ;

 and .

Proof. We begin by first prove the existence of) if Induction

B.3 holds whenever 01, then we will turn back to prove Induction B.3 holds throughout t ≤

T1. We split the analysis into two stages:

Proof of : By Lemma B.9a we can write down the update of as

 (B.13)

When (1), by Lemma B.6a,c we have Φ

can lower bound the update as

) and), this means we

since is a constant, we know there exist some t0 ≥ 0 such that). Also recall that

40

. So by Lemma G.1, where polylog

1 (d)

and (1), we have

Since () from our initialization, we have) and thus T1,1 exists. Now we

consider when). Now by Lemma B.6b,c, we have Φ), which gives an
update:

so again by Lemma G.1, choosing),

where), so we have proved that T1 exist. Now we begin to prove that Induction B.3

holds for all t ≤ T1.

Proof of Induction B.3: We first prove (b)–(d), and then come back to prove (a) and (d). At t = 0, we

know all induction holds from Properties B.1. Now we suppose Induction B.3 holds for all iterations

≤ t − 1 and prove it holds at t.

The growth of : Applying Lemma B.9, we have for t ≤ T1,1

For some , we have during , and

which allow us to give an upper bound to as

 (when polylog

41

Since we also have

1

polylog

Since)), we can now apply Corollary G.2 to the two sequence and

, where polylog 1 (d)) to get

 while

Note that here the update of at every step satisfies sign() which

implies). Now for every], we can apply Lemma G.3 to get that

Suppose we have proved that) for each t ≤ T, we define a new sequence

1

 , polylog

where

It can be directly seen that for all]. Notice that now

, we can now apply Corollary G.2 again to get

|B2(T,1) − B2(0),1| ≤ |Be2(T,1) − Be2(0),1| ≤ √ 1 (for every T ≤

T1,1) dpolylog(d)

Now we deal with t ∈ [T1,1,T1]. During this stage, we can directly apply Corollary G.2 to and

, where), to get that

 |B2(T,1) − B2(0),1| ≤ |Be2(T,1) − Be2(0),1| ≤ √ 1

 (for every T ≤ T1)

dpolylog(d)

And thus by Lemma B.1, we have

The growth of and : By Lemma B.10, we can write down the update as

42

Since) and) because we chose ηE ≤ η, we only need

to care about (in the update expression. Now define , we have
1

• For , by Corollary G.2 and setting

1. polylog(d) (by Lemma
B.6a,c), we have

 for all , which implies Bj,)] by

Lemma B.1.

• For], we can use Corollary G.2 again and let , we know .

 ,

which implies)] for all

This proves Induction B.3b. Indeed, simple calculations also proves Induction B.3c, since the update

of is always larger than others’ during t ≤ T1.

For Induction B.3d: From Lemma B.11, we can write down the update

!

for some constants C1,C2 = Θ(1). Applying Lemma G.3 to , we can obtain

So here it suffices to notice that whenever) (which is obviously satisified at t =
0), we would have

In that case, we will always have (since

Similarly for ∇E2,1L(W(t),E(t)), we can write down

1 √
d (d)

Setting C t =(1 − e O (1
d))Φ

(t)
1 C 0 α 6

1 H
(t)
1 , 2 , S t = O ((1+ α 6

1)
α 6 2 Φ (t) j H (t) j, 1
α 6 1 Φ (t) 1 H (t)

1 , 2
) ≤ O (α O (1)) ,wecanhave

| B
(t)
j, 2 − B

(t 0 2)
j, 2 | 1 √

d (d) B
(t)
j, 2 ∈ [Ω(1 √

d log d) ,O (
√

log d √
d t ∈ [t 0

2 ,T 1].

| B
(t)
j, 2 − B

(0)
j, 2 |≤ O (

α 6 2
α 6 1

1 √
d)

(t 0 2)
2 = B

(0)
j, 2 ± 1 √

d (d) ∈ [Ω(1 √
d log d) ,O (

√
log d √

d

43

by Lemma G.3, we have

and since from previous comparison results we know that

we can then prove the claim.

For Induction B.3a: We can write down the update of as follows:

kwj(t+1)k22 = kwj(t) − η∇wjL(W(t),E(t))k22

= kwj(t)k22 − ηh∇wjL(W(t),E(t)),wj(t)i + η2k∇wjL(W(t),E(t))k22

from (A.2) and Induction B.3a,b,c at iteration t and our assumption on ξp, we know

which allow us to choose to be small enough so that . Then by Lemma

B.8b, we have

(t+1) 2 kwj(0)k22 ± η X|h∇wjL(W(s),E(s)),wj(s)i| ± poly1(d)

kwj k2 =
s≤t

1

poly(d)

Since from the above analysis of the update of , we know (1). Moreover, we also

know that is increasing and sign(Λ) for any s,t ≤ T1. Thus they imply

(1), which can be combine with Induction B.3d to prove the claim.

Proof of Induction B.3e: We can write down the update of as follows

hΠV ⊥w1(t+1),w2(t+1)i = hΠV ⊥w1(t) − ΠV ⊥η∇w1L(W(t),E(t)),ΠV ⊥w2(t) − ΠV ⊥η∇w2L(W(t),E(t))i

= R1(t,)2 − ηh∇w1L(W(t),E(t)),ΠV ⊥w2(t)i − ηh∇w2L(W(t),E(t)),ΠV ⊥w1(t)i

+ η2hΠV ⊥∇w1L(W(t),E(t)),ΠV ⊥∇w2L(W(t),E(t))i

By Cauchy-Schwarz inequality and the same analysis above we have

|hΠV ⊥∇w1L(W(t),E(t)),ΠV ⊥∇w2L(W(t),E(t))i| ≤ k∇w1L(W(t),E(t))k2k∇w2L(W(t),E(t))k2

44

≤ Oe(d)

so by our choice of η

X η2|hΠV ⊥∇w1L(W(t),E(t)),ΠV ⊥∇w2L(W(t),E(t))i| ≤ 1 poly(d) t≤T1

and by Lemma B.12 we have

which implies

|hΠV ⊥w1(t+1),w2(t+1)i| ≤ |hΠV ⊥w1(0),w2(0)i| + XX η|h∇wjL(W(s),E(s)),ΠV ⊥w3(s−)ji| + poly 1(d)

s≤t j∈[2]

1

poly(d)

which completes the proof of Induction B.3. As for (a) – (e) of Lemma B.13, they are just direct

corrolary of our induction at t = T1.

C Phase II: The Substitution Effect of Prediction Head

In this phase, As is learned to become very large (). The focus now shift to grow

, because we want to dominate . We can write down the

gradient of as

−∇E2,1L(W(t),E(t)) = X C0Φ(2t)α`6(B2(t,`))3((B1(t,`))3H2(t,3)−` − (B2(t,3)−`)3K2(t,3)−`) − X Σ(2t,`)∇E2,1E2(,t1)

 `∈[2] `∈[2]

Now let us define

 (C.1)

We will prove that reaches at most O(pηE/η) and the following induction hypothesis

holds throughout t ∈ [T1,T2]. In this phase, the learning ofis much faster than the growth of the

√

45

first feature v1 such that T2 − T1 = o(T1/ d), which is due to the acceleration effects brought by =

Ω(1) during this phase.

C.1 Induction in Phase II

We will be based on the following induction hypothesis during phase II.

Inductions C.1 (Phase II). When t ∈ [T1,T2], we hypothesize the followings would hold

 for (j,`) 6= (1,1) and ;

;

;

 and .

Under Induction C.1, we have some results as direct corollary.

Claim C.2. At each iteration t ∈ [T1,T2], if Induction B.3 holds, then

;

 for each j ∈ [2];

Proof. It is trivial to derive (a) from the expression of and our assumption of ξp. For (b) it suffices

to directly calculate the expression of along with Induction C.1b.

Lemma C.3 (variables control in phase II). In Phase II (t ∈ [T1,T2]), if Induction C.1 holds, then

;

.

Proof. The proof of (a) directly follows from Induction C.1a,c and Claim C.2. The proof of (b) follows

directly from the expression of Kj,` and Induction C.1a,d. The proof of (c) is also similar.

C.2 Gradient Lemmas for Phase II

Lemma C.4 (learning prediction head E1,2,E2,1 in phase II). If Induction C.1 holds at iteration t ∈ [T1,T2],

then we have

(a)

(b)

46

Proof. We first write down the gradient for : (ignoring the time superscript (t))

−∇Ej,3−jL(W,E) = X C0Φjα`6Bj,`3 (B33−j,`Hj,3−` − B33−j,3−`Kj,3−`) − X Σj,`∇Ej,3−jEj,3−j

`∈[2] `∈[2] where

. Thus we have

and by Claim A.1 and Induction C.1a, if (j,`) 6= (1,1)

Therefore for j = 1:

Now by Induction C.1a,c and Lemma C.3b,c we have (,

which leads to the bounds

 ,

which implies

Combining above together, we have

For −∇E2,1L(W(t),E(t)), the expression is slightly different, we first observe that by Induction C.1a

Meanwhile, by Induction C.1a and Lemma C.3b,c , we have

,

Moreover, we can also calculate Σ ,

which gives

47

Now we combine the above results and get

Lemma C.5 (reducing noise in phase II). Suppose Induction C.1 holds at t ∈ [T1,T2], then

;

And furthermore

;

Proof. The proof can be obtained directly from some calculation using Claim A.1 as follows:

Proof of (a): From (A.2), we can obtain that

h−∇w1L(W(t),E(t)),ΠV ⊥w1(t)i = −XΣ(j,`t)h∇w1Ej,(t3)−j,w1(t)i

j,`

Now from Claim A.1a and Induction C.1a, we know () and the following

 for any (j,`) 6= (1,1)

From Induction C.1a,c, we know ((and = Θ(1), which by

Claim C.2a,b and Lemma C.3a gives Φ). Combine the bounds above, we can obtain

Σ . We can then directly apply Claim A.1 to prove Lemma C.5a as follows

48

(Since by Induction C.1c,d)

(t)
Proof of (b): For Lemma C.5b, we can use the same analysis for Σ1,1 above and Claim A.1(d,e) to get

(again we have used Σ

Proof of (c): Similarly to the proof of (a), we can also expand as follows

Proof of (d): Similarly, we can calculate (again by Σ

which completes the proof.

Lemma C.6 (learning feature v2 in phase II). For each t ∈ [T1,T2], if Induction C.1 holds at iteration t,

then we have for each j ∈ [2]:

49

Proof. Again as in the proof of Lemma B.9, we expand the notations: (ignoring the superscript (t) for

the RHS)

 (C.2)

where

Now we further write Υ j, , where

 ,

According to (C.2), we can first compute

Then we can apply Induction C.1a,c,d, Claim C.2a,b and Lemma C.3a,c to get

where the last inequality is due to Lemma C.3a,c. Similarly, we can also compute for Γj, :

This completes the proof Lemma C.7 (learning feature v1 in Phase II). For each t ∈ [T1,T2], if

Induction C.1 holds at iteration t, then we have:

;

50

Proof. As in the proof of Lemma C.6, we expand the gradient terms:

 (C.3)

where

Indeed, when j = 1, by Induction C.1a and Lemma C.3a,c, we can compute

and with additionally Lemma C.3b, we also have

which gives the proof of (a). For (b), we can also apply Induction C.1a and Lemma C.3a,c to get

this finishes the proof.

C.3 At the End of Phase II

Now we shall present the main theorem of this section, which gives the result of prediction head

growth after the feature v1 is learned in the first stage.

Lemma C.8 (Phase II). Suppose is sufficiently small, then Induction C.1 holds for all iteration

t ∈ [T1,T2], and at iteration t = T2, the followings holds:

 for (j,`) 6= (1,1)

, and ;

 and

Where the part of learning is what we called substitution effect. One can easily verify that

 when X is equipped with feature v1, as stated in Lemma 5.2.

Proof. We first will prove Induction C.1 holds for all iteration t ∈ [T1,T2]. We shall first prove that if

Induction C.1 continues to hold when , we shall have [] decreasing at an exponential

rate.

51

Proof of the decrease of : Firstly, we write down the update of using Lemma C.5a:

(t) from the expression of Σ1,1 in (A.2), and by Induction C.1a and Lemma
C.3a,c, we can compute

Moreover, from Induction C.1c we know that

Therefore whenever (which t ≤ T2 suffices), we shall have always have

which implies, if we set , then for all], we will have

(C.4)

)

 (since

From the last inequality we know that after), we shall have

Moreover, suppose , (which just mean) for some iteration s ∈ [T1,T2]) we

also have

So when) iterations, we will have

for all t ∈ [s,T2], which means we have a lower bound throughout t ∈ [T1,T2]. This

proves Lemma C.8a and also our induction on .

Proof of induction for : By Lemma C.4a, we can write

52

Since again from Induction C.1b,c that

 (1)], we

can obtain the update of as

where 0 and Ce = Θ(1)e is larger than the hidden constant (including

the polylog(d) factors) of) in Lemma B.13d. And then we can compute

 (due to calculations in (C.4))

) (because is very small)

Now by Lemma B.13d, we know ; then we begin our induction that

 at for all iterations t ∈ [T1,T2]. Now assume we have , from

above calculations it holds that)). Then we would have

(because of the range of and

This proved that and also the induction can go

4If we want , then as long as is small enough, we can always assume to have found

some iteration t0 ∈ (T1,t] such that , and we set t = t0 and start our argument from that iteration.
on until t = T2.

Proof of the growth of and : According to Lemma C.4b, we can

write down the update of as

53

Then, from Lemma C.3a,c and Induction C.1, we have

polylog (

 d3 2α1

and also

Now by Lemma C.3a and Induction C.1a, it allow us to simplify the update to

) (by Induction C.1 and Claim

C.2)

Now since sign(), we know there is an iteration) such that

for all], it holds

and thus sign() and will be increasing during]. Thus as

long as continues to hold, after at most) iterations starting from T1, we shall

have

However, in order to actually prove), we will need to ensure that (1) there

exist some constant C = Ω(pηE/η) such that while for all s ∈ [T1,t];

(2) we shall have a upper bound). They will be done below.

54

Proof of and : In fact, Induction C.1c are already proved

since we have already calculated the dynamics of and its upper bound and lower bound. In this

part we are going to prove) (which means that can

be achieved in) many iterations). From Lemma C.5c, we can write down the update for
as

where we have used the fact that

) from our assumption on the
(t) noise ξp and a simple bound for Σj,` as we have done before. Next

we can resort to Induction C.1d

that to derive

which is because (1) and Σ 0 as we have calculated in the proof

of Induction C.1a above. Similarly, we can also bound

Moreover, because) and from Induction C.1, we

have for each t ≤ T2:

Thus combining all the bounds above, we have proved that for each t ∈ [T1,T2], it holds

R2(t) = R2(T1) − X Θ(ηΣ(2t,)1)[R2(t)]3 ± o(1)

s∈[T1,t]

55

where the last equality is because sign() by Induction C.1a. Now from what we

have proved above on the growth of that sign(

throughout the rest of phase II (which is just]). Recall that

 (t) (T20,1) X (s) (s) 3 (s) 3

 , and E2,1 − E2,1 = Θ(ηEC0C2)Φ2 (B2,1) (B1,1)

s∈[T20,1,t]

The above arguments implie for

Now we can confirm

(1) there exist a constant C = Θ(pηE/η) such that falls below ;

) due to the growth) for

which are the desired results.

Proof of Induction C.1a: We first obtain from Lemma C.7a that the update of can be

written as

Now by what we have calculated above in (C.4), the total decrease of is (since is monotone in
this phase)

X Θ(ηΣ(1t,)1)[R1(t)]3 ≤ O(R
1(T1) − R1(T2)) ≤ O(1)

t∈[T1,T2]

And also since), we can bound

(t)
Now we consider how the Γ1,1 term accumulates

56

where in ¬ we have used) and sign() when t ∈

]. These calculations tell us) = Θ(1) for all iterations

t ∈ [T1,T2]. Similarly from Lemma C.7b, for we can also write

From similar calculations, it holds), which proves that

o(1)) when t ∈ [T1,T2]. Now we turn to feature v2. By Lemma C.6 we have for j ∈ [2]:

where the last inequality is from Lemma C.3a and Induction C.1c,d. Thus when t ≤ T2 = T1 +)
we would have

 (1)) since) by Lemma B.13c

Together they proved Induction C.1a and Lemma C.8a. Moreover, we have also

Proof of Induction C.1b: Firstly, we write down the update of using Lemma C.5b,d as follows:

where in the last inequality we have used

|hΠV ⊥∇w1L(W(t),E(t)),ΠV ⊥∇w2L(W(t),E(t))i|

≤ kΠV ⊥∇w1L(W(t),E(t))k2kΠV ⊥∇w2L(W(t),E(t))k2 ≤ Oe(d)

57

Now from Induction C.1c,d that = Θ(1) and

), we can further obtain , and

the bound

Notice here that there exist a constant C = Θ(1), whenever , it

will holds

Thus we can go through the same analysis as in the proof of induction for to derive that

which is the desired result. Note that at the end of phase II

Induction C.1a =⇒ Lemma C.8a

Induction C.1b,c =⇒ Lemma C.8b

Induction C.1d =⇒ Lemma C.8c

We now complete the proof of Lemma C.8.

D Phase III: The Acceleration Effect of Prediction Head

We shall prove in this section that the growth of in the previous phase creates an acceleration

effect to the growth of , which will finally outrun the growth of to win the lottery. We define

 (D.1)

and we call iterations t ∈ [T2,T3] as the phase III of training and t ≥ T3 as the end phase of training.

D.1 Induction in Phase III

Inductions D.1 (Phase III). During t ∈ [T2,T3], we hypothesize the following conditions holds.

;

 and ;

.

As usual, before we prove the induction, we need to derive some useful claims. But firstly we shall

give a much cleaner form of ∇Ej,3−jL(W(t),E(t)) to help us understand the learning process of phase III

and the end phase.

58

Fact D.2. Let us write

Then the gradient of can be written as

−∇Ej,3−jL(W(t),E(t)) = −Ξ(jt)Ej,(t3)−j + X ∆(j,`t) − X Σ(j,`t)∇Ej,3−jEj,(t3)−j

 `∈[2] `∈[2]

Proof. By expanding the gradients of , we can verify by checking each monomial of polynomials

of Bj,` to obtain the first term, and leave the part for the second term.

Lemma D.3 (variables control at phase III). For t ∈ [T2,T3], if Induction D.1 holds at iteration t, then we

have

;

;

;

;

Proof. Assuming Induction D.1 holds at t ∈ [T2,T3], we can recall the expression of these variables and

prove their bounds directly. The bounds for Φ1 and H1,1 comes from = Θ(1) and

(1). The bounds for Q2,U2 comes from our definition of T3 in (D.1). The rest of

the claims can be derived by similar arguments using Induction D.1.

D.2 Gradient Lemmas for Phase III

In this subsection, we would give some gradient lemmas concerning the dynamics of our network in

Phase III.

Lemma D.4 (learning feature v2 in phase III). For each t ∈ [T2,T3], if Induction D.1 holds at iteration t,

then we have:

;

Proof. Since , let us write down the definition of

 respectively:

59

Again we decompose Υj, as in the proof of Lemma C.6, where

 ,

This gives

When j = 1, from Induction D.1 and Lemma D.3a (which gives Φ), we can crudely obtain

So we have

When j = 2, we can also derive using Lemma D.3 about and Induction D.1 about and some
rearrangement to obtain

which leads to the approximation

Similarly, we can also calculate

60

When j = 1, following similar procedure as above, we can apply Induction D.1 and Lemma D.3 to give

Note that the first term on the RHS dominates the term in the approximation for

Λ due to Induction D.1a,b. When j = 2, since Φ in this

phase and (1), we can derive

It can be seen that (by Induction D.1 and Lemma D.3. And by similar

arguments we can have (1 . Combining all the results above, we
can finish the proof.

Lemma D.5 (learning feature v1 in Phase III). For each t ∈ [T2,T3], if Induction D.1 holds at iteration t,

then we have: (recall that ∆-notation is from Fact D.2)

;

Proof. Recall that . Similar to the proof of Lemma D.4, we

can decompose Υj, and do similar calculations:

When j = 1, from Induction D.1 and Lemma D.3a we know Φ during t ∈ [T2,T3], which

allow us to derive

And

which can be summarized as

61

A similar calculation also gives

Now we turn to the other terms in the gradient, from similar calculations in the proof of Lemma C.6,

we have

which also similarly gives

and

which finishes the proof.

Lemma D.6 (reducing noise in phase III). Suppose Induction D.1 holds at t ∈ [T2,T3], then we have

;

;

Proof. The proof of Lemma D.6 is very similar to Lemma C.5, but we write it down to stress some

minor differences. As in (A.2), we first write down

h−∇w1L(W(t),E(t)),ΠV ⊥w1(t)i = −XΣ(j,`t)h∇w1Ej,(t3)−j,w1(t)i

62

j,`

Proof of (a): Combine the bounds above, we can obtain for each .

We can then directly apply Claim A.1 to prove Lemma D.6a as follows

(Since by Induction D.1)

(t)
Proof of (b): For Lemma C.5b, we can use the same analysis for Σ1,1 above and Claim A.1d,e to get

(again we have used Σ

Proof of (c): Similarly to the proof of (a), we can also expand as follows

Proof of (d): Similarly, we can calculate

63

which completes the proof.

Lemma D.7 (learning the prediction head in phase III). If Induction D.1 holds at iteration t ∈ [T2,T3],

then using the notations from Fact D.2, we have

Proof. By Fact D.2, we only need to bound the last term , which can be directly

obtained from applying Claim A.1.

D.3 At the End of Phase III

In order to argue that = Ω(1) at the end of phase III, we need to define some auxiliary notions.

Recall that T3 is defined in (D.1), and now we further define

It can be observed that if Induction D.1 holds for t ∈ [T2,T3] and our learning rate η is small enough,

we shall have T2 < T3,1 ≤ T3,2 < T3. Now we are ready to present the main lemma we want to prove in

this phase.

Lemma D.8 (Phase III). Let T3 be defined as in (D.1). Suppose is sufficiently small, then

Induction D.1 holds for all iteration t ∈ [T2,T3], and at iteration t = T3, the followings holds:

 for j 6= `;

, and ;

 and .

Moreover, is increasing and is decreasing. The part of learning till Ω(1) and keeping

close to its initialization is what’s been accelerated by the prediction head .

The proof of Lemma D.8 will be proven after we have proven Induction D.1, which will again be

proven after some intermediate results are proven.

Lemma D.9 (The growth of before T3,1). Let T3,1 be defined as in (D.2). If Induction

D.1 holds for t ∈ [T2,T3,1], then we have and and T3,1 ≤
O

.

Proof. Firstly by Lemma D.6b , we can write down the update of Lemma C.8)

64

Next, by Claim A.1 and Lemma D.3a combined with Induction D.1a,b, we have

), which leads to the bound

Similarly, we can bound the following term

Moreover, from Induction D.1c that , we can also calculate for each t ∈ [T2,T3,1]:

Thus by combining the results above, we have the update of] as follows:

 (D.3)

which implies that is decreasing throughout phase III. From Lemma D.3a and Induction D.1b, we

know that for t ∈ [T2,T3,1]:

which implies (also using a bit of Claim A.1 and Induction D.1a)

(because) and

(t)
And for Σ2,2, from some simple calcualtions (using Claim A.1), we have

65

• when , we would have Σ);

• otherwise, we have Σ

So by (D.3), we know R2 is decreasing for t ∈ [T2,T3,1] by at least

) (D.4)

). By this update, we can where

prove

In order to do that, we can first see that for some)],

we shall have . Indeed, suppose otherwise , then (D.4) implies

which means there must exist an iteration

)] such that (so the above update

bound is still valid when the RHS is for

and . Next we need to prove that at , it holds . Let us
discuss several possible cases:

1. Suppose) (by Induction D.1a and Lemma D.8), then we

already have and ;

2. Suppose otherwise , then we shall have Σ). So the update of
during t ∈ [T2,T3,1] can be written as

Let be an iteration between T2 and , we shall have

) and

which also implies). In this case, let us look at the

update of]. By Lemma D.42, we have

66

It is not hard to see is monotonically increasing. Also by Induction D.1a and Lemma

D.3a, if we sum together the update between and as follows: (suppose the sign of

 is positive for now, the negative case can be similarly dealt with)

which is a contradiction to our assumption . Since is

monotonically increasing, we know there must exist some iteration such that

, which means .

Thus we proved the bound of

Using similar arguments, we can prove that . Indeed, we can set T3,3 := min{t :

. From our arguments in this proof, we know Σ) for t ≤ T3,3.

Now we can further choose for some to be some iteration with

for] and). Now we can work out the update of during

] again to see that). This would prove

that and . So we also have because of the definition of

T3,1. But since T3,3 ≥ T3,1 by our arguments above and the fact that is increasing, we shall have

Now we proceed to characterize the learning of during t ∈ [T3,1,T3,2].

Lemma D.10 (The growth of until T3). Let T3,1,T3,2 be defined as in (D.2). If Induction D.1

holds true for all t ∈ [T2,T3], then we have and .

Proof. We first calculate the bound for T3,2. After T3,1, since is increasing while is decreasing

by Induction D.1. So by Lemma D.3a, we have

67

So according to Lemma D.4, we would have for all t ∈ [T3,1,T3,2):

where we have used () from Induction D.1a. So when t ∈ [T3,1,T3,2], we can
(t) write down the explicit form of

Λ2,2 and use Lemma D.3d to derive

Thus after) many iterations, we would have . Now let us deal

with the growth of]. During this stage, since is still increasing and

 by Induction D.1, we have from Lemma D.3a that

And we can redo the calcualtions as above to get) since and |B1
(t

,1
)|

are both Θ(1) according to Induction D.1a,b

Proving The Main Lemma. Now we finally begin to prove Lemma D.8.

Proof of Lemma D.8. We start with proving Induction D.1.

Proof of Induction D.1a: From Lemma D.5, we know the update of can be written as

Since from Lemma D.9 and Lemma D.10, we know) and from Claim A.1 and

Induction D.1a,c we have Σ), we shall have

Further more, by applying Lemma G.3 to with q0 = q − 2, and notice that sign(

) for all t ∈ [T2,T3], we also have

68

Now we turn to the last two terms. We first see that from the expression (D.3) of ’s update, we

have that (note that sign(

where we have used the fact that Σ and

from (D.3) (which holds for all t ∈ [T2,T3]). And also, the analysis above shows that

for all t ∈ [T2,T3], which means that either and we have

 holds throughout t ∈ [T2,T3], or that), in

which case we would have to be actually decreasing (as is increasing). Now that since

= Θ(1), we can easily see by our definition of T3 and the monotonicity of after going below

) that = Ω(1) for all t ∈ [T2,T3].

Next let us look at the change of . From Lemma D.5, we can write down the update of

:

For the first term, according to Lemma D.9 and Lemma D.10 and

 (1) for all t ∈ [T2,T3] by Induction D.1c, we have Φ for all t ∈
[T2,T3] and

And similarly as in the proof of induction for , we have

which proved the induction for since

Next we go on for the induction of , we write down its update:

69

By Lemma D.9 and Lemma D.10, we have for any t ∈ [T2,T3]

1

polylog(d)

and also

Now we consider the term Θ(, we have by Induction D.1a that

where we have used our induction hypothesis that (1)). Using Lemma G.3 by

setting = 3, and , it holds that

 (t)
 B 2 B(T2) 2 B(0) 2

where in the second inequality we have used Lemma B.13c, Lemma C.8a and Lemma B.1, and in the

last our choice of ηE/η ≤
polylog

1
(d). This ensures the induction can go on until t = T3. And we

finished our proof of Induction D.1a.

Proof of Induction D.1b: Let us write down the update of using Lemma D.7:

X

s ∈ [T 2 ,t]
η e O (

α
O (1)
1

d 5 / 2) ≤ √
d

X

s ∈ [T 2 ,t]
Θ(

(1 , 2)

(B
(t)
2 , 2) 2

) E
(t)
2 , 1 η Λ

(t)
2 , 2

≤ O (p η E /η)
(1 , 2)

| B
(T 2)
2 , 2 |

≤ O (p η E /η)
(1 , 2)

| B
(0)
2 , 2 |

≤
1

√
d (d)

70

where in the last inequality we have used from Induction D.1c and Σ),

 from Claim A.1 and Induction D.1a. Now we can use the same analysis in the

proof of Lemma C.8 on to prove the desired claim, which we do not repeat here.

As for , we can obtain similar expressions:

Now we can obtain bounds for each terms as

and by (D.3) in Lemma D.9, we also have for any t ∈ [T2,T3]

And also by using our induction and by (D.3) in Lemma D.9:

Finally, we can calculate

By resorting to the defintion of T3 and go through similar analysis as for the induction of , we can

obtain that is either above (1)) or is decreasing and always above .
This proves Induction D.1b.

Proof of Induction D.1c: The proof of induction of is half done in Lemma D.9, we only need to

complete the part when t ∈ [T3,1,T3], since by (D.3), we always have to be decreasing by

R2(t+1) = R2(t)(1 − X Θ(ηΣ2(s,`))[R2(t)]2)

`∈[2]

And when t ∈ [T3,1,T3], we have

71

 X (s) 3/8+o(1)

 Θ(ηΣ2,` ≤ Oe(ηd)
`∈[2]

So if we suppose , we shall have for T3 − T3,1 = O(d1/4+o(1)/η) many iterations that

 (by Lemma D.9)

So it negates our supposition, which completes the proof of the induction for

Now we turn to the proof of induction for , we write down its update: (as in Lemma C.8)

It is straightforward to derive

and when t ∈ [T2,T3,1]:

and when t ∈ [T3,1,T3]:

So these combined with Lemma C.8 proved that) for all t ∈ [T2,T3]. We can go through

some similar analysis about to get that for all t ∈ [T2,T3].

Finally we begin to prove the induction of . Similarly as in the proof of Lemma C.8, we first

write down

Note that since

 and), it holds

72

so the update becomes

Now we can use the same arguments as in the proof of in Lemma C.8 to conclude.

Proof of Lemma D.8a,b,c: Indeed, at the end of phase III:

Induction D.1a =⇒ Lemma D.8a

Induction D.1b =⇒ Lemma D.8c

Induction D.1c =⇒ Lemma D.8b

Now we have completed the whole proof.

E The End Phase: Convergence

When we arrive at t = T3, we have already obtained the representation we want for the encoder

network f(X), where v1 and v2 are satisfactorily learned by different neurons. In the last phase, we

prove that such features are the solutions that the algorithm are converging to, which gives a stronger

guarantee than just accidentally finding the solution at some intermediate steps.

To prove the convergence, we need to ensure all the good properties that we got through the

training still holds. Fortunately, mosts of Induction D.1 still hold, as we summarized below:

Inductions E.1. At the end phase, i.e. when t ∈ [T3,T], Induction D.1a continues to hold except that

, Induction D.1b will hold except that for only the upper bound still holds, and the

upper bounds in Induction D.1c still hold while the lower bounds for poly(d).

Moreover, there is a constant C = O(1) such that when , we would have

.

Now we present the main theorem of the paper, which we shall prove in this section.

Theorem E.2 (End phase: convergence). For some and T = poly(d)/η, we have for all

t ∈ [T4,T] that Induction E.1 holds true and:

(a) Successful learning of both while .

73

(b) Successful denoising at the end: for all j ∈ [2].

(c) Prediction head is close to identity: for all j ∈ [2];

In fact, (b) and (c) also imply for some sufficiently large t = poly(d)/η, it holds and

 for all j ∈ [2].

And we have a simple corollary for the objective convergence.

Corollary E.3 (objective convergence, with prediction head). Let OPT denote the global minimum of

the population objective (A.1). It is easy to derive that OPT . We have for some

sufficiently large t ≥ poly(d)/η:

L(W(t),E(t)) ≤ OPT

poly(d)

Now we need to establish some auxiliary lemmas:

Lemma E.4. For some t ∈ [T3,poly(d)/η], if Induction E.1 holds from T3 to t, we have Lemma D.6 holds

at t.

Proof. Simple from similar calculations in the proof of Lemma D.6 .

Lemma E.5. For some t ∈ [T3,poly(d)/η], if Induction E.1 holds from T3 to t, we have for each j ∈ [2]

that X X ηΣ(s)[R(s)]3 ≤ O(Rj(T3)), ∀j ∈ [2] j,` j

s∈[T3,t] `∈[2]

Proof. Notice that when Induction E.1 holds, we always have

X(Σ(j,`t) + Σ(3t−)j,`(E3(t−)j,j)2) = (1 ± o(1)) X Σ(j,`t)

 `∈[2] `∈[2]

we can use Lemma E.4 to obtain the update of as in the calculations when we obtained (D.3):

R2(t) = R2(T3) − X X Θ(ηΣ2(s,`))[R2(s)]3

s∈[T3,t) `∈[2]

which means that is decreasing from T3 to t. Summing up the update, the part of is solved.

For the part of , we separately discuss when is larger than or smaller than

. When the former happens, which we know from Induction E.1 that it

cannot last until some many iterations, we have for

74

Now for we can simply go through similar calculations as in the proof of Induction D.1c to

obtain

So by applying Lemma E.4a and Lemma D.6, we have

R1(t) = (1 ± o(1))R1(T3) − X X Θ(ηΣ(j,`s))[R1(s)]3

s∈[T3,t) `∈[2]

which proves the claim.

Lemma E.6. For some t ∈ [T3,poly(d)/η], if Induction E.1 holds from T3 to t. Then we have is

decreasing until . Moreover, we have for each
t ∈ [T3,T] that

Proof. We can go through the same calculations in the proof of Induction D.1b (using Fact D.2) to

obtain

where we have used in the second equality that and also

 for both j ∈ [2] when Induction E.1 holds. Note that from above calculations,
there exist a constant C such that if

, we have to be decreasing. Now it
suffices to observe that:

75

which is from Induction E.1, Induction D.1c and Lemma E.4. Also note that Σ

 at this stage, we have

(t)

Recalling the expression of Ξj finishes the proof.

Lemma E.7. Recall T2 defined in (C.1) and T3 defined in (D.1), we have

To prove this lemma, we need a simple claim.

Claim E.8. If {xt}t<T ,xt ≥ 0 is an increasing sequence and C = Θ(1) is a constant such that√

xt+1 − xt ≤ O(η) and Pt<T xt(xt+1 − xt) = C, then for each δ ∈ (d
1,1) it holds |xT − C| ≤

d .

Proof. Indeed, for every g ∈ 0,1,..., we define Tg := min{t : xt ≥ (1 + δ)gx0}. and define b := min{g : ((1 +

δ)gx0)2 ≥ C − δ2}. Now for any g < b, we have

By our definition of Tg, we can further get

And also we have C ≤ (maxt≤T xt)P
t<T (xt+1 − xt) = x2

T , so we have , where b =

O(log(C)/log(1 + δ)) ≤ O(logd), which proves the claim.

Proof of Lemma E.7. From the proof of Lemma C.8 and Lemma D.8 we know that

And since from the proof of Lemma C.8 we know that

We can define some alternative variables updated as and

76

. It is easy to see that . From above calculations,

we know), which by Claim E.8 implies
that

And when we turn back, we shall have

. Now we can use similar

techniques on and . Indeed, from (C.4) and similar arguments in phase I, we know for all t ∈

[T1,T2]

) (E.1)

So one can obtain that at some iteration), we shall have) for all t ≥ t0.

Now let us consider the growth of before t0, which clearly constitutes of

where the last one comes from the proof of Lemma B.13. Moreover by using the same arguments in

the proof of Lemma C.8 we can easily prove that

) =

And for t ∈ [t0,T2], we also have by (E.1) that

Recall) by (E.1) and) for t ≥ t0.

Now we can finally go through the same analysis using Claim E.8 on and during t ∈ [0,t0] as
above to obtain that

77

Combining the results, we finishes the proof.

Now we are prepared to prove Theorem E.2.

E.1 Proof of Convergence

Proof of Theorem E.2. First we start with the s. Indeed, we can go through similar calculations to

see that all gradients h−∇wjL(W(t),E(t)),v`i can be decomposed into

where Λ and Γ can be expressed as

Firstly, for all the terms that contain factors of (), we can apply

Lemma E.6, our Induction E.1 assumption and] to obtain that their

(multiplicated by η) summation over t ∈ [T3,T] is absolutely bounded by Oe(d
1). So we can move on to

deal with all other terms. When j = `, Using Lemma E.6, we have

And the sign of LHS is sign(). Moreover, for j = ` = 1, from Lemma E.7 and Lemma E.6 we also have

Since we have

78

And since by Induction C.1 we have = Θ(1) during t ∈ [T1,T2] and

√

R(T1) − o(1) = 2 − o(1). For all the other terms in the gradient , we can apply Lemma E.6, our

Induction E.1 assumption and (1) so we have for t ∈ [T3,T]

which also proved (1) since all the terms on the RHS are absolutely O(1) bounded. Since

one can see from Lemma E.6 that is decreasing before it reaches d1). Moreover this proves

 for all t ∈ [T3,T], and also the fact that

The case of is much more simple as) throughout t ∈ [T3,T] by Lemma E.6 and

Lemma D.8c, Now we can go through the similar calculations again to obtain that = Θ(1) for

all t ∈ [T3,T]. When j 6= `, all the terms calculated in the expansion of Λ(
j,`

t) −Υ(
j,`,

t)
1 and Γ(

j,`
t) −Υj,`,

(t)
2

contain factors of () or (). So we can similarly use Lemma E.6 as before to

derive that)) for all t ∈ [T3,T] and j ∈ [2].

As for the prediction head, the induction of follows from exactly the same proof in Lemma

D.8. The part of is half done in Lemma E.6. It suffices to notice that Ξ) and if

 for some C = O(1), then

So after many epochs will we have

79

as desired. And the rest of the induction of is the same as in the induction arguments of in

Lemma D.8.

The induction of and is exactly the same as those in the proof of Lemma D.8 except

here we only need] after T4. Indeed, from the update of (which
can be easily worked out), we have

Now after many epochs, we can obtain from similar arguments in Lemma D.8 that

] and . The induction can go on untill t = poly(d)/η.

For the convergence of and after t = T4, notice that their change depends on

, which stays very small after T4, we have that (1) for all j ∈ [2].

This finishes the whole proof.

F Learning Without Prediction Head

When we do not use prediction head in the network architecture, the analysis is much simpler. We

can reuse most of the gradient calculations in previous sections as long as we set E(t) to the identity.

Note that here we allow m ≥ 1 to be any positive integer.

Theorem F.1 (learning without the prediction head). Let m be any positive integer. If we keep

E(t) ≡ Im during the whole training process, then for all ,poly(d)/η], we shall have

 and for all j ∈ [m] with probability 1 − o(1).

Moreover, for a longer training time t = poly(d)/η, we would have for all j ∈ [m].

Moreover, it is direct to obtain a objective convergence result similar to Corollary E.3.

Corollary F.2 (objective convergence, without prediction head). Let OPT denote the global minimum

of the population objective (A.1). When trained with E(t) ≡ Im, we have for some sufficiently large t ≥

poly(d)/η:

L(W(t),Im) ≤ OPT

poly(d)

Proof of Theorem F.1. The proof is easy to obtain since it is very similar to some proofs in previous

sections, and we only sketch it here. Indeed, using the calculations in Lemma D.5 and Lemma D.4

and set] to zero. We shall have (note that here for any r 6= j)

Now we can go through the similar induction arguments as in the proof of Lemma B.13 (with TPM

lemma to distinguish the learning speed) to obtain that for each j ∈ [m]:

] (when

80

When this is proven, we can also reuse the calculations as in the proof of Lemma C.5 to obtain that

So again after some), we shall have). While the decrease of is

happening, we can make induction that (1)), since if it holds for all previous
iterations before t, then

X η|h−∇ jL(W(s),E(s)),v i| = X ηC0α26Φj(s)|Bj,(s2)|5C2Ej(s) w 2

 s≤t−1 s≤t−1

 ¬ 1

where ¬ is due to Corollary G.2, where and and St ≤

 1 , y ≤

O(logd)x0. which finishes the proof.

G Tensor Power Method Bounds

In this section, we give two lemmas related to the tensor power method that can help us in previous

sections’ proofs.

Lemma G.1 (TPM, adapted from [3]). Consider an increasing sequence xt ≥ 0 defined by xt+1 = xt +ηCtxq
t

for some integer q ≥ 3 and Ct > 0, and suippose for some A > 0 there exist t0 ≥ 0 such that xt0 ≥ A. Then for

every δ > 0, and every η ∈ (0,1):

This lemma has a corollary:

Corollary G.2 (TPM, from [3]). Let q ≥ 3 be a constant and x0,y0 = o(1) and A = O(1). Let

{xt,yt}t≥0 be two positive sequences updated as

• for some Ct > 0;

• yt+1 = yt + ηStCtyt
q for some St > 0.

Suppose polylog
1

(d)), then yt ≤ Oe(y0) for all t such that xt ≤ A.

Moreover, if , we would have .

Moreover, we prove the following lemma for comparing the updates of different variables.

 (d) 0

81

Lemma G.3 (TPM of different degrees). Consider an increasing sequences xt ≥ 0 defined by xt+1 = xt +

ηCtxq
t, for some integer q > q0 ≥ 3 and q0 ≤ q − 2, and Ct > 0, and further suppose given A = O(1), there

exists t0 ≥ 0,xt0 ≥ A. Then for every δ > 0 and every η ∈ (0,1):

where b = Θ(log(A/x0)/log(1 + δ)). When A = x0dΘ(1) , η = o(A
1qδ) and q = O(1), then

Proof. For every g ∈ 0,1,..., we define Tg := min{t : xt ≥ (1 + δ)gx0}. and define b := min{g : (1 + δ)g ≥ A},

we can write down the following two inequalities according to the update of xt:

X ηCt[(1 + δ)gx]q ≤ (1 + δ)xTg − xTg + ηAq ≤ δ(1 + δ)gx0 + ηAq
0

t∈[Tg,Tg+1]

X ηCt[(1 + δ)g+1x0]q ≥ (1 + δ)xTg − xTg − ηAq ≥ δ(1 + δ)gx0 − ηAq

t∈[Tg,Tg+1]

where g+1 ≤ b. Dividing both sides by [(1+δ)gx0]q−q0 in the first inequality and [(1+δ)g+1x0]q−q0 in the

second, we have

Therefore if we sum over g = 0,...,b, then

!

82

For the lower bound, we also have

Inserting b = Θ(log(A/x0)/log(1 + δ)) proves the lower bound. For the last one we can choose

 to get:

b = Θ(polylog ,

which proves the claim.

References

[1] Zeyuan Allen-Zhu and Yuanzhi Li. What can resnet learn efficiently, going beyond kernels?

Advances in Neural Information Processing Systems, 32, 2019.

[2] Zeyuan Allen-Zhu and Yuanzhi Li. Backward feature correction: How deep learning performs

deep learning. arXiv preprint arXiv:2001.04413, 2020.

[3] Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and

self-distillation in deep learning. arXiv preprint arXiv:2012.09816, 2020.

[4] Zeyuan Allen-Zhu and Yuanzhi Li. Forward super-resolution: How can gans learn hierarchical

generative models for real-world distributions. arXiv preprint arXiv:2106.02619, 2021.

[5] Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs

robust deep learning. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS

2021, Denver, CO, USA, February 7-10, 2022, pages 977–988. IEEE, 2021. URL

https://doi.org/10.1109/FOCS52979.2021.00098.

[6] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in

overparameterized neural networks, going beyond two layers. In NeurIPS 2019 : Thirty-third

Conference on Neural Information Processing Systems, pages 6158–6169, 2019.

[7] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-

parameterization. In ICML 2019 : Thirty-sixth International Conference on Machine Learning,

pages 242–252, 2019.

[8] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent

neural networks. In Advances in Neural Information Processing Systems, pages 6676–6688, 2019.

https://doi.org/10.1109/FOCS52979.2021.00098
https://doi.org/10.1109/FOCS52979.2021.00098

83

[9] Alexandr Andoni, Rina Panigrahy, Gregory Valiant, and Li Zhang. Learning polynomials with

neural networks. In International conference on machine learning, pages 1908–1916. PMLR,

2014.

[10] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix

factorization. Advances in Neural Information Processing Systems, 32, 2019.

[11] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of

optimization and generalization for overparameterized two-layer neural networks. In

International Conference on Machine Learning, pages 322–332. PMLR, 2019.

[12] Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and Nikunj Saunshi.

A theoretical analysis of contrastive unsupervised representation learning. arXiv preprint

arXiv:1902.09229, 2019.

[13] Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Dipendra Misra. Investigating the role of

negatives in contrastive representation learning. arXiv preprint arXiv:2106.09943, 2021.

[14] Yamini Bansal, Gal Kaplun, and Boaz Barak. For self-supervised learning, rationality implies

generalization, provably. arXiv preprint arXiv:2010.08508, 2020.

[15] Han Bao, Yoshihiro Nagano, and Kento Nozawa. Sharp learning bounds for contrastive

unsupervised representation learning. arXiv preprint arXiv:2110.02501, 2021.

[16] Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training of image transformers. arXiv preprint

arXiv:2106.08254, 2021.

[17] Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance

regularization for self-supervised learning. arXiv preprint arXiv:2105.04906, 2021.

[18] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are

few-shot learners. Advances in neural information processing systems, 33:1877– 1901, 2020.

[19] Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a convnet with

gaussian inputs. In Proceedings of the 34th International Conference on Machine LearningVolume

70, pages 605–614. JMLR. org, 2017.

[20] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.

Unsupervised learning of visual features by contrasting cluster assignments. Advances in Neural

Information Processing Systems, 33:9912–9924, 2020.

[21] Mathilde Caron, Hugo Touvron, Ishan Misra, Herv´e J´egou, Julien Mairal, Piotr Bojanowski, and

Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, pages 9650–9660, 2021.

[22] Shuxiao Chen, Edgar Dobriban, and Jane H. Lee. A group-theoretic framework for data

augmentation. Journal of Machine Learning Research, 21(245):1–71, 2020.

[23] Sitan Chen, Jerry Li, Yuanzhi Li, and Anru R Zhang. Learning polynomial transformations. arXiv

preprint arXiv:2204.04209, 2022.

84

[24] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for

contrastive learning of visual representations. In ICML 2020: 37th International Conference on

Machine Learning, volume 1, pages 1597–1607, 2020.

[25] Ting Chen, Calvin Luo, and Lala Li. Intriguing properties of contrastive losses. Advances in Neural

Information Processing Systems, 34, 2021.

[26] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15750– 15758,

2021.

[27] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum

contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

[28] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision

transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages

9640–9649, 2021.

[29] Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural

networks trained with the logistic loss. In Conference on Learning Theory, pages 1305–1338.

PMLR, 2020.

[30] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep

bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pages

4171–4186, 2019.

[31] Simon S Du, Jason D Lee, and Yuandong Tian. When is a convolutional filter easy to learn? In

International Conference on Learning Representations, 2018.

[32] Simon S. Du, Jason D. Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global

minima of deep neural networks. In 36th International Conference on Machine Learning, ICML

2019, pages 1675–1685, 2019.

[33] Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe. Whitening for

selfsupervised representation learning. In International Conference on Machine Learning, pages

3015–3024. PMLR, 2021.

[34] Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence

embeddings. arXiv preprint arXiv:2104.08821, 2021.

[35] Antoine Gautier, Quynh N Nguyen, and Matthias Hein. Globally optimal training of generalized

polynomial neural networks with nonlinear spectral methods. Advances in Neural Information

Processing Systems, 29, 2016.

[36] Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Limitations of lazy

training of two-layers neural network. In Advances in Neural Information Processing Systems 32:

Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-

14, 2019, Vancouver, BC, Canada, pages 9108–9118, 2019.

[37] Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. When do neural

networks outperform kernel methods? In Advances in Neural Information Processing Systems 33:

85

Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-

12, 2020, virtual, 2020.

[38] Sven Gowal, Po-Sen Huang, Aaron van den Oord, Timothy Mann, and Pushmeet Kohli. Self-

supervised adversarial robustness for the low-label, high-data regime. In International

Conference on Learning Representations, 2020.

[39] Jean-Bastien Grill, Florian Strub, Florent Altch´e, Corentin Tallec, Pierre Richemond, Elena

Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, et

al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in Neural

Information Processing Systems, 33:21271–21284, 2020.

[40] Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent

on linear convolutional networks. Advances in Neural Information Processing Systems, 31, 2018.

[41] Zhaohan Daniel Guo, Bernardo Avila Pires, Bilal Piot, Jean-Bastien Grill, Florent Altch´e, R´emi

Munos, and Mohammad Gheshlaghi Azar. Bootstrap latent-predictive representations for

multitask reinforcement learning. In International Conference on Machine Learning, pages 3875–

3886. PMLR, 2020.

[42] Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for

selfsupervised deep learning with spectral contrastive loss. arXiv preprint arXiv:2106.04156,

2021.

[43] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for

unsupervised visual representation learning. In 2020 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pages 9729–9738, 2020.

[44] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Doll´ar, and Ross Girshick. Masked

autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377, 2021.

[45] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam

Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation

and maximization. In International Conference on Learning Representations, 2019.

[46] Tianyu Hua, Wenxiao Wang, Zihui Xue, Sucheng Ren, Yue Wang, and Hang Zhao. On feature

decorrelation in self-supervised learning. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 9598–9608, 2021.

[47] Weiran Huang, Mingyang Yi, and Xuyang Zhao. Towards the generalization of contrastive self-

supervised learning. arXiv preprint arXiv:2111.00743, 2021.

[48] Samy Jelassi and Yuanzhi Li. Towards understanding how momentum improves generalization

in deep learning, 2022. URL https://openreview.net/forum?id=lf0W6tcWmh-.

[49] Samy Jelassi, Arthur Mensch, Gauthier Gidel, and Yuanzhi Li. Adam is no better than normalized

SGD: Dissecting how adaptivity improves GAN performance, 2022. URL https:

//openreview.net/forum?id=D9SuLzhgK9.

[50] Wenlong Ji, Zhun Deng, Ryumei Nakada, James Zou, and Linjun Zhang. The power of contrast for

feature learning: A theoretical analysis. arXiv preprint arXiv:2110.02473, 2021.

https://openreview.net/forum?id=lf0W6tcWmh-
https://openreview.net/forum?id=lf0W6tcWmh-
https://openreview.net/forum?id=D9SuLzhgK9
https://openreview.net/forum?id=D9SuLzhgK9
https://openreview.net/forum?id=D9SuLzhgK9
https://openreview.net/forum?id=D9SuLzhgK9

86

[51] Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In

Conference on Learning Theory, pages 1772–1798. PMLR, 2019.

[52] Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse in

contrastive self-supervised learning. arXiv preprint arXiv:2110.09348, 2021.

[53] Stefani Karp, Ezra Winston, Yuanzhi Li, and Aarti Singh. Local signal adaptivity: Provable feature

learning in neural networks beyond kernels. Advances in Neural Information Processing Systems,

34, 2021.

[54] Joe Kileel, Matthew Trager, and Joan Bruna. On the expressive power of deep polynomial neural

networks. Advances in neural information processing systems, 32, 2019.

[55] Jason D Lee, Qi Lei, Nikunj Saunshi, and Jiacheng Zhuo. Predicting what you already know helps:

Provable self-supervised learning. Advances in Neural Information Processing Systems, 34, 2021.

[56] Yuanzhi Li and Zehao Dou. Making method of moments great again?–how can gans learn

distributions. arXiv preprint arXiv:2003.04033, 2020.

[57] Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with relu

activation. In Advances in neural information processing systems, pages 597–607, 2017.

[58] Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in overparameterized

matrix sensing and neural networks with quadratic activations. In COLT 2018: 31st Annual

Conference on Learning Theory, pages 2–47, 2018.

[59] Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial

large learning rate in training neural networks. In NeurIPS 2019 : Thirty-third Conference on

Neural Information Processing Systems, pages 11674–11685, 2019.

[60] Yuanzhi Li, Tengyu Ma, and Hongyang R. Zhang. Learning over-parametrized two-layer relu

neural networks beyond ntk. In COLT, pages 2613–2682, 2020.

[61] Bingbin Liu, Elan Rosenfeld, Pradeep Ravikumar, and Andrej Risteski. Analyzing and improving

the optimization landscape of noise-contrastive estimation. arXiv preprint arXiv:2110.11271,

2021.

[62] Bingbin Liu, Daniel Hsu, Pradeep Ravikumar, and Andrej Risteski. Masked prediction tasks: a

parameter identifiability view. arXiv preprint arXiv:2202.09305, 2022.

[63] Zeping Luo, Cindy Weng, Shiyou Wu, Mo Zhou, and Rong Ge. One objective for all models– self-

supervised learning for topic models. arXiv preprint arXiv:2203.03539, 2022.

[64] Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural

networks. arXiv preprint arXiv:1906.05890, 2019.

[65] Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Noboru Harada, and Kunio Kashino. Byol for

audio: Self-supervised learning for general-purpose audio representation. In 2021 International

Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2021.

[66] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive

predictive coding. arXiv preprint arXiv:1807.03748, 2018.

87

[67] Ashwini Pokle, Jinjin Tian, Yuchen Li, and Andrej Risteski. Contrasting the landscape of

contrastive and non-contrastive learning. arXiv preprint arXiv:2203.15702, 2022.

[68] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,

Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual

models from natural language supervision. In International Conference on Machine Learning,

pages 8748–8763. PMLR, 2021.

[69] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,

and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine

Learning, pages 8821–8831. PMLR, 2021.

[70] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-

conditional image generation with clip latents. OpenAI blog, 2022. URL https://cdn.

openai.com/papers/dall-e-2.pdf.

[71] Noam Razin and Nadav Cohen. Implicit regularization in deep learning may not be explainable

by norms. Advances in neural information processing systems, 33:21174–21187, 2020.

[72] Pierre H. Richemond, Jean-Bastien Grill, Florent Altch´e, Corentin Tallec, Florian Strub, Andrew

Brock, Samuel Smith, Soham De, Razvan Pascanu, Bilal Piot, and Michal Valko. BYOL works even

without batch statistics. arXiv:2010.10241 [cs, stat], October 2020.

[73] Joshua Robinson, Li Sun, Ke Yu, Kayhan Batmanghelich, Stefanie Jegelka, and Suvrit Sra. Can

contrastive learning avoid shortcut solutions? Advances in Neural Information Processing

Systems, 34, 2021.

[74] Nikunj Saunshi, Sadhika Malladi, and Sanjeev Arora. A mathematical exploration of why

language models help solve downstream tasks. arXiv preprint arXiv:2010.03648, 2020.

[75] Nikunj Saunshi, Jordan Ash, Surbhi Goel, Dipendra Misra, Cyril Zhang, Sanjeev Arora, Sham

Kakade, and Akshay Krishnamurthy. Understanding contrastive learning requires incorporating

inductive biases. arXiv preprint arXiv:2202.14037, 2022.

[76] Mahdi Soltanolkotabi. Learning relus via gradient descent. In Advances in Neural Information

Processing Systems, volume 30, pages 2007–2017, 2017.

[77] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The

implicit bias of gradient descent on separable data. The Journal of Machine Learning Research,

19(1):2822–2878, 2018.

[78] Jiaye Teng, Weiran Huang, and Haowei He. Can pretext-based self-supervised learning be

boosted by downstream data? a theoretical analysis. arXiv preprint arXiv:2103.03568, 2021.

[79] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In European

conference on computer vision, pages 776–794. Springer, 2020.

[80] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What

makes for good views for contrastive learning. In Advances in Neural Information Processing

Systems, volume 33, 2020.

https://cdn.openai.com/papers/dall-e-2.pdf
https://cdn.openai.com/papers/dall-e-2.pdf
https://cdn.openai.com/papers/dall-e-2.pdf
https://cdn.openai.com/papers/dall-e-2.pdf

88

[81] Yuandong Tian. An analytical formula of population gradient for two-layered relu network and

its applications in convergence and critical point analysis. In Proceedings of the 34th International

Conference on Machine Learning-Volume 70, pages 3404–3413. JMLR. org, 2017.

[82] Yuandong Tian, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning

dynamics without contrastive pairs. In International Conference on Machine Learning, pages

10268–10278. PMLR, 2021.

[83] Christopher Tosh, Akshay Krishnamurthy, and Daniel Hsu. Contrastive estimation reveals topic

posterior information to linear models. arXiv preprint arXiv:2003.02234, 2020.

[84] Christopher Tosh, Akshay Krishnamurthy, and Daniel Hsu. Contrastive learning, multi-view

redundancy, and linear models. In Algorithmic Learning Theory, pages 1179–1206. PMLR, 2021.

[85] Yao-Hung Hubert Tsai, Yue Wu, Ruslan Salakhutdinov, and Louis-Philippe Morency.

Selfsupervised learning from a multi-view perspective. arXiv preprint arXiv:2006.05576, 2020.

[86] Julius Von Ku¨gelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Sch¨olkopf, Michel

Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably

isolates content from style. Advances in Neural Information Processing Systems, 34, 2021.

[87] Xiang Wang, Xinlei Chen, Simon S Du, and Yuandong Tian. Towards demystifying representation

learning with non-contrastive self-supervision. arXiv preprint arXiv:2110.04947, 2021.

[88] Colin Wei, Sang Michael Xie, and Tengyu Ma. Why do pretrained language models help in

downstream tasks? an analysis of head and prompt tuning. Advances in Neural Information

Processing Systems, 34, 2021.

[89] Zixin Wen and Yuanzhi Li. Toward understanding the feature learning process of selfsupervised

contrastive learning. In International Conference on Machine Learning, pages 11112–11122.

PMLR, 2021.

[90] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.

Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural

information processing systems, pages 5754–5764, 2019.

[91] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and St´ephane Deny. Barlow twins: Selfsupervised

learning via redundancy reduction. In International Conference on Machine Learning, pages

12310–12320. PMLR, 2021.

[92] Chaoning Zhang, Kang Zhang, Chenshuang Zhang, Trung X Pham, Chang D Yoo, and In So Kweon.
How does simsiam avoid collapse without negative samples? a unified understanding with self-
supervised contrastive learning. arXiv preprint arXiv:2203.16262, 2022.

[93] Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recovery guarantees

for one-hidden-layer neural networks. In Proceedings of the 34th International Conference on

Machine Learning-Volume 70, pages 4140–4149. JMLR. org, 2017.

[94] Difan Zou, Yuan Cao, Yuanzhi Li, and Quanquan Gu. Understanding the generalization of adam

in learning neural networks with proper regularization. arXiv preprint arXiv:2108.11371, 2021.

