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ABSTRACT
In this work, we formulate and solve a new type of approximate
nearest neighbor search (ANNS) problems called ANNS after linear
transformation (ALT). In ANNS-ALT, we search for the vector (in a
dataset) that, after being linearly transformed by a user-specified
query matrix, is closest to a query vector. It is a very general mother
problem in the sense that a wide range of baby ANNS problems
that have important applications in databases and machine learning
can be reduced to and solved as ANNS-ALT, or its dual that we call
ANNS-ALTD. We propose a novel and computationally efficient
solution, called ONe Index for All Kernels (ONIAK), to ANNS-ALT
and all its baby problems when the data dimension 𝑑 is not too large
(say 𝑑 ≤ 200). In ONIAK, a universal index is built, once and for all,
for answering all future ANNS-ALT queries that can have distinct
query matrices. We show by experiments that, when 𝑑 is not too
large, ONIAK has better query performance than linear scan on
the mother problem (of ANNS-ALT), and has query performances
comparable to those of the state-of-the-art solutions on the baby
problems. However, the algorithmic technique behind this universal
index approach suffers from a so-called dimension blowup problem
that can make the indexing time prohibitively long for a large
dataset. We propose a novel algorithmic technique, called fast GOE
quadratic form (FGoeQF), that completely solves the (prohibitively
long indexing time) fallout of the dimension blowup problem. We
also propose a Johnson-Lindenstrauss transform (JLT) based ANNS-
ALT (and ANNS-ALTD) solution that significantly outperforms any
competitor when 𝑑 is large.
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1 INTRODUCTION
Approximate nearest neighbor search (ANNS) is a fundamental
algorithmic problem with numerous applications in many areas
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of computer science, especially databases [10, 32] and machine
learning [14, 39]. In a standard ANNS problem, we answer ANNS
queries over a large datasetD that lies in a high-dimensional space.
Given a query ®𝑞 that lies in the same space, we need to find one or
more points in D that are closest to ®𝑞 in a certain distance metric
such as 𝐿2 (the Euclidean distance).

In this work, we attack a fundamentally different type of ANNS
problems. In this type, like in other ANNS problems, we need to
answer queries over a dataset D that lies in a 𝑑-dimensional space.
However, unlike in other ANNS problems, the queries lie in a very
different space than D in the following way. For 𝑖 = 1, 2, · · · , the
𝑖𝑡ℎ query is a tuple (𝑀𝑖 , ®𝑞𝑖 ), where 𝑀𝑖 is an 𝑟𝑖 × 𝑑 query matrix
and ®𝑞𝑖 is an 𝑟𝑖 -dimensional query vector. Given this query (𝑀𝑖 , ®𝑞𝑖 ),
the goal is to find ®𝑥 ∈ D such that the vector 𝑀𝑖 ®𝑥 is the closest
to ®𝑞𝑖 in 𝐿2. Formally, we seek to find argmin®𝑥 ∈D ∥𝑀𝑖 ®𝑥 − ®𝑞𝑖 ∥2. For
𝑖 = 1, 2, · · · , the values of the matrices𝑀𝑖 , the vectors ®𝑞𝑖 , and even
the values of parameters 𝑟𝑖 can generally be different. We call this
problem ANNS after linear transformation, or ANNS-ALT for short,
because we are looking for ®𝑥 ∈ D that, when linearly transformed
by the query matrix𝑀𝑖 , is closest to the query vector ®𝑞𝑖 .

We adopt the following notational convention throughout this
paper. We use a lower-case letter with a rightward arrow on top of
it, such as ®𝑥 , to denote a column vector, and use its transpose, such
as ®𝑥𝑇 , to denote a row vector. We use the same letter without an
arrow on the top but with a subscript, such as 𝑥𝑖 , to denote a scalar
in it. Also, we use a capital letter, such as 𝐴, to denote a matrix, and
a corresponding lower case letter with two subscripts, such as 𝑎𝑖, 𝑗 ,
to denote a scalar in it.

1.1 ANNS-ALT: An Important Mother Problem
As we will show in §4, the ANNS-ALT problem is the “mother” of
several “baby” ANNS problems in the sense that every baby problem
can be reduced to and solved as an ANNS-ALT problem. Although
these baby problems have important applications in databases [32],
machine learning [39], and computer vision [10], so far most of
them do not have computationally efficient solutions. We motivate
the ANNS-ALT problem using one such baby problem that is known
as ANNS in Mahalanobis distance, or ANNS-M for short. The Ma-
halanobis distance between any two 𝑑-dimensional points ®𝑥 and ®𝑦,
denoted as 𝐷Σ

𝑀
( ®𝑥, ®𝑦), is defined as 𝐷Σ

𝑀
( ®𝑥, ®𝑦) ≜

√︁
( ®𝑥 − ®𝑦)𝑇 Σ( ®𝑥 − ®𝑦),

where Σ is a𝑑×𝑑 positive semidefinite matrix which we call a Maha-
lanobis kernel. In ANNS-M, each query is a tuple (Σ𝑖 , ®𝑞𝑖 ), where Σ𝑖
is such a 𝑑 × 𝑑 kernel matrix that defines the Mahalanobis distance,
and ®𝑞𝑖 is a query vector. The goal is to find ®𝑥 ∈ D that is nearest
to ®𝑞𝑖 in 𝐷

Σ𝑖
𝑀
. In general, both the matrix Σ𝑖 and the vector ®𝑞𝑖 can

change from one query to another.
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If the kernel matrices in all ANNS-M queries were identical
and known in advance, then this special case, which we call static
(fixed-kernel) ANNS-M, can be reduced to and solved as a much
easier ANNS-𝐿2 problem as follows. Let the rank of the 𝑑 ×𝑑 Maha-
lanobis kernel matrix Σ be 𝑟 (𝑟 ≤ 𝑑). Since Σ is positive semidefinite,
there exists an 𝑟 × 𝑑 matrix 𝑈 such that Σ = 𝑈𝑇𝑈 [38]. Hence, we
have 𝐷Σ

𝑀
( ®𝑥, ®𝑦) =

√︁
( ®𝑥 − ®𝑦)𝑇 Σ( ®𝑥 − ®𝑦) =

√︁
( ®𝑥 − ®𝑦)𝑇𝑈𝑇𝑈 ( ®𝑥 − ®𝑦) =

∥𝑈 ( ®𝑥 − ®𝑦)∥2 = ∥𝑈 ®𝑥 −𝑈 ®𝑦∥2. This relationship implies that, if the
vector ®𝑥∗ is the closest to a query vector ®𝑞 in Mahalanobis distance
𝐷Σ
𝑀

among vectors in D, then the mapped (by 𝑈 ) vector 𝑈 ®𝑥∗ is
the closest to the mapped query vector 𝑈 ®𝑞 in 𝐿2 distance among
vectors in 𝑈 (D) ≜ {𝑈 ®𝑥 | ®𝑥 ∈ D}, and vice versa. In other words,
static ANNS-M is equivalent to the ANNS-𝐿2 problem of searching
for the nearest neighbor of 𝑈 ®𝑞 in𝑈 (D).

In comparison, general ANNS-M, in which the kernel Σ can
change from one query to another, is a much harder problem. For
one thing, the naive approach of simply using the static ANNS-
M solution above for the general ANNS-M problem, called Re-
build LSH [39], has a poor query performance as follows. In Re-
build LSH, every time the kernel changes, say from Σ𝑖 = 𝑈𝑇

𝑖
𝑈𝑖

to Σ𝑖+1 = 𝑈𝑇
𝑖+1𝑈𝑖+1, we need to re-project D to 𝑈𝑖+1 (D) and “re-

hash”𝑈𝑖+1 (D), before the new query (Σ𝑖+1, ®𝑞𝑖+1) can be answered,
since the old index for 𝑈𝑖 (D) no longer works for the new query
matrix Σ𝑖+1. The re-indexing (including both re-projection and “re-
hashing”) process is very time-consuming: It takes slightly longer
than processing an ANNS-M query using linear scan.

We reduce ANNS-M to, and solve it as, the following ANNS-ALT
problem. Given any ANNS-M query (Σ𝑖 , ®𝑞𝑖 ) over D, we convert it
to the ANNS-ALT query (𝑈𝑖 ,𝑈𝑖 ®𝑞𝑖 ) also over D, where Σ = 𝑈𝑇

𝑖
𝑈𝑖 .

These two queries are equivalent because 𝐷Σ
𝑀
( ®𝑥, ®𝑞) = ∥𝑈𝑖 ®𝑥 −𝑈𝑖 ®𝑞∥2.

Hence, our solution to ANNS-ALT, to be described next, also solves
ANNS-M. We name this solution ONIAK (ONe Index for All Ker-
nels), since when using it to solve ANNS-M, we need only to build,
once and for all, a universal index for D that can answer all future
queries with different kernels. Hence, ONIAK completely elimi-
nates any need for re-indexing. The acronym ONIAK is inspired
by a character named “the Great Oniak” in a 1960s sci-fi TV series
titled Lost in Space. It is an appropriate name for this work, since
an ANNS solution is all about avoiding the fate of having a nearest
neighbor “lost” in a high-dimensional space.

1.2 ONIAK: A Universal Index for ANNS-ALT
Now we introduce the ONIAK approach of building a universal
index on D that can efficiently answer an arbitrary sequence of
ANNS-ALT queries (𝑀𝑖 , ®𝑞𝑖 ), for 𝑖 = 1, 2, · · · . With the understand-
ing that both𝑀𝑖 and ®𝑞𝑖 can change from one query to another, we
drop the subscript 𝑖 from both and focus on how ONIAK processes
a single query (𝑀, ®𝑞) in the sequel. Recall that the query objective is
to find ®𝑥 ∈ D that minimizes ∥𝑀 ®𝑥− ®𝑞∥2. As to be elaborated in §2.5,
it suffices for ONIAK to solve the following simpler but equivalent
form of the ANNS-ALT problem, which we name ANNS-SALT (S
stands for simple). In ANNS-SALT, each query is just a matrix 𝑀 ,
and the objective is to find ®𝑥 ∈ D that minimizes ∥𝑀 ®𝑥 ∥2.

Given an ANNS-SALT query𝑀 , ONIAK converts it to an ANNS-
𝐿2 query using a technique pioneered in a computer vision pa-
per [10] for solving one baby problem of ANNS-ALT. This technique

is an asymmetric mappings pair (AMP) 𝑓 (·) and 𝑔(·) that has the
following order preservation property: Given any matrix𝑀 and any
two vectors ®𝑥1, ®𝑥2, we have ∥ 𝑓 ( ®𝑥1) −𝑔(𝑀)∥2 ≤ ∥ 𝑓 ( ®𝑥2) −𝑔(𝑀)∥2 if
and only if ∥𝑀 ®𝑥1∥2 ≤ ∥𝑀 ®𝑥2∥2. As a result, the ANNS-SALT prob-
lem of finding ®𝑥 in D that minimizes ∥𝑀 ®𝑥 ∥2 is equivalent to the
ANNS-𝐿2 problem of finding ®𝑦 in 𝑓 (D) ≜ {𝑓 ( ®𝑥) | ®𝑥 ∈ D} that is
closest to the vector 𝑔(𝑀). In ONIAK, when the dimension 𝑑 is not
too large (say 𝑑 ≤ 200), this ANNS-𝐿2 problem is then solved using
the state-of-the-art locality sensitive hashing (LSH) scheme called
Gaussian Projection LSH (GP-LSH) [12].

Unfortunately, this AMP technique suffers from the following
dimension blowup problem that severely limits the efficacy of any
ANNS solution based on this technique, when the dimension𝑑 of the
dataset D becomes large: 𝑓 (·) maps a 𝑑-dimensional vector ®𝑥 to a
𝑑2-dimensional vector 𝑓 ( ®𝑥). Hence in the aforementioned ANNS-𝐿2
problem that ANNS-SALT reduces to, each mapped (by 𝑓 (·)) vector
in the dataset 𝑓 (D) is of 𝑑2 dimensions. As a result, to evaluate an
LSH function ℎ(·) on such a mapped vector, say 𝑓 ( ®𝑥), conceivably
requires at least 𝑂 (𝑑2) time, since just to read the input (argument
to ℎ(·)) 𝑓 ( ®𝑥) takes𝑂 (𝑑2) time. This𝑂 (𝑑2) time complexity leads to
an unacceptably long indexing time for building the aforementioned
universal index for the mapped dataset 𝑓 (D), since in the indexing
phase, we need to evaluate hundreds to thousands of different LSH
functions on each mapped data vector 𝑓 ( ®𝑥) ∈ 𝑓 (D). Likely for this
limitation, the entire solution approach based on this technique has
all but been abandoned after the hyperplane hashing work [32].
A major contribution of our work is an algorithmic breakthrough,
to be introduced next, that completely solves the fallout of this
dimension blowup problem and as a result rescues this approach
from near-certain demise in the era of big data.

This breakthrough, called fast Gaussian orthogonal ensemble qua-
dratic form (FGoeQF) and to be described in §2.2, can reduce the time
complexity of computing a hash value from 𝑂 (𝑑2) to 𝑂 (𝑑 log𝑑),
when the LSH function family used is the aforementioned GP-
LSH. This 𝑂 (𝑑/log𝑑)-fold reduction in indexing time is clearly
“life-saving” to all existing ANNS solutions that suffer from this
dimension blowup problem, including [10, 16, 32]. In addition, we
recently discover that FGoeQF can reduce the indexing time of the
state-of-the-art solution, called locality sensitive teaching [35], to
an emerging machine learning problem known as iterative machine
teaching [22], in which the dimension blowup problem stems from
a standard stochastic gradient descent (SGD) procedure rather than
from AMP. This suggests that the dimension blowup is a funda-
mental and prevalent problem, and that our FGoeQF solution may
possibly benefit many more future applications in database and
machine learning .

1.3 JLT-Based Solution to ANNS-ALT
In addition to the dimension blowup problem, we need to deal with
a fundamental limitation of AMP. We will show in §2.4 that con-
siderable noise is introduced in this AMP process and the resulting
maximum signal-to-noise ratio (SNR) scales as 𝑂 (1/𝑑). As a result,
when 𝑑 > 200, ONIAK no longer outperforms linear scan much
according to our experiments. We propose a different, and surpris-
ingly effective, ANNS-ALT solution for the case of large 𝑑 . This
solution, which is based on a well-known algorithmic technique for



dimensionality reduction called Johnson-Lindenstrauss transform
(JLT) [2], works as follows. At initialization, we generate and fix an
𝑙 × 𝑑 Gaussian random matrix Θ, where 𝑙 ≪ 𝑑 . Then given a 𝑑 × 𝑑

ANNS-ALT query matrix (into which an 𝑟 × 𝑑 query matrix with
𝑟 < 𝑑 can be zero-padded)𝑀 and query vector ®𝑞, we first compute
the matrix product 𝑀 ′ = Θ𝑀 , for which we pay a one-time com-
putational complexity of 𝑂 (𝑙𝑑2), and ®𝑞′ = Θ®𝑞 (for a cost of 𝑂 (𝑑2)).
This matrix multiplication (projection) is called a JLT, and the re-
sulting𝑀 ′ is an 𝑙 ×𝑑 matrix. Then for every ANNS-SALT candidate
®𝑥 ∈ D, we compute𝑀 ′®𝑥 − ®𝑞′ using 𝑂 (𝑙𝑑) time, instead of𝑀 ®𝑥 − ®𝑞
using𝑂 (𝑑2) time. Since ∥𝑀 ′®𝑥 − ®𝑞′∥2 = ∥Θ(𝑀 ®𝑥 − ®𝑞)∥2 ≈ ∥𝑀 ®𝑥 − ®𝑞∥2
due to the property of the JLT [2], we can filter out most of the
unpromising candidates according to their ∥𝑀 ′®𝑥 − ®𝑞′∥2 values, so
that the expensive𝑀 ®𝑥 − ®𝑞 (ground truth) computation only needs
to be performed for promising candidates. We refer to this filtering-
based (by JLT) solution as JLT in the sequel. As we will show, JLT is
much faster than linear scan (LS), and this outperformance grows
roughly as 𝑂 (𝑑). For example, when 𝑑 = 4096, the query time of
JLT is roughly 388 times shorter than that of LS. Another salient
property of JLT is that it does not require an index (and hence
has an index size of 0). When 𝑑 is small (say 𝑑 < 64), JLT cannot
outperform LS as there is “no more dimension to reduce”, whereas
ONIAK performs fairly well in this case. Hence our solutions JLT
and ONIAK complement each other well.

Although JLT is a well-established technique, we claim JLT as our
contribution for three reasons. First, JLT has never been mentioned
as a possible solution to any baby problem of ANNS-ALT [9, 32, 39],
even though it can significantly outperform the state-of-the-art
solutions to two such baby problems as we will elaborate in § 5
and §6. Second, this work provides the first evaluation study on the
efficacy of JLT in the ANNS-ALT contexts. Third, we propose to
combine ONIAK with JLT when 𝑑 is moderately large (say between
64 and 200). ONIAK+JLT outperforms JLT by up to 1.6 times, as
shown in §6.

The contributions of this work are summarized as follows. First,
we formulate ANNS-ALT (and its dual problem), and show that it
is the mother of a wide range of ANNS problems (§4). Second, we
propose the ONIAK solution (§2), to ANNS-ALT, that eliminates
any need for re-indexing after the initial (universal) indexing phase,
for 𝑑 that is not too large. Third, we propose the JLT solution for
large 𝑑 that can significantly outperform any competitor.

Last, we propose the FGoeQF technique (§ 3) that solves the
fallout of the dimension blowup problem in a lossless manner.

2 THE ONIAK SOLUTION TO ANNS-ALT
In this section, we describe the ONIAK solution (except for FGoeQF)
to ANNS-SALT, the aforementioned simple yet equivalent (to be
established in §2.5) form of ANNS-ALT. We first formulate ANNS-
SALT and then describe the aforementioned AMP technique that
reduces ANNS-SALT to ANNS-𝐿2, in §2.1. This reduction causes the
aforementioned dimension blowup problem that we will introduce
in §2.2. We describe the aforementioned low SNR issue of ONIAK
in §2.4 and the possible external-memory implementation of ONIAK
in §2.6.

2.1 Asymmetric Mappings Pair (AMP)
As described earlier, each ANNS-SALT query is just a query matrix
𝑀 , and the goal is to find ®𝑥 ∈ D that minimizes ∥𝑀 ®𝑥 ∥2. In ANNS-
SALT, the dataset D needs to be normalized in the sense that every
®𝑥 ∈ D has the same 𝐿2 norm. The proof of the equivalence between
ANNS-ALT and ANNS-SALT can be found in §2.5.

The ANNS-SALT problem generalizes a well-known ANNS prob-
lem called approximate hyperplane-to-point searching (AH2PS) [32],
and the AMP used in ONIAK for solving ANNS-SALT generalizes
the AMP used in [32] for solving AH2PS. In AH2PS, the dataset D
needs to be normalized like in ANNS-SALT. Each query in it is a
𝑑-dimensional vector ®𝑎, and the query objective is to find ®𝑥 ∈ D
that minimizes | ®𝑎𝑇 ®𝑥 |. ANNS-SALT degenerates to AH2PS when
the query matrix𝑀 becomes a 1 × 𝑑 row vector ®𝑎𝑇 . In ONIAK, the
following AMP is used, where vec(·) denotes flattening a matrix in
the row-major order into a vector.

𝑓 ( ®𝑥) ≜vec( ®𝑥 ®𝑥𝑇 ), 𝑔(𝑀) ≜ −vec(𝑀𝑇𝑀) . (1)

This AMP reduces the ANNS-SALT problem to the ANNS-
𝐿2 problem of searching for the nearest neighbor of 𝑔(𝑀) =

−vec(𝑀𝑇𝑀) in 𝑓 (D), thanks to the following order preserva-
tion property: For any two 𝑑-dimensional data vectors ®𝑥1, ®𝑥2 in
D and any 𝑟 × 𝑑 query matrix 𝑀 , we have ∥ 𝑓 ( ®𝑥1) − 𝑔(𝑀)∥2 ≤
∥ 𝑓 ( ®𝑥2) − 𝑔(𝑀)∥2 if and only if ∥𝑀 ®𝑥1∥2 ≤ ∥𝑀 ®𝑥2∥2. This order
preservation property is a corollary of Theorem 2.1: The LHS of (2)
becomes larger when and only when ∥𝑀 ®𝑥 ∥2 (and hence the term
2∥𝑀 ®𝑥 ∥22) on the RHS becomes larger, since the other two terms
on the RHS, namely ∥ ®𝑥 ∥42 and ∥𝑀𝑇𝑀 ∥2

𝐹
, are constants (as D is

normalized and𝑀 is a given query matrix).

Theorem 2.1 ([10]). For any (𝑟 × 𝑑) query matrix 𝑀 and any
query vector ®𝑥 ∈ R𝑑 , it holds that

∥ 𝑓 ( ®𝑥) − 𝑔(𝑀)∥22 = ∥ ®𝑥 ∥42 + 2∥𝑀 ®𝑥 ∥22 + ∥𝑀𝑇𝑀 ∥2𝐹 , (2)

where ∥ · ∥𝐹 is the Frobenius norm defined in Definition 2.2.

Definition 2.2. The Frobenius norm of a matrix 𝑀 , denoted as
∥𝑀 ∥𝐹 , is defined as

√︃∑
𝑖, 𝑗 𝑚

2
𝑖, 𝑗
, the square root of the sum of the

squares of all scalars in𝑀 .

2.2 The Dimension Blowup Problem
The dimension blowup problem is that, this AMP reduces an ANNS-
SALT problem in which every data ®𝑥 ∈ D is 𝑑-dimensional, to an
ANNS-𝐿2 problem in which every (mapped) data vector 𝑓 ( ®𝑥) =

vec( ®𝑥 ®𝑥𝑇 ) is 𝑑2-dimensional. When 𝑑 is large, this blowup can have
a devastating impact on the indexing time as we will elaborate next,
if an LSH scheme is used to solve the resulting 𝑑2-dimensional
ANNS-𝐿2 problem.

Suppose an LSH scheme is used to solve the ANNS-𝐿2 problem of
searching in 𝑓 (D) for the nearest neighbor of𝑔(𝑀) = −vec(𝑀𝑇𝑀),
and to this end we have fixed a set, typically hundreds in cardinality,
of such LSH functions. To build the index (LSH hash tables) for
𝑓 (D), we need to evaluate every such LSH function on every 𝑑2-
dimensional mapped data vector in 𝑓 (D). Let ℎ(·) be one such LSH
function. Evaluatingℎ(·) on a mapped data vector 𝑓 ( ®𝑥) = vec( ®𝑥 ®𝑥𝑇 )
conceivably takes at least 𝑂 (𝑑2) time, since just to read the input
𝑓 ( ®𝑥) takes that long. As a result, the indexing time is intolerably



long for a large high-dimensional dataset as wewill elaborate in §6.3.
In comparison, in most other LSH-based ANNS schemes, this time
complexity (of evaluating each LSH function) is only 𝑂 (𝑑).

This 𝑑 → 𝑑2 blowup problem, with its devastating effect on
the indexing time, has been considered a vexing but unavoidable
side effect of this AMP ever since its invention in [10]. A standard
mitigation measure proposed in the literature [32] to this problem is
to sample a certain percentage (say 𝛼) of coordinates (dimensions)
and compute the LSH value based on the sampled coordinates.
However, to bring this time complexity down to a “comfortable”
level of𝑂 (𝑑), the sampling rate has to be as small as𝑂 (1/𝑑), but in
this case the error between the computed and actual LSH values is
unacceptably high when 𝑑 is large. As the dimensions of datasets
steadily increase over time, this dimensional blowup problem has
made this AMP increasingly unappealing [41], so much so that it
has all but been abandoned after [32].

We discover that this dimension blowup problem also arises in
a different (than ANNS-SALT) application called locality sensitive
teaching (LST) [36], for a different reason. The core idea of LST is to
accelerate the stochastic gradient descent (SGD) [22] computation,
that lies at the heart of modern machine learning, using LSH. It was
shown in [36] that, when the linear regression model and the qua-
dratic loss function are used, each SGD step therein reduces to the
problem of finding a 𝑑-dimensional vector ®𝑥 in a (teaching example)
dataset ∈ D such that the 𝑑2-dimensional vector vec( ®𝑥 ®𝑥𝑇 ) is, with
a decent probability (i.e., stochastically), close to a 𝑑2-dimensional
query vector in 𝐿2 distance. The ®𝑥-to-vec( ®𝑥 ®𝑥𝑇 ) blowup in this LST
solution results naturally from taking first derivative on the qua-
dratic loss function, and hence has nothing to do with this or any
AMP. From our understanding, unlike in ONIAK, nothing would
prevent LST [36] from properly doing its job when𝑑 is large. In [36],
this dimension blowup was mitigated using the aforementioned
technique of sampling a small percentage of coordinates.

2.3 FGoeQF for Fast GP-LSH Indexing
We propose a much better solution to this blowup problem in both
ONIAK and the LST solution [36]. This solution, called FGoeQF
(Fast GOEQuadratic Form) and to be described in §3, brings the time
complexity of hashing such a 𝑑2-dimensional vector vec( ®𝑥 ®𝑥𝑇 ) from
𝑂 (𝑑2) down to𝑂 (𝑑 log𝑑) without causing any accuracy loss, when
the LSH function family used is GP-LSH [12]. Given an input vector
®𝑦, a GP-LSH functionℎ( ®𝑦) is defined as ⌊(𝜂 ( ®𝑦)+𝑏)/𝑊 ⌋, where𝜂 (·) is
called the raw hash function,𝑊 > 0 is a constant, and 𝑏 is a random
variable (RV) (fixed after being generated) uniformly distributed in
[0,𝑊 ]. Here 𝜂 ( ®𝑦) ≜ ®𝜃𝑇 ®𝑦 is the raw hash value, where ®𝜃 (fixed after
being generated during the initialization) is a Gaussian random
vector defined as one that is comprised of i.i.d. standard Gaussian
RVs. Clearly, computing 𝜂 ( ®𝑦) accounts solely for the 𝑂 (𝑑2) time
complexity of computing ℎ( ®𝑦), since the other three steps (plus,
divide, and floor) have 𝑂 (1) time complexity.

It is not hard to verify that, for any 𝑑 × 𝑑 matrix 𝑀 , we have
vec(𝑀)𝑇 vec( ®𝑥 ®𝑥𝑇 ) ≡ 𝑄𝑀 ( ®𝑥), where 𝑄𝑀 ( ®𝑥) denotes the quadratic
form (as a function of ®𝑥 ∈ R𝑑 ) 𝑄𝑀 ( ®𝑥) ≜ ®𝑥𝑇𝑀 ®𝑥 and “≡” de-
notes the equality of two functions. Since, in the indexing phase of
ONIAK, the input ®𝑦 (to 𝜂 (·)) is always a mapped data vector 𝑓 ( ®𝑥) =
vec( ®𝑥 ®𝑥𝑇 ) for some ®𝑥 ∈ D, we have 𝜂 ( ®𝑦) ≡ ®𝜃𝑇 vec( ®𝑥 ®𝑥𝑇 ) ≡ 𝑄Θ ( ®𝑥),

where the 𝑑 × 𝑑 kernel Θ is related to the 𝑑2-dimensional vector ®𝜃
by ®𝜃 = vec(Θ), and 𝜂 ( ®𝑦) is viewed as a function of ®𝑥 . Now define
𝑍 ≜ (Θ + Θ𝑇 )/2. Since it is a well-known mathematical fact that
𝑄𝑍 ( ®𝑥) ≡ 𝑄Θ ( ®𝑥) (e.g., see [24] pp. 567), we have 𝜂 ( ®𝑦) ≡ 𝑄𝑍 ( ®𝑥).

Definition 2.3 ([5] pp. 6). A 𝑑 × 𝑑 random matrix Γ is GOE if
(1) Γ is symmetric and the scalars on the upper triangle are

(mutually) independent RVs.
(2) Every scalar on its diagonal has distribution N(0, 1), and

every scalar above its diagonal has distribution N(0, 1/2).

Since ®𝜃 is a 𝑑2-dimensional Gaussian random vector (by the
design of GP-LSH), Θ is a 𝑑 × 𝑑 Gaussian random matrix, defined
as one whose 𝑑2 scalars are i.i.d. standard Gaussian RVs. Hence,
𝑍 = (Θ + Θ𝑇 )/2 is a GOE matrix defined above in Definition 2.3.
Therefore, the (random function) 𝜂 ( ®𝑦) (viewed as a function of ®𝑥)
in a GP-LSH function ℎ( ®𝑦) can be replaced by a (random) GOE
Quadratic form (GoeQF) 𝑄𝑍 ( ®𝑥) without changing any statistical
property of ℎ( ®𝑦). With this replacement, the problem of computing
𝜂 ( ®𝑦) becomes that of computing 𝑄𝑍 ( ®𝑥). In § 3, we will describe
our FGoeQF technique that can compute a 𝑄𝑍 ( ®𝑥) (for any given
argument ®𝑥 ), approximately but accurately as far as the efficacy of
the GP-LSH function family is concerned in only 𝑂 (𝑑 log𝑑) time.

2.4 Low SNR Issue When 𝑑 Is Large
In addition to the dimension blowup problem, we need to deal with
another thorny issue when 𝑑 is large. Recall that using this AMP
(𝑓 (·) and 𝑔(·)), we have reduced the ANNS-SALT problem to the
ANNS-𝐿2 problem of searching for the nearest neighbor of 𝑔(𝑀)
in 𝑓 (D). The standard solution approach to the latter problem is
the aforementioned ONIAK, which is to index 𝑓 (D) using GP-LSH
hash tables [12], against which 𝑔(𝑀) is searched with multi-probe
enhancement [23]. The thorny issue is that when the dimension 𝑑 is
large (say 𝑑 > 200), ONIAK may no longer outperform linear scan
for the following reason: The signal-to-noise ratio (SNR) in this
ANNS-𝐿2 problem is typically 𝑂 (1/𝑑), which is very small when
𝑑 is large. This 𝑂 (1/𝑑) SNR issue is a fundamental limitation of
the AMP design (that ONIAK unfortunately has to inherit) and
was vaguely mentioned in [10]. For 𝑑 ≤ 200, ONIAK incorporates a
shifting (𝑔(𝑀) by a scaled identitymatrix) heuristic proposed in [10]
that can mitigate this issue to some extent, and the partitioning
method [37] for getting the most out of the weak signal.

In this ANNS-𝐿2 problem, the𝑂 (1/𝑑) scaling of SNR is the result
of AMP interacting with GP-LSH as follows. Let 𝜂 (·) be a GP-LSH
raw hash function as defined earlier. By (2) and the definition of
𝜂 (·), 𝑌 ≜ 𝜂 (𝑓 ( ®𝑥)) − 𝜂 (𝑔(𝑀)), the difference between the raw hash
values of a data vector 𝑓 ( ®𝑥) and the query vector𝑔(𝑀) in this ANNS-
𝐿2 problem, is a zero-mean Gaussian RV with variance (energy)
∥ ®𝑥 ∥42 + 2∥𝑀 ®𝑥 ∥22 + ∥𝑀𝑇𝑀 ∥2

𝐹
. Suppose ®𝑥∗ ∈ D minimizes ∥𝑀 ®𝑥 ∥2

or in other words ®𝑥∗ is the true nearest neighbor (of𝑀) in “SALT
distance”. Then 𝑌 ∗ ≜ 𝜂 (𝑓 ( ®𝑥∗)) − 𝜂 (𝑔(𝑀)) is a zero-mean Gaussian
RV with variance at least ∥ ®𝑥 ∥42 + ∥𝑀𝑇𝑀 ∥2

𝐹
(since 2∥𝑀 ®𝑥∗∥22 ≥ 0

and ∥ ®𝑥 ∥2 = ∥ ®𝑥∗∥2 in a normalized dataset). Intuitively, the role
𝜂 (·) plays in solving this ANNS-𝐿2 query is to tell (every other) ®𝑥
apart from ®𝑥∗ (so as to correctly output ®𝑥∗ as the final answer to the
query), by telling apart two Gaussian RVs 𝑌 and 𝑌 ∗. Telling apart
these two Gaussian RVs is a textbook problem in signal processing:



𝑌 ∗ ideally (with ∥𝑀 ®𝑥∗∥ = 0 being the ideal situation) contains
only a Gaussian noise with energy ∥ ®𝑥 ∥42 + ∥𝑀𝑇𝑀 ∥2

𝐹
whereas 𝑌 is

the sum of the Gaussian noise and a Gaussian signal with energy
2∥𝑀 ®𝑥 ∥22 ≥ 0. Hence 2∥𝑀 ®𝑥 ∥22/(∥ ®𝑥 ∥

4
2 + ∥𝑀𝑇𝑀 ∥2

𝐹
) is roughly the

SNR. It can be shown, under some mild assumptions (about the
singular values of𝑀), that 2∥𝑀 ®𝑥 ∥22/(∥ ®𝑥 ∥

4
2 + ∥𝑀𝑇𝑀 ∥2

𝐹
) (the SNR)

scales as 𝑂 (1/𝑑) when 𝑑 grows larger.
As mentioned earlier, our solution to the case of large 𝑑 (say

𝑑 > 200) is JLT, whose outperformance over LS grows roughly as
𝑂 (𝑑) (see Table 2). JLT does not outperform LS much (if any) when
𝑑 is small (say 𝑑 < 64). When 𝑑 is moderately large (say between
64 and 200), we propose to combine ONIAK with JLT as follows.
Given an (ANNS-ALT) query, we first obtain a list of candidates by
querying the ONIAK hash tables (index). We then apply the JLT
filter to these candidates, and compute the ground truth only for
the candidates that survive the filtering.

2.5 Reduce ANNS-ALT to ANNS-SALT
Having described the ONIAK solution to ANNS-SALT, in this sec-
tion we describe how an ANNS-ALT instance can be reduced to
an ANNS-SALT instance in two steps: a homogenization step and a
normalization step. LetD be the dataset in the ANNS-ALT instance
andD ′′ be the normalized homogenized dataset in the ANNS-SALT
instance resulting from the reduction. D ′′ is transformed from D,
using first a homogenization mapping𝜓 to be described in §2.5.1
and then a normalization mapping 𝜙 to be described in §2.5.2, as fol-
lows: Each vector ®𝑥 inD is mapped to a vector ®𝑥 ′′ = 𝜙 (𝜓 ( ®𝑥)) inD ′′,
or in other wordsD ′′ ≜ 𝜙 (𝜓 (D)). The goal of the homogenization
step (and the mapping𝜓 (·)) is to ensure that, given any ANNS-ALT
query (𝑀, ®𝑞) over D, we can correspondingly transform it to an
ANNS-SALT query𝑀 ′′ overD ′′ such that𝑀 ®𝑥 − ®𝑞 = 𝑀 ′′®𝑥 ′′ (called
homogenized) for any ®𝑥 ∈ D. As a result, for any 𝑘 > 0, the top-𝑘
vectors in D that minimizes ∥𝑀 ®𝑥 − ®𝑞∥2 (the true nearest neighbors
for the ANNS-ALT query (𝑀, ®𝑞)) correspond precisely to the top-𝑘
vectors in D ′′ that minimizes ∥𝑀 ′′®𝑥 ′′∥2 (the true nearest neigh-
bors for the ANNS-SALT query𝑀 ′′). The goal of the normalization
step (and and the mapping 𝜙 (·)) is to ensure that D ′′ is normalized
in the sense every mapped vector ®𝑥 ′′ = 𝜙 (𝜓 ( ®𝑥)) in it has the same
𝐿2 norm. Given a 𝑑-dimensional (which is the dimension of vectors
in D) ANNS-ALT problem, the ANNS-SALT problem thus reduced
from it has dimension 𝑑 + 2, since the homogenization step and
the normalization step each expands the dimension of the problem
by 1, as we will show. This tiny expansion clearly has negligible
impact on query efficiency and accuracy.

2.5.1 Homogenization. In this step, we map D to a homogenized
(but not yet normalized) datasetD ′ using the homogenization map-
ping𝜓 (·) as follows. For each ®𝑥 in D, we obtain the corresponding
®𝑥 ′ = 𝜓 ( ®𝑥) (in D ′) by appending a scalar of value 1 to the bottom
of (the column vector) ®𝑥 ; in other words we define ( ®𝑥 ′)𝑇 ≜ [®𝑥𝑇 ; 1].
Given each ANNS-ALT query (𝑀, ®𝑞), we transform it to a homog-
enized query 𝑀 ′, using a companion mapping of 𝜓 (·) as follows.
We obtain 𝑀 ′ by appending −®𝑞 as a new column to the right of
𝑀 ; or formally 𝑀 ′ ≜ [𝑀 ;−®𝑞]. It is not hard to verify that the
following homogenization goal is achieved: 𝑀 ®𝑥 − ®𝑞 = 𝑀 ′®𝑥 ′. In
computer graphics, the technique of mapping (𝑀, ®𝑞) to𝑀 ′ is called
homogeneous coordinates [10, 30].

2.5.2 Normalization. In the normalization step, we map D ′, the
homogenized dataset, to the aforementioned D ′′ that is both ho-
mogenized and normalized, using the aforementioned normaliza-
tion mapping 𝜙 (·). Let 𝑉 be an upper bound on the 𝐿2 norms of all
data items in D ′. For each ®𝑥 ′ in D ′, we obtain the corresponding
®𝑥 ′′ = 𝜙 ( ®𝑥 ′) (in D ′′) by appending a scalar of value

√︃
𝑉 2 − ∥®𝑥 ′∥22

to the bottom of (the column vector) ®𝑥 ′; in other words, we de-

fine ( ®𝑥 ′′)𝑇 ≜
[
( ®𝑥 ′)𝑇 ;

√︃
𝑉 2 − ∥®𝑥 ′∥22

]
. It is not hard to verify that

every ®𝑥 ′′ (thus normalized) inD ′′ has the same 𝐿2-norm of value𝑉 .
HenceD ′′ is normalized. Since each ®𝑥 ′ has been changed to ®𝑥 ′′ dur-
ing this normalization step, we need to correspondingly map (using
a companion mapping of 𝜙 (·)) a homogenized query𝑀 ′ to a query
𝑀 ′′ that remains homogenized in the sense𝑀 ′′®𝑥 ′′ = 𝑀 ′®𝑥 ′ = 𝑀 ®𝑥−®𝑞.
To this end, we obtain𝑀 ′′ by appending a column of zeros to the
right of𝑀 ′; in other words, we define𝑀 ′′ ≜ [𝑀 ′; ®0]. It is not hard
to verify that𝑀 ′′ remains homogenized in the above sense.

2.6 Scale ONIAK to Massive Datasets
In this subsection, we discuss how ONIAK can scale to massive
datasets that are too large to fit in memory and have to reside on
fast external memory such as solid-state drive (SSD) or non-volatile
memory (NVM) [26]. As explained earlier, ONIAK uses GP-LSH
hash tables with multi-probe [23], the design objective of which
is to minimize the index size. Hence its index can typically fit in
main memory (even when the dataset cannot), from which the
list of (ANNS-SALT) candidates can be obtained at high speed. Al-
though the remaining step of computing the ground truth has to
read these candidates from the fast external memory, the perfor-
mance bottleneck of this step is typically the 𝑂 (𝑑2) per-candidate
time complexity of the ground truth computation. In this case, the
query efficiency will not degrade much. Under rare circumstances
in which a dataset is so large that even this index cannot fit in mem-
ory, the resulting (from the AMP) ANNS-𝐿2 problem can instead
be solved using external memory LSH solutions, such as SRS [31],
QALSH [15] and PM-LSH [40]. In this case, FGoeQF plays an im-
portant role in reducing the indexing time since all these solutions
use GP-LSH functions.

3 FAST GOE QUADRATIC FORM (FGOEQF)
For ease of presentation, in this section we assume the dimension
𝑑 is a power of 2; if this is not the case, we can make it be at the
cost of inflating 𝑑 by at most a factor of 2. Our FGoeQF technique,
which can evaluate a GoeQF approximately in only𝑂 (𝑑 log𝑑) time,
works as follows. We can generate and fix (an instance of) a special
𝑑 × 𝑑 random matrix 𝑍 ′ that satisfies two nice properties: (1) 𝑍 ′ is
approximately distributed as GOE (see Definition 2.3); (2) evaluating
each 𝑄𝑍 ′ (·) has a time complexity of only 𝑂 (𝑑 log𝑑). Our FGoeQF
technique is simply to use such a𝑄𝑍 ′ (·) instance instead whenever
a precise GoeQF instance is needed.

This “almost GOE”matrix𝑍 ′ is defined as𝑍 ′ ≜ (𝑅′)𝑇Λ𝑅′, where
𝑅′ and Λ are independent 𝑑 × 𝑑 random matrices, Λ is a diagonal
matrix drawn from the eigenvalue distribution of the GOE (see Def-
inition 3.1), and 𝑅′ is a uniformly pseudorandom rotation proposed
in [6] as a cheaper replacement for a (truly) uniformly random rota-
tion 𝑅 (see Definition 3.2). This 𝑅′ is defined as 𝑅′ ≜ 𝐻𝐷3𝐻𝐷2𝐻𝐷1,



where 𝐻 is the 𝑑 × 𝑑 (normalized) Hadamard matrix 𝐻𝑑 defined
below in Definition 3.3. Here 𝐷1, 𝐷2, and 𝐷3 are three independent
random diagonal matrices, and in each 𝐷𝑖 , 𝑖 = 1, 2, 3, the scalars on
the diagonal are i.i.d. RVs that each takes values −1 and 1 each with
probability 1/2.𝑅′ is an orthonormalmatrix (see Definition 3.2, a.k.a.
roation) because 𝐻 and each 𝐷𝑖 is, and the product of orthonormal
matrices is also orthonormal.

Definition 3.1 ([24] pp. 517). The spectral decomposition of a sym-
metric matrix𝑀 takes the form 𝑅𝑇Λ𝑅 = 𝑀 , where 𝑅 is an orthonor-
mal matrix and Λ is a diagonal matrix. If𝑀 is a random matrix (say,
with distribution M), then both Λ and 𝑅 are also random matrices.
We call the distribution of Λ the eigenvalue distribution of M.

Definition 3.2. A 𝑑 × 𝑑 matrix 𝑀 is said to be orthonormal if
𝑀𝑇𝑀 = 𝐼𝑑 . Every 𝑑 × 𝑑 orthonormal matrix corresponds to a ro-
tation on the Euclidean space R𝑑 , and vice versa. The set of 𝑑 × 𝑑

orthonormal matrices form a topological group called the orthogo-
nal group 𝑂𝐺 (𝑑), on which probability measures can be rigorously
defined. The uniform distribution over𝑂𝐺 (𝑑), called the Haar mea-
sure, is defined as the unique measure that is invariant under rota-
tions (see Theorem F.13 in [5]). In other words, a uniformly random
rotation is defined as an orthonormal matrix that is distributed by
the Haar measure on 𝑂𝐺 (𝑑).

Definition 3.3. The normalized Hadamard matrix is defined
as follows. For the base case, the 2 × 2 Hadamard matrix 𝐻2

is defined as 1/
√
2 ·

[
1 1
1 −1

]
. Then, for any 𝑑 that is a power

of 2, the 𝑑 × 𝑑 Hadamard matrix 𝐻𝑑 is defined recursively as

1/
√
2 ·

[
𝐻𝑑/2 𝐻𝑑/2
𝐻𝑑/2 −𝐻𝑑/2

]
.

Time complexity analysis. Given any input vector ®𝑥 , the qua-
dratic form 𝑄𝑍 ′ ( ®𝑥) = ®𝑥𝑇𝑅′𝑇Λ𝑅′®𝑥 = (𝑅′®𝑥)𝑇Λ(𝑅′®𝑥) = ®𝑢𝑇Λ®𝑢 can
be computed in 𝑂 (𝑑 log𝑑) time as follows. Here ®𝑢 ≜ 𝑅′®𝑥 =

𝐻𝐷3𝐻𝐷2𝐻𝐷1 ®𝑥 . We can perform the six matrix-vector multipli-
cations in 𝐻𝐷3𝐻𝐷2𝐻𝐷1 ®𝑥 from right to left (to obtain the value of
®𝑢) in 𝑂 (𝑑 log𝑑) time since multiplying each 𝐷𝑖 , 𝑖 = 1, 2, 3, to a vec-
tor takes𝑂 (𝑑) time, and multiplying 𝐻 to a vector takes𝑂 (𝑑 log𝑑)
time, using the fast Walsh-Hadamard transform (FWHT), which is
a special form of fast Fourier transform (FFT) [1, 2]. Once we have
the value of ®𝑢, we can compute 𝑄𝑍 ′ ( ®𝑥) = ®𝑢𝑇Λ®𝑢 =

∑𝑑
𝑖=1 (𝜆𝑖,𝑖 )𝑢2𝑖 in

𝑂 (𝑑) time.
Theoretical justification. The random matrix 𝑍 ′ used in FGoeQF
is close to a GOE matrix in distribution for the following reason.
Let 𝑍 be a 𝑑 × 𝑑 matrix defined as 𝑍 ≜ 𝑅𝑇Λ𝑅, where 𝑅 is a uni-
formly random rotation, and Λ is a diagonal matrix drawn from the
eigenvalue distribution of the GOE. Theorem 3.4 below implies that
𝑍 is distributed exactly as a GOE matrix. Comparing the random
matrix 𝑍 ′ ≜ 𝑅′𝑇Λ𝑅′ with 𝑍 , it is clear that their only difference
is that a uniformly pseudorandom rotation 𝑅′ ≜ 𝐻𝐷3𝐻𝐷2𝐻𝐷1 is
used in defining 𝑍 ′ whereas a (truly) uniformly random rotation
(see Definition 3.2) 𝑅 is used in defining 𝑍 . However, it was shown
empirically in [6] and theoretically in [11] that 𝑅′ is very close to 𝑅
in distribution. Hence, 𝑍 ′ is very close to 𝑍 (GOE) in distribution.

Theorem 3.4 (Corollary 2.5.4 in [5]). Let𝑀 be a GOE random
matrix, and𝑀 = 𝑅𝑇

𝑀
Λ𝑀𝑅𝑀 be its spectral decomposition. Then the

following properties hold:

(1) Λ𝑀 and 𝑅𝑀 are independent random matrices.
(2) 𝑅𝑀 is a uniformly random rotation, or in other words a ran-

dom orthonormal matrix distributed by the Haar measure.

Empirical verification. It was shown in [12] that all statisti-
cal properties of, and consequently all the accuracy and the ef-
ficiency guarantees of the GP-LSH scheme, can be derived from
the following distributional property of a GP-LSH raw hash func-
tion 𝜂 ( ®𝑦) = ®𝜃𝑇 ®𝑦: Given any input vector ®𝑦, the RV ®𝜃𝑇 ®𝑦 (whose
randomness comes from the randomness of ®𝜃 ) needs to be dis-
tributed as N(0, ∥ ®𝑦∥22). Translated into the ONIAK context, where
®𝑦 = vec( ®𝑥 ®𝑥𝑇 ) and hence ∥ ®𝑦∥22 = ∥ ®𝑥 ∥42, replacing 𝜂 ( ®𝑦) with 𝑄𝑍 ′ ( ®𝑥)
is harmless to GP-LSH as long as the distribution of𝑄𝑍 ′ ( ®𝑥) is close
to N(0, ∥ ®𝑥 ∥42). We have verified this closeness through extensive
Monte Carlo simulations.
FJLT – An alternative to FGoeQF. As mentioned in §2.3, 𝜂 ( ®𝑦) ≡
𝜂 (vec( ®𝑥 ®𝑥𝑇 )) ≡ 𝑄Θ ( ®𝑥), where Θ is a Gaussian random matrix. We
have discovered another technique for computing 𝑄Θ ( ®𝑥) approxi-
mately also in 𝑂 (𝑑 log𝑑) time. This technique is based on a theory
result, called fast Johnson-Lindenstrauss transform (FJLT) [2], for
generating a pseudorandom matrix Θ′ that has two properties: (i)
Θ′ is close to Θ in distribution; and (ii) given any input ®𝑥 , Θ′®𝑥 and
hence 𝑄Θ′ ( ®𝑥) = ®𝑥𝑇Θ′®𝑥 can be computed in 𝑂 (𝑑 log𝑑) time. Our
FJLT-based technique is simply to generate and use such a 𝑄Θ′ (·)
wherever a 𝑄Θ (·) is called for. However, this FJLT-based technique
is not our preferred scheme, because it is at least an order of magni-
tude slower than FGoeQF when 𝑑 is large (say 𝑑 ≥ 1000), according
to our measurements.

4 BABY PROBLEMS OF ANNS-ALT
In this section, we describe all baby problems of ANNS-ALT that
we are aware of. They include the aforementioned ANNS in Maha-
lanobis distance (§4.1), ANNS in weighted 𝐿2 distance (§4.2), and
subspace-to-point ANNS problems (§4.3). Each subspace-to-point
ANNS problem has a dual form. As readers might have guessed,
each such dual form can be reduced to, and solved as, a dual problem
of ANNS-ALT as we will show in §4.4.

4.1 ANNS in Mahalanobis Distance (ANNS-M)
Both static (with a fixed kernel) and general (with changing ker-
nels) ANNS-M have a wide range of applications in data analytics
such as 𝑘-nearest neighbor (𝑘NN) classification [14, 20, 39], out-
lier detection [28] and clustering [34]. Since we have described
static ANNS-M in §1.1, here we focus on general ANNS-M and
describe two application scenario types of it: (1) online learning;
and (2) many different learning jobs over the same (massive) dataset
running concurrently.

In an online Mahalanobis learning scenario, the arrival of train-
ing data is a gradual and continuous process, and so is the process
of learning the right kernel. Initially, the starting kernel Σ0 is the
identity matrix (in which case the Mahalanobis distance is the same
as the 𝐿2 distance). Then, after a set of new training instances (data
items and their labels) T1 arrive, the learning process learns a more
accurate kernel Σ1 incrementally, bymodifying Σ0 [39] to fitT1. The
fitting procedure involves performing ANNS-M queries in which



the query kernel is Σ0 and the query vectors are T1. In this incre-
mental way, we learn, as training instances stream in, a sequence
of kernels Σ𝑖 , 𝑖 = 1, 2, · · · , by processing a corresponding sequence
of dynamic ANNS-M queries with kernels Σ𝑖−1, 𝑖 = 1, 2, · · · . Σ𝑖
usually gradually converges to the right kernel for the application
when 𝑖 becomes larger.

If we were to use the aforementioned (naive) Rebuild LSH ap-
proach for processing such a sequence of ANNS-M queries, then
when the kernel changes, say, from Σ𝑖 = 𝑈𝑇

𝑖
𝑈𝑖 to Σ𝑖+1 = 𝑈𝑇

𝑖+1𝑈𝑖+1,
the current index on𝑈𝑖 (D) needs to be scratched, and a new index
on𝑈𝑖+1 (D) needs to be built, which as explained earlier is an ex-
pensive process. Intuitively there is considerable wasted effort here,
since in an online Mahalanobis learning application, the difference
between Σ𝑖 and Σ𝑖+1 can be quite small [39]. OASIS [39] minimizes
such waste by taking full advantage of this “locality pattern” as
follows: Whenever the difference between Σ𝑖 and Σ𝑖+1 is small, the
current index on 𝑈𝑖 (D) can continue to be used lazily for process-
ing ANNS-M queries with the new kernel Σ𝑖+1, at a small accuracy
loss, so that the expensive re-indexing process can be avoided.

The other application scenario type is to concurrently run many
different learning jobs over the same dataset D that each generates
a sequence of static ANNS-M queries over D. The kernels used by
these jobs can be very different from one another, since these jobs
can have completely different objectives and depend on very differ-
ent subsets of coordinates. Since these jobs are concurrent, their
respective sequences of static ANNS-M queries interleave with one
another to form an aggregate sequence of general ANNS-M queries.
To process this aggregate query sequence, we can certainly treat
each such static ANNS-M query sequence as an ANNS-𝐿2 query
sequence as explained in §1.1. However, to do so, for processing
each such sequence (say with kernel Σ = 𝑈𝑇𝑈 ) we need to store
(in memory) a separate index (comprised of the mapped dataset
𝑈 (D) and GP-LSH hash tables for indexing 𝑈 (D)) that is clearly
larger than the size of D. When the number of jobs and the size
of D are both large, the total size of these indices can become too
large to fit in main memory.

In comparison, when 𝑑 is not large, ONIAK is a more scalable so-
lution approach, since we can process the entire aggregate query se-
quence using a single universal index that is typically much smaller
(explained in §2.6) than the size of D; and when 𝑑 is large, JLT is a
more scalable approach since it does not require an index.

We now describe an example application scenario of this type,
the objective of which is to learn the relationships between gene
expression level and various diseases. Human gene expression level
(GEL) is a vector of about 20,000 dimensions, each scalar of which
corresponds to one gene [3]. Each GEL instance corresponds to
cells sampled from a human subject, in which each scalar is a
quantitative measure of how active the corresponding gene is in
the cells. A fundamental problem in life sciences is to find the
causal relationship between a GEL instance and the behavior of the
corresponding cells (called phenotype) with respect to a disease of
interest. Now imagine that a medical research institute has collected
a dataset D containing a large number of GEL instances (vectors).
D is queried by many medical research teams around the world
concurrently. Each research team studies a certain disease, and its
learning job generates a stream of static ANNS-M queries over D

concerning the disease. Since each job concerns a different disease,
the Mahalanobis kernels used in these jobs are generally different
from one another.

4.2 ANNS in Weighted 𝐿2 Distance
Another baby problem of ANNS-ALT is ANNS in weighted 𝐿2
distance, or ANNS-W𝐿2 for short. A weighted 𝐿2 distance met-
ric (for R𝑑 ) is parameterized by a weight vector ®𝜆. For any two
𝑑-dimensional vectors ®𝑥 and ®𝑦, the weighted 𝐿2 distance be-

tween them is defined as
(∑𝑑

𝑖=1 𝜆
2
𝑖
(𝑥𝑖 − 𝑦𝑖 )2

)1/2
. In ANNS-W𝐿2,

the weight vectors are generally different across different queries,
which makes it a much harder problem than (unweighted) ANNS-
𝐿2. ANNS-W𝐿2 is a special case of dynamic ANNS-M in which each
kernel is a (different) diagonal matrix.

Before this work, SL-ALSH [19] is the only solution to ANNS-
W𝐿2 in the literature. Like ONIAK, SL-ALSH also first employs an
AMP to reduce the original ANNS problem (in this case ANNS-W𝐿2)
to ANNS-𝐿2, and then builds an index for the resulting ANNS-𝐿2.
However, the AMP used in SL-ALSH is fundamentally different
than that used in ONIAK in the following way: Whereas the AMP
in ONIAK (see §2.1) is strictly order-preserving between any afore-
mentioned trio of vectors ®𝑥1, ®𝑥2, and ®𝑞, as we have proved in (2),
AMP in SL-ALSH is approximately order-preserving only when
every scalar in this trio has a small absolute value. This is because
SL-ALSH approximates the function cos(𝑡) using 1 − 𝑡2/2, the first
two terms of its Taylor series, and the approximation error is small
only when 𝑡 is close to 0. We will compare the efficacies of ONIAK
and SL-ALSH in processing ANNS-W𝐿2 queries in §6.2.

4.3 Subspace-to-Point Problems
In this section, we describe three closely related subspace-to-point
(S2P) ANNS problems that are also baby problems of ANNS-ALT.
For ease of presentation, we adopt the convention that every point
or subspace lies in a 𝑑-dimensional Euclidean space (𝑑 is called the
ambient dimension). In S2P ANNS, the dataset D contains a large
number of 𝑑-dimensional vectors like before, and the query 𝑆 is
a 𝜌-dimensional (1 ≤ 𝜌 < 𝑑) affine subspace of R𝑑 . The goals of
these three S2P ANNS problems are to find ®𝑥 ∈ D such that (1)
𝑑𝑖𝑠𝑡 ( ®𝑥, 𝑆) (the 𝐿2 distance from the query subspace 𝑆 to a point ®𝑥)
is the smallest (called MinDistS2P); (2) the projection of ®𝑥 onto 𝑆 ,
denoted as 𝑃𝑆 ( ®𝑥), has the smallest 𝐿2 norm (called MinProjS2P);
and (3) 𝑃𝑆 ( ®𝑥) has the largest 𝐿2 norm (called MaxProjS2P), respec-
tively. Among the three, MinDistS2P has many applications in
computer vision [10, 32]. We note that AMP-based solutions for
MinDistS2P were proposed in [10], but no efficient solution exists
for MinProjS2P and MaxProjS2P until this work.

In the following, we show how each of these three S2P ANNS
problems can be reduced to ANNS-ALT. To this end, we first state an
elementary fact in linear algebra: Every 𝜌-dimensional (1 ≤ 𝜌 < 𝑑)
affine subspace 𝑆 can be represented as a set of 𝑑-dimensional vec-
tors in the form of {®𝑧 | 𝐴®𝑧 = ®𝑏}, where ®𝑏 is a (𝑑 − 𝜌)-dimensional
vector, and 𝐴 is a (𝑑 − 𝜌) × 𝑑 matrix with orthonormal rows in
the sense that 𝐴𝐴𝑇 is equal to the (𝑑 − 𝜌) × (𝑑 − 𝜌) identity ma-
trix 𝐼𝑑−𝜌 [24]. Every affine subspace that appears in the sequel is
assumed to have such an orthonormalized representation.



4.3.1 Reduce MinDistS2P to ANNS-ALT. By Theorem 4.1, a
MinDistS2P query, in which the query subspace 𝑆 is the same as
the 𝑆 defined in Theorem 4.1, is equivalent to the following ANNS-
ALT query: The query matrix is 𝑀 = 𝐴𝑇𝐴 and the query vector
is ®𝑞 = 𝐴𝑇 ®𝑏; the objective is to find ®𝑥 ∈ D such that ∥𝑀 ®𝑥 − ®𝑞∥2 is
minimized. We note the AH2PS problem [32] described in §2.1 is
a special case of MinDistS2P, in which each query subspace is a
(𝑑 − 1)-dimensional linear subspace (aka. hyperplane) in the form
{®𝑧 | ®𝑎𝑇 ®𝑧 = 0}.

Theorem 4.1 ([24] pp. 430). Let 𝑆 = {®𝑧 | 𝐴®𝑧 = ®𝑏} be an affine
subspace of R𝑑 and ®𝑥 be a 𝑑-dimensional vector. Then 𝑑𝑖𝑠𝑡 ( ®𝑥, 𝑆) (in
𝐿2) is equal to ∥𝐴𝑇𝐴®𝑥 −𝐴𝑇 ®𝑏∥2.

4.3.2 Reduce MinProjS2P to ANNS-ALT. By Theorem 4.2(1), a Min-
ProjS2P query, in which the query subspace 𝑆 is the same as the 𝑆
defined in Theorem 4.2, is equivalent to the following ANNS-ALT
query: The query matrix is𝑀 = 𝐼𝑑 −𝐴𝑇𝐴 and the query vector is
®𝑞 = ®0; the objective is to find ®𝑥 ∈ D such that ∥𝑀 ®𝑥 ∥2 is minimized.

Theorem 4.2 ([24] pp. 430). Let 𝑆 = {®𝑧 | 𝐴®𝑧 = ®𝑏} be any affine
subspace of R𝑑 and ®𝑥 be any 𝑑-dimensional vector. We have

(1) 𝑃𝑆 ( ®𝑥) = (𝐼𝑑 −𝐴𝑇𝐴) ®𝑥 .
(2) If 𝑆 is a linear subspace (defined as an affine subspace that

contains the ®0 vector), then we have ∥ ®𝑥 ∥22 = ∥𝑃𝑆 ( ®𝑥)∥22 +
𝑑𝑖𝑠𝑡2 ( ®𝑥, 𝑆) by the Pythagorean theorem.

4.3.3 Reduce MaxProjS2P to ANNS-ALT. Here we only show how
to reduce MaxProjS2P to MinDistS2P, which can be reduced to
ANNS-ALT as explained earlier.We first state a simplemathematical
fact needed in this reduction: Let 𝑆 = {®𝑧 | 𝐴®𝑧 = ®𝑏} be any affine
subspace ofR𝑑 , and 𝑆 ′ = {®𝑧 | 𝐴®𝑧 = ®0} be the linear subspace parallel
to 𝑆 ; then given any 𝑑-dimensional vector ®𝑥 , we have 𝑃𝑆 ( ®𝑥) =

𝑃𝑆′ ( ®𝑥). Thanks to this fact, we can assume that the query 𝑆 is a
linear subspace. We let 𝑆 = {®𝑧 | 𝐴®𝑧 = ®0} in the sequel.

For the MaxProjS2P-to-MinDistS2P reduction, we need the
dataset D to be normalized (every ®𝑥 ∈ D has the same 𝐿2-norm).
Then, MaxProjS2P is equivalent to MinDistS2P, since the ®𝑥 ∈ D
that maximizes ∥𝑃𝑆 ( ®𝑥)∥2 is the same as that minimizes 𝑑𝑖𝑠𝑡 ( ®𝑥, 𝑆),
due to Theorem 4.2(2).

4.4 Dual Point-to-Subspace Problems
All three (primal) subspace-to-point ANNS problems have corre-
sponding dual problems, in which the roles of the data items (in the
dataset D) and the query are reversed. We refer to these dual prob-
lems as point-to-subspace (P2S) ANNS. In P2S ANNS, the dataset
D∗ contains a large number of affine subspaces 𝑆1, 𝑆2, · · · , 𝑆𝑛 ⊆ R𝑑 ,
whereas each query is a 𝑑-dimensional vector ®𝑥 . The three P2S
ANNS problems are to find the affine subspace 𝑆 ∈ D∗ such that
(1) 𝑑𝑖𝑠𝑡 ( ®𝑥, 𝑆) is the smallest (this problem is the dual of MinDistS2P,
and we call itMinDistP2S); (2) the projection 𝑃𝑆 ( ®𝑥)) has the smallest
𝐿2 norm (this problem is the dual of MinProjS2P, and we call itMin-
ProjP2S); and (3) 𝑃𝑆 ( ®𝑥) has the largest 𝐿2 norm (this problem is the
dual of MaxProjS2P, and we call it MaxProjP2S), respectively. Like
for the primal cases, AMP-based solutions for MinDistP2S were
proposed in [10], but no efficient solution exists for MinProjP2S
and MaxProjP2S until this work.

All three dual problems are baby problems of the dual of
the ANNS-ALT that we call ANNS-ALTD, in which the for-
mats of the data items and the query are similarly reversed. In
ANNS-ALTD, the dataset D∗ is a set of tuples in the form of
{(𝑀1, ®𝑞1), (𝑀2, ®𝑞2), · · · , (𝑀𝑛, ®𝑞𝑛)} whereas each query is a vector
®𝑥 . The objective of ANNS-ALTD is to find (𝑀, ®𝑞) ∈ D∗ that mini-
mizes ∥𝑀 ®𝑥 − ®𝑞∥2. ANNS-ALTD can be solved in a way that can be
considered the dual of ONIAK, as we will describe shortly.

In the interest of space, we show only how one of the P2S ANNS
problems, namely MinDistP2S, is reduced to ANNS-ALTD. Like in
the formulation of the primal problems, we assume every affine
subspace in the MinDistP2S dataset 𝑆 ∈ D∗

1 is in the form {®𝑧 |
𝐴®𝑧 = ®𝑏}, and the query is ®𝑥 . Since 𝑑𝑖𝑠𝑡 ( ®𝑥, 𝑆) = ∥𝐴𝑇𝐴®𝑥 − 𝐴𝑇 ®𝑏∥2
(shown in Theorem 4.1), the MinDistP2S problem can be viewed
as the following ANNS-ALTD instance: The ANNS-ALTD dataset
D∗

2 (transformed fromD∗
1 ) is {(𝑀1, ®𝑞1), (𝑀2, ®𝑞2), · · · , (𝑀𝑛, ®𝑞𝑛)}, in

which𝑀𝑗 = 𝐴𝑇
𝑗
𝐴 𝑗 and ®𝑞 𝑗 = 𝐴𝑇

𝑗
®𝑏 𝑗 , for 𝑗 = 1, 2, · · · , 𝑛; and the query

is also ®𝑥 .
Finally, we describe our “ONIAK-dual” and “JLT-dual” solutions

to ANNS-ALTD. Like how we reduce ANNS-ALT to ANNS-SALT,
we can similarly reduce ANNS-ALTD to a simple form that we refer
to as simple ANNS-ALTD, or ANNS-SALTD in short; we omit the
detail of the reduction in the interest of space. In ANNS-SALTD, the
dataset D∗ is simply a set of matrices {𝑀1, 𝑀2, · · · , 𝑀𝑛}, and the
objective is to find 𝑀 ∈ D∗ that minimizes ∥𝑀 ®𝑥 ∥2 given a query
®𝑥 ; in addition, each matrix 𝑀 in D∗ is assumed to be normalized
in the sense ∥𝑀𝑇𝑀 ∥𝐹 is the same for every𝑀 ∈ D∗. Our ONIAK-
dual solution to this ANNS-SALTD problem (when 𝑑 is not too
large) works as follows. Recall that in the (primal) ONIAK solution
to (primal) ANNS-SALT, we index 𝑓 (D) ≜ {vec( ®𝑥 ®𝑥𝑇 ) | ®𝑥 ∈ D}
using GP-LSH, and search 𝑔(𝑀) = −vec(𝑀𝑇𝑀) (given a query
𝑀) against the GP-LSH index. In ONIAK-dual, we instead index
𝑔(D∗) ≜ {−vec(𝑀𝑇𝑀) | 𝑀 ∈ D∗} using GP-LSH, and search
𝑓 ( ®𝑥) = vec( ®𝑥 ®𝑥𝑇 ) (given a query ®𝑥 ) against the GP-LSH index. Our
JLT-dual solution (when 𝑑 is large) is simply to “JLT” each 𝑀𝑗 to
𝑀 ′

𝑗
= Θ𝑀𝑗 (that contains only 𝑙 ≪ 𝑑 rows) at the indexing stage

and store these (𝑀 ′
𝑗
)′𝑠 as its index. Then, like in our JLT solution,

we perform relatively cheap𝑀 ′
𝑗
®𝑥 computations to filter out most

of unpromising candidates.

5 ANNS-M PERFORMANCE EVALUATION
Recall that our ANNS-ALT solution is ONIAK when 𝑑 ≤ 200 and
is JLT (linear scan with JLT filtering) otherwise. In this section,
we evaluate the efficacies of ONIAK and JLT for ANNS-M only.
We compare them against OASIS [39], the state-of-the-art ANNS-
M solution, and linear scan (LS). As will be detailed in §5.3, we
use ANNS-M workloads in which (Mahalanobis) kernels used in
successive ANNS-M queries often differ very little from one another.
Such workloads put OASIS at an advantage in its performance
comparison with all other algorithms, since only OASIS can take
advantage of such “locality patterns”.

5.1 Experiment Settings
5.1.1 Evaluation Datasets and Workload. We use a similar set of
datasets as those used in evaluating OASIS [39]. These datasets are



listed in Table 1. They include a low-dimensional real-world dataset
named HEPMASS-27 [8] and three high-dimensional synthetic
datasets named SYN-254, SYN-510 and SYN-1024, respectively. All
datasets are labeled for binary classification, and their labels are
used to generate workloads (Mahalanobis query matrices) based on
an online (Mahalanobis) learning scenario (described in §4.1) using
the same code and under the same settings as in the evaluation of
OASIS in [39].

We use three synthetic datasets because of the difficulty in find-
ing large high-dimensional datasets that have binary labels [39].
These datasets (both data and query points and their labels) are gen-
erated using the make_classificationmethod in scikit-learn [29]
as suggested by the authors of OASIS [39]. In this way, the online
Mahalanobis learning (used in workload generation) is a nontrivial
process and as a result, the𝑛𝑞 = 100ANNS-M queries have different
(gradually changing) Mahalanobis kernels.

Table 1: Datasets used in ANNS-M evaluation.

Dataset 𝑛 𝑑 𝑛𝑞 Type
HEPMASS-27 [8] 10.0M 27 100 Physics
SYN-254 1.0M 254 100 Synthetic
SYN-510 1.0M 510 100 Synthetic
SYN-1022 1.0M 1,022 100 Synthetic

5.1.2 Performance Metrics. We mainly evaluate the query effi-
ciency at a similar query accuracy. Query efficiency is measured
by the average gross query time over the 100 queries. Recall that
OASIS needs to perform re-indexing (re-projection plus re-hashing)
when the Mahalanobis kernel Σ𝑖 differs significantly from the last
kernel Σ𝑖−1 as explained in §4.1. We divide the gross query time of
OASIS into two parts: the (total) re-indexing time and the (total) net
query time. For ONIAK, LS, and JLT, the gross query time is equal
to the net query time since they have no re-indexing operations.

We measure query accuracy mainly by recall@50, which is de-
fined as follows: For a query tuple (Σ, ®𝑞), let the query result of the
first 𝑘 = 50 nearest neighbors (of ®𝑞) in the Mahalanobis distance
𝐷Σ
𝑀

be a set 𝑅, and 𝑅∗ be the set of actual 𝑘 nearest neighbors to ®𝑞
in 𝐷Σ

𝑀
. Then, recall@50 is equal to |𝑅∩𝑅∗ |/𝑘 . We also measured re-

calls under any other values of 𝑘 ranging from 1 to 100 (commonly
used in the ANNS literature [21, 39]). The results are similar for
most of our experiments.

5.1.3 JLT Parameter Settings. We use JLT on the three high-
dimensional datasets SYN-254, SYN-510 and SYN-1022. Recall that
JLT maps a 𝑑 × 𝑑 query matrix𝑀 to an 𝑙 × 𝑑 matrix using an 𝑙 × 𝑑

Gaussian random matrix Θ (described in §1.3). In our experiments,
we set 𝑙 = 15 when 𝑑 = 254, 𝑙 = 30 when 𝑑 = 510, and 𝑙 = 40 when
𝑑 = 1022.

5.2 Implementation Details
5.2.1 Re-implementation of Parts of OASIS in C++. Since OA-
SIS [39] is implemented in Python, for a fair comparison of running
times, we re-implement in C++ all code components of OASIS for
processing an ANNS-M query except the following three: (i) the

re-hashing operation, as a part of the re-indexing operation; (ii) ob-
taining the list of ANNS-M candidates (by hashing the query vector
and reading out the contents of the corresponding hash buckets),
as a part of ANNS-M query processing; and (iii) the computation of
ground truth (ANNS-M distances between the query point and the
ANNS-M candidates), also as a part of ANNS-M query processing.
We now explain how we handle these three components. Compo-
nent (i) includes two parts: computing the GP-LSH hash values (for
each ®𝑥 ∈ D) and inserting each such ®𝑥 into the GP-LSH hash tables.
We reimplement in C++ the first part and measure its running time.
We do not “charge” OASIS for the second part to OASIS’ advantage.
We also do not “charge” OASIS for component (ii). As to component
(iii), its running time can be accurately estimated as follows. We
have already implemented using C++ the code (common for OASIS,
ONIAK, JLT, and LS) for computing a single ground truth distance,
which involves a matrix-vector multiplication, and accurately mea-
sured its running time that we denote as 𝛿 . To arrive at the running
time of component (iii) for processing an ANNS-M query, we first
obtain the exact number of candidates from its Python run and
multiply this number to 𝛿 . This estimation is accurate, since each
such matrix-vector multiplication involves the same number of
arithmetic operations. To summarize, we “charge OASIS strictly in
C++” if we “charge” OASIS at all.

We now state two facts that we will use in §5.3. The first fact
is that a linear scan and a re-projection operation take exactly the
same amount of time 𝑛𝛿 to perform since both involve the same 𝑛
matrix-vector multiplications, where 𝑛 = |D|. The second fact is
that the running time of OASIS component (iii), which we deem the
net query time (defined next) of OASIS in its performance reporting
(to OASIS’ advantage), is equal to that of a linear scan (𝑛𝛿) multiplied
by the selectivity that we denote as 𝛾 , where selectivity is defined
in the ANNS literature (e.g., [27]) as the percentage of data vectors
in D that are selected to be ANNS candidates (of which the ground
truth is computed for reaching a target recall).

5.2.2 Other Implementation Details. We implement ONIAK in C++
based on the open-source FALCONN [25] library. Both the matrix-
matrix (for JLT) and the matrix-vector (for ground truth) multipli-
cations are implemented using the highly optimized C++ library
Eigen [17]. We compile all C++ source code using g++ 7.5 with
-O3. In this work, all experiments are conducted on a workstation
running Ubuntu 18.04 with Intel(R) Core(TM) i7-9800X 3.8GHz
CPU, 128GB DRAM and 4 TB hard disk drive (HDD).

Table 2: Query time (in seconds) with recall@50 > 0.8.

Dataset ONIAK OASIS OASIS+JLT LS JLT
HEPMASS-27 0.85 0.34+0.07 - 1.37 -
SYN-254 - 2.52+0.64 2.52+0.07 5.87 0.54
SYN-510 - 10.52+3.01 10.52+0.18 23.13 1.16
SYN-1022 - 71.17+26.56 71.17+0.62 166.02 3.31

5.3 Experimental Results
Table 2 shows the average query times of all benchmark algorithms.
For a more insightful comparison, for OASIS, we break down each



(gross) query time into two parts: the re-indexing time (𝑡1) and the
net query time (𝑡2). The net query time of OASIS should include the
running times of the aforementioned code components (ii) and (iii),
and the amount of time it takes to hash the query vector. However,
in Table 2 we “charge” OASIS only for (iii) to OASIS’ advantage.
Each query time of OASIS in Table 2 is written as “𝑡1 + 𝑡2”. For
all solutions, each query time in Table 2 is the average over 100
corresponding ANNS-M queries.

As explained earlier, our solution is ONIAK for HEPMASS-27,
since JLT does not offer any performance boost for a small 𝑑 of
27, and our solution is JLT for SYN-254, SYN-510, and SYN-1022,
since their dimensions are all larger than 200. We did not measure
the query times of other combinations, so the corresponding en-
tries in Table 2 are marked as “-”. As shown in Table 2, OASIS has
a shorter query time than ONIAK on HEPMASS-27. This outper-
formance of OASIS is due to two factors. The first factor is that
the “custom-built” (for a kernel Σ𝑖 ) index of OASIS is better than
the universal index (for all kernels) of ONIAK: On HEPMASS-27,
the average selectivity (defined in §5.2.1) for OASIS is very small
at 0.05 (= 0.07/1.37 as explained in §5.2.1), and that for ONIAK
is quite large at 0.48. On the three higher-dimensional datasets,
OASIS’ selectivities are slightly higher at 0.11, 0.13, and 0.16 respec-
tively, which is consistent with the fact that the ANNS-𝐿2 query
(over𝑈𝑖 (D)) becomes increasingly more difficult to process when
𝑑 becomes larger. The second factor is that over the HEPMASS
ANNS-M workload, OASIS has a very low “miss ratio” of 0.1 (i.e.,
10 re-indexing operations over 𝑛𝑞 = 100 queries) so that its average
re-indexing cost is kept low at 0.34s. Had this “miss ratio” increased
to 0.23, OASIS would have underperformed ONIAK.

As shown in Table 2, our solution JLT has much shorter query
times than OASIS on the three higher-dimensional datasets and
this outperformance grows roughly linear with 𝑑 : 5.8, 11.7, and 29.5
times shorter on SYN-254, SYN-510, and SYN-1022 respectively. On
these three datasets, OASIS’ “miss ratios” are higher at 0.32, 0.37,
and 0.4 respectively, but JLT’s outperformance does not depend on
that. For example, JLT would outperform OASIS by 2.7, 5.0, and
13.4 times respectively even if all three “miss ratios” were reduced
to 0.1 (as in the case of HEPMASS-27). In fact, JLT outperforms
OASIS by 1.2, 2.6, 8.0 times respectively even in the ideal (to OASIS)
case of zero “miss ratio”.

We discover that JLT can be used to reduce the net query time
𝑡2 of OASIS, by JLT-filtering the ANNS-M candidates “nominated”
by OASIS. As shown in the “OASIS+JLT” column in Table 2, JLT
reduces 𝑡2 by 1.2, 1.3, and 1.4 times respectively on SYN-254, SYN-
510, and SYN-1022. OASIS+JLT cannot be applied to HEPMASS-27
since JLT does not help when 𝑑 = 27.

6 OTHER EVALUATIONS
In this section, we evaluate the efficacy of ONIAK for two other
baby problems, namely MinDistS2P (described in §4.3) and ANNS-
W𝐿2 (described in §4.2). We keep both evaluations separate from
the ANNS-M evaluation, since the ANNS-M evaluation uses very
different workloads that have “locality patterns” irrelevant to both
evaluations. For MinDistS2P, we show that JLT can be used to
further improve the efficacy of ONIAK when the dimension 𝑑 is not
large (say 𝑑 ≤ 200) and that JLT significantly outperforms linear

scan when 𝑑 is large. In §6.3, we evaluate the efficacy of FGoeQF
for solving the ®𝑥 → vec( ®𝑥 ®𝑥𝑇 ) dimension blowup problem.

6.1 MinDistS2P Evaluation
6.1.1 Experiment Settings. As described earlier in § 2.1, ONIAK
inherits the AMP+(GP-LSH) algorithm used by the ANS (approxi-
mate nearest subspace) solution to MinDistS2P proposed in [9, 10];
ONIAK’s only improvements over ANS are the use of FGeoQF for
reducing the indexing complexity. Although ONIAK and ANS are
otherwise the same solution, we believe a quantitative evaluation
of ONIAK (and ANS) for MinDistS2P is important for three rea-
sons. First, since [9] was published 15 years ago, neither its ANS
algorithm nor its empirical efficacy has been widely known outside
the computer vision community, and neither its data nor its code is
publicly available. In comparison, this evaluation would assess the
efficacy of ONIAK (and ANS [10]) using public datasets, and we
will release the code shortly after submitting this revision. Second,
in [10], the query efficiency of ANS is measured only on datasets
with sizes 𝑛 ≤ 14, 000, ambient dimensions 𝑑 ≤ 100, subspace di-
mensions 𝜌 ≤ 40. In comparison, our experiments use larger values
of 𝑛 (up to 10.0M), 𝑑 (up to 192) and 𝜌 (up to 63). Third, in this work,
MinDistS2P is arguably the only natural baby problem to evalu-
ate ONIAK for, since in the other two baby problems evaluated,
either the query matrix is degenerative (in ANNS-W𝐿2) or special
workloads have to be used (in ANNS-M).

As stated in § 2.4, when 𝑑 is moderately large (say between
64 and 200), JLT can be combined with ONIAK (which we call
ONIAK+JLT) to achieve even higher ANNS-ALT query efficiency
than each solution alone, and when 𝑑 is large, JLT (alone) is a
highly effective solution. In this section, we will also evaluate JLT
and ONIAK+JLT to confirm both statements.

6.1.2 Performance Metrics. We measure the query efficiency of
ONIAK by selectivity [27] (defined in § 5.2.1 and denoted as 𝛾 ).
The query time of ONIAK is roughly equal to that of a linear scan
multiplied by 𝛾 when 𝑛 large, since in this case the other steps of
MinDistS2P query processing take much less time than checking
the ground truth. Hence a smaller 𝛾 indicates a better (more ef-
fective) LSH solution. To measure the query efficiency of JLT and
ONIAK+JLT however, we use query time as the metric, since other
steps account for a decent portion of query time in both schemes.

6.1.3 Data and Query Sets. We use four real-life publicly available
datasets in this experiment and that for evaluating ANNS-W𝐿2.
They are listed in Table 3. They were intended for evaluating ANNS-
𝐿2 solutions and came with some ANNS-𝐿2 query vectors (see
second last row in Table 3). For each dataset D, we have centered
the data vectors in the sense their sample mean is ®0.

Table 3: Datasets used in MinDistS2P and ANNS-W𝐿2.

Dataset Deep [7] SIFT [4] Audio [13] Trevi [33]
𝑑 96 128 192 4096
𝑛 10.0M 10.0M 52.6K 99.1K

#(𝐿2-Queries) 10K 10K 200 200
Type Image Image Audio Image



For each experiment (dataset), we randomly generate 100 query
subspaces as follows. First, we uniformly randomly sample 𝜌 +1 out
of the set of ANNS-𝐿2 query vectors that accompany the dataset.
This sampling is performed without replacement for SIFT and Deep
since they came with 10K query vectors each, and with replacement
for Audio and Trevi since they came with only 200 query vectors
each. Then, we compute the affine subspace generated by these
sampled query vectors (aka. the affine span) and use it as a query
subspace. A query subspace generated this way is highly likely to
have the target dimension 𝜌 (and if it does not due to degeneration
we scratch it and repeat the sampling process). Since the query
subspaces are generated from randomly sampled query vectors,
they are expected to be statistically uncorrelated (e.g., do not have
the “locality patterns” that exist in ANNS-M workloads).

6.1.4 Experimental Results of ONIAK. We report in Table 4 the
selectivity of ONIAK for target recall@50 values between 0.4 and
0.8, on all four datasets except Trevi, whose dimension (𝑑 = 4096) is
too high for ONIAK (andONIAK+JLT) to handle as explained in §2.4.
In each experiment, we tune the number of hash tables to reach
the target recall value while keeping other parameters (of GP-LSH
and of multi-probe) mostly fixed. These recall values are achieved
using between 20 and 100 hash tables. For ease of presenting the
experimental results, we use the selectivity-to-recall ratio as the
metric, which roughly measures by how much a partial LS (e.g.,
scanning 50% of randomly sampled data vectors to achieve a roughly
50% recall) is slower than ONIAK for achieving the same recall value.
Hence, although ONIAK is the sole “contestant” in Table 4, by using
this metric, we have indirectly compared ONIAK against the partial
LS.

Table 4 shows that ONIAK has fairly good selectivity when the
subspace dimension 𝜌 is small. For example, on both Deep and SIFT,
when 𝜌 ≤ 7, the selectivity-to-recall ratio is only between 41.7% and
50.0% when the recall is between 0.4 and 0.5, and is between 49.2%
and 66.7% when the recall is between 0.6 and 0.7. The query effi-
ciency gradually degrades as 𝜌 increases. The selectivity-to-recall
ratio increases to between 72.3% and 84.0% at 𝜌 = 15, and further
to between 72.3% and 92.3% at 𝜌 = 31. At 𝜌 = 63, the selectivity-to-
recall ratio is as high as 98.0%, implying that the query efficiency of
ONIAK is almost the same as that of linear scan. This trend of query
efficiency degrading with 𝜌 can be explained as follows, using the
SNR (signal-to-noise ratio) concept introduced in §2.4. As 𝜌 grows
larger, the possible “number” of query subspaces (that a universal
ONIAK index needs to work with) increases exponentially. How-
ever, the (mapped-by-AMP) images of the data vectors are fixed
(i.e., do not change with 𝜌). As a result, when 𝜌 grows larger, it
becomes increasingly likely for a mapped (by AMP) query subspace
to be very far away (and hence to “feel” roughly equally far way)
from all the mapped data vectors (i.e., low SNR).

On Audio, which has a higher dimension of 𝑑 = 192, this trend
is more pronounced. When 𝜌 ≤ 3, the selectivity-to-recall ratio is
between 56.0% and 79.3%. It increases to between 66.7% and 85.3%
at 𝜌 = 7, and further to between 83.3% and 95.8% at 𝜌 ≥ 15. This is
because, the ONIAK index has a lower SNR on Audio (as the SNR
scales as 𝑂 (1/𝑑)), and as a result is more vulnerable to the “double
SNR whammy” caused by a larger 𝜌 . We do not report results at
𝜌 ≥ 64 in Table 4, since in this case ONIAK does not perform better

than partial LS. Despite the SNR issues, ONIAK achieves fairly good
selectivity when 𝜌 is tiny. The selectivity-to-recall ratio is generally
less than 60% on Deep and SIFT at 𝜌 ≤ 7, and less than 70% on
Audio at 𝜌 ≤ 3.

Table 4: Selectivity of ONIAK with recall@50 from 0.4 to 0.8.

Dataset 𝜌 0.4 0.5 0.6 0.7 0.8

Deep

1 0.192 0.256 0.316 0.382 0.481
3 0.167 0.265 0.320 0.381 0.487
7 0.212 0.300 0.389 0.465 0.570
15 0.311 0.376 0.451 0.538 0.655
31 0.321 0.404 0.498 0.588 0.703
63 0.356 0.475 0.569 0.647 0.747

SIFT

1 0.170 0.233 0.295 0.374 0.468
3 0.176 0.222 0.301 0.370 0.475
7 0.233 0.299 0.376 0.467 0.566
15 0.289 0.382 0.460 0.564 0.672
31 0.289 0.425 0.503 0.628 0.738
63 0.353 0.431 0.566 0.681 0.782

Audio

1 0.224 0.281 0.349 0.438 0.609
3 0.242 0.298 0.397 0.467 0.638
7 0.311 0.428 0.524 0.561 0.682
15 0.333 0.447 0.546 0.668 0.762
31 0.361 0.456 0.568 0.671 0.766

Table 5: Query time (in seconds) with recall@50 ≥ 0.8.

Data 𝜌 ONIAK+JLT JLT LS
Deep 3 0.17+1.41 2.61 7.18
SIFT 3 0.66+1.52 2.88 13.67
Audio 1 0.47+0.012 0.017 0.157
Trevi 127 - 1.83 457.79

6.1.5 Experimental Results of JLT and ONIAK+JLT. Table 5 com-
pares the query efficiencies of ONIAK+JLT, JLT, and (full) LS on
these four datasets. The target recall@50 value for both ONIAK+JLT
and JLT is 80%, whereas LS achieves 100% recall. In all ONIAK+JLT
and JLT experiments, we set the JLT parameter 𝑙 (the reduced di-
mension from 𝑑) to 15 on Deep and SIFT, to 20 on Audio, and to
40 on Trevi. For a more insightful comparison, for ONIAK+JLT,
we break down the query time into (1) the time it takes to hash
the query matrix and to read out candidates from the ONIAK hash
buckets, which we denote as 𝑡1; and (2) the time it takes to run the
JLT filter and to check the ground truth for those that have survived
the filtering, which we denote as 𝑡2. Each ONIAK+JLT query time
in Table 5 is written as “𝑡1 + 𝑡2”.

As shown in Table 5, JLT has much shorter query times than LS:
2.7, 4.7, 9 and 250 times shorter on Deep, SIFT, Audio and Trevi
respectively, similar to that reported in §5.3. This outperformance
grows roughly linearly with 𝑑 , because the query time of JLT grows
almost linearly with𝑑 as explained in §5.3, whereas that of LS grows
quadratically with 𝑑 . As shown in Table 5, ONIAK+JLT further
outperforms JLT by 1.65 times on Deep and 1.32 times on SIFT.



This is because in both cases the ONIAK step can quickly (much
more so than JLT) filter out roughly 50% of the data vectors so
that only the remaining 50% or so need to be further vetted by
JLT. On Audio, ONIAK+JLT does not outperform JLT because the
number of data vectors therein is too small (𝑛 = 52, 600) for the
once-per-query and relatively heavy cost of computing the GP-
LSH hash values of 𝑔(𝑀) = −vec(𝑀𝑇𝑀) (where 𝑀 is the query
subspace matrix), which accounts for most of 𝑡1, to be amortized. If
Audio were to contain 10M points, ONIAK+JLT would outperform
JLT by 1.17 times, assuming ONIAK (with the same or a similar
parameterization) can achieve the same selectivity on “10M Audio”.

6.2 ANNS-W𝐿2 Evaluation
In this section, we compare the ANNS-W𝐿2 query efficiency of
ONIAK against that of SL-ALSH [19], the only existing solution
(other than LS). Like in §6.1. we measure query efficiency only by
selectivity, at recall@50 values ranging from 0.4 to 0.8, since in both
ONIAK and SL-ALSH, checking ground truth accounts for most of
the query time.

6.2.1 Experiment Settings. For our experiments, we use two
datasets sampled uniformly randomly fromDeep and SIFT (𝑛 = 10𝑀
in both as described in Table 3) respectively. Each dataset contains
only 𝑛=1.0M data vectors, since the SL-ALSH program [18] (imple-
mented in C++) provided by authors of [19] runs out of memory
when 𝑛 is larger. The SL-ALSH program precomputes and stores
all possible LSH parameterizations (which bloats its memory con-
sumption), but uses only the optimal one for a given dataset, and
hence its query efficiency is not affected by this design choice. We
use two types of weights used in [19], namely binary (0 or 1 each
with 1/2 probability) and uniform (in [0, 1]). Note JLT cannot speed
up ONIAK for ANNS-W𝐿2 even when 𝑑 is large or moderately
large (and hence there is no ONIAK+JLT here), since a ground truth
weighted 𝐿2 distance can be computed in 𝑂 (𝑑) time (rather than
Ω(𝑑2) time for all other baby problems), and filtering each data
vector using JLT takes longer than that.

Table 6: Selectivity when recall@50 ranges from 0.4 to 0.8.

Data Weight Name 0.4 0.5 0.6 0.7 0.8

SIFT
Binary ONIAK 0.309 0.406 0.490 0.606 0.709

SL-ALSH 0.250 0.330 0.410 0.520 0.640

Unif. ONIAK 0.275 0.366 0.458 0.574 0.659
SL-ALSH 0.160 0.210 0.280 0.365 0.490

Deep
Binary ONIAK 0.347 0.430 0.520 0.601 0.714

SL-ALSH 0.290 0.380 0.470 0.575 0.670

Unif. ONIAK 0.291 0.383 0.466 0.554 0.661
SL-ALSH 0.235 0.310 0.395 0.495 0.605

6.2.2 Experiment Results. As shown in Table 6, SL-ALSH has
slightly better selectivity than ONIAK in every experiment. For
example, on SIFT dataset under uniform weights, SL-ALSH needs
to scan between 26% and 43% fewer data vectors than ONIAK.
That SL-ALSH outperforms ONIAK is expected, since ONIAK is
designed for the general case of the query matrix𝑀 being arbitrary,

whereas SL-ALSH is designed and optimized for the special and
much simpler (computationally) case of𝑀 being diagonal.

6.3 Performance Benefits of FGoeQF
In this section, we evaluate by how much times FGoeQF can speed
up the computation of an “ONIAK hash value” ℎ(vec( ®𝑥 ®𝑥𝑇 )), and
can hence reduce the indexing time of ONIAK (used when 𝑑 ≤ 200
as explained in § 2.4) and other potential applications (where 𝑑
can be much larger than 200) such as locality-sensitive teaching
described in §2.2. Table 7 shows the average computation times,
for different 𝑑 values, using the FGoeQF and the naive 𝑂 (𝑑2) algo-
rithms respectively. Both algorithms are implemented using the C++
library Eigen [17]. Each reported value is the average of between
104 and 105 runs. Table 7 shows that the FGoeQF algorithm is faster
than the naive algorithm by one to three orders of magnitude.

We use two numerical examples to highlight the impact of
FGoeQF on the indexing time. In the first example, let D be a
hypothetical dataset containing one billion (1B) 200-dimensional
vectors. Suppose we build an ONIAK index on D using 360 (typ-
ical for ONIAK) GP-LSH functions. The indexing time would be
roughly 164 days using the naive algorithm and roughly 3 days
using FGoeQF, respectively. Note in this case each hash value com-
putation takes the naive algorithm 38.6 µs, but takes ONIAK 0.7 µs.
In the second example, let D be a hypothetical dataset containing
100M 4096-dimensional vectors. Suppose we build an LST index
on D again using 360 GP-LSH functions. The indexing time would
be roughly 6,806.8 days (or 18.65 years) using the naive algorithm,
and roughly 5.3 days using FGoeQF, respectively.

Table 7: Computation time (in µs) per GP-LSH hashing.

𝑑 = 32 64 128 256 512 1024 4096
FGoeQF 0.094 0.19 0.35 0.7 1.6 2.8 12.7
Naive 0.991 3.94 15.77 63.3 252.0 1011.8 16,336.3

7 CONCLUSION
In this work, we formulate ANNS-ALT (and its dual ANNS-ALTD),
which are mother problems to a wide range of ANNS problems with
important applications. We propose the ONIAK solution, which
answers all future ANNS-ALT queries using a single universal
index and zero re-indexing overhead, and the JLT solution, which
performs well on large dimensions. We also propose the FGoeQF
technique, which solves the fallout of the long-standing dimension
blowup problem and as a result significantly reduces the indexing
time. Finally, we show by experiments that ONIAK has better query
efficiency than linear scan, and JLT has much better query efficiency
than any competitor for all baby problems except ANNS-W𝐿2.
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