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ABSTRACT
Deep generative models have demonstrated effectiveness

in learning compact and expressive design representations that
significantly improve geometric design optimization. However,
these models do not consider the uncertainty introduced by man-
ufacturing or fabrication. Past work that quantifies such uncer-
tainty often makes simplifying assumptions on geometric varia-
tions, while the “real-world”, “free-form” uncertainty and its
impact on design performance are difficult to quantify due to
the high dimensionality. To address this issue, we propose
a Generative Adversarial Network-based Design under Uncer-
tainty Framework (GAN-DUF), which contains a deep genera-
tive model that simultaneously learns a compact representation
of nominal (ideal) designs and the conditional distribution of
fabricated designs given any nominal design. This opens up new
possibilities of 1) building a universal uncertainty quantifica-
tion model compatible with both shape and topological designs,
2) modeling free-form geometric uncertainties without the need
to make any assumptions on the distribution of geometric vari-
ability, and 3) allowing fast prediction of uncertainties for new

∗Address all correspondence to this author.

nominal designs. We can combine the proposed deep generative
model with robust design optimization or reliability-based design
optimization for design under uncertainty. We demonstrated the
framework on two real-world engineering design examples and
showed its capability of finding the solution that possesses better
performances after fabrication.

INTRODUCTION
Many engineering design problems boil down to geomet-

ric optimization. However, geometric optimization remains a
grand challenge because of its extreme dimensional complexity
and often hard-to-achieve performance objective. Recent work
has shown that deep generative models can learn a compact and
expressive design representation that remarkably improves geo-
metric design optimization performances (indicated by both the
quality of optimal solutions and the computational cost) [1,2,3].
However, past work based on deep generative models only con-
siders the ideal scenario where manufacturing or fabrication im-
perfections do not occur, which is unrealistic due to the existence
of uncertainties in reality, such as limited tool precision or wear.
Such imperfections sometimes have a high impact on a design’s
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performance or properties. Consequently, the originally optimal
solution (obtained by only considering the ideal scenario) might
not possess high performance or desired properties after fabrica-
tion.

Past work has developed task-specific robust optimization
techniques to identify geometric design solutions that are insensi-
tive to variations of load, materials, and geometry [4,5,6]. How-
ever, due to the lack of generalizable uncertainty representation
that is compatible with different geometric representations, pre-
vious work often makes simplifying assumptions on geometric
variations (e.g., the distribution or the upper/lower bound of un-
certain parameters), while the “real-world”, “free-form” geomet-
ric uncertainty and its impact on design performance are difficult
to quantify due to the high-dimensionality. In this paper, we pro-
pose a Generative Adversarial Network-based Design under Un-
certainty Framework (GAN-DUF) to allow uncertainty quantifi-
cation (UQ) of free-form geometric variability under real-world
scenarios. The term “free-form” refers to two aspects: 1) the ge-
ometric variability has no shape or topological restrictions and
2) no assumption on the form of uncertainty is needed. There-
fore, this framework is generalizable to any shape or topological
designs. It improves existing geometric design under uncertainty
from four aspects: 1) The generative adversarial network (GAN)
uses a compact representation to reparameterize geometric de-
signs, allowing accelerated optimization; 2) The GAN associates
real-world, free-form fabrication uncertainty with ideal designs
(i.e., nominal designs) by learning a conditional distribution of
fabricated designs given any nominal design; 3) The optimiza-
tion process accounts for the distribution of geometric variabil-
ity underlying any manufacturing processes, and allows UQ for
robust design optimization or reliability-based design optimiza-
tion; 4) The compact representation of nominal designs allows
gradient-free global optimization due to the representation’s low-
dimensionality.

We list the contributions of this work as follows:

1. We propose a hierarchical deep generative model to simulta-
neously learn a compact representation of designs and quan-
tify their real-world, free-form geometric uncertainties.

2. We combine the proposed model with a robust design op-
timization framework and demonstrate its effectiveness on
two realistic robust design examples.

3. We build two benchmark datasets, containing nominal and
fabricated designs, which will facilitate future study on data-
driven design under manufacturing uncertainty.

BACKGROUND
In this section, we introduce Generative Adversarial Net-

works and design under uncertainty.

Generative Adversarial Networks
The generative adversarial network [7] models a game be-

tween a generator G and a discriminator D. The goal of G is to
generate samples (designs in our case) that resemble those from
data; while D tries to distinguish between real data and generated
samples. Both models improve during training via the following
minimax optimization:

min
G

max
D

V (D,G) = Ex∼Pdata [logD(x)]+

Ez∼Pz [log(1−D(G(z)))],
(1)

where Pdata is the data distribution and z ∼ Pz is the noise that
serves as G’s input. A trained generator thus can map from a
predefined noise distribution to the distribution of designs. Due
to the low dimensionality of z, we can use it to more efficiently
control the geometric variation of high-dimensional designs.

Despite the ability to generate high-dimensional data from
low-dimensional noise, standard GANs do not have a way of
regularizing the noise; so it usually cannot reflect an intuitive de-
sign variation, which is unfavorable in many design applications.
To compensate for this weakness, the InfoGAN encourages in-
terpretable and disentangled latent representations by adding the
latent codes c as G’s another input and maximizing the lower
bound of the mutual information between c and G(c,z) [8]. The
mutual information lower bound LI is

LI(G,Q) = Ec∼P(c),x∼G(c,z)[logQ(c|x)]+H(c), (2)

where H(c) is the entropy of the latent codes, and Q is the auxil-
iary distribution for approximating P(c|x). The InfoGAN’s train-
ing objective becomes:

min
G,Q

max
D

Ex∼Pdata [logD(x)]+

Ec∼Pc,z∼Pz [log(1−D(G(c,z)))]−λLI(G,Q),
(3)

where λ is a weight parameter. In practice, H(c) is usually
treated as a constant as Pc is fixed.

Since InfoGAN provides a interpretable and disentangled
latent representation that is also compact and low-dimensional,
searching for design solutions in this latent space is much more
efficient than searching in the original high-dimensional design
space [1,2,3]. Building on top of the InfoGAN model, this work
proposes a new deep generative model that constructs a hierar-
chical latent representation to simultaneously model 1) the latent
representation of nominal designs and 2) the distribution of fab-
ricated designs conditioned on any nominal design.
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Design under Uncertainty
Design under uncertainty aims to account for stochastic vari-

ations in engineering design to identify optimal designs that
are robust and/or reliable under the variations associated with
various sources (e.g., material, geometry, and operating condi-
tions) [9, 10]. Two common approaches are robust design op-
timization (RDO) [11] and reliability-based design optimization
(RBDO) [12, 13].

The goal of RDO is to minimize the effects of variation with-
out eliminating the sources of uncertainty [11]. RDO approaches
simultaneously maximize the mean performance µ(C(·)) and
minimize the variance of the performance σ2(C(·)) over random
variables ξξξ representing the sources of uncertainty (e.g., noise
or control factor), where C(·) is the performance function. The
design goal, in general, involves the following optimization prob-
lem :

min
x

J(x,ξξξ ) = F(µ(C(x)),σ(C(x))), (4)

where x is the design variable, and F is the multi-objective cost
function that is typically formulated as F(·) = µ(·)+ kσ(·) with
k as the tuning parameter. µ(C(·)) and σ2(C(·)) are the statistical
moments of the cost w.r.t. the associated uncertainty ξξξ and can
be expressed as:

µ(C(x)) = Eξξξ [C(x)] =
∫

ξξξ

p(ξξξ )C(x))dξξξ ,

σ
2(C(x)) = Eξξξ [[C(x)−µ(C(x)]2]

=
∫

ξξξ

p(ξξξ )[C(x)−µ(C(x))]2 dξξξ .

(5)

We can also consider F(·) as the quantile of a normal distribu-
tion.

On the other hand, RBDO refers to the optimization scheme
where reliability analysis is incorporated into deterministic op-
timization methods [13]. Herein, reliability is defined as the
probability that a system is expected to operate under variations.
RBDO approaches exploit stochastic methods to address the sta-
tistical nature of constraints and design problems. Given m risk
factors, such as deflection, leakage, and local damage, a repre-
sentative formulation of RBDO reads:

min
x

J(x,µξξξ )

s.t. Pj [g j(x,ξξξ )≥ 0]≥ R j( j = 1, · · · ,m)
(6)

where µξξξ is the mean of the random variable ξξξ , g j(·, ·) denotes
the j-th limit-state function that indicates the margin of safety
with respect to the j-th risk factor, and R j is the specified relia-
bility level with respect to the j-th factor. Given the j-th factor,

(c) Arbitrary Boundary Variation

(a) Uniform Boundary Variation (b) Predefined Boundary Variation

Norminal Design Fabricated Design

(d) Topological Variation

FIGURE 1. Types of geometric uncertainty modeling: (a) Uniform
boundary variation where the boundary of the geometry is uniformly
“eroded” (e.g., over-etched) or “dilated” (e.g., under-etched) [6, 14, 15];
(b) Predefined boundary variation where the distribution of boundary
points is predefined [5]; (c) Arbitrary boundary variation where no as-
sumption is imposed on the distribution of boundary points; (d) Topo-
logical variation where the design’s topological change (e.g., hole nu-
cleation) is also possible. To the best of our knowledge, past work only
considers (a) and (b) when modeling geometric uncertainty, while our
proposed method can address “free-form” uncertainties that include all
four cases.

g j(·, ·) < 0 and g j(·, ·) ≥ 0 denote the associated failure region
and safe region, respectively.

Both approaches have been developed for design optimiza-
tion under geometric uncertainty at various levels of geomet-
ric complexity (i.e., size, shape, and topology). Among them,
topology optimization under geometric uncertainty has been re-
garded as highly challenging due to modeling of topological un-
certainty, propagation thereof, and stochastic design sensitivity
analysis [5]. Previous work either assumes uniform boundary
variation [6, 14, 15] (Fig. 1a), imposes predefined distribution on
boundary points or material distribution [5, 16] (Fig. 1b). While
those methods can simplify geometric uncertainty quantification,
the modeled uncertainties do not necessarily conform to realistic
scenarios, which usually involve much more complicated geo-
metric variability. For example, in real applications, the bound-
ary variation does not necessarily follow standard distribution
(Fig.s 1c) and manufacturing defects do not only happen on the
boundary [17] (Fig. 1d). Therefore, how to model “real-world”,
“free-from” geometric uncertainty without making any simplify-
ing assumption is still an open challenge.

In this work, we overcome this challenge by using a hierar-
chical deep generative model to learn 1) the underlying distribu-
tion of free-form nominal designs and 2) the conditional distribu-
tion of fabricated design given any nominal design, under free-
form geometric uncertainty (Figures 1c and 1d). We demonstrate
the efficacy using two real-world design examples. The ability of
modeling free-form geometry and uncertainties allows us to ad-
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dress topological uncertainties.

METHODOLOGY
Let Inom and Ifab denote the datasets of nominal and fabri-

cated designs, respectively:

Inom =
{

x(1)nom, ...,x
(N)
nom

}
Ifab =

{(
x(1,1)fab , ...,x(1,M)

fab

)
, ...,

(
x(N,1)

fab , ...,x(N,M)
fab

)}
,

where x(i, j)fab is the j-th realization (fabrication) of the i-th nominal
design. The goals are to 1) learn a lower-dimensional, compact
representation c of nominal designs to allow accelerated design
optimization and 2) learn the conditional distribution P(xfab|c)
to allow the quantification of manufacturing uncertainty at any
given nominal design (represented by c).

To achieve these two goals, we propose a generative adver-
sarial network (Fig. 2a) that enables the hierarchical modeling of
nominal designs and fabricated designs. Its generator G gener-
ates fabricated designs when feeding in the parent latent vector
cp, the child latent vector cc, and the noise z; whereas it generates
nominal designs simply by using the same generator G but set-
ting cc = 0. By doing this, we can control the generated nominal
designs through cp and the generated fabricated designs through
cc. Given the pair of a generated nominal design G(cp,0,z) and
a generated fabricated design G(cp,cc,z), the discriminator D
predicts whether the pair is generated or drawn from data (i.e.,
Inom and Ifab). Similar to InfoGAN, we also predict the con-
ditional distribution Q(cp,cc|xnom,xfab) to promote disentangle-
ment of latent spaces and ensure the latent spaces capture major
geometric variability [1]. The GAN is trained using the follow-
ing loss function:

min
G,Q

max
D

Exnom,xfab [logD(xnom,xfab)]+

Ecp,cc,z[log(1−D(G(cp,0,z),G(cp,cc,z)))]−
λEcp,cc,z[logQ(cp,cc|G(cp,0,z),G(cp,cc,z))].

(7)

As a result, G decouples the variability of the nominal and the
fabricated designs by using cp to represent the nominal design
(Goal 1) and cc to represent the fabricated design of any nominal
design. By fixing cp and sampling from the prior distribution
of cc, we can produce the conditional distribution P(xfab|cp) =
P(G(cp,cc,z)|cp) (Goal 2).

Compared to existing uncertainty quantification (UQ) meth-
ods, this GAN-based model opens up possibilities of 1) building
a universal UQ model compatible with both shape and topologi-
cal designs, 2) modeling free-form geometric uncertainties with-

out the need to make any assumptions on the distribution of geo-
metric variability, and 3) allowing fast prediction of uncertainties
for new nominal designs.

The trained generator allows us to sample fabricated de-
signs given any nominal design, simply by sampling the low-
dimensional cc with a fixed cp representing the nominal design
(Fig. 2b). We can then evaluate the quantities of interest (QoIs)
of these generated fabricated designs using computational (e.g.,
physics simulation) or experimental methods. The QoIs may in-
clude performance, quality, properties, and/or cost. The resulted
QoI distribution (i.e., post-fabrication QoI distribution) allows
us to quantify the uncertainty of QoIs for the nominal design.
Note that the proposed framework is agnostic to both the type
of designs (e.g., how designs are represented or what geomet-
ric variability is presented) and downstream tasks like design
optimization and design evaluation. We can integrate the eval-
uated uncertainty into optimization frameworks such as robust
optimization, where we simultaneously optimize the mean QoIs
and minimize the influence of uncertainty [11] (Fig. 2c), as well
as reliability-based optimization, where we optimize the QoIs
subject to constraints such as failure probability or reliability in-
dex [13]. The solution is expected to maintain high real-world
performance/quality, desired properties, or a low chance of fail-
ure even under fabrication imperfection.

RESULTS

We use two real-world robust design examples to demon-
strate the effectiveness of our proposed framework. Ideally, to
obtain fabricated design data Ifab, we can take the nominal de-
signs from Inom, fabricate them, and use the actual fabricated de-
signs as data. However, in this study, we simulate the fabrication
effects by deforming the geometry of nominal designs based on
the following approaches, as a way to save time and cost. Note
that how well the simulated manufacturing uncertainty resembles
the real-world uncertainty is not central to this proof of concept
study. We treat the simulated uncertainty as the real uncertainty
only to demonstrate our design under uncertainty framework. In
the ideal scenario, we can directly use the real-world fabricated
designs to build Ifab and our proposed framework can still model
the fabricated design distribution, since the framework is agnos-
tic to the form of uncertainty. Also note that the required amount
of data and latent vector dimensions will depend on the com-
plexity level of geometric variation in data. For example, if the
fabricated designs have a higher variation, we may need more
fabricated design data and a higher-dimensional child latent vec-
tor to maintain the same level of accuracy for modeling the un-
certainty.
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FIGURE 2. Illustration of proposed Generative Adversarial Network-based Design under Uncertainty Framework GAN-DUF: (a) The proposed
Hierarchical GAN architecture for simultaneously learning the compact representation of nominal designs and the conditional distributions of fabricated
designs; (b) Fabricated designs can be generated by sampling cc at any fixed cp representing a nominal design. The uncertainty of a nominal design’s
QoIs can be quantified by evaluating the QoIs of these generated fabricated designs via simulation or experiments; (c) We can optimize cp to obtain a
nominal design xnom with desired post-fabrication QoIs.

Case Study: Airfoil Design
An airfoil is the cross-sectional shape of an airplane wing

or a propeller/rotor/turbine blade. The shape of the airfoil deter-
mines the aerodynamic performance of a wing or a blade. We use
the UIUC airfoil database1 as our nominal design dataset Inom.
The preprocessing of Inom and the creation of the fabricated de-
sign dataset Ifab are described as follows:

Nominal design data. The original UIUC database contains
invalid airfoil shapes and the number of surface coordinates rep-
resenting each airfoil is inconsistent. Therefore, we used the pre-
processed data from Chen et al. [1] so that outliers are removed
and each airfoil is consistently represented by 192 surface points
(i.e., xnom ∈ R192×2).

Fabricated design data. For airfoil designs, we simulate the
effect of manufacturing uncertainty by randomly perturbing the
free-form deformation (FFD) control points of each airfoil design
from Inom [18]. Specifically, the original FFD control points fall
on a 3×8 grid and are computed as follows:

Pl,m
nom =

(
xmin

nom +
l
7
(xmax

nom − xmin
nom),y

min
nom +

m
2
(ymax

nom − ymin
nom)

)
,

l = 0, ...,7 and m = 0, ...,2,
(8)

1http://m-selig.ae.illinois.edu/ads/coord_database.
html

where xmin
nom, xmax

nom, ymin
nom, and ymax

nom define the 2D minimum bound-
ing box of the design xnom. To create fabricated designs, we add
Gaussian noise ε ∼ N (0,0.02) to the y-coordinates of control
points except those at the left and the right ends. This results in
a set of deformed control points {Pl,m

fab |l = 0, ...,7;m = 0, ...,2}.
The airfoil shape also deforms with the new control points and
is considered as a fabricated design. The surface points of fabri-
cated airfoils are expressed as

xfab(u,v) =
7

∑
l=0

2

∑
m=0

B7
l (u)B

2
m(v)P

l,m
fab , (9)

where 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1 are parametric coordinates, and
the n-degree Bernstein polynomials Bn

i (u) =
(n

i

)
ui(1−u)n−i. We

set the parametric coordinates based on the surface points of the
nominal shape:

(u,v) =
(

xnom − xmin
nom

xmax
nom − xmin

nom
,

ynom − ymin
nom

ymax
nom − ymin

nom

)
. (10)

Perturbing nominal designs via FFD ensures that the deformed
(fabricated) shapes are still continuous, which conforms to real-
ity.

The final dataset contains 1,528 nominal designs and 10 fab-
ricated designs per nominal design. Note that since similar nom-
inal designs also have similar fabricated designs, we may need
even fewer fabricated designs as training data. Studying the min-
imum required size of the fabricated design dataset might be in-
teresting future work.
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We trained the proposed GAN on Inom and Ifab. We set the
parent latent vector to have a uniform prior distribution U(0,1)
(so that we can search in a bounded space during the design
optimization stage), whereas both the child latent vector and
the noise have normal prior distributions N (0,0.5I). The gen-
erator/discriminator architecture and the training configurations
were set according to Chen et al. [1]. During training, we set both
the generator’s and the discriminator’s learning rate to 0.0001.
We trained the model for 20,000 steps with a batch size of 32.

We performed a parametric study to quantify the design
space coverage and the uncertainty modeling performance of our
trained models under different parent and child latent dimension
settings (the noise dimension is fixed to 10). Details on the exper-
imental settings and results are included in Appendix A. Based
on the parametric study, we set the parent and the child latent
dimensions of 7 and 5, respectively, when performing design op-
timization.

The objective of the design optimization is to maximize the
lift-to-drag ratio CL/CD, which is simulated and computed by
using the computational fluid dynamics (CFD) solver SU2 [19].

We compared two optimization scenarios:

1. Standard optimization, where we only consider the deter-
ministic performance of the nominal design. The objective
is expressed as maxcp f (G(cp,0,0)).

2. Robust design optimization, which accounts for the per-
formance variation caused by manufacturing uncertainty.
The objective is expressed as maxcp Qτ ( f (G(cp,cc,0))|cp),
where Qτ denotes the conditional τ-quantile. We set τ =
0.05 in this example.

In each scenario, we performed Bayesian optimization (BO)
to find cp. We evaluate 21 initial samples of cp selected by
Latin hypercube sampling (LHS) [20] and 119 sequentially se-
lected samples based on BO’s acquisition function of expected
improvement (EI) [21]2. In standard optimization, we evaluate
the nominal design performance f (G(cp,0,0)) at each sampled
point. In robust design optimization, we estimate the quantile of
fabricated design performances f (G(cp,cc,0)) by Monte Carlo
(MC) sampling using 100 randomly sampled cc ∼ P(cc) at each
cp. Figure 3 shows the optimal solutions and the distributions of
ground-truth fabricated design performances3 of these solutions.
By accounting for manufacturing uncertainty, the quantile values
of the post-fabrication performance distribution are improved for
the robust optimal design x∗robust, compared to the standard opti-
mal design x∗std, even though the nominal performance of x∗robust
is worse than x∗std. This result illustrates the possibility that the
solution discovered by standard optimization can have high nom-

2The settings of the initial and the total evaluation times in BO are based
on the parent latent dimension dp. Specifically, we performed 3dp initial LHS
evaluations and 20dp total evaluations, where dp = 7 as mentioned earlier.

3“Ground-truth fabricated design” refers to designs created by the same
means by which the designs from Ifab were created.

Performances of
optimal nominal designs

(a) Optimal nominal designs

(b) Optimal nominal/fabricated design performances

FIGURE 3. Solutions for the airfoil design example: (a) Optimal
nominal airfoil designs obtained by standard optimization and robust de-
sign optimization; (b) When considering the manufacturing uncertainty,
the robust optimal design x∗robust shows improved quantile values for
the post-fabrication performance distribution compared to the standard
optimal design x∗std, even though the nominal performance of x∗robust is
slightly worse than x∗std.

inal performance but is likely to possess low performance when
it is fabricated. The robust design optimization enabled by GAN-
DUF can avoid this risk.

Case Study: Optical Metasurface Absorber Design
Optical metasurfaces are artificially engineered structures

that can support exotic light propagation using subwavelength
inclusions [22, 23]. Optical metasurface absorbers [24] have ap-
plications including medical imaging, sensing, and wireless com-
munications. In this work, the key functionality of interest is
large energy absorbance at a range of incident wave frequencies.

We created 1,000 nominal designs and 10 fabricated designs
per nominal design (Fig. 5a) by using the following method:

Nominal design data. The nominal design dataset builds on
three topological motifs (i.e., I-beam, cross, and square ring) [25,
26]. We create nominal designs by randomly interpolating the
signed distance fields of these baselines [27]. As a result, each
design is stored as 64×64 level-set values (i.e., xnom ∈ R64×64).
We can obtain final designs by thresholding the signed distance
fields. Building on a given set of baselines, this shape generation
scheme allows a unit cell population that is topologically diverse.

Fabricated design data. Similar to the airfoil design example,
we randomly perturb a set of 12×12 FFD control points in both
x and y directions with white Gaussian noise that has a standard
deviation of 1 pixel. This leads to the distortion of the 64× 64
grid coordinates at all the pixels, together with the level-set value
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at each pixel. We then interpolate a new signed distance field
as the fabricated (distorted) design. To account for the limited
precision of fabrication, we further apply a Gaussian filter with a
standard deviation of 2 to smooth out sharp, non-manufacturable
features.

As mentioned in the Background section, optimizing de-
signs with varying topology under geometric uncertainty hosts a
great challenge. GAN-DUF can handle this problem by model-
ing the uncertainty using the proposed generative adversarial net-
work. Same as the airfoil example, we set the parent latent vector
to have a uniform prior distribution, while both the child latent
vector and the noise have normal prior distributions. Again, we
fixed the noise dimension to 10. The generator and the discrim-
inator architectures are shown in Fig. 4. The discriminator pre-
dicts both the discriminative distribution D(xnom,xfab) and the
auxiliary distribution Q(cp,cc|xnom,xfab). During training, we
set both the generator’s and the discriminator’s learning rate to
0.0001. We trained the model for 50,000 steps with a batch size
of 32.

Figure 5b shows nominal and fabricated designs randomly
generated from the trained generator with a parent and a child la-
tent dimensions of 5 and 10, respectively. We performed a simi-
lar parametric study, as in the airfoil design example, to quantify
the design space coverage of the trained models under varying
parent latent dimensions (please see Appendix A for more de-
tails).

During the design optimization stage, we set the parent and
the child latent dimensions to be 5 and 10, respectively. The ob-
jective is to maximize the overall energy absorbance over a range
of frequencies. More specifically, a single unit cell of metasur-
face is made of a dielectric with relative permittivity 2.88-0.09i,
where i is the imaginary unit i =

√
−1. The periodic bound-

ary condition is imposed on the boundary of the analysis do-
main. The performance metric, energy absorbance, is defined as
A( f ) = 1−T ( f ) = 1− |S11( f )|2, where f is the excitation fre-
quency of an x-polarized incident wave (8-9 THz in this work),
T is the transmission, and S11 is a component of the S-parameter
matrix that characterizes an electrical field intensity in a complex
network. To achieve broadband functionality, we formulate the
objective function as the sum of energy absorbance at individ-
ual frequencies (i.e., J = ∑

n f
i=1 A( fi), where n f is the number of

equidistant frequencies at which absorbance is to be observed).
The RF Module of COMSOL Multiphysics® [28] is used for
evaluation of metasurfaces.

Similar to the airfoil design example, we compared standard
optimization with robust design optimization. In each scenario,
we performed BO with 15 initial LHS samples and 85 sequen-
tially selected samples based on the acquisition strategy of EI4.

4Same as the airfoil design use case, we performed 3dp initial LHS evalua-
tions and 20dp total evaluations in BO, where dp = 5 is the parent latent dimen-
sion.
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FIGURE 4. Generator and discriminator architectures in the metasur-
face design example.

The quantile of fabricated design performances at each cp was es-
timated from 20 MC samples. We used fewer MC samples than
those in the airfoil design case due to the higher cost of evaluat-
ing the objective (i.e., performing wave analysis to compute the
energy absorbance). Figure 6 shows the optimal solutions and
the distributions of ground-truth fabricated design performances
for these solutions. We observe similar patterns as in the airfoil
design case, where the standard optimization finds the solution
with higher nominal performance, while robust optimization en-
abled by GAN-DUF finds the solution with higher performances
(in general) after fabrication. Note that the effect of robust design
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FIGURE 5. Visual inspection on generated designs: (a) Metasurface
designs randomly drawn from training data; (b) Designs randomly gen-
erated from a trained generator.

(a) Optimal nominal designs (b) Optimal nominal
/fabricated

design performances

Performances
of optimal

nominal designs

FIGURE 6. Solutions for the metasurface design example: (a) Op-
timal nominal metasurface designs obtained by standard optimization
and robust design optimization; (b) When considering the manufactur-
ing uncertainty, the robust optimal design x∗robust shows improved post-
fabrication performance distribution compared to the standard optimal
design x∗std, even though the nominal performance of x∗robust is worse
than x∗std.

optimization is more significant on metasurface designs (Fig. 6b)
than airfoil designs (Fig. 3b), which indicates a difference in the
levels of variation in design performance sensitivity to manufac-
turing uncertainties. This difference can be caused by various
factors such as the variance in nominal designs and the physics
governing design performances.

CONCLUSION
We proposed GAN-DUF to facilitate design under free-form

geometric uncertainty. It contains a novel deep generative model
that simultaneously learns a compact representation of nomi-

nal designs and the conditional distribution of fabricated de-
signs given any nominal design. The proposed framework is
generalizable to any geometric design representations (i.e., both
shape and topological designs) and can address free-form uncer-
tainties without the need to make any assumption on the type
of uncertainty. We applied GAN-DUF on two real-world en-
gineering design examples (namely shape and topological de-
signs) and showed its capability in finding the design solution
that is more likely to possess a better performance after fabri-
cation or manufacturing. Although we only considered fabri-
cation/manufacturing uncertainty when demonstrating the pro-
posed framework, it is also applicable to other sources of geo-
metric uncertainties such as those caused by operational wear or
erosion. In addition to robust design optimization demonstrated
in this work, we can also combine the proposed hierarchical gen-
erative model with reliability-based design optimization to find
designs that are unlikely to fail after fabrication or under oper-
ational wear/erosion. Built on our preliminary results, as future
work, we will 1) perform more tests to quantify GAN-DUF’s
performance on different design under uncertainty scenarios and
2) use real fabricated designs as training and test data to validate
the effectiveness of the GAN-DUF framework in a completely
realistic scenario.
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Appendix A: Parametric Study
We conducted parametric studies over parent and child latent

dimensions to investigate their effects on the generative perfor-
mances (we fix the noise dimension to 10). Particularly, we care
about two performances: (1) how well the parent latent represen-
tation can cover nominal designs, and (2) how well the perfor-
mance distributions of fabricated designs are approximated. The
experimental settings and results are described as follows.

Airfoil Design. We evaluated the first performance (i.e., nomi-
nal design coverage) via a fitting test, where we found the parent
latent vector that minimizes the Euclidean distance between the
generated nominal design and a target nominal design sampled
from the dataset (i.e., fitting error). We use SLSQP as the opti-
mizer and set the number of random restarts to 3 times the parent
latent dimension. We repeated this fitting test for 100 randomly
sampled target designs under each parent latent dimension set-
ting. A parent latent representation with good coverage of the
nominal design data will result in low fitting errors for most tar-
get designs. Figure 7a indicates that a parent latent dimension
of 7 achieves relatively large design coverage (low fitting errors).
We evaluated the second performance (i.e., fabricated design per-
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FIGURE 7. Parametric study for the airfoil design example.
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FIGURE 8. Parametric study for the metasurface design example.

formance approximation) by measuring the Wasserstein distance
between two conditional distributions — P( f (xfab)|xnom) and
P( f (G(cp,cc,z))|xnom), where f denotes the objective function.
In this example, f is the simulation that computes the lift-to-drag
ratio CL/CD. For each generated nominal design xnom, we cre-
ated 100 “simulated” fabricated designs as xfab, in the same way
we create training data. We also generated the same number of
fabricated designs using the trained generator. We compute the
Wasserstein distance between these two sets of samples. We re-
peated this test for 30 randomly generated nominal designs under
each child latent dimension setting. Figure 7b shows that when
the child latent dimension is 5, we have relatively low Wasser-
stein distances with the smallest variation (the parent latent di-
mension was fixed to 7). When the child latent dimension fur-
ther increases to 10, the uncertainty of the Wasserstein distances
increase, possibly due to the higher dimensionality. Note that
the training data only contains 10 fabricated designs per nomi-
nal design, while at the test phase we use many more samples
per nominal design to faithfully approximate the conditional dis-
tributions. We do not need that many samples at the training
phase because the generative model does not learn independent
conditional distributions for each nominal design, but can extract
information across all nominal designs.

Optical Metasurface Absorber Design. We performed a fit-
ting test to study the effect of the parent latent dimension on the
design space coverage of GANs. Same as in the airfoil design
case, we use SLSQP as the optimizer and set the number of ran-

dom restarts to 3 times the parent latent dimension. Here the fit-
ting error is the Euclidean distance between the signed distance
fields of the generated nominal design and a target nominal de-
sign sampled from the dataset. Under each parent latent dimen-
sion setting, we randomly select 100 target designs. Figure 8
indicates that a parent latent dimension of 5 achieves sufficiently
large design coverage, while further increasing the parent latent
dimension cannot improve the coverage.
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