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Abstract

Predicting word embeddings for out of vocabu-
lary words remains an important challenge for
NLP tools. Word embedding models only in-
clude terms that occur a sufficient number of
times in their training corpora. Word embed-
ding vector models attempt to approximate in-
formation about a word not in their vocabu-
laries. We propose a fast method for predict-
ing vectors for out of vocabulary terms that
makes use of the surrounding terms of the un-
known term and the hidden context layer of the
word2vec model. We propose this method as
a strong baseline in the sense that 1) while it
does not surpass all state-of-the-art methods,
it surpasses several techniques for vector pre-
diction on benchmark tasks, 2) even when it
underperforms, the margin is small retaining
competitive performance in downstream tasks,
and 3) it is inexpensive to compute, requiring
no additional training stage. We also show that
our technique can be incorporated into exist-
ing methods to achieve a new state-of-the-art
on the word vector prediction problem.

1 Introduction

In recent years, distributive models of lexical se-
mantics, i.e., word embedding models, have proven
to be a very useful tool for representing natural lan-
guage terms (i.e., words and common phrases such
as ‘New York’) as real numbered vectors. These
models, such as word2vec (Mikolov et al., 2013a,b),
GloVe (Pennington et al., 2014), and FastText (Bo-
janowski et al., 2017), use a large corpus of docu-
ments to learn an embedded vector representation
of lexical units based on their co-occurrence within
sentences. Word embedding vectors capture seman-
tic features of the terms, for example synonymous
terms will be nearby in the embedded vector space.
This makes word embeddings more powerful than
other lexical representations such as one-hot vector
encodings. Furthermore, distributive models are
derived using unsupervised algorithms, which are
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efficient to run on large corpora. A major limitation,
however, is that to derive a high quality word em-
bedding vector for a term, it must occur more than
a certain times in the training corpus (Bahdanau
et al., 2018). Terms that do not meet this threshold
are not included in the model’s vocabulary.

When using a word embedding model, a user
may encounter a large number of Out of Vocabu-
lary (OOV) terms for various reasons. When we
encounter OOV terms in a document, a common
strategy is to simply ignore the unknown term. Al-
ternately we can represent the term by a zero vector,
or by the average of all known word vectors, but
these strategies clearly do not extract any meaning-
ful information from the OOV item.

A number of recent efforts propose techniques
for predicting high quality word embedding vectors
for OOV terms from the information available on
the term in situ (Lazaridou et al., 2017; Herbelot
and Baroni, 2017; Khodak et al., 2018; Li et al.,
2017; Luong et al., 2013; Lazaridou et al., 2013;
Schick and Schiitze, 2019b). An important down-
side of these methods in practice is that they take
an unpredictable amount of time to develop and
deploy. A question arise in this context for deploy-
ment in an NLP pipeline: Can one employ (and
deploy) a simpler solution (with minimal accuracy
loss) until one creates a more advanced solution?
The goal of this work is to seek answers to this
question in the context of OOV terms.

In this work, we present a context-based method
to predict the word embedding vectors for OOV
terms. Our method makes use of context informa-
tion that is learned internally in the course of train-
ing a word embedding model such as word2vec.
We call this the COIN (Context Information)
method. We advocate COIN as a competitive base-
line in the following sense:

Accurate (compared to state-of-the-art models).
The performance of COIN is close, both in direct
comparison and downstream tasks, to state-of-the-



art models. We compare COIN with four such
models (ADD, N2V, ALC, and FCM) on the bench-
mark tasks DefNonce and CRW; COIN vectors
meet or exceed the accuracy of all except for FCM.

Inexpensive. Generating a COIN vector predic-
tion requires only a pretrained word2vec model and
runs on a regular personal laptop (without the re-
quirement of GPU). The only computational cost of
COIN is the equivalent of a few look-ups of word—
vector mappings. It is able to generate high quality
predicted word vectors for OOV terms from as few
as one observed occurrence without any additional
training. While the state-of-the-art method FCM
requires to train a set of word vectors and then in a
second step trains a model for OOV predictions.

Fast. COIN is much faster than other state-of-
the-art models. It gives users immediate feedback
(in seconds). While most supervised techniques for
word embedding for OOV terms require hours of
computation before a user can analyze it. In our
experiments, the COIN method takes 131 seconds
to generate the vectors of OOV terms for evaluation
on the DefNonce task, and it only takes 21 seconds
to run all of the 2, 4, and 6 sentence evaluations on
the Chim task. In comparison, FCM takes nearly 7
hours of training time on the DefNonce task.

Balancing gains with cost. OOV words are im-
portant in downstream tasks (Chen et al., 2019;
Conneau and Kiela, 2018; Garneau et al., 2019;
Lourentzou et al., 2019; Serra et al., 2017) and not
as a standalone exercise. We report a study on 7
SentEval tasks, getting a .002 prediction difference
between COIN at 73.9% and FCM at 74.1%. With
the compute and energy demands of many modern
NLP methods growing exponentially, one needs
to consider weighing energy costs with the perfor-
mance gains of a new model before deploying it
(Henderson et al., 2020). In our setting, the gain
of energy hungry methods is marginal compared
to COIN. However, many of the alternative ap-
proaches require a second step than training the
initial word embedding model. All of the training
required for COIN is accomplished with the origi-
nal word embedding step as a holistic model min-
imizing total parameters, improved performance
and a better model design.

We can draw a parallel from daily life. Toyota
Corolla is an excellent means of transportation for
millions of people. Ferrari is another excellent
means of transportation, but only available to the
few who can afford it. One may view COIN (and

methods in its class) as the “Corolla” among the
methods of predicting embeddings for OOVs and
accept that its performance may fall short of the
“Ferrari’s” (e.g., fastText, ELMo and Bert), one also
needs to accept that the “Ferrari’s” requires more
resources: fuel (i.e., energy) and maintenance (i.e.,
hardware). Often scientists and engineers need a
“Corolla” to deliver a proof of concept. There are
times when their hardware infrastructures are ill-
suited to run the “Ferrari’s,” e.g., lacking tens of
GPUs. Our goal in this paper is to argue that there
is a place for “Corolla’s,” even though we all seek
shiny “Ferrari’s.”

COIN vectors are suitable on their own for word
vector prediction: They can be used to initialize
a trained method. We show that using COIN vec-
tors as the first step in existing vector predicting
systems can set a new state-of-the-art on bench-
mark tasks. We also notice that COIN vectors may
reduce the training cost for those methods, improv-
ing the accuracy of the component techniques. We
show these on FCM in Section 5.5.

In summary, the contributions of this paper are:

e propose COIN, a fast and inexpensive method
for predicting a word vector for OOV terms
based on context information.

e show that COIN is effective and efficient on
word vector prediction tasks, working as a
strong baseline and occasionally beating other
state-of-the-art models.

e show that with COIN vectors as an initial-
ization for existing techniques improves their
accuracy.

2  Word Embeddings

Word embeddings are a technique for learning a
vector representation of terms from a corpus based
on their distributional features, that is, the contexts
within which a term is observed (Bengio et al.,
2003; Mikolov et al., 2013a,b; Pennington et al.,
2014; Bojanowski et al., 2017). Word embedding
techniques belong among a class of machine learn-
ing algorithms where the model is trained to mini-
mize error on a dummy task and the true purpose of
training is to extract an intermediate, internal repre-
sentation of the input data. In the word embedding
case, the dummy task is that of predicting the sur-
rounding terms of a target term (or vice versa) and
the true desired output is the internal representation
of the input terms, i.e., the word embedding vectors.
The various methods for learning word embeddings



Figure 1: Embeddings maximize the conditional prob-
ability of the word vector of the target term (w4) given
the combination of the context vectors of the context
terms (cy ). In this example, the window size k,, is 3.
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Figure 2: A t-SNE visualization of the relative loca-
tions of word and context vectors for a sample vocab-
ulary. The word and context spaces are aligned using
absolute orientation with translation and scaling (Dev
et al., 2021). For most terms the word and context vec-
tors are respectively well separated.

present variations on a core idea: each term is rep-
resented by two latent vectors: a word vector and
a context vector. In training, the word embedding
algorithm maximizes the conditional probability of
the word vector given the set of context vectors of
the terms found in its context window.

Word2vec is one of the most popular technique
to learn word embeddings. The goal of training in
word2vec is to maximize the log likelihood of the
context terms given the target term:

T
1
T Z Z log p(termyj|termy)

t=1 je[_kUJ1kw]
J7#0
For output termo and input termy,

p(termoltermy) is defined using the softmax
function:

exp(chI)
w
> w1 exp(c,wr)

Word2vec is one of the most popular technique

p(termol|termy) =

to learn word embeddings (Mikolov et al., 2013a).

In word2vec model, the word vectors are not al-
ways close to the context vectors. In Figure 2 we
show a visualization of the word and context vec-
tors for some terms from the vocabulary. We find
that the context and word vectors are quite far from
each other for most terms. This general difference
between vectors demonstrates that summing the
context vectors will lead to a very different result
from summing over the word vectors. This sug-
gests that context vectors encapsulate information
that is not captured by the word vectors, which may
be useful to predict embeddding vectors for OOV
terms. We aim to show this in this work. We note
here that Figure 2 was generated after the word and
context vector were aligned. We align the word
and context vectors using absolute orientation with
translation and scaling (Dev et al., 2021). Other ori-
entation algorithms are available, but this gave the
best average Cosine similarity between the vectors
in our experiments. We also note that the context
and word vectors as plotted in Figure 2 are even
farther apart before alignment was performed.
Following our study of word embeddings, we ob-
serve that the word embedding vector w; of a word
is trained to be similar to the context vectors of the
words in its context window, c;<c;, rather than the
word vectors, which have previously been used in
the prediction task. Intuition suggests that by using
the context vectors of the context words we can
improve the accuracy of our predicted vectors.

3 Related Work

Previous techniques to predict embedding vectors
for OOV terms usually follow two theoretical lines:
1) Using morphological or form features of the
OOV term, and 2) Extracting information from the
surrounding context terms.

Form based methods in category 1) use some
characteristics of the representation of the term,
such as letter combinations. (Luong et al., 2013;
Lazaridou et al., 2013) use morphological features.
(Bojanowski et al., 2017) develops the FastText
model, which is similar to word2vec in design,
which operates on character n-grams rather than
whole words. In some tasks, however, an OOV
term may not have any character representation, or
it may have an arbitrary representation, for exam-
ple, the OOV term may be represented by under-
scores: “___” (Herbelot and Baroni, 2017) or by a
made-up word form (Lazaridou et al., 2017). In the
downstream task there may be no available form



for the term, such as “filling in the missing word.”

For the context based works in category 2),
(Lazaridou et al., 2017) develop the additive
method, which takes the sum of the word vectors of
the surrounding terms. The approach of (Herbelot
and Baroni, 2017) initializes each OOV term as
the sum of the word vectors of the known terms
in the context sentences, downsampling frequent
words, and then runs a modified word2vec training
procedure on the OOV terms only, with a highly
accelerated learning rate. (Khodak et al., 2018)
finds a linear transformation A and uses it to trans-
form the sum of the context word vectors to the
word vector of OOV terms. Recently (Schick and
Schiitze, 2019a) propose a hybrid approach using
both form and context. It learns a neural network
model, which encodes information about the form
(n-grams) and likelihood the form will contribute
to an understanding of the meaning of the term, as
well as a linear transformation similar to (Khodak
et al., 2018). (Schick and Schiitze, 2019a) further
proposes a method to identify high quality contexts
for inferring the OOV term vector.

COIN vectors squarely fall into 2), context based
methods. Our key observation is that there exists an
additional set of vectors, one for each in-vocabulary
item, which are trained internally by the word2vec
model. In word2vec, each term is represented by
two latent vectors: a word vector and a context vec-
tor. These vectors are better suited, by design, for
deducing OOV term vectors from the surrounding
context words. When the model is being trained,
these additional context vectors are used to repre-
sent the terms when they are found in the context
window of the target term. These vectors can be
easily extracted from a word2vec model.

Recently contextualized word vectors (CWV)
methods such as ELMo and BERT have received
much attention in the NLP community (Horn, 2017;
Peters et al., 2018; Devlin et al., 2018). CWV pre-
diction shares some similarity with OOV vector
prediction, but they are intrinsically distinct prob-
lems. CWVs derive a vector representation for a
term based on the surrounding context in each us-
age, thus there is not a generalized concept of a
word vector for a lexical item as is the case with
traditional word vectors. While in traditional word
vector models (like word2vec), each term gets one
vector, which is used regardless of the surrounding
terms. We include them in our empirical study on
the OOV benchmark tasks.

(word)
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Figure 3: Each term is represented by two latent vec-
tors, a word vector w; and a context vector c;.

4 Methodology

Based on our observation discussed previously, we
suggest that the context vectors of the context words
can be used to predict the word embedding vectors
for OOV terms. We introduce our method, COIN,
which uses context vectors only to solve the predic-
tion problem for OOV terms.

4.1 Problem Definition

For some word embedding model M, let V be
the vocabulary of terms for which we have a
trained word vector. Then there exists a mapping
w : )V — R" where n is the dimension of the em-
bedded vectors. For aterm ¢ ¢ V, let w(t) € R"
be the optimal word vector for ¢ based on its seman-
tic properties and the properties of the embedding
space. Assuming w(t) is known in our problem.
We define the problem as follows:

Given a set of terms U, where VN U = (), find a
function f such that Vt € U, f(t) ~ W(t).

4.2 Proposed Approach

To find a COIN vector for an OOV term, we take
the sum of the context vectors of the words in its
contexts. Let ¢ : V — R¥ be the mapping of terms
to context vectors in M. For the n-th occurrence of
term ;, its context window C7" is the set of 2 x k,,,
terms that are found up to k,, places before and
after ¢;, excluding ¢; itself, for context window size
k. Then for term ¢; we define the COIN vector

prediction foorn () as:

feorn(ti) = Z Z c(t')

i veo!

where each C’Z-j is one observed context window.
There are some small modifications to the basic
COIN pattern that are easily introduced. These
include: stop word removal, word weighting, and
principal component removal. Stop word removal



(denoted nsw) ignores stop words in the vector sum-
mation, and generally gives some improvement in
accuracy. We apply the stop words provided in
python NLTK in our experiments. Word weighting
multiplies each vector by a function of its term, so
that certain words have more importance in the fi-
nal sum. Here we consider SIF (Arora et al., 2017)
which weights each term by the inverse of its fre-
quency. Principal component removal (Mu and
Viswanath, 2018) removes the top principal com-
ponent from each vector, which has been shown
to improve the performance of word vectors on
similarity tasks. On the CRW task we show that a
combination of all three yields good results.
Additionally, we consider separately how the
various setting for learning word embeddings via
word2vec and the resulting context vectors are
suited for estimating OOV word vectors. We con-
sider the skip-gram and CBOW architectures, using
both HS and NS respectively for updating. Section
5.6 discusses the difference among these models.

5 Evaluation

In this section, we compare our method COIN to a
number of state-of-the-art models to show the ef-
ficiency and effectiveness of COIN. We also show
that COIN vectors can be used in conjunction with
an existing, trained method to yield improved re-
sults over either method alone

5.1 Models in Comparison

We compare COIN against recent OOV prediction
models and CWYV methods in the literature:

ADD (Lazaridou et al., 2017) produces an OOV
prediction as the sum of the word vectors of all the
neighboring terms. We also consider ADD-nsw, a
same model with stop words removed.

N2V (Herbelot and Baroni, 2017) updates a set of
OOV terms initialized by an additive method, by
running an accelerated skip-gram training.

ALC (Khodak et al., 2018) learns a linear transfor-
mation on the set of ADD vectors that minimizes
the /5 distance to the known word embedding vec-
tor for a set of training terms.

FastText (Bojanowski et al., 2017) is a morpholog-
ical embedding algorithm that extends word2vec.
It represents each word as an n-gram of characters
instead of learning vectors for words directly. We

use its implementation in gensim!.

'https://radimrehurek.com/gensin/

FCM is the Form Context Model of (Schick and
Schiitze, 2019b); it is a two part model that learns
both a form and context component.

HiCE. HiCE (Hu et al., 2019) is an attention-based
hierarchical context encoder that uses both the con-
texts and morphological features of an OOV word.
BERT. We take the embedding output from the last
hidden layer of BERT (Devlin et al., 2018) as the
vector representation for a word in our experiment.
ELMo (Peters et al., 2018) is a deep contextualized
word representation; the representation for a word
depends on the entire context in which it is used.
Model Parameter Settings. For all the methods
(e.g., COIN, ADD, N2V, ALC, and FCM) that de-
pend on a pre-trained word2vec model, we use the
one provided by (Herbelot and Baroni, 2017). We
run the experiments using the source codes and
settings published in the corresponding referenced
paper. For the method FastText, we set embed-
ding size to 400 (same as the embedding size in
the word2vec model), parameter window is set to
5, the minimum count is set to 1, and the model
is trained for 5 epochs. We quote the HiCE exper-
iment results from (Hu et al., 2019). BERT and
ELMO are context dependent CWV methods that
generate different word embeddings for the same
word in different sentences. We use the pre-trained
BERT base model from Hugging Face? which con-
tains 12 hidden layers, and the pre-trained ELMo
model from AllenNLP3. The BERT and ELMo em-
beddings for the OOV words are averaged by their
context words’ embeddings.

5.2 Benchmark Tasks

We evaluate the quality of our COIN embeddings
on the common OOV benchmark tasks: Defini-
tional Nonce (DefNonce), Contextual Rare Words
(CRW), and Chimeras (Chim).

5.2.1 DefNonce Task

DefNonce (Herbelot and Baroni, 2017) is a set of
sentences harvested from Wikipedia articles which
are designed to be maximally informative. The
first sentence of articles describing one word topics
are extracted. The target term is the article title.
Sentences that contain at least 10 words are ran-
domly sampled creating 700 training and 300 test
instances. The FastText model is trained on these

’Facehttps://huggingface.co/
bert-base-uncased

*http://docs.allennlp.org/v0.9.0/api/
allennlp.modules.elmo.html
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name DefNonce | enwiki WwWwC
dimension | 400 400 300

vocab size | 259,376 560,881 230,130
min count | 50 50 50

source Wikipedia | Wikipedia | WWC
model skip-gram CBOW CBOW
type skip-gram | skip-gram
updating NS NS NS
method HS HS
window size| 5 5 5

Table 1: Specifications of training word2vec embed-
dings in three datasets. The sample number in negative
sampling (NS) is 5. The value of alpha is set to 0.025
in skip-gram, 0.05 in CBOW.

training instances. The goal for this evaluation task
is to learn a word vector for the target term that
is close to the known word vector for that term.
(Herbelot and Baroni, 2017) provide a set of pre-
trained word2vec vectors trained on a 1.6 B word
Wikipedia snapshot using the skip-gram architec-
ture, with negative sampling. The word2vec model
parameters are shown in Table 1 (See DefNonce).

Experimental Results on DefNonce. Table 2
gives the results of this evaluation. Accuracy on
this task is measured by two values: Mean Re-
ciprocal Rank (MRR), where higher is better, and
Median Rank, where lower is better. We show the
form and context components of FCM, denoted
FCM-form and FCM-ctxt respectively, along with
the full FCM model. Of all the models FCM per-
forms the best on this task. However if we limit our
focus to methods which only use context informa-
tion (see Part 2), COIN is more accurate than either
ALC or FCM-ctxt, and COIN-nsw is the leader in
both measures. With COIN-nsw, for all the terms
in the test set, half are among the 90 closest terms,
out of a vocabulary size of 259,376.

Comparing FCM with FCM-ctxt and FCM-form,
it seems that much of the improvement for FCM
comes from the form information, which is sug-
gested by the relative performance of FCM-ctxt and
FCM-form. We also observe that while the MRR
for FCM-form is high, so is the Median Rank, sug-
gesting that this model performs very well on some
terms, presumably morphologically rich examples,
but poorly on a good number of other terms.

Between the two CWV methods, ELMo per-

forms better. It gives a competitive Median Rank,
the second lowest, better than COIN’s, but not as

MRR. Med. Time in sec
method (x1072) Rank avg (STD)
FastText 0.95 2202 30 (0.39)
Part 1 FCM-ctth 6.56 184 /
FCM-form 12.98 404 /
FCM" 17.54 49 19,236 (682)
N2V* 491 623 1,166 (12.99)
ALC” 7.06 165 842 (12.83)
part2 | ADD 0.95 3881 414 (1.72)
ADD-nsw| 3.62 876 429 (9.83)
COIN 9.43 100 415 (1.38)
COIN-nsw|  9.46 90 423 (4.85)
part3 | BERT 234 242 518 (9.74)
ELMo 425 62 1,090 (12.81)

*Performance of these methods are quoted from the referenced
paper. Our re-runs may differ slightly.

Table 2: Results on the DefNonce task. Methods are
divided in into three groups. Methods in Part 1 make
use of context and other information, the ones in Part 2
only use context information, Part 3 is CWV methods.

good as FCM’s. Its MRR is not as competitive.
Our explanation is that ELMo performs well when
sentences have informative context for OOV words.
But its predicted vector representation of an OOV
term is far from the “true” representation when
sentences contain less informative context.

Comparison of Runtime. We repeat the exper-
iments of each method 10 times and report their
averaged runtimes together with the standard devi-
ations (STD) in the last column of Table 2. We ran
the experiments on a PC with an Intel 17-8700K
CPU @ 3.70GHz, 64GB RAM @ 2133 MHz, and
a NVDIA GeForce GTX 1080 GPU. We find that
COIN and its variant COIN-nsw have a good bal-
ance between accuracy and runtime. For example,
FCM achieves the best performance with 0.1754
MRR and 49 Median Rank, but it requires over
5 hours, which is orders of magnitude larger than
that of COIN (415 seconds) and COIN-nsw (423
seconds). FastText runs the fastest (30 seconds) but
with a dramatic sacrifice in accuracy (0.0095 MRR
and 2202 Median Rank). Put together, the running
time and accuracy reported in Table 2, support our
claim that COIN is a strong, inexpensive baseline
for predicting OOV word embeddings.

5.2.2 CRW Task

CRW (Khodak et al., 2018) is a subset of 562 pairs
of words from the Rare Word dataset (Luong et al.,
2013) combined with 255 sentences for each rare
word sampled from the Westbury Wikipedia Cor-
pus (WWCQC) (Shaoul and Westbury, 2010). Each
pair of words has been manually annotated with
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Figure 4: Spearman correlation results for CRW task.

a similarity score. The 255 context sentences are
partitioned into eight disjoint subsets of sizes 1, 2,
4,...,64,128. The goal is to match the human sim-
ilarity scores between pairs of words in the CRW,
measured using Spearman correlation. The authors
provide a set of word2vec word embeddings trained
on a subset of the WWC from which all sentences
containing a rare word have been removed. How-
ever they only include the trained word embed-
dings, without the context vectors needed for our
technique. Therefore we train our own set of em-
beddings using their original training data, trying to
follow their parameters as closely as possible (See
column WWC in Table 1). We also train FastText
embeddings on this training data.

Experimental Results on CRW. Figure 4 gives
the Spearman correlation values across the sam-
ple sizes, for various model designs. The basic
COIN vectors perform better than ADD on this
task. Following (Khodak et al., 2018) we explore
SIF-weighted vectors, with stop words removed
and top principal component removal. The result-
ing COIN vectors, COIN-nsf, perform about as
well as ALC on this task across context sizes. FCM
performs the best for all context sizes. (Schick
and Schiitze, 2019b) points out that the Rare Word
dataset was designed to contain many morphologi-
cally analyzable words. Form based methods, such
as FCM, likely benefit from this design.

5.2.3 Chim Task

Chim (Lazaridou et al., 2017) constructs novel con-
cepts by combining the contexts of pairs of existing
terms to derive a “chimera” of their attributes, for
example “alligator” and “rattlesnake.” Human an-
notators rank the similarity of the chimeric concept
to a set of six probe words (see the example in
Table 3). Context sentences are provided for each
concept in sizes 2, 4, and 6 (half for each of the

existing terms). The goal of this trial is to match
the similarities of the probes to the chimeras as
given by the human judges, measured by Spear-
man correlation. The word2vec model used on this
task is the same as the one on task DefNonce. The
FastText model is trained on WikiText-103 (Merity
et al., 2016), following the way in (Hu et al., 2019).

Experimental Results on Chim. Table 4 gives
the results. CWV methods cannot be used in this
task as there is no sentence for the probe words
to learn their embeddings. A big challenge of this
task is that the randomly selected sentences are not
necessarily informative about the concepts. For
the relatively larger sample size of six sentences
a selective model such as FCM-AM-ctx (Schick
and Schiitze, 2019a) is able to focus on the contexts
that will be most helpful. Among the context-based
methods, ADD-nsw performs the best. But the
performance of our method, COIN-nsw, is very
close to that of ADD-nsw.

We observe that COIN is much better in the
DefNonce task but not in Chim task. A possible ex-
planation is that the sentences for the OOV words
in Chim task are randomly selected and thus, are
not necessarily informative about the nature of the
OOV words. In COIN, we get the vectors of OOV
words based on the context words in the sentences
and use these vectors to calculate the similarity
between words. In contrast, the gold standard simi-
larity between words is from human rankings. We
hypothesize that the intrinsic less information of
COIN vectors (from these sentences) may be the
reason for COIN not performing that well in Chim.

5.3 Downstream Tasks

Following (Schick and Schiitze, 2019b), we con-
duct an experimental study using the SentEval eval-
uation toolkit (Conneau and Kiela, 2018) which
contains various types of sentence classification
tasks, including sentiment analysis (MR, SST2,
and SSTS) (Socher, 2013; Hosseinia et al., 2019;
Schneider and Dragut, 2015), product reviews (CR)
(Hu and Liu, 2004; Hosseinia et al., 2020), sub-
jectivity/objectivity (SUBJ) (Pang and Lee, 2004),
opinion polarity (MPQA) (Hosseinia et al., 2021;
Tumarada et al., 2021; Wiebe et al., 2005; Yang
et al., 2020), and paraphrase detection (MRPC)
(Dolan et al., 2004; Aljebreen et al., 2021). We
replace the OOV terms with their COIN and FCM
predictions, and our results mirror those reported
in (Schick and Schiitze, 2019b), showing no signif-



input terms: probes:

alligator rattlesnake | crocodile  iguana gorilla banner buzzard shovel
2.29 3.29 3.43 2.0 3.71 2.14

sentences:

1. animals such as capybara jaguars jacare ____ and hyacinth macaws are particularly vulnerable

2. nadirpur stared at it as though it were a ___ his face quite drained

Table 3: Chimera example for input pairs and probes. Similarities have been determined by human judges.

method 2 sent. 4 sent. 6 sent. method MRR. Median Rank
FastText 0.178 0.174  0.129 FCM 0.1724 (0.1726) 53.8 (50)
Part 1 FCM-ctx 0.337 0359 0422 COIN+FCM | 0.1731 (0.1735) 52.7 (46)
FCM-AM-ctx| 0.342 0376 0.436 p-value 0.0003 0.0008
HiCE 0.378 0405 0431
N2V 0332 0367 0.389 Table 5: Results on the DefNonce task. FCM initialized
ALC 0363 0384 0.394 with COIN V.CCtOI‘S improves both MRR. and Medign
ADD 0303 0340 0337 Rank. We give the average and b'est (in parenthesis)
Part 2 ) ) ) outcomes for both MMR. and Median Rank.
ADD-nsw 0.354 0.379 0416
COIN 0.299 0290  0.359 an OOV term without having previously trained
COIN-nsw 0336 0323 0395 a model for one of the trained methods on a cor-
Table 4: Results on the Chim task reported as Spear- pus of similar documents, COIN can quickly give

man correlation. All methods are grouped into two
parts: Part 1 and 2, as in Table 2. Neither ELMo nor
BERT can be used in this task as there is no sentence
for the probe words to learn their embeddings.

icant change among the OOV prediction methods
on the results (COIN 73.9% to FCM 74.1%).

5.4 Efficiency and Effectiveness of COIN

According to the comparison between COIN and
other models, our method COIN is very competi-
tive, typically outperforming all but FCM in many
of the tasks. However a significant advantage to
our technique is that it requires no training be-
yond learning the initial word embedding model,
while FCM requires a significant amount of train-
ing time and computing resources. In our exper-
iments, training the FCM model took 5.34 hours
on average. We stress that COIN requires no such
additional training time. The only computational
cost of COIN is the equivalent of a few look-ups of
word—vector mappings (in seconds). Specifically
on the 300 test words of the DefNonce task, the
COIN method takes 131 seconds from loading the
word2vec model, generating the COIN vectors to
evaluation. The COIN method takes 21 seconds
to run all of the 2, 4, and 6 sentence evaluations
on the Chim task. This makes our technique sub-
stantially more practical to use, particularly in de-
velopment stages, giving the user a strong starting
point. In a real world situation when we encounter

a predicted word vector based on the context at
hand, with accuracy close to the cutting edge tech-
niques. In a scenario where it is unknown if a more
complicated model may make a difference on the
downstream result, a user can use COIN to provide
a first look while training another OOV prediction
model, whereby the COIN model provides a good
basis to extend and build upon.

5.5 Initialization with COIN Vectors

The process of deriving COIN vectors is very quick
and efficient, therefore they provide a good model
for initializing other prediction methods. Typi-
cally these methods begin with an additive model
for OOV terms, then further refine the embed-
dings through some training strategy (Herbelot and
Baroni, 2017; Khodak et al., 2018; Schick and
Schiitze, 2019b). COIN vectors can be used in
place of the additive vectors as the first level ap-
proximation. In this study our goal is to show that
COIN vectors can be used in conjunction with an
existing, trained method to yield improved results
over either method alone. We focus here on the
FCM method and investigate a modified design
which uses COIN vectors to initialize the model.
On the DefNonce task, COIN achieves better
results than the FCM-context piece alone as shown
in Table 2. We train the models as described in
(Schick and Schiitze, 2019b) using the vectors pro-
vided by (Herbelot and Baroni, 2017). We train
the standard FCM model and our combined model,



dataset | type | update | MRR. Median Rank
CBOW | NS 0.0614 157
enwiki CBOW HS 0.1148 102
S-G NS 0.0802 173
S-G HS 0.0711 270
CBOW | NS 0.1037 72
CBOW | HS 0.1075 109
wwe S-G NS 0.0727 104
S-G HS 0.0759 133

Table 6: Results of different choices from model types
(CBOW or S-G) and updating methods (HS or NS) for
COIN on task DefNonce. S-G is short for skip-gram.

COIN+FCM, on the same training data used in their
paper, for 10 epochs. Selecting the best performing
epoch for each algorithm on the training set, we
then run this model on the test data. We repeat the
experiments of FCM and COIN+FCM 10 times,
and report their average and best performance in
Table 5. We notice that using COIN vectors to ini-
tialize the model improves the performance in both
MRR and Median Rank. The improvement is slight
but consistent in every randomized run. Thus, we
calculate the p-value to verify that the performance
differences are significant. With a p-value = 0.0003
for the MRR. and p-value = 0.0008 for the Meidan
Rank, the results are significant at the 0.05 level.

We note that while the training data is the same
as used in (Schick and Schiitze, 2019b), the FCM
performances here differ slightly with that in Ta-
ble 2, this is because the results here are aver-
aged over 10 repeats, and the outcome of each
run varies due to inherent randomness in the model.
We also run the CRW task comparing the FCM
model and COIN+FCM model. The results show
that COIN+FCM achieves a slight improvement at
most context sizes. The largest difference comes
when the number of contexts is very small. This
makes sense under the assumption that the COIN
vectors are closer to the desired target than ADD
vectors, and therefore fewer training examples are
required to fit the model.

In summary, FCM can be initialized by COIN
without additional cost and this combination yields
more accurate results on the benchmark tasks.

5.6 Embedding Model Selection

There are various hyperparameters and model
choices in training word embeddings which may
play a role in how the context vectors relate to the
word vectors in OOV prediction. In this section
we consider different settings for word2vec models

to compare their performance. Specifically we ex-
plore the model types (CBOW or skip-gram) and
updating methods (HS or NS). We train these vec-
tors on two corpora: a snapshot of Wikipedia from
January 2019 and the subset of the WWC used by
(Khodak et al., 2018) in their CRW study. The
model parameters are described in Table 1 (See
enwiki and WWC). We repeat the DefNonce evalu-
ation for comparison between model selection. The
results here are not directly comparable to those
given in the previous sections.

Results are shown in Table 6. One observation
is that CBOW generally yields better vectors for
COIN than skip-gram. CBOW with HS on enwiki
gives the highest MRR of all COIN models. For
this model in particular, the much larger vocabulary
of enwiki does not present a liability on this task.
The Median Rank is also competitive among all
the vector predictions. The lowest Median Rank is
achieved on the WWC data with CBOW and NS.

6 Conclusion

In this work we present the COIN method for pre-
dicting word embedding vectors for OOV terms
using the context vectors of context words. We
advertise COIN as an inexpensive and strong base-
line. We show that COIN performs close to the
existing state-of-the-art techniques, while being
much faster as it requires no additional training.
We also show how COIN can be used along with
existing techniques to give a new state-of-the-art on
vector prediction tasks, and how it can be used to
help downstream tasks such as sentiment analysis.
Besides, we explore different model settings for
learning the word vectors. The results of COIN are
robust across model choices, with generally better
performance from CBOW trained embeddings.
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