Journal of Machine Learning Research 23 (2022) 1-36 Submitted 1/21; Revised 5/22; Published 9/22

Tree-based Node Aggregation in Sparse Graphical Models

Ines Wilms I.WILMS@MAASTRICHTUNIVERSITY.NL
Department of Quantitative Economics

Maastricht University

Maastricht, The Netherlands

Jacob Bien JBIEN@QUSC.EDU
Department of Data Sciences and Operations

Marshall School of Business, University of Southern California

California, USA

Editor: David Wipf

Abstract

High-dimensional graphical models are often estimated using regularization that is aimed
at reducing the number of edges in a network. In this work, we show how even simpler
networks can be produced by aggregating the nodes of the graphical model. We develop a
new convex regularized method, called the tree-aggregated graphical lasso or tag-lasso, that
estimates graphical models that are both edge-sparse and node-aggregated. The aggrega-
tion is performed in a data-driven fashion by leveraging side information in the form of a
tree that encodes node similarity and facilitates the interpretation of the resulting aggre-
gated nodes. We provide an efficient implementation of the tag-lasso by using the locally
adaptive alternating direction method of multipliers and illustrate our proposal’s practical
advantages in simulation and in applications in finance and biology.

Keywords: aggregation, graphical model, high-dimensionality, regularization, sparsity

1. Introduction

Graphical models are greatly useful for understanding the relationships among large num-
bers of variables. Yet, estimating graphical models with many more parameters than ob-
servations is challenging, which has led to an active area of research on high-dimensional
inverse covariance estimation. Numerous methods attempt to curb the curse of dimension-
ality through regularized estimation procedures (e.g., Meinshausen and Bithlmann, 2006;
Yuan and Lin, 2007; Banerjee et al., 2008; Friedman et al., 2008; Rothman et al., 2008;
Peng et al., 2009; Yuan, 2010; Cai et al., 2011, 2016). Such methods aim for sparsity in the
inverse covariance matrix, which corresponds to graphical models with only a small number
of edges. A common method for estimating sparse graphical models is the graphical lasso
(glasso) (Yuan and Lin, 2007; Banerjee et al., 2008; Rothman et al., 2008; Friedman et al.,
2008), which adds an ¢;-penalty to the negative log-likelihood of a sample of multivari-
ate normal random variables. While this and many other methods focus on the edges for
dimension reduction, far fewer contributions (e.g., Tan et al., 2015; Eisenach et al., 2020;
Pircalabelu and Claeskens, 2020) focus on the nodes as a guiding principle for dimension
reduction.

(©2022 Ines Wilms and Jacob Bien.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/21-0105.html.

WILMS AND BIEN

Nonetheless, node dimension reduction is becoming increasingly relevant in many ar-
eas where data are being measured at finer levels of granularity. For instance, in biology,
modern high-throughput sequencing technologies provide low-cost microbiome data at high
resolution; in neuroscience, brain activity in hundreds of regions of interest can be mea-
sured; in finance, data at the individual company level at short time scales are routinely
analyzed; and in marketing, joint purchasing data on every stock-keeping-unit (product) are
recorded. The fine-grained nature of these data brings new challenges. The sheer number
of fine-grained, often noisy, variables makes it difficult to detect dependencies. Moreover,
there can be a mismatch between the resolution of the measurement and the resolution at
which natural meaningful interpretations can be made. The purpose of an analysis may
be to draw conclusions about entities at a coarser level of resolution than happened to be
measured. Because of this mismatch, practitioners are sometimes forced to devise ad hoc
post-processing steps involving, for example, coloring the nodes based on some classification
of them into groups in an attempt to make the structure of an estimated graphical model
more interpretable and the domain-specific takeaways more apparent (e.g., Millington and
Niranjan, 2019).

Our solution to this problem is to incorporate the side information about the relation-
ship between nodes directly into the estimation procedure. In our framework, this side
information is encoded as a tree whose leaves correspond to the measured variables. Such
tree structures are readily available in many domains (e.g., taxonomies in biology and hi-
erarchical classifications of jobs, companies, and products in business) and is well-suited
to expressing the multi-resolution structure that is present in many problems. We propose
a new convex regularization procedure, called tag-lasso, which stands for tree-aggregated-
graphical-lasso. This procedure combines node (or variable) aggregation with edge-sparsity.
The tree-based aggregation serves to both amplify the signal of similar, low-level variables
and render a graphical model involving nodes at an appropriate level of scale to be rel-
evant and interpretable. The edge-sparsity encourages the graphical model involving the
aggregated nodes to have a sparse network structure.

Our procedure is based on a tree-based parameterization strategy that translates the
node aggregation problem into a sparse modeling problem, following an approach previously
introduced in the regression setting (Yan and Bien, 2021). In Figure 1 (to be discussed more
thoroughly in Section 4), we see that tag-lasso is able to recover the aggregated, sparse graph
structure. By doing so, it yields a more accurate estimate of the true graph, and its output
is easier to interpret than the full, noisy graph obtained by the glasso.

The rest of the paper is organized as follows. Section 2 introduces the tree-based param-
eterization structure for nodewise aggregation in graphical models. Section 3 introduces the
tag-lasso estimator, formulated as a solution to a convex optimization problem, for which we
derive an efficient algorithm. Section 4 presents the results of a simulation study. Section 5
illustrates the practical advantages of the tag-lasso on financial and microbiome data sets.
Section 6 concludes.

2. Node Aggregation in Penalized Graphical Models

Let S be the empirical covariance matrix based on n multivariate normal observations
of dimension p, with mean vector p and covariance matrix 3. The target of estimation

TREE-AGGREGATED GRAPHICAL LASSO

True graph True Q True aggregated graph True aggregated Q

tag-lasso: aggregated graph tag-lasso: aggregated (AZ

o>

tag-lasso:

M
%
N

! I

glasso: Q

I.. NA NA

Figure 1: Top: True graph and precision matrix € with corresponding aggregated graph
and precision matrix. Middle: Estimation output of the tag-lasso. Bottom:
Estimation output of the glasso.

is the precision matrix £ = X!, whose sparsity pattern provides the graph structure
of the Gaussian graphical model, since €2;;, = 0 is equivalent to variables j and k being
conditionally independent given all other variables. To estimate the precision matrix, it is
common to use a convex penalization method of the form

Q = argmin{—logdet(2) + tr(SQ) + AP(R2) s.t. @ =07, Q= 0}, (1)
Q

where tr(-) denotes the trace, - = 0 denotes a positive definite matrix, P(-) is a convex
penalty function, and A > 0 is a tuning parameter controlling the degree of penalization.
Choosing the ¢;-norm

P($2) = [y, (2)

where Q7928 contains the unique off-diagonal elements, yields the graphical lasso (glasso)
(Friedman et al., 2008; Yuan and Lin, 2007; Banerjee et al., 2008; Rothman et al., 2008).
It encourages €2 to be sparse, corresponding to a graphical model with few edges.

WILMS AND BIEN

However, when (2 is not sparse, demanding sparsity in Q may not be helpful, as we will
show in Section 2.1. Such settings can arise when data are measured and analyzed at ever
higher resolutions (a growing trend in many areas, see e.g. Callahan et al. 2017). A tree is a
natural way to represent the different scales of data resolution, and we introduce a new choice
for P that uses this tree to guide node aggregation, thereby allowing for a data adaptive
choice of data scale for capturing dependencies. Such tree-based structures are available
in many domains. For instance, companies can be aggregated according to hierarchical
industry classification codes; products can be aggregated from brands towards product
categories; brain voxels can be aggregated according to brain regions; microbiome data can
be aggregated according to taxonomy. The resulting penalty function then encourages a
more general and yet still highly interpretable structure for €. In the following subsection,
we use a toy example to illustrate the power of such an approach.

2.1 Node Aggregation

Consider a toy example with p variables
P
X, = Z X jtel
§=3

p
Xy = ZX]'—I-EQ
j=3
Xj = &j, for3§j§p,

where €1, ..., ¢, are independent standard normal random variables. By construction, it is
clear that there is a very simple relationship between the variables: The first two variables
both depend on the sum of the other p—2 variables. However, a standard graphical model on
the p variables does not naturally express this simplicity. The first row of Table 1 shows the
covariance and precision matrices for the full set of variables X1,..., X,. The graph in the
last column then visually represents the same information as the precision matrix. While
this graph does convey the message that variables 1 and 2 are conditionally independent, it
is extremely dense with O(p?) edges. As such, the precise structure among the remaining
variables is hard to infer from the graph, an issue that only becomes worse when the number
of variables p increases. Imagine if instead we could form a graphical model with only three
variables: X1, X9, X, where the last variable X = Z?:g X aggregates all but the first
two variables. The bottom row of Table 1 results in a graphical model that matches the
simplicity of the situation. The graph with aggregated nodes maintains its simplicity even
when p increases.

The lack of sparsity in the p-node graphical model means that the graphical lasso will
not do well; its estimation accuracy will suffer unless the sample size is extremely large.
Nonetheless, a method that could perform node aggregation would be able to yield a highly-
interpretable aggregated sparse graphical model since X; and X3 are conditionally inde-
pendent given the aggregated variable X.

It is useful to map from the small aggregated graphical model to the original p-node
graphical model. One does so by writing the precision matrix in “G-block” format (Bunea
et al., 2020, although they introduce this terminology in the context of the covariance

TREE-AGGREGATED GRAPHICAL LASSO

Nodes Covariance Matrix Precision Matrix Graphical
by Q Model

1) 1 0 -1,
1, 5 0 1 -1, 5
Ip_Q —1p_2 —1p_2 L

withL =T, o +2-1p-2-1]

p—2

p—2 1 0 -1
p—1 p—2 0 1 -1
p—2 p—2 -1 -1 2+4+1/(p-2)

N DN =

_ p—
X1, X0, X p—
b

Note: Let 14 denote a d-dimensional column vector of ones, and I be the d x d identity matrix.

Table 1: Toy example: Covariance and precision matrices with corresponding graphical
model (drawn for p = 50) for the full (top) and aggregated (bottom) set of nodes.

matrix, not its inverse) for a given partition G = {G1, ..., Gx} of the nodes {1,...,p} and
corresponding p X K membership matrix M, with entries M, = 1 if j € G}, and Mj, =0
otherwise. In particular, there exists a K x K symmetric matrix C and a p x p diagonal
matrix D such that the precision matrix can be written as @ = MCM ' + D. The block-
structure of € is captured by the first part of the decomposition, the aggregated K x K
precision matrix on the set of aggregated nodes can then be written as Q.5 = C + Dggg,
where D,ge = (MTD~!M)~! is diagonal. In the above example, K = 3, G = {1}, G =
{2}, G3 ={3,...,p} and MCM " has only three distinct rows/columns since the aggregated
variables j = 3, ..., p share all their entries. In the presence of node aggregation and edge
sparsity, the graphical model corresponding to the aggregated precision matrix is far more
parsimonious than the graphical model on the full precision matrix (see Table 1).

As motivated by this example, our main goal is to estimate the precision matrix in such a
way that we can navigate from a p-dimensional problem to a K-dimensional problem whose
corresponding graphical model provides a simple description of the conditional dependency
structure among K aggregates of the original variables. In the following proposition, we
show that this can be accomplished by looking for a precision matrix that has a G-block
structure. The proof of the proposition is included in Appendix A.

Proposition 1 Suppose X ~ N,(0,Q271) with @ = MCM ' + D, where M € {0, 1}P*K s
the membership matriz, D > 0, and let X =MTX € R be the vector of aggregated vari-
ables. Then X has precision matriz Qqg9 = C+ D gg9, where Doy is a diagonal matriz, and
therefore c;; = 0 is equivalent to the aggregates X, and)?j being conditionally independent
given all other aggregated variables.

WILMS AND BIEN

2 Q2 Q3 Q4 Qs
Figure 2: An example of a tree T encoding similarity among p = 5 variables.

The same matrix C thus enters the formula for €2 as well as €2,4., thereby ensuring that
both reflect the same conditional independence structure. While Proposition 1 thereby
gives us the desired interpretation in the graphical model with K aggregated nodes, in
practice, the partition G, its size K, and corresponding membership matrix M are, how-
ever, unknown. Rather than considering arbitrary partitions of the variables, we constrain
ourselves specifically to partitions guided by a known tree. In so doing, we allow ourselves
to exploit side information and help ensure that the aggregated nodes will be easily inter-
pretable. To this end, we introduce a tree-based parameterization strategy that allows us
to embed the node dimension reduction into a convex optimization framework.

2.2 Tree-Based Parameterization

Our aggregation procedure assumes that we have, as side information, a tree that represents
the closeness (or similarity) of variables. We introduce here a matrix-valued extension of the
tree-based parameterization developed in Yan and Bien (2021) for the regression setting.
We consider a tree 7 with p leaves 21,...,Q, where €; denotes column 1 < j < p of
. We restrict ourselves to partitions that can be expressed as a collection of branches of
T. Newly aggregated nodes are then formed by summing variables within branches. To
this end, we assign a p-dimensional parameter vector =, to each node u in the tree 7 (see
Figure 2 for an example). Writing the set of nodes in the path from the root to the j** leaf
(variable) as ancestor(j) U {j}, we express each column/row in the precision matrix as

Qj = Z Yu + djej, (3)

u€ancestor(j)U{j}

where we sum over all the ~,’s along this path, and e; denotes the p-dimensional vector
with all zeros except for its j* element that is equal to one. In the remainder, we will
make extensive use of the more compact notation £ = AT"' + D, where A € {0, l}pXm isa
binary matrix with Aj = 1{u) € ancestor(j) U {j}} = 1{j € descendant(us) U {uy}} with
1{-} denoting the indicator function, I' is a | 7| X p parameter matrix collecting the ~,’s in
its rows with | 7| denoting the cardinality of the tree and D is a diagonal parameter matrix
with elements dq, ..., d).

By zeroing out ~,’s, certain nodes will be aggregated, as can be seen from the illustrative
example in Figure 3. More precisely, let V = {u : 7, # 0} denote the set of non-zero rows in

TREE-AGGREGATED GRAPHICAL LASSO

04] Q7| 254 04| 25

+

2,)
2,)

Figure 3: Left: An example of a 5 x 5-dimensional €2 and a tree 7 that relates the cor-
responding p = 5 variables. We have ; = +; + 1.3 + v1.5 for ¢ = 1,2,3 and
Q; = vj+~ya:5+v1:5 for j = 4,5, by equation (3), ignoring the diagonal elements.
Middle: By zeroing out the ;’s in the gray nodes, we aggregate the rows/columns
of € into two groups indicated by the two colors: 21 = Qs = Q3 = v1.3 + Y15
(blue) and Q4 = Q5 = 1.5 (red). Right: The precision matrix € thus has a
block-structure.

T and let Ay be the sub-matrix of A where only the columns corresponding to the non-zero
rows in I' are kept. The number of blocks K in the aggregated network is then given by the
number of unique rows in Ay. The membership matrix M (Section 2.1), and hence the set
of aggregated nodes, can then be derived from the variables (rows) in the matrix Ay that
share all their row-entries. In the next section, we introduce the tag-lasso, which is based
on this parameterization.

We prefer to perform aggregation according to tree-based structures, as opposed to
more general directed acyclic graphs, because of the interpretability trees naturally offer.
For trees, each node has only one parent and, hence, there exists a single path from the
leaves (original variables) towards the root node (complete aggregation). In such cases,
the intermediate levels in the tree provide a direct, natural labelling of the corresponding
aggregated variables. We discuss the option to perform aggregation guided by more general
graph-based structures in Section 6.

3. Tree Aggregated Graphical lasso

To achieve dimension reduction via node aggregation and edge sparsity simultaneously, we
extend optimization problem (1) by incorporating the parameterization introduced above.

WILMS AND BIEN

Our estimator, called the tag-lasso, is defined as

~

(Q,T, D) = argmin{—logdet(£2) + tr(S) + A1 T_,[|2.1 + Xo|| Q48|
Qr,.D

st. Q=07 Q0,4 =71, Q=AT+D, Ddiag, D;; >0forj=1,...,p}, (4)

with [T _[|21 = > ,e7 . [7ull2 and T—, being the set of all nodes in 7 other than the root.
This norm induces row-wise sparsity on all non-root rows of I'. This row-wise sparsity, in
turn, induces node aggregation as explained in Section 2.2. The root is excluded from this
penalty term so that in the extreme case of a large A1 one gets complete aggregation but
not necessarily sparsity (in this extreme, all off-diagonal elements of Q are equal to the
scalar v that appears in the equality constraint involving =,). While A; controls the degree
of node aggregation, \s controls the degree of edge sparsity. When A1 = 0, the optimization
problem in (4) reduces to the glasso.

The tag-lasso estimator imposes a block structure on the rows of Q—D via the constraint
2 = AT + D. From the sparsity pattern of I‘ “we obtain V= - {u €T : Ay # 0}, the set of
non-zero rows in I‘ such that we can write @ —D = AT = AT, Algorithm 1 in Appendix

A details how the membership matrix M can be obtained frorn the original binary matrix A
and the set V. Due to the enforced symmetry on the precision matrix, the block structure
imposed on the rows of Q — D holds likewise for its columns. The next proposition then
shows how the solution provided by the tag-lasso can be re-written in G-block format. The
proof of the proposition is included in Appendix A.

Proposition 2 Gwen a solution (Q r D) to the tag lasso problem there exists a p X K
partition matriz M and a symmetric K x K matrix C such that @ = MCM " + D.

The G-block structure imposed by the tag-lasso (in case K < p) implies that the tag-lasso
is especially useful to apply when one believes that dimension reduction can be leveraged
in terms of node-aggregation in addition to edge-sparsity.

Finally, note that optimization problem (4) fits into the general formulation of penalized
graphical models given in (1) since it can be equivalently expressed as

Q= argmin{—logdet(€2) + tr(SQ) + A1 Paggregate(£2) + A2Psparse(2) s.t. Q = QT, Q > 0},
Q

where

Phaggregate(2) = Ilpgl {IT—r]l2,1 8.t. v =71, @ = AT+D, D diag, D;; > 0forj=1,...,p}

and Psparse(2) is the ¢1-norm defined in (2).

The proposed tag-lasso estimator thus determines the node aggregation and edge spar-
sity while also producing an estimate of the precision matrix by solving one convex opti-
mization problem. One might wonder how such a “one-stage” procedure compares to a
two-stage procedure where first the level of node aggregation is determined, and secondly,
the glasso is applied using the aggregated nodes determined in the first stage. In Appendix
B we detail this two-stage procedure and compare its performance to the tag-lasso estimator
through a simulation study. Across various simulation designs, we find that the proposed
(one-stage) tag-lasso estimator provides important improvements in terms of estimation
accuracy over such a two-stage benchmark as the latter struggles to retrieve the correct
aggregation level.

TREE-AGGREGATED GRAPHICAL LASSO

3.1 Locally Adaptive Alternating Direction Method of Multipliers

We develop an alternating direction method of multipliers (ADMM) algorithm (Boyd et al.,
2011), specifically tailored to solving (4). Our ADMM algorithm is based on solving this
equivalent formulation of (4):

min {—logdet(QM) + tr(SQMW) + A\ T [l51 + Ao @ N2e@) |,
Q1) Q) QG)
r) r@ or.p

5. 00 =07 M 040 =401 9@ = AT® 4D, D diag, Dj; >0, j=1,....p,
Q=00 =0% =00 andr =1® =1@}. (5)

Additional copies of €2 and T are introduced to efficiently decouple the optimization prob-
lem.

Furthermore, we use an extension called locally adaptive-ADMM (LA-ADMM, Xu et al.,
2017) with adaptive penalization to improve performance. The full details of the algorithm
are provided in Appendix C. The computational complexity of the algorithm in terms of the
number of variables p and the size of the tree |T| is O(p|T|?) x (number of iterations + 1)
since each initialization step as well as each per iteration update is at most O(p|T|?).
Bounds on the number of iterations for ADMM and LA-ADMM can be found in Xu et al.
(2017).

3.2 Selection of the Tuning Parameters

To select the tuning parameters A\; and Ay, we form a 10 x 10 grid of (A1, A2) values and
find the pair that minimizes a 5-fold cross-validated likelihood-based score,

5
Z {—logdet(ﬁ_]:k) + tr(S]:kﬁ_J-'k)}) (6)
k=1

| =

where £_ 7, is an estimate of the precision matrix trained while withholding the samples in
the k' fold and S 7, is the sample covariance matrix computed on the kth fold. In particular,
we take Q_ 7. to be a re-fitted version of our estimator (e.g., Belloni and Chernozhukov,
2013). After fitting the tag-lasso, recall that we obtain Y= {u € T : 74, # 0}, the set of
Nnon-zero rows in f‘, which suggests a particular node aggregation; and E= {(4,7) : ﬁij # 0},
the set of non-zero elements in ﬁ, which suggests a particular edge sparsity structure. We
then re-estimate €2 by maximizing the likelihood subject to these aggregation and sparsity
constraints:

QI}‘I;HD — logdet(£2) + tr(S€2)
subject to Q = Q' .Q-o,
7\7,7" = 'ylp, (7)

Q2 =A;I'; +D,D diag., Dj; >0forj=1,...,p
Q;; =0, for (i,j) ¢ &.

We solve this with an LA-ADMM algorithm similar to what is described in Section 3.1 and
Appendix C.

WILMS AND BIEN

3.3 Connections to Related Work

Combined forms of dimension reduction in graphical models can be found in, amongst
others, Chandrasekaran et al. (2012); Tan et al. (2015); Eisenach et al. (2020); Brownlees
et al. (2020); Pircalabelu and Claeskens (2020).

Chandrasekaran et al. (2012) consider a blend of principal component analysis with
graphical modeling by combining sparsity with a low-rank structure. Tan et al. (2015)
and Eisenach et al. (2020) both propose two-step procedures that first cluster variables
in an initial dimension reduction step and subsequently estimate a cluster-based graphical
model. Brownlees et al. (2020) introduce partial correlation network models with commu-
nity structures but rely on the sample covariance matrix of the observations to perform
spectral clustering. Our procedure differs from these works by introducing a single convex
optimization problem that simultaneously induces aggregation and edge sparsity for the
precision matrix.

Our work is most closely related to Pircalabelu and Claeskens (2020) who estimate a
penalized graphical model and simultaneously classify nodes into communities. However,
Pircalabelu and Claeskens (2020) do not use tree-based node-aggregation. Our approach,
in contrast, considers the tree 7 as an important part of the problem to help determine
the extent of node aggregation, and as a consequence the number of aggregated nodes (i.e.
clusters, communities or blocks) K, in a data-driven way through guidance of the tree-based
structure on the nodes.

4. Simulations

We investigate the advantages of jointly exploiting node aggregation and edge sparsity
in graphical models. To this end, we compare the performance of the tag-lasso to two
benchmarks:

(i) oracle: The aggregated, sparse graphical model in (7) is estimated subject to the true
aggregation and sparsity constraints. The oracle is only available for simulated data
and serves as a “best case” benchmark.

(ii) glasso: This does not perform any aggregation (corresponding to the tag-lasso with
A1 = 0). A sparse graph on the full set of variables is estimated. The glasso is
computed using the same LA-ADMM algorithm as detailed in Appendix C. The tuning
parameter is selected from a 10-dimensional grid as the value that minimizes the 5-
fold cross-validation likelihood-based score in equation (6) with ©_ 7, taken to be the
glasso estimate.

All simulations were performed using the simulator package (Bien, 2016) in R (R Core
Team, 2017). We evaluate the estimators in terms of three performance metrics: estimation
accuracy, aggregation performance, and sparsity recovery. We evaluate estimation accuracy
by averaging over many simulation runs the Kullback-Leibler (KL) distance

KL = —logdet(E€) + tr(ZQ) — p,

where ¥ = Q7! is the true covariance matrix. Note that the KL distance is zero if the
estimated precision matrix equals the true precision matrix.

10

TREE-AGGREGATED GRAPHICAL LASSO

chain: Q random: Q unbalanced: Q unstructured: Q
I I I I
chain: aggregated graph random: aggregated graph unbalanced: aggregated graph unstructured: full graph

AN R

Figure 4: Four aggregation designs: chain, random, unbalanced and unstructured graphs
with corresponding precision matrix (top) and graph on the set of aggregated
nodes (bottom).

To evaluate aggregation performance, we use two measures: the Rand index (Rand,
1971) and the adjusted Rand index (Hubert and Arabie, 1985). Both indices measure the
degree of similarity between the true partition on the set of nodes 1, ..., p and the estimated
partition. The Rand index ranges from zero to one, where one means that both partitions
are identical. The adjusted Rand index performs a re-scaling to account for the fact that
random chance will cause some variables to occupy the same group.

Finally, to evaluate sparsity recovery, we use the false positive and false negative rates

#{(’L,]) : sz ?é 0 and Qij = 0} and FNR = #{(l,j) : Q” =0 and Qj 75 0}
#{(i,5) : Qi = 0} #{(i,7) : Qi; # 0}
The FPR reports the fraction of truly zero components of the precision matrix that are

estimated as nonzero. The FNR gives the fraction of truly nonzero components of the
precision matrix that are estimated as zero.

FPR =

4.1 Simulation Designs

Data are drawn from a multivariate normal distribution with mean zero and covariance
matrix ¥ = Q7!. We take p = 15 variables and investigate the effect of increasing the
number of variables in Section 4.3. We consider four different simulation designs, shown in
Figure 4, each having a different combination of aggregation and sparsity structures for the
precision matrix 2.

Aggregation is present in the first three structures. The precision matrix has a G-block
structure with K = 3 blocks. In Section 4.4, we investigate the effect of varying the number
of blocks. In the chain graph, adjacent aggregated groups are connected through an edge.

11

WILMS AND BIEN

Figure 5: A simple tree used for the “tag-lasso ideal” (left) and a more realistic tree used
for the “tag-lasso realistic” (right).

This structure corresponds to the motivating example of Section 1. In the random graph,
one non-zero edge in the aggregated network is chosen at random. In the unbalanced graph,
the clusters are of unequal size. In the unstructured graph, no aggregation is present.

Across all designs, we take the diagonal elements of € to be 1, the elements within a
block of aggregated variables to be 0.5, and the non-zero elements across blocks to be 0.25.
We generate 100 different data sets for every simulation design and use a sample size of
n = 120. The number of parameters (p + p(p — 1)/2 = 120) equals the sample size.

The tag-lasso estimator relies on the existence of a tree to perform node dimension
reduction. We consider two different tree structures throughout the simulation study. First,
we use an “ideal” tree which contains the true aggregation structure as the sole aggregation
level between the leaves and the root of the tree. As an example, the true aggregation
structure for the chain graph structure is shown in the left panel of Figure 5. We form A
corresponding to this oracle tree to obtain the “tag-lasso ideal” estimator.

We also consider a more realistic tree, shown in the right panel of Figure 5, following
a construction similar to that of Yan and Bien (2021). The tree is formed by performing
hierarchical clustering of p latent points chosen to ensure that the tree contains the true
aggregation structure and that these true clusters occur across a variety of depths. In
particular, we generate K cluster means p1,...,ux with g; = 1/i. We set the number of
latent points associated with each of the K means equal to the cluster sizes from Figure
4. These latent points are then drawn independently from N (4, [0.05 - min; (1 — p;)]?).
Finally, we form A corresponding to this tree to obtain the “tag-lasso realistic” estimator.

4.2 Results

We subsequently discuss the results on estimation accuracy, aggregation performance, and
sparsity recovery.

Estimation Accuracy. Boxplots of the KL distances for the three estimators (tag-lasso
ideal, tag-lasso realistic and glasso) relative to the oracle are given in Figure 6. The first
three panels correspond to simulation designs with aggregation structures. In these settings,
the tag-lasso estimators considerably outperform the glasso, on average by a factor five.
The tag-lasso ideal method performs nearly as well as the oracle. Comparing the tag-lasso
realistic method to the tag-lasso ideal method suggests a minimal price paid for using a
more realistic tree.

12

TREE-AGGREGATED GRAPHICAL LASSO

0¥ chain random unbalanced unstructured
& °
O/
-09 o [e]
I T4 o ° —_
Sa 3
£ ‘
Qe
[0]
O ©+
C
E ©+q o o
37 . . £ = Tt
X - ; o ; —] S— e
A == SN I s s = T e =
(ag—\;sso |ag—|;sso gla;so Iag—ll’isso Iag—l‘asso g\a;so (ag—l‘asso (ag—l‘alsso gla;so lag—\;sso lag—\;sso glaéso
ideal realistic ideal realistic ideal realistic ideal realistic
Figure 6: Estimation accuracy of the three estimators relative to the oracle.
tag-lasso ideal . tag-lasso realistic
™ e | s
8o ; 8ol
c ° o c] o
8 : © ; o
o f : 2o ? .
= 8 = ‘ 8
B = — 9F = .
T T [] ? T —~— [] :
: |
o — o —
o‘ A T T T T o A T T T T
n=120 n=240 n=480 n=960 n=120 n=240 n=480 n=960
Sample size Sample size

Figure 7: Estimation accuracy of the tag-lasso estimators for the chain design with fixed
p = 15 and increasing sample size n.

The “unstructured” panel of Figure 6 shows a case in which there is sparsity but no
aggregation in the true data generating model. As expected, the glasso performs best in
this case: its average KL distance is around 0.41 versus 0.51 for the tag-lasso estimators.
We thus observe a minimal cost to applying the tag-lasso, which encompasses the glasso as
a special case when A\ = 0. The tag-lasso estimators can indeed reject the additional prior
information provided by the tree, thereby selecting a small \; value in the grid, hence a dense
T' and no node aggregation. In fact, the tag-lasso estimators include on average around 11
nodes in the “aggregated” graph, which is relatively close to the p = 15 original variables
it should include, thereby explaining the small loss in estimation accuracy compared to the

glasso.

While the paper does not contain theoretical results on the consistency of the tag-lasso
estimator, we do investigate this numerically. We consider the chain design with p = 15 and
increase the sample size from n = 120 to 240, 480, 960. Figure 7 contains the results for both
tag-lasso estimators. As expected, we see that the estimation accuracy gradually increases

13

WILMS AND BIEN

Estimators chain random unbalanced unstructured
RI ARI RI ARI RI ARI RI ARI

tag-lasso ideal 1.00 (.00) 1.00 (.01) 1.00 (.00) 1.00 (.00) 1.00 (.00) 0.99 (.01) 0.84 (.02) NA
tag-lasso realistic 0.95 (.01) 0.88 (.01) 0.97 (.01) 0.93 (.01) 0.94 (.01) 0.85 (.02) 0.81 (.02) NA
glasso 0.71 (.00) 0.00 (.00) 0.71 (.00) 0.00 (.00) 0.67 (.00) 0.00 (.00) 1.00 (.00) NA

Table 2: Aggregation performance of the three estimators, as measured by the Rand index
(RI) and adjusted Rand index (ARI), for the four simulation designs. Standard
errors are in parentheses.

Estimators chain random unbalanced unstructured
FPR FNR FPR FNR FPR FNR FPR FNR
tag-lasso ideal 0.22 (.04) 0.00 (.00) 0.19 (.04) 0.00 (.01) 0.46 (.05) 0.00 (.00) 0.06 (.01) 0.15 (.01)
tag-lasso realistic 0.30 (.04) 0.02 (.01) 0.13 (.02) 0.09 (.01) 0.44 (.04) 0.05 (.01) 0.05 (.01) 0.14 (.01)
glasso 0.80 (.02) 0.08 (.01) 0.73 (.01) 0.09 (.01) 0.82(.02) 0.07 (.01) 0.16 (.01) 0.04 (.01)

Table 3: Sparsity recovery of the three estimators, as measured by the false positive rate
(FPR) and false negative rate (FNR), for the four simulation designs. Standard
errors are in parentheses.

(equivalently the KL distance decreases) for both tag-lasso estimators as the sample size
increases relative to the fixed number of variables.

Aggregation Performance. Table 2 summarizes the aggregation performance of the three
estimators in terms of the Rand index (RI) and adjusted Rand index (ARI). No results on
the ARI in the unstructured simulation design are reported since it cannot be computed
for a partition consisting of singletons. The tag-lasso estimators perform very well. If one
can rely on an oracle tree, the tag-lasso perfectly recovers the aggregation structure, as
reflected in the perfect (A)RI values of the tag-lasso ideal method. Even when the tag-lasso
uses a more complex tree structure, it recovers the correct aggregation structure in the vast
majority of cases. The glasso returns a partition of singletons as it is unable to perform
dimension reduction through aggregation, as can be seen from its zero values on the ARI.

Sparsity Recovery. Table 3 summarizes the results on sparsity recovery (FPR and FNR).
The tag-lasso estimators enjoy favorable FPR and FNR, mostly excluding the irrelevant con-
ditional dependencies (as reflected by their low FPR) and including the relevant conditional
dependencies (as reflected by their low FNR). In the simulation designs with aggregation,
the glasso pays a large price for not being able to reduce dimensionality through aggrega-
tion, leading it to include too many irrelevant conditional dependencies, as reflected through
its large FPRs. In the unstructured design, the rates of all estimators are, overall, low.

4.3 Increasing the Number of Nodes

We investigate the sensitivity of our results to an increasing number of variables p. We
focus on the chain simulation design from Section 4.1 and subsequently double p from 15 to
30, 60 and 120 while keeping the number of blocks K fixed at three. The sample size n is set
proportional to the complexity of the model, as measured by Kp+p. Hence, the sample sizes
corresponding to the increasing values of p are respectively, n = 120, 240, 480, 960, thereby

14

TREE-AGGREGATED GRAPHICAL LASSO

Increasing number of nodes Increasing number of blocks
- - tag-lasso ideal
-= - tag-lasso realistic A
o A gIaSSO A o |
—*— oracle '
8 LA 8 Ao, Avi i A
5 5 B
X A »
T ~ o B - 4
- —
X X
o C
[[
[} [}
= =
- - o
N B - I T, - ----=-= B---==---= =%
S Koo e - -me o ___ o - -g-=--=-==== g
X— % -5 x
T T T T T T T T
p=15 p=30 p=60 p=120 K=3 K=5 K=6 K=10
Number of nodes Number of blocks

Figure 8: Estimation accuracy of the four estimators (on a log-scale) for increasing number
of variables p (and fixed K = 3, left panel) the number of blocks K (and fixed
p = 30, right panel).

keeping the ratio of the sample size to the complexity fixed at two. In each setting, the
number of parameters to be estimated is large, equal to 120, 465, 1830, 7260, respectively;
thus increasing relative to the sample size.

The left panel of Figure 8 shows the mean KL distance (on a log-scale) of the four
estimators as a function of p. As the number of nodes increases, the estimation accuracy
of the tag-lasso estimators and the oracle increases slightly. For fixed K and increasing p,
the aggregated nodes—which can be thought of as the average of p/K random variables—
may be stabler, thereby explaining why the problem at hand does not get harder when
increasing p for the methods with node aggregation. By contrast, the glasso—which is
unable to exploit the aggregation structure—performs worse as p increases. For p = 120,
for instance, the tag-lasso estimators outperform the glasso by a factor 50.

Results on aggregation performance and sparsity recovery are presented in Figure 15 of
Appendix D. The tag-lasso ideal method perfectly recovers the aggregation structure for
all values of p. The realistic tag-lasso’s aggregation performance is close to perfect and
remains relatively stable as p increases. The glasso is unable to detect the aggregation
structure, as expected and reflected through its zero ARIs. The tag-lasso estimators also
maintain a better balance between the FPR and FNR than the glasso. While their FPRs
increase as p increases, their FNRs remain close to perfect, hence all relevant conditional
dependencies are recovered. The glasso, in contrast, fails to recover the majority of relevant
conditional dependencies when p = 60,120, thereby explaining its considerable drop in
estimation accuracy.

15

WILMS AND BIEN

=] 8
o
g 8
E i
gm— °
I S T Estimators RI ARI FPR FNR
S tag-lasso ideal ~ 1.00 1.00 0.02 0.55
2 i tag-lasso realistic 0.89 0.84 0.58 0.28
B, . glasso 0.67 0.00 0.05 0.93
oL T= =]
e

tag-lasso tag-lasso glasso

ideal realistic

Figure 9: High-dimensional design with p = 150,n = 120. Left: Estimation accuracy of
the three estimators relative to the oracle. Right: Aggregation performance and
sparsity recovery of the three estimators. Standard errors around the reported
results are all smaller than 0.05, and are thus not reported.

4.4 Increasing the Number of Blocks

Next, we investigate the effect of increasing the number of blocks K. We take the chain
simulation design from Section 4.1 and increase the number of blocks from K = 3 to
K = 5,6,10, while keeping the number of variables fixed at p = 30. The right panel of
Figure 8 shows the mean KL distance (on a log-scale) of the four estimators as a function
of K. As one would expect, the difference between the aggregation methods and the glasso
decreases as K increases. However, for all K considered, the glasso does far less well than
the aggregation based methods.

Similar conclusions hold in terms of aggregation and sparsity recovery performance.
Detailed results are presented in Figure 16 of Appendix D. The tag-lasso ideal method
performs as well as the oracle in terms of capturing the aggregation structure; the tag-
lasso realistic method performs close to perfect and its aggregation performance improves
with increasing K. In terms of sparsity recovery, the tag-lasso estimators hardly miss
relevant conditional dependencies and only include a small number of irrelevant conditional
dependencies. The glasso’s sparsity recovery performance is overall worse but does improve
with increasing K.

4.5 High-dimensional p > n Design

Finally, we investigate the performance of the tag-lasso in a high-dimensional design where
the number of variables p exceeds the sample size n. To this end, we consider the chain
design with p = 150 and n = 120. The left panel of Figure 9 presents boxplots of the KL dis-
tances of the tag-lasso estimators and glasso relative to the oracle. In this high-dimensional
design, the tag-lasso estimators pay a larger price in terms of estimation accuracy compared
to the oracle. The same holds for the tag-lasso realistic compared to the tag-lasso ideal.
Still both tag-lasso estimators considerably outperform the glasso.

16

TREE-AGGREGATED GRAPHICAL LASSO

The right panel of Figure 9 summarizes the aggregation performance and sparsity re-
covery of the tag-lasso estimators and glasso. The aggregation performance of the tag-lasso
estimators remains high. Moreover, they balance false positives and false negatives bet-
ter than the glasso. While the tag-lasso ideal mainly displays a high FNR, the tag-lasso
realistic also suffers from returning an overly dense graph, as can be seen from its higher
FPR. Glasso, in contrast, cannot handle the many non-zero elements in the true precision
matrix in combination with the small sample size. To tackle the dimensionality, it returns
an overly sparse solution as can be seen from the high FNR.

5. Applications

We consider two applications: a financial (Section 5.1) and a microbiome application (Sec-
tion 5.2).

5.1 Financial Application

We demonstrate our method on a financial data set containing daily realized variances of p =
31 stock market indices from across the world in 2019 (n = 254). Daily realized variances
based on five minute returns are taken from the Oxford-Man Institute of Quantitative
Finance (publicly available at http://realized.oxford-man.ox.ac.uk/data/download).
Following standard practice, all realized variances are log-transformed. An overview of the
stock market indices is provided in Appendix E. We encode similarity between the 31 stock
market indices according to geographical region, and use the tree shown in Figure 10 to
apply the tag-lasso estimator.

Since the different observations of the consecutive days are (time)-dependent, we first
fit the popular and simple heterogeneous autoregressive (HAR) model of (Corsi, 2009) to
each of the individual log-transformed realized variance series. Graphical displays of the
residual series of these 31 HAR models suggest that almost all autocorrelation in the series
is captured. We then apply the tag-lasso to the residual series to learn the conditional
dependency structure among stock market indices.

Estimated Graphical Model. We fit the tag-lasso estimator, with 5-fold cross-validation
to select tuning parameters, to the full data set, with the matrix A encoding the tree
structure in Figure 10. The tag-lasso returns a solution with K = 6 aggregated blocks;
the sparsity pattern of the full estimated precision matrix is shown in the top left panel
of Figure 11. The coloring of the row labels and the numbering of columns convey the
memberships of each variable to aggregated blocks (to avoid clutter, only the first column
of each block is labeled).

Dimension reduction mainly occurs through node aggregation, as can be seen from the
aggregated precision matrix in the bottom left panel of Figure 11. The resulting aggre-
gated graphical model is rather dense with only about half of the off-diagonal entries being
non-zero in the estimated aggregated precision matrix, thereby suggesting strong volatility
connectedness. The solution returned by the tag-lasso estimator consists of one single-
market block (block 5: Canada) and five multi-market blocks, which vary in size. The
Australian, South-America, and all Asian stock markets form one aggregated block (block
6). Note that the tag-lasso has “aggregated” these merely because they have the same
non-dependence structure (i.e. all of these markets are estimated to be conditionally inde-

17

WILMS AND BIEN

—
n
[North-America] [South-America] [North-Europe| [Central-Europe] [South-Europe| [West-Europe] [East-Asia | [South-Asial

|
= O I

Figure 10: Geography-based tree for the stock market data, which aggregates the p = 31
stock market indices (leaves) over several sub-continents towards a single root.
Leaves, which represent individual stock markets, are displayed horizontally.

IBEX

SMSI

N225
SES

¢] =lal o= QmZH
S dIEIE|2| (2|28 (84|23
m <P E|| & £ mxmz

STOXX50E

BVSP
MXX
OMXC20
OMXHPI
—

FTMIB

OMXSPI
OSEAX

pendent of each other and all other markets). The remaining aggregated nodes concern the
US market (block 4) and three European markets, which are divided into North-Europe
(block 1), Central-, South-Europe & STOXXS50E (block 2), and West-Europe (block 3).
In the aggregated network, the latter two and the US play a central role as they are the
most strongly connected nodes: These three nodes are connected to each other, the US
node is additionally connected to Canada, whereas these Furopean nodes are additionally
connected with North-Europe.

Out-of-sample Performance. We conduct an out-of-sample exercise to compare the tag-
lasso estimator to the glasso estimator. We take a random sample of n = 203 observations
(80% of the full data set) to form a “training sample” covariance matrix and use the re-
maining data to form a “test sample” covariance matrix S'***, and repeat this procedure
ten times. We fit both the tag-lasso and glasso estimator to the training covariance matrix,
with 5-fold cross-validation on the training data to select tuning parameters. Next, we
compute their corresponding out-of-sample errors on the test data, as in (6).

The top right panel of Figure 11 shows each of these ten test errors for both the tag-lasso
(x-axis) and the glasso estimator (y-axis). The fact that in all ten replicates the points are
well above the 45-degree line indicates that the tag-lasso estimator has better estimation
error than the glasso. Tag-lasso has a lower test error than glasso in all ten replicates,
resulting in a substantial reduction in glasso’s test errors. This indicates that jointly ex-
ploiting edge and node dimension reduction is useful for precision matrix estimation in this
context.

5.2 Microbiome Application

We next turn to a data set of gut microbial amplicon data in HIV patients (Rivera-Pinto
et al., 2018), where our goal is to estimate an interpretable graphical model, capturing the
interplay between different taxonomic groups of the microbiome. Bien et al. (2020) recently
showed that tree-based aggregation in a supervised setting leads to parsimonious predictive

18

TREE-AGGREGATED GRAPHICAL LASSO

~ - Out-of-sample errors
VLG = o
S T %
“s"EASﬁ P 4
% Q e
FX T
] 3 e e
O g |
9 |
T T T T
-25 -20 -15 -10
tag—-lasso

C-, S-Europe & STOXX50E

W-Europe

S

Figure 11: Stock market indices data. Top left: Sparsity pattern (non-zeros in black) of full
Q with aggregation structure conveyed through row label coloring and column
numbering. Top right: Test errors across the ten replications (dots) for the tag-
lasso versus glasso. Bottom: Aggregated graph for the K = 6 nodes obtained
with the tag-lasso as an adjacency matrix (bottom left) and as a network (bottom
right) with the size of each node proportional to the number of original variables
it aggregates.

models. The data set has n = 152 HIV patients, and we apply the tag-lasso estimator to all
p = 104 bacterial operational taxonomic units (OTUs) that have non-zero counts in over half
of the samples. We use the taxonomic tree that arranges the OTUs into natural hierarchical
groupings of taxa: with 17 genera, 11 families, five orders, five classes, three phyla, and
one kingdom (the root node). We employ a standard data transformation from the field
of compositional data analysis (see e.g., Aitchison, 1982) called the centered log-ratio (clr)
transformation that is commonly used in microbiome graphical modeling (Kurtz et al.,
2015; Lo and Marculescu, 2018; Kurtz et al., 2019). After transformation, Kurtz et al.
(2015) apply the glasso, Lo and Marculescu (2018) incorporate phylogenetic information
into glasso’s optimization problem through weights within the ¢1-penalty, and Kurtz et al.
(2019) estimate a latent graphical model which combines sparsity with a low-rank structure.

19

WILMS AND BIEN

fffffffffffffffffffffffffff

0Otu000075
0Otu000066
0Otu000015
0Otu000060
0Otu000088
0Otu000006

0Otu000161

0tu000047
Otu000055
0Otu000134

oooo1s6| ||

[
0Otu000158
0Otu000025

otuooooo7 | | | | |
L

g_Incertae_Sedis

i

g_R

0Otu000154

0000077 | | ||

_Bacteria* [| | |

fL

- N O I O © &~ ©

g_Bacteroides

g_Prevotella
0Otu000161

f_Porphyromonadaceae
Otu000134

g_Alistipes
Otu000156

k_Bacteria*

Figure 12: Microbiome data. Full precision matrix (left) and aggregated precision ma-
trix (right) estimated by the tag-lasso with an unconstrained five-fold cross-
validation (top) and with a cross-validation subject to the constraint that there
are at most ten blocks (bottom).

We instead, use the tag-lasso to learn a sparse aggregated network from the clr-transformed
microbiome compositions. While the clr-transform induces dependence between otherwise
independent components, Proposition 1 in Cao et al. (2019) provides intuition that as long
as the underlying graphical model is sparse and p is large, these induced dependencies may
have minimal effect on the covariance matrix. Future work could more carefully account for
the induced dependence, incorporating ideas from Cao et al. (2019) or Kurtz et al. (2019).

Estimated Graphical Model. We fit the tag-lasso to the full data set and use 5-fold
cross-validation to select the tuning parameters. The tag-lasso estimator provides a sparse
aggregated graphical model with K = 28 aggregated blocks (a substantial reduction in

20

TREE-AGGREGATED GRAPHICAL LASSO

Out—-of-sample errors

160

® O
g |
o o & O
IS
O3] e e0
lg_Bacterol (@) ° o
g4 O
O

135
I

T T T T T T
135 140 145 150 155 160

tag-lasso

Figure 13: Microbiome data. Left: Aggregated network estimated by the constrained CV
version of the tag-lasso. The colour of the nodes is based on their level of aggre-
gation (OTU: pink, genus: orange, family: blue); their width is proportional to
the number of OTUs they aggregate. Middle: Network estimated by the glasso.
Right: Test errors across the ten replications for the unconstrained (solid black)
and constrained (unfilled blue) CV version of the tag-lasso versus the glasso.

nodes from the original p = 104 OTUs). The top panel of Figure 12 shows the sparsity
pattern of the p x p estimated precision matrix (top left) and of the K x K estimated
aggregated precision matrix (top right). A notable feature of the tag-lasso solution is that
it returns a wide range of aggregation levels: The aggregated network consists of 17 OTUs,
7 nodes aggregated to the genus level (these nodes start with “g_”), 3 to the family level
(these nodes start with“f_”), and 1 node to the kingdom level (this node starts with “k_").
Some aggregated nodes, such as the “g_Blautia” node (block 19), contain all OTUs within
their taxa; some other aggregated nodes, indicated with an asterisk like the “k_Bacteria*”
node (block 28), have some of their OTUs missing. This latter “block” consists of 18 OTUs
from across the phylogenetic tree that are estimated to be conditionally independent with
all other OTUs in the data set.

While the tag-lasso determines the aggregation level in a data-driven way through cross-
validation, practitioners or researchers may also sometimes wish to restrict the number of
blocks K to a pre-determined level when such prior knowledge is available or if this is
desirable for interpretability. As an illustration, we consider a constrained cross-validation
scheme in which we restrict the number of blocks K to maximally ten and select the sparsity
parameters with the best cross-validated error among those solutions with K < 10. The
bottom panel of Figure 12 shows the sparsity pattern of the full and aggregated precision
matrices estimated by this constrained version of the tag-lasso.

The resulting network consists of K = 8 aggregated nodes. The “k_Bacteria*” node now
aggregates 78 OTUs that are estimated to be conditionally independent of each other and
all others. The interactions among the remaining nodes are shown in the left panel of Figure
13, which consists of three OTUs (OTU134, OTU156, and OTU161, in pink), three genera
(Prevotella, Bacteroides, and Alistipes in orange) and one family (Porphyromonadaceae in

21

WILMS AND BIEN

blue). The resulting network is much simpler than the one estimated by the glasso, shown
in the middle panel of Figure 13. The glasso finds 58 OTUs to be conditionally independent
with all others, but the interactions among the remaining 46 OTUs are much more difficult
to interpret. The glasso is limited to working at the OTU-level, which prevents it from
providing insights about interactions that span different levels of the taxonomy.

Out-of-sample Performance. We conduct the same out-of-sample exercise as described
in Section 5.1. The right panel of Figure 13 presents the ten test errors (black dots) for the
unconstrained CV tag-lasso and glasso. In all but one case, the tag-lasso leads to a better fit
than the glasso, suggesting that it is better suited for modeling the conditional dependencies
among the OTUs. The unfilled blue dots show the same but for the constrained CV tag-
lasso. In all ten cases, it underperforms the unconstrained CV tag-lasso (see shift to the
right on the horizontal axis); however, its performance is on a par with the glasso, with
test errors close to the 45 degree line. Thus, there does not appear to be a cost in out-
of-sample-performance to the interpretability gains of the constrained tag-lasso over the
glasso.

6. Conclusion

Detecting conditional dependencies between variables, as represented in a graphical model,
forms a cornerstone of multivariate data analysis. However, graphical models, characterized
by a set of nodes and edges, can quickly explode in dimensionality due to ever-increasing
fine-grained levels of resolution at which data are measured. In many applications, a tree is
available that organizes the measured variables into various meaningful levels of resolution.
In this work, we introduce the tag-lasso, a novel estimation procedure for graphical models
that curbs this curse of dimensionality through joint node and edge dimension reduction
by leveraging this tree as side information. Node dimension reduction is achieved by a
penalty that allows nodes to be aggregated according to the tree structure; edge dimension
reduction is achieved through a standard sparsity-inducing penalty. As such, the tag-
lasso generalizes the popular glasso approach to sparse graphical modelling. An R package
called taglasso implements the proposed method and is available on the GitHub page
(https://github.com/ineswilms/taglasso) of the first author.

The tree is a crucial ingredient for performing node aggregation with the tag-lasso
and opens up several interesting avenues for future research. On the one hand, multiple
trees could be available. For instance, we could think of aggregating stock data by sector,
transaction volume, or capitalization. In such cases, it would be interesting to let the trees
compete in, for instance, a cross-validation exercise from which the tree that “best” fits the
data can be selected to guide the node aggregation. On the other hand, some applications
lack the availability of a tree but have more general graph-based structures available that
could guide the node aggregation. To this end, it would be interesting to further investigate
how the machinery of graph fusion penalties (see e.g., Wang et al., 2016) could be leveraged.

Finally, we do not provide theory in the form of estimation error bounds for the tag-lasso
estimator. Possible starting directions to this end can be found in Rothman et al. (2008)
or Ravikumar et al. (2011). It would be interesting to investigate the effect of different
tree structures on the bounds. In Ravikumar et al. (2011), for instance, the maximal node
degree is a relevant quantity. For our penalty on €2, which involves an internal optimization

22

TREE-AGGREGATED GRAPHICAL LASSO

problem over I' and D, it would be interesting to understand the relevant quantity that
captures the interplay between the tree structure and the true node aggregation structure.

Acknowledgments

We thank the referees for their constructive comments which substantially improved the
quality of the manuscript. We thank Christian Miiller for useful discussions. Jacob Bien was
supported in part by NSF CAREER Award DMS-1653017 and NIH Grant RO1GM123993.

Appendix A. Proof of Propositions

A.1 Proof of Proposition 1

Proof First, note that X follows a K-dimensional multivariate normal distribution with
mean zero and covariance matrix M (D +MCM ")~!M. Next, we re-write this covariance
matrix by two successive applications of equation (23) in Henderson and Searle (1981):

M'D+MCM')"™M = M'D"'M-M'D'MI+CM'D'M)'CM'D'M
-1
= (MDD M+ C) .

Hence, the precision matrix of)~(~is given by (M D~'M)~! +C. Now since (M'D~'M)~*
is diagonal, ¢;; = 0 < X; L Xj\X,{i’j}, for any i,j =1,..., K and with X_; ;3 containing
all aggregated variables except for aggregate ¢ and j. |

A.2 Proof of Proposition 2

Proof Denote the tag-lasso solution by (ﬁ,f‘, f)) and let V = {u : 4, # 0} be the set of
non-zero rows in I'. Define the partial ordering over the nodes of the tree so that u < v
means that u ¢ ancestor(v) and label the nodes of V so that u; <wug < --- < Uy

Consider the following algorithm to obtain the partition matrix M. We work our way
through the nodes in Vina bottom-up fashion (according to the tree). In a Gram-Schmidt-
like procedure, for each node, we subtract out the contributions of its descendants. This
approach achieves orthogonality while preserving the binary matrix structure. Note that
the approach may result in one or more zero columns in the partition matrix, which are
removed at the end before returning the final partition matrix M.

23

WILMS AND BIEN

Algorithm 1 Compute partition matrix from tag-lasso solution

Input: A, V

for (=1,...|[V| do

M,, « A,, — > M, (8)

u/ Edescendant (uy)NV

end for
Form the p x K matrix M (with K < |V|) by taking as columns all M,, such that M,,, # 0

Output: M

To prove that M is a partition matrix, we need to show that it is a binary matrix with
M'M a diagonal matrix (i.e., orthogonal columns). Let 7, denote the subtree rooted at
u € T. For any u € V, equation (8) implies that

A, =M, + > My = > My. (9)

u/€descendant(u)NY ' €TuNY

By equation (9), we can then re-write equation (8) as

M, = Ag— > > My

u€children(a) / c7;,NY

= A.—). A (10)

u€children(a)

Now supp(A,) Nsupp(A,) = 0 for u,v € children(a) and u # v, and with supp() denoting
the support. Using that supp(A,) C supp(A,) for u € children(a), it follows that M, €
{0,1}? and supp(M,) € supp(As,).

Now, consider a,b € V,a # b with the following three cases:

1. If b € descendant(a), then

MM, = M; | A, - > M.,/
u/€descendant(a)NV
= M} A, —M,/ > M,/

u/ €descendant (a)NY
- MAT-M] Y M
u’e'ﬁ,ﬂﬁ
= M} A} —-M] A/
= 0. (11)

24

TREE-AGGREGATED GRAPHICAL LASSO

The second line follows from supp(M;) C supp(Ayp) C supp(A,); the third line follows
since supp(My) C supp(Ayp) and descendant(a) N T, = T thereby recalling that b €
descendant(a); and the fourth line follows from equation (9).

2. If a € descendant(b), then M M, = 0 follows from case 1.
3. If a and b are in disjoint branches, then supp(A,) Nsupp(A;) = () so M M, = 0.

We have thus constructed a partition matrix ﬁ, namely M € {0, 1}pr with MM diag-
onal. By construction ﬁu is in the column space of Af}, denoted as ﬁu € Ecol(Af)), for
each u € V. Hence, Ecol(ﬁ) C Leol(Ap).
It then follows that
ﬁ —]3 = Af = A9f9 S £col(ﬁ)-

By symmetry of Q-]5, Q — D is also in the row space of M. We can therefore write
Q-D=MMNQ-D)(M") M,

where M+ = (ﬁ—rﬁ)_lﬁ—r is the projection matrix onto the column space of M. Taking
C =M"(Q - D)(M*)" then establishes the result. [|

Appendix B. Tag-lasso Estimator Compared to a Two-stage Benchmark

We compare the performance of the tag-lasso estimator to a two-stage benchmark. For
the benchmark, we first apply the tag-lasso estimator with Ao = 0 to solely determine the
level of node aggregation. Secondly, we apply the graphical lasso with a hard aggregation
constraint (similar to the one used in equation (7)), as provided by the outcome of the first
stage. We use the simulation designs detailed in Section 4.1 to compare the estimation
accuracy of this two-stage estimator to the tag-lasso and regular glasso. For the tag-lasso
and two-stage estimators both the ideal and realistic tree structure are used.

Figure 14 presents the results on KL distance for the five estimators across the four
simulation designs. The tag-lasso estimators provide, overall, a considerable improvement
in terms of estimation accuracy over their two-stage benchmarks. For the simulation designs
where node aggregation is present (chain, random, unbalanced), the two-stage estimators
do still outperform the glasso on average.

Appendix C. Details of the LA-ADMM Algorithm

The augmented Lagrangian of (5) is given by

“logdet(2M) + tr(SQM) + 1. {00 = DT QM » 0} + (U, QP —q) + gHQ“) — Q|
AT + oo fr? =701,} + (U 1O — 1) + FIr® — T

1.{Q® = AT® 4+ D, D diag., D;; > 0} + (U?, Q® —q) + §|\n<2) — Q|2

R R L

+ o+ o+

Xall O 4 (U, 00— @) + L0 - o, (12)

25

WILMS AND BIEN

chain random
o} o o o
N
o~ 4
© N ° ° [0) T
O ° H o o n 8 o
&=l ° % G+ a %
A | i 5 | i
2 === 2. m———
5- == S =S
0 s 0 o ; o
[} —_ — — ° : i i
T T T T
tag-lasso tag-lasso two-stage two-stage glasso tag-lasso tag-lasso two-stage two-stage glasso
ideal realistic ideal realistic ideal realistic ideal realistic
unbalanced unstructured
(] (o])
| ° o [~}
N g H
8 ~ : T
Q B Q : :
» - T EEES
C —_— R c ;
© —_— i ; © i T T
%< s i 1 » i i i °
3 \ == 2 | ‘
X . i - X o
o | -+ | \ ‘ =
c —o : % i i 3
— == ; |
T T T
tag-lasso tag-lasso two-stage two-stage glasso tag-lasso tag-lasso two-stage two-stage glasso
ideal realistic ideal realistic ideal realistic ideal realistic

Figure 14: Estimation accuracy of the tag-lasso estimators compared to the two-stage esti-
mators and glasso.

where U (for i = 1,...,5) are the dual variables, and p is a penalty parameter. Note that
equation (12) is of the same form as Equation (3.1) in Boyd et al. (2011) and thus involves
iterating three basic steps: (i) minimization with respect to (Q(l), Q@ 06 r@® 1@ D),
(ii) minimization with respect to (€, T), and (iii) update of (UM ... U®).

Step (i) decouples into four independent problems, whose solutions are worked out in
Sections C.1-C.4. Step (ii) involves the minimization of a differentiable function of € and
I" and boils down to the calculation of simple averages, as shown in Section C.5. Step (iii)’s
update of the dual variables is provided in C.6.

Algorithms 2-3 then provide an overview of the LA-ADMM algorithm to solve problem
(5). We use the LA-ADMM algorithm with p; = 0.01, Tsages = 10, maxit = 100.

C.1 Solving for QO

Minimizing the augmented Lagrangian with respect to Q1) gives ﬁ,(:ll, the solution to the

optimization problem

m(ir)l{flogdet(ﬂ(l)) + tr(SQM) + (UM QM) —) + g||ﬂ(1) Q2 st. QO =007 Q0 « 0}
Q 1
= min{—logdet(2") + tx(SQM) + gun(l) — (@ —TW /)2 st QW =0 O o},
Q

The solution should satisfy the first order optimality condition

-1

o — (@) = o - T —s. (13)

26

TREE-AGGREGATED GRAPHICAL LASSO

Algorithm 2 LA-ADMM

Input: S, A,P7 |T|, A1, A2, p1,maxit, Tstages
Initialization: Set

Q«0:Ty«0
t< 0

for ¢ < Tgages dO

t+—t+1
(ﬁta ft, ﬁt) — ADMM(87 A7p7 |T|a)\17)\27 Pt>maXit, ﬁt—la ft—l)
Pr+1 < 2py

end for

OUtput: QTstages’]‘-‘Tstages’ DTstages

This means that the eigenvectors of ﬁ,(izl

and that the eigenvalues of ﬁ&)l are a simple function of the eigenvalues of pﬁk — IAJ'S) -S.

Consider the orthogonal eigenvalue decomposition of right hand side:

are the same as the eigenvectors of pﬁk — ﬁg) -S

P - U -5 =QAQT,

where A = diag(dy,...,6,) and QQ" = QTQ = I. Multiply (13) by QT on the left and Q
on the right

P — @) = A, with), = QT8 Q.

k+1
§;+ /0% +4p
_ 2 vV (14)

2p

Then

(1) T 1
Q5= Qﬂkz-HQ with Q) .

C.2 Solving for I')

Minimizing the augmented Lagrangian with respect to T'}) gives

T}y = argmin{ 500 — @ = O /o)l + M IT 2 5.6 20 =901,).
r

The solution is groupwise soft-thresholding;:

- Sa(Tr; —OW p M\ /p), =1, |TI\{r
B, { (Tr; = OL3/p 21/) T (15)

~

Vilp, if j=r.

with the group-wise soft-thresholding operator Sg (v, A) = max(1 — \/ ||’yH2, 0)~ applied to
~ € RP, and A}, is equal to the average of the p-dimensional vector I‘k,,« / p. Note that

27

WILMS AND BIEN

Algorithm 3 ADMM

IHPUt: Sa A7p7 |T|a)\17)\27 p,maxit, QOa FO-

Initialization: Set

ﬁg) <—ﬁ§f> +—Qy fori=1,...,3
T « O™ Ty for j=1,...,2
k<0
Ae ()
L7
At (ATA)'AT
A~ Ip+|7—‘ — AK%—
C+ (L: 07" — _/Xgip with _/Xfp the first p columns of AT
C « diag(CTC)™!

for k <maxit do

end for

k<—k+1

ﬁ,&l) — QQ_1QT, see equation (14).

SAZI(CSZ)J — S(ﬁk_ljij — (7]917ij/,0, Xo/p),Vi,j =1,...,p, see equation (19).
f‘,(i]) — Sg(f‘k_l’j - ﬁé@l7j/p, A/p),Yj=1,...,|T|\{r}, see equation (15).

f‘,(j?)n — Ak-11,, see equation (15).
diag(f)k) +— Cdiag((AM)TC)+, see equation (18).
f‘f) « AT (M — Dy,), see equation (17).

ﬁ](f) = Af‘,(f) + Dy, see equation (16)
Q@O+ 0% +0¥)3

T, « TV + 1Y) 2

IAJS) — IAJ,(Q1 +p (ﬁ,(;) — ﬁk) , fori=1,...,3

~ (i

T L Gu 4, (féﬁ _ fk), for j=1,...,2

OUtput: Qmaxi‘u I‘maxit’ Dmaxit

28

TREE-AGGREGATED GRAPHICAL LASSO

in this Appendix we use the capitalized I'; notation to index the % row of the matrix T
whereas we use lowercase -, when indexing a node u based on the tree structure in Section

2 of the main paper.
C.3 Solving for Q® 1@ D
Minimizing the augmented Lagrangian with respect to Q) I'? D gives

Dyj1) = argmin {gQ®) — (€~ T2 /p)[} + LIT® - (T = T /o) 7
Q) 1) D

s.t. 9@ = AT® 1+ D, D diagonal, Djj>0forj=1,...,p}.

~2) (2
@201

The solution

ﬁgl = Afgl + Dy (16)

is immediate and we are left with

~ . 1.~ o
(I‘,(ﬁl, Dyyq) = argmin{§\|A1"(2) +D — M||7 s.t. D diagonal, D;; >0 for j =1,...,p}
r®.p

where we have substituted 22 = AT®2) + D and we denote

(6 _T®
A (IA) e REHTIXITI B = < D > e ROHTI*® and N = (27 0 0/P) ¢ gotimho
7] 0/71xp Ly =0 /p

The solution

f,(izl = (ATA)A;‘;T(M — D)
= (ATA+T7) (AT : L7)(M — D) (17)

is immediate and we are left with

~ 1 ~ ~ ~ e~ -~
Dy, = argmin{§\\(M—D)—A(ATA)_lAT(M—D)||2F s.t. D diag.,, Dj; >0,5=1,...,p,}
D
1 TR R T : ,
= arg]:r)mn{iH(IpHﬂ—A(ATA) 'AT)(M - D)||% s.t. D diag., Dj; >0, j=1,...,p,}

1
= argmin{gHB — CD||% s.t. D diag., Dj; >0,5=1,...,p, },
D

with B = (L7~ A(ATA)TAT)M € R#HTDx2, C = (I, : 0, 7)) T —~A(ATA) AT €
R®HTD*P The solution is

diag(Dy41) = diag(C' C) diag(B'C)... (18)

29

WILMS AND BIEN

C.4 Solving for Q®)

Minimizing the augmented Lagrangian with respect to) gives

QL = agmin{(U®, 00 — @) + £10) - Q|If + a4}
QB3)
- argga)m{fnn(?’) (%~ OF /p)ll} + 5 ||U<3>||F+A2||n—dlag I}
Q
- argfgm{fun@ mk—623’/p>\|%+x2un*d‘ag I}
Q

The solution is simply elementwise soft-thresholding:

~3 Sy — ,”/p,Az/m if i # j
b = ; (19)
’] Qpij — kz]/ﬂv if o=,

with the soft-threshold operator S(w, A) = sign(w)max(|w| — A, 0) applied to w € R.

C.5 Update Variables 2 and I’

Minimizing the augmented Lagrangian with respect to variables €2 and I gives

5 i i - 1.

Qpy = argmm{ZHﬂ,iﬂ U2>/p>\%}:nk+l+puﬁ (20)

3 . =i (4 _ 1_-

Tpp1 = argpm{an,&L—<r—U,i+3>/p>||%}:rk+l+pui, (21)

=1
. ol L ag®.a® oo L g L g® PO L p@

where Qp = k+§+k,U%:: k+§+k,rk::7k;—k,U£::
oW 4 o

2

C.6 Update Dual Variables
The updates of the dual variables are given by

oY, = T4 <Q§j}rl ﬁkH) Cfori=1,....3
U;i:g) = ﬁg+3) (I‘g}rl — fk+1) ,forj=1,...,2.
Similarly, averaging the first three updates and the latter two gives
I_Jil_H = ﬁ%+p(ﬁk+1_ﬁk+l), fori=1,...,3 (22)
o, = UL +4) (ka — f,m) Cforj=1,...,2. (23)

Substituting (20) and (21) into (22) and (23) yields that U'gﬂ = U}, = 0 after the first
iteration.

30

TREE-AGGREGATED GRAPHICAL LASSO

Appendix D. Additional Simulation Results

1.0

0.9

0.8

0.7

0.6

0.5

Rand Index
-~ _
— I]
) T m- - ="
A. .
A
....... A iia
--®- tag-lasso ideal
-® - tag-lasso realistic
4 glasso
—%— oracle
T J ! ‘
p=15 p=30 p=60 p=120
Number of nodes
False Positive Rate
A
- A .
a
L
.
.
.
.
.
.
.
n. _ -
o _ ‘\\‘l’——————.’. ________
-
A .
y -
T J ! ‘
p=15 p=30 p=60 p=120

Number of nodes

Adjusted Rand Index

- _
S~ o=~ []
e e — e — - R
A oo 7 A oo A
T T T T
p=15 p=30 p=60 p=120
Number of nodes
False Negative Rate
. A
A
Ao
......... i
R X X X
T T T T
p=15 p=30 p=60 p=120

Number of nodes

Figure 15: Simulation results for increasing number of nodes p. Top: Aggregation perfor-
mance (RI: left; ARI: right); Bottom: Sparsity recovery (FPR: left; FNR: right)

of the four estimators

31

1.0

0.9

0.8

0.7

0.6

1.0

0.8

0.6

0.4

0.2

0.0

WILMS AND BIEN

Rand Index
g _ : ———————— m----- X
" B ’ A
LA
A
: - - tag-lasso ideal
-® - tag-lasso realistic
4. glasso
—>— oracle
T : ‘ ‘
K=3 K=5 K=6 K=10
Number of blocks
False Positive Rate
A.
AL
...... N
“A
-9
L :;——ﬁ:::: ____ ._::::,
- - - - —m
-
X X
T . : ‘
K=3 K=5 K=6 K=10

Number of blocks

0.2 0.4 0.6 0.8 1.0

0.0

0.02 0.04 0.06 0.08 0.10

0.00

Adjusted Rand Index

————— ---"" T
- - -
w7 .
Ao e A eeininnnn Ao e A
T T T T
K=3 K=5 K=6 K=10

Number of blocks

False Negative Rate

x

T T
K=3 K=5 K=6

~
n
-

o

Number of blocks

Figure 16: Simulation results for increasing number of blocks K. Top: Aggregation perfor-
mance (RI: left; ARI: right); Bottom: Sparsity recovery (FPR: left; FNR: right)

of the four estimators

32

TREE-AGGREGATED GRAPHICAL LASSO

Appendix E. Financial Application: Data Description

Abbreviation Description Location
DJI Dow Jones Industrial Average US

IXIC Nasdaq 100 UsS

SPX S&P 500 Index US

RUT Russel 2000 US
GSPTSE S&P/TSX Composite index Canada
BVSP BVSP BOVESPA Index Brazil
MXX IPC Mexico Mexico
OMXC20 OMX Copenhagen 20 Index Denmark
OMXHPI OMX Helsinki All Share Index Finland
OMXSPI OMX Stockholm All Share Index Sweden
OSEAX Oslo Exchange All-share Index Norway
GDAXI Deutscher Aktienindex Germany
SSMI Swiss Stock Market Index Switzerland
BVLG Portuguese Stock Index Portugal
FTMIB Financial Times Stock Exchange Milano Indice di Borsa Italy

IBEX Iberia Index 35 Spain
SMSI General Madrid Index Spain

AEX Amsterdam Exchange Index Netherlands
BFX Bell 20 Index Belgium
FCHI Cotation Assistée en Continue 40 France
FTSE Financial Times Stock Exchange 100 UK
STOXX50E EURO STOXX 50 Europe
HSI HANG SENG Index Hong Kong
KS11 Korea Composite Stock Price Index (KOSPI) South Korea
N225 Nikkei 225 Japan
SSEC Shanghai Composite Index China

STI Straits Times Index Singapore
KSE Karachi SE 100 Index Pakistan
BSESN S&P Bombay Stock Exchange Sensitive Index India

NSEI NIFTY 50 India
AORD All Ordinaries Index Australia

Table 4: Financial Application:

oxford-man.ox.ac.uk/data/assets.

References

Data Description, as taken from https://realized.

J. Aitchison. The statistical analysis of compositional data. Journal of the Royal Statistical
Society: Series B (Methodological), 44(2):139-160, 1982.

O. Banerjee, L. El Ghaoui, and A. d’Aspremont. Model selection through sparse maxi-
mum likelihood estimation for multivariate Gaussian or binary data. Journal of Machine

33

WILMS AND BIEN

Learning Research, 9(Mar):485-516, 2008.

A. Belloni and V. Chernozhukov. Least squares after model selection in high-dimensional
sparse models. Bernoulli, 19(2):521-547, 2013.

J. Bien. The simulator: an engine to streamline simulations. arXiww preprint
arXiw:1607.00021, 2016.

J. Bien, X. Yan, L. Simpson, and C. L. Miiller. Tree-aggregated predictive modeling of
microbiome data. bioRziv, 2020.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Found. Trends
Mach. Learn., 3(1):1-122, 2011.

C. Brownlees, G. S. Gumundsson, and G. Lugosi. Community detection in partial correla-
tion network models. Journal of Business & Economic Statistics, (just-accepted):1-33,
2020.

F. Bunea, C. Giraud, X. Luo, M. Royer, and N. Verzelen. Model assisted variable clustering;:
minimax-optimal recovery and algorithms. The Annals of Statistics, 48(1):111-137, 2020.

T. Cai, W. Liu, and X. Luo. A constrained ¢; minimization approach to sparse precision
matrix estimation. Journal of the American Statistical Association, 106(494):594-607,
2011.

T. Cai, W. Liu, and H. Zhou. Estimating sparse precision matrix: Optimal rates of conver-
gence and adaptive estimation. The Annals of Statistics, 44(2):455-488, 2016.

B. J. Callahan, P. J. McMurdie, and S. P. Holmes. Exact sequence variants should replace
operational taxonomic units in marker-gene data analysis. The ISME journal, 11(12):
2639-2643, 2017.

Y. Cao, W. Lin, and H. Li. Large covariance estimation for compositional data via
composition-adjusted thresholding. Journal of the American Statistical Association, 114
(526):759-772, 2019.

V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky. Latent variable graphical model
selection via convex optimization. The Annals of Statistics, 40(4):1935-1967, 2012.

F. Corsi. A simple approximate long-memory model of realized volatility. Journal of Fi-
nancial Econometrics, 7(2):174-196, 2009.

C. Eisenach, F. Bunea, Y. Ning, and C. Dinicu. High-dimensional inference for cluster-based
graphical models. Journal of Machine Learning Research, 21(53):1-55, 2020.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the
graphical lasso. Biostatistics, 9(3):432-441, 2008.

H. V. Henderson and S. R. Searle. On deriving the inverse of a sum of matrices. Siam
Review, 23(1):53-60, 1981.

34

TREE-AGGREGATED GRAPHICAL LASSO

L. Hubert and P. Arabie. Comparing partitions. Journal of classification, 2(1):193-218,
1985.

Z. D. Kurtz, C. L. Miiller, E. R. Miraldi, D. R. Littman, M. J. Blaser, and R. A. Bonneau.
Sparse and compositionally robust inference of microbial ecological networks. PLoS Com-
put Biol, 11(5):e1004226, 2015.

Z. D. Kurtz, R. Bonneau, and C. L. Miiller. Disentangling microbial associations from
hidden environmental and technical factors via latent graphical models. bioRxiv, 2019.

C. Lo and R. Marculescu. Pglasso: Microbial community detection through phylogenetic
graphical lasso. arXiv preprint arXiv:1807.08039, 2018.

N. Meinshausen and P. Biithlmann. High-dimensional graphs and variable selection with the
lasso. The Annals of statistics, 34(3):1436-1462, 2006.

T. Millington and M. Niranjan. Quantifying influence in financial markets via partial cor-
relation network inference. In 2019 11th International Symposium on Image and Signal
Processing and Analysis (ISPA), pages 306-311. IEEE, 2019.

J. Peng, P. Wang, N. Zhou, and J. Zhu. Partial correlation estimation by joint sparse
regression models. Journal of the American Statistical Association, 104(486):735-746,
20009.

E. Pircalabelu and G. Claeskens. Community-based group graphical lasso. Journal of
Machine Learning Research, 21(64):1-32, 2020.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria., 2017. URL https://www.R-project.org/.

W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the
American Statistical Association, 66(336):846-850, 1971.

P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu. High-dimensional covariance
estimation by minimizing ¢;-penalized log-determinant divergence. FElectronic Journal of
Statistics, 5:935-980, 2011.

J. Rivera-Pinto, J. J. Egozcue, V. Pawlowsky-Glahn, R. Paredes, M. Noguera-Julian, and
M. L. Calle. Balances: a new perspective for microbiome analysis. mSystems, 3(4):1-12,
2018. doi: 10.1128/mSystems.00053-18. URL https://msystems.asm.org/content/3/
4/e00053-18.

A. J. Rothman, P. J. Bickel, E. Levina, and J. Zhu. Sparse permutation invariant covariance
estimation. Electronic Journal of Statistics, 2:494-515, 2008.

K. M. Tan, D. Witten, and A. Shojaie. The cluster graphical lasso for improved estimation
of Gaussian graphical models. Computational statistics € data analysis, 85:23-36, 2015.

Y.X. Wang, J. Sharpnack, A. J. Smola, and R. J. Tibshirani. Trend filtering on graphs.
Journal of Machine Learning Research, 17(105):1-41, 2016.

35

WILMS AND BIEN

Y. Xu, M. Liu, Q. Lin, and T. Yang. Admm without a fixed penalty parameter: Faster con-
vergence with new adaptive penalization. In Advances in Neural Information Processing
Systems, pages 1267-1277, 2017.

X. Yan and J. Bien. Rare feature selection in high dimensions. Journal of the American
Statistical Association, 116(534):887-900, 2021.

M. Yuan. High dimensional inverse covariance matrix estimation via linear programming.
Journal of Machine Learning Research, 11:2261-2286, 2010.

M. Yuan and Y. Lin. Model selection and estimation in the Gaussian graphical model.
Biometrika, 94(1):19-35, 2007.

36

