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ABSTRACT
Inspired by the recent success of deep learning in diverse do-

mains, data-driven metamaterials design has emerged as a com-
pelling design paradigm to unlock the potential of multiscale ar-
chitecture. However, existing model-centric approach lacks prin-
cipled methodologies dedicated to high-quality data generation.
Resorting to naı̈ve sampling, existing metamaterial datasets suf-
fer from property distributions that are either highly imbalanced
or at odds with design tasks of interest. To this end, we propose
t-METASET: an intelligent data acquisition framework that aims
at task-aware dataset generation. We seek a solution to a com-
monplace yet overlooked scenario at early design stages: when
a massive shape library has been prepared with no properties
evaluated. The key idea is to exploit a data-driven shape de-
scriptor learned from generative models, fit a sparse regressor
as the start-up agent, and leverage diversity-related metrics to
drive data acquisition to areas that help designers fulfill design
goals. We validate the proposed framework in three hypotheti-
cal deployment scenarios, which encompass general use, task-
aware use, and tailorable use, using two large-scale shape-only
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mechanical metamaterial datasets. The results demonstrate that
t-METASET can incrementally grow task-aware datasets. Appli-
cable to general design representations, t-METASET can boost
future advancements of not only metamaterials but data-driven
design in other domains.

1 INTRODUCTION
Metamaterials are artificially architectured structures that

support unusual properties from their structure rather than com-
position [1]. The recent advancements of computational design,
computing power, and manufacturing have fueled research on
metamaterials, including theoretical analysis, computational de-
sign, and experimental validation. Over the last two decades,
outstanding properties achievable by metamaterials have been
reported from a variety of fields, such as optical [2], acous-
tic [3], thermal [4], and mechanical [5]. They have been widely
deployed to new applications in communications, aerospace,
biomedical, and defense, to name a few [6]. From a design point
of view, leveraging the rich designability in the hierarchical sys-
tems is key to further disseminating metamaterials as a versatile
material platform, which not only realizes superior functional-
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ities but also facilitates customization and miniaturization. To
this end, there has been growing demand for advanced design
methods to harness the huge potential of metamaterials.

Data-driven metamaterials design (DDMD) offers a route to
intelligently design metamaterials. In general, the approaches
build on three main steps: data acquisition, model construction,
and inference for design purposes. DDMD typically starts with a
precomputed dataset that includes a large number of structure-
property pairs [7, 8, 9, 10, 11]. Machine/deep learning model
construction follows to learn the underlying mapping from struc-
ture to property, and sometimes vice versa. Then the data-driven
model is used for design optimization, such as at the “building
block” or unit cell level, and optionally tiling in the macroscale
as well when aperiodic designs are of interest. The key dis-
tinctions of DDMD against conventional approaches are that (i)
DDMD can accommodate domain knowledge (in both dataset
and model) with topologically free design variation; (ii) it has lit-
tle restrictions on analytical formulations of design interest; (iii)
some of DDMD enables iteration-free design, which pays off the
initial cost of data acquisition and model construction. Capitaliz-
ing on the advantages, DDMD has reported a plethora of achieve-
ments in recent years from diverse domains [1,8,9,10,12,13,14].

Despite the recent surge of DDMD, sufficient attention has
not been given to data acquisition and data quality assessment –
the very first step of DDMD. In data-driven design, dataset is a
design element; a collection of data points forms a landscape to
be learned by a model, which is an “abstraction” of the data, and
to be explored by either model inference or modern optimization
methods. Hence, data quality always ends up propagating into
the subsequent stages. Yet the downstream impact of naive data
acquisition is opaque to diagnose and thus challenging to prevent
a priori. Underestimating the risk, common practice in DDMD
typically resorts to a large number of space-filling designs in the
shape space spanned by the shape parameters. This inevitably
hosts imbalance – distributional bias of data – in the property
space [15, 16, 11, 17] formed by the property vectors. The suc-
ceeding tasks involving a data-driven model – training, valida-
tion, and deployment to design – follow mostly without rigorous
assessment on data quality in terms of diversity, design quality,
feasibility, etc. The practice overlooks not only data imbalance
itself but also the compounding ramification at the design stage.

Taking data imbalance as the fundamental hurdle to success-
ful deployment of DDMD, we propose task-aware METASET
(t-METASET): a sequential data acquisition framework build-
ing on data-driven shape descriptor, recursive model update, and
metric-based active learning, with special attention to starting
with sparse observations for increased efficiency. In this study,
“task-aware” approaches are supposed to rate individual data-
points based on the utility for a given specific design scenario,
rather than on distributional metrics (e.g. diversity) for general
tasks. The framework aims to handle data bias reduction (for
generic use) and design quality (for particular use) simultane-

ously, by leveraging diversity and quality as the sampling criteria,
respectively. We advocate that (i) building a good dataset should
be an iterative procedure; (ii) diversity-driven sampling [18] can
efficiently suppress the property imbalance of multi-dimensional
regression that most DDMD is involved with [11]; (iii) property
diversity significantly improves fully aperiodic metamaterial de-
signs, as have been shown by recent reports [15, 19, 20]. Very
distinct from existing work, however, we primarily seek a so-
lution to an ordinary – yet overlooked – scenario that design-
ers face during data preparation: we wish to collect or gener-
ate a large-scale shape dataset without any property evaluated
at the start, while also aiming to acquire a uniform or a con-
trolled task-aware property/shape distributions. To achieve this
goal, an intuitive method is to evaluate the properties of all the
designs a priori, then downsample a balanced subset based on
diversity or design-related quality, as presented by Y. C. Chan
et al. [11]. We propose that taking the opposite approach im-
proves the efficiency and generality of data acquisition: our t-
METASET incrementally “grows” a high-quality dataset from
sparse property information, which is not only diverse but also
task-aware. Figure 1 illustrates a schematic of the t-METASET
procedure. The central ideas are (i) to extract a compact shape
descriptor for microstructures by learning from a shape-only mi-
crostructure (building block) dataset, (ii) to sequentially update a
sparse regressor, e.g., Gaussian process (GP) regressor, as a start-
up “agent” that efficiently learns the nonlinear shape-property
mapping with sparse observations, and (iii) to intelligently curate
samples based on batch sequential metric-based sampling [18],
which accommodates shape diversity, estimated property diver-
sity, and user-defined quality.

In the context of DDMD, the key intellectual contributions
of t-METASET are three-fold:

• t-METASET offers a principled methodology on how to
build a balanced dataset at the start-up stage, with rigor-
ous metrics and minimal heuristics, without property being
evaluated at the beginning,

• t-METASET provides a solution to property bias prevalent
in existing metamaterial datasets,

• t-METASET can produce task-aware datasets, whose dis-
tributional characteristics can be tailored according to user-
defined design tasks.

We argue the primary advantages of t-METASET are: (i)
scalability, (ii) modularity, (iii) data customizability, (vi) no re-
strictions on shape generation schemes, (v) no dependency on
domain knowledge and, by extension, (vi) wide applicability
over generic metamaterial datasets. We validate the power of
t-METASET with two large-scale shape only mechanical meta-
material datasets (containing 88,180 and 57,000 metamaterial
shapes, respectively) that are built from very different ideas,
without preliminary downsampling of the massive groundsets or
arduous parameter tuning. The validation involves three scenar-
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FIGURE 1. An overview of t-METASET.

ios assuming different sampling criteria: (i) only considering di-
versity aiming at general use (global metamodeling), (ii) consid-
ering quality-weighted diversity aiming at task-aware use, and
(iii) considering shape-property joint diversity for tailorable use.

2 PROPERTY BIAS INDUCED BY NEARLY-UNIFORM
SAMPLING IN SHAPE SPACE
Property bias prevails in existing metamateiral datasets. To

convey this point, we examine an example of a lattice-based
2-D mechanical metamaterial dataset. Lattice based metama-
terials have been intensely studied due to their outstanding
performance-to-mass ratio, great heat dissipation, and negative
Possion’s ratio [1]. L. Wang et al. devised a lattice-based dataset,
called Dlat in this work, for multiscale TO with the general-
ized de-homogenization proposed [15]. In the dataset, a unit
cell geometry (i.e. microstructure, building block) takes six bars
aligned in different directions as its geometric primitives (see
Figure. 2(a) for illustration). All unit cells can be fully speci-
fied by four parameters associated with the thickness of each bar
group. The shape generation scheme produces diverse geomet-
ric classes (i.e. baseline, family, motif, basis, and template), as
exemplified in five classes in Figure 2(a). Each shape class ex-
hibits different topological features, which offer diverse modulus
surfaces of homogenized properties (C11,C12,C13,C22,C23,C33).

FIGURE 2. Illustration on Dlat [15]. (a) Shape generation method:
(left) shape representation; (top right) examples of generated geome-
tries; (bottom right) the resulting surfaces of elastic modulus. (b) Data
distribution in projected parametric shape space (thickness of each bar-
group). (c) Data distribution in projected property space.

Figure. 2(a) displays that nearly uniform sampling in the para-
metric shape space Ωw = [0,1]4 is used for data population.
We examine the non-trivial microstructures, except both solid
(v f = 1) or void (v f = 0); this explains why some of the region in
Figure 2(b) and (c) have no datapoints. In the original reference,
the dataset was used for the natural frequency maximization
problem as a case study of the generalized de-homogenization
method proposed.
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Herein, we look into the data distribution of Dlat , pre-
sented in Figure. 2. The nearly uniform sampling used for
the data generation ensures good uniformity in the parametric
shape space (Figure. 2(b)). The corresponding property distri-
butions in Figure. 2(c), however, show considerable imbalance,
which epitomizes that data balance in parametric shape space
does not ensure that in property space. By extension, we argue
that such property imbalance is prevalent in many metamaterial
datasets generated by space-filling design in parametric shape
space [16, 11, 17, 21, 22]. We claim that: (i) any metamaterial
dataset collected based on naive sampling in parametric shape
space are subject to substantial property bias [16, 11, 17, 21, 22],
and more importantly, (ii) this is highly likely to hold true for
datasets with generic design representations – other than para-
metric ones – as well [11, 19, 10, 23, 24]. The general state-
ment in part is grounded on the near-zero correlation between
shape similarity and property similarity in large-scale metama-
terial datasets (∼ O(104)), consisting of microstructures repre-
sented as pixel/voxel, reported by Y. C. Chan et al. [11]. Over-
looking the significant property imbalance, many methods as-
sume that the subsequent stages of DDMD can accurately learn
and perform inference under strong property imbalance, ignoring
the compounding impact of data bias [25].

Property bias is inevitable without supervision. Properties
– a function of a given shape – are unknown before evaluation.
Obtaining their values is the major computational bottleneck, not
only at the data preparation stage but also in the whole DDMD
pipeline. The worst case would be: one evaluates all the shape
samples with time-consuming numerical analysis (e.g., FEM;
wave analysis) and trains a model on the data, only to end up
with a property distribution that is severely biased outside where
one had planned to deploy the data-driven model. To circumvent
such unwanted scenarios, it is necessary to monitor property bias
at early stages, and maneuver the sampling process in a super-
vised manner, during data acquisition, not after. As a solution,
we propose t-METASET: a sequential task-aware data acquisi-
tion framework with systematic bias control.

3 PROPOSED METHOD
In this section, we walk through three components of the

proposed t-METASET: shape descriptor (Section 3.1), sparse
regressor (Section 3.2), and diversity-driven sampling (Sec-
tion 3.3). Then the whole algorithm as its entirety is presented.
(Section 3.4)

3.1 Shape Descriptor
The shape space of discretized metamaterial systems is ex-

tremely high-dimensional due to the need to represent free-
form shape variations. Exploring or sampling the entire high-
dimensional shape space is expensive and computationally unaf-

fordable. Therefore, we need to extract compact shape descrip-
tors as a lower-dimensional vector representation of shapes to
enable efficient shape space exploration or sampling.

In this work, we employ the latent representation of vari-
ational autoencoder (VAE) as our shape descriptor. VAE is a
generative model trained by unsupervised learning [26]. Fig-
ure. 3(a) offers a schematic of shape VAE used in our study. The
VAE builds on two key components, encoder E and decoder G.
Assuming the input instance is an image, the encoder involves
a set of progressively contracting layers to capture underlying
low-dimensional features, until it reaches the bottleneck layer,
which provides the latent vector as z = E(φ(x,y)) where φ(x,y)
is the signed distance field (SDF) of a binary microstructure im-
age I(x,y). The decoder, reversely, takes a latent variable from
the information bottleneck and generates a reconstructed image
as φ̂(x,y) = G(z).

We advocate the VAE descriptor as the shape descriptor of
metamaterial unit cells based on three aspects. First, our pri-
mary interest in VAE is the low-dimensional latent space distilled
from the complex geometries, which efficiently encodes the most
salient features of microstructures. The dimensional parsimony
is crucial to make a sparse regressor have compact yet expressive
predictors and to expedite the subsequent diversity-based sam-
pling. Second, this work also takes advantage of the distribu-
tional regularization imposed on the encoder: the latent vectors
are enforced to roughly be multivariate Gaussian. This offers
built-in scaling across individual components of the latent repre-
sentation, as a byproduct of the VAE training. The component-
wise balance makes diversity-based sampling robust to arbitrary
scaling. Lastly, transformation variance of the latent descriptor
is necessary for mechanical design to build a structure-property
mapping that recognizes transformation, so that different shape
descriptors representing a single microstructure under transfor-
mations (e.g., scaling and rotation) can be linked into different
properties.

Figure. 3(b) and (c) report the VAE training results of each
dataset, 2-D multiclass blending dataset (Dmix) [19] and 2-D
topology optimization dataset (DTO) [27, 28], respectively. Data
description can be found in Section 4.1. All binary images of mi-
crostructures I(x,y) are converted into SDFs φ(x,y) to facilitate
VAE training (Figure. 3(a)) [29, 30, 31]. The VAE architecture
was set based on that in L. Wang et al. [10]. The dimension
of latent space is set as 10, with the trade-off between dimen-
sional thrifty and reconstruction error taken into account. Adam
optimizer [32] was used under training the VAE with the follow-
ing setting: learning rate 10−4, batch size 128, epochs 150, and
dropout probability 0.4. Each shape dataset is split into training
set and validation set with the ratio of 80% and 20%, respec-
tively. In Figure. 3(b) and (c), each training history shows stable
convergence behavior for both training and validation. From the
plots of SDF instances on the right side, we qualitatively con-
firm good agreement between the input instances (top) and their
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FIGURE 3. Shape VAE. (a) Schematic of the architecture. (b) The
training result of Dmix. (c) The training result of DTO.

reconstruction (bottom), for both training results.

3.2 Sparse Regressor
3.2.1 Gaussian Processes In t-METASET, a sparse

regressor is an essential pillar that enables active learning and
task-aware distributional control under epistemic uncertainty (i.e.
lack of data). We implement a GP regressor as the “agent” in this
work. The mission is to learn the underlying structure-property
mapping from sparse data, and to provide predictions over un-
seen shapes as p̂ = GP(z) in batch sequential sampling. In this
study, the GP takes the VAE latent shape descriptor as its inputs,
which offers substantial dimension reduction (502-D→ 10-D in
this work). We advocate a GP as the sparse agent due to several
advantages: (i) model parsimony congruent with sparse data; (ii)
decent modeling capacity of highly nonlinear structure-property
regression (i.e. z→ p); (iii) roughness parameters as an indicator
of model convergence, to be used for sampling mode transition
(detailed in Section 3.2.2).

Building on the advantages of the GP, our novel idea on task-
aware property bias control is to (i) construct an estimated prop-
erty similarity kernel L̂p (Section 3.3.1) from the GP prediction
p̂ = GP(z), as the counterpart of the shape kernel L̂s and (ii) em-
ploy conditional Determinantal Point Processes (DPP) [18] – a
diversity-based sampling approach – over the estimated property
kernel L̂p to sample a batch based on expected property diver-
sity. The property kernel L̂p estimates property similarity, prior
to design evaluation, not only between train-train pairs, but also
train-unseen and unseen-unseen ones. In this way, t-METASET
intelligently curates a small batch B hinging on both (estimated)
property diversity and (exact) shape diversity. It is important
to note that, at an incipient phase, we do not rely on L̂p, as

the predictive performance of a multivariate multiresponse GP
(RDz → RDp ) trained on tiny data is not reliable. We determine
the turning point – when to start to respect the GP prediction –
based on the convergence history of a set of the GP hyperparam-
eters: roughness parameters (i.e. scale parameters).

3.2.2 Roughness parameters Roughness parame-
ters ω = [ω1,ω2, . . .ωd ]

T dictate fluctuation levels of responses
w.r.t. each predictor (each component of z in our study), in light
of given data. R. Bostanabad et el. [33] used the fluctuations
of roughness parameters and their estimated variance to qualita-
tively determine if sufficient samples were collected during GP
training. Building on that, we monitor the roughness parame-
ters ω and take the convergence of roughness parameters as a
proxy for model convergence. The roughness residual serves as
the transition criterion across sampling modes. We define the
convergence criterion involving the roughness residual metric as
follows:

r(i+1) =

√
1

Dz
‖|ω(i+1)−ω(i)‖|2 ≤ τ (1)

where τ is a threshold associated with the sampling mode tran-
sition. At an early stage the roughness residual exhibits a “tran-
sient” behavior. As more data are added, the residual approaches
to 0, implying a mild convergence of the GP. In this work,
we set two different values of threshold namely, τ1 = 0.02 and
τ2 = 0.01. We assume each convergence criterion is met if the
residuals of five consecutive iterations are below the threshold.
τ1 is to identify a mild convergence, indicated by the larger toler-
ance. Once met, t-METASET initiates Stage II, where estimated
property diversity serves as the main sampling criterion. Mean-
while, the smaller threshold τ2 is used to decide when to stop the
GP update: as more data comes in, the variations of roughness
get unnoticeable [33], whereas the computational cost of fitting
the GP rapidly increases as ∼O(|D(t)|3) due to the matrix inver-
sion associated. We prioritize speed, with a little compromise of
prediction accuracy. Details of the implementation with the other
pillars can be found in Section 3.4. When reporting the results
of t-METASET, we will include the history of the residuals, in
addition to that of diversity metrics.

3.3 Diversity-Based Sampling
In this section, we elaborate on diversity-based batch se-

quential sampling. It maneuvers the data acquisition as a de-
cision maker, leveraging both the compact shape descriptor dis-
tilled by VAE (Section 3.1) and “dynamic” prediction offered
by the GP agent (Section 3.2), from beginning to end of t-
METASET. Recalling the mission of t-METASET – task-aware
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generation of balanced datasets – we advocate DPP as a diver-
sity sampler primarily based on three key advantages as follows:
(i) DPPs offer a variety of practical extensions (e.g. cardinal-
ity constraint, conditioning, etc); (ii) The probabilistic model-
ing from DPP captures the trade-off between diversity (data-
point efficiency in general) and quality (datapoint score w.r.t. a
specific design task); (iii) Importantly, DPPs are highly flexible
in terms of handling distributional characterstics: object-driven
sampling approaches [34] mostly support either exploration (di-
versity of input) or exploitation (quality of output), while DPPs
do all the combinations of diversity (input/output) and quality
(shape/property/joint), without restrictions.

t-METASET harnesses a few extensions of DPPs. Sec-
tion 3.3.1 provides fundamental concepts related to DPP. Sec-
tion 3.3.2 introduces conditional DPPs that are key for DPP-
based active learning, and brings up the scalability issue of large-
scale similarity kernels. As a remedy, a large-scale kernel ap-
proximation scheme is introduced in Section 3.3.3. Section 3.3.4
addresses how to accommodate design quality into DPP, which
enables “task-aware” dataset construction.

3.3.1 Similarity and DPP In general, an instance of
interest could be represented as a vector. A similarity metric
between item i and j can then be quantified a monotonically
decreasing function of the distance in the virtual item space as
si j = T (h(xi,x j)), where si j is the pairwise similarity between
item i and j, h(·, ·) is a distance function, T is a monotonically
decreasing transformation: the larger a distance, the smaller the
similarity is. One way to represent all the pairwise similarities
of a given item set is to construct the n×n similarity matrix L as
Li j = si j, where n = |L| is the set cardinality. The matrix is often
called a similarity kernel in that it converts a pair of items into
a distance measure (or similarity, equivalently). While any com-
binations of similarity and transformation are supported by the
formalism above, usual practice favors the transformations that
result in positive semi-definite (PSD) kernels for operational con-
venience, such as matrix decomposition. Following this, we em-
ploy Euclidean distance h(xi,x j) =

√
‖xi− x j‖2 and the square

exponential transformation for simplicity. The resulting similar-
ity kernel reads: Li j = exp(−‖xi− x j‖2/(2σ2

L )), where σL is the
lengthscale parameter (i.e. bandwidth) that tunes the correlation
between items.

DPP provides an elegant probabilistic modeling that favors
a subset composed of diverse instances [18]. DPPs have been
employed for a variety of applications that take advantage of
set diversity, such as recommender systems [35], summariza-
tion [36], object retrieval [37], etc. The defining property of
DPPs is: P(X = A)∝det(A), where A is a subset of a ground
set V; P(X = A) is the probability to sample A; det(·) is the ma-
trix determinant operation. The property has an intuitive geo-
metric interpretation: det(A) is associated with the hypervolume

spanned by the constituent instances. If the catalogue A consists
of items any pair of which is almost linearly dependent to each
other, the corresponding volume would be nearly zero, making
A unlikely to be selected. De-emphasizing such cases, the DPP-
based sampling serves as a subset recommender that identifies
diverse items. In this study, we set the batch size k to be constant
as k = 10 using k-DPP [38].

3.3.2 Conditional DPP Our data collection involves
recursive update of diversity kernels w.r.t. a sequence of batches.
This is necessary to (i) avoid drawing duplicate samples that have
been already observed, and to (ii) promote samples that are di-
verse not only within a given batch, but across a sequence of
batches. DPPs are closed under conditioning operation; i.e. a
conditional DPP is also DPP [39, 40, 41]. Let B and V be the
batch and the ground set at the i-th iteration, respectively. Given
the DPP kernel L(i) at that iteration, a recursive formula for the
conditional kernel L(i+1) reads:

L(i+1) = ((L(i)+ IB)
−1
B )−1− I, (2)

where [·]B denotes a submatrix indexed by the items that con-
stitute a batch B ∈ V , and B = V \ B. Due to the cascaded
matrix inversions – not once, but twice – involving cubic time
complexity, the equation does not scale well to large-scale ker-
nels (∼ O(104)). Furthermore, t-METASET demands at least a
few hundreds of conditioning. Even just storing (quadratic time
complexity) a 88,180-size similarity kernel for DTO with double
precision takes up about 62 gigabytes. In short, Eq. 2, as is, is
intractable for large-scale similarity kernels.

3.3.3 Low-Rank Kernel Approximation To circum-
vent the scalability issue, we leverage low-rank approximation
of large-scale kernels [42]. Recalling that we have employed
the Gaussian similarity kernel (Section 3.3.1), we harness the
shift-invariance (i.e. L(x,y) = L(x− y)) by implementing ran-
dom Fourier feature (RFF) [42] as an approximation method. It
grounds on the Bochner theorem [43], which guarantees that the
Fourier transform F of a properly scaled shift-invariant (i.e. sta-
tionary) kernel L is a probability measure P( f ) as follows:

L(x,y) = L(x− y) =
∫
Rd

P( f )exp( j f ′(x− y))d f , (3)

where j is the imaginary unit
√
−1, and P( f ) = F(L(x− y)) is

the probability distribution. With setting ζ f (x) = exp( j f ′x), we
recognize L(x,y) = E f [ζ f (x)ζ f (y)∗], implying that ζ f (x)ζ f (y)∗

is an unbiased estimate of the kernel to be approximated. The
estimate variance is lowered by concatenating DV (� n) real-
izations of ζ f (x). For a real-valued Gaussian kernel L, (i) the
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probability distribution P( f ) is also Gaussian and (ii) ζ f (x) re-
duces to cosine. Under all the considerations so far, the DV × n
low-rank feature reads:

V (x) =

√
2

DV
[cos( f ′1x+b1), . . . ,cos( f ′DV

x+bDV )]
T , (4)

where { f1, f2, . . . , fDV }
iid∼ N (0,12) and {b1,b2, . . . ,bDV }

iid∼
U [0,2π]. The low-rank feature update V ′ conditioned on B has
the following closed-form expression [41]:

V ′ =VBZB(I−V T
B (VBV T

B )−1VB), (5)

where the true kernel is L≈V ′(V ′)T . Now the matrix inversions
become amenable as the time complexity decreases to O(|B|3)
with |B|= k� n.

3.3.4 Quality-Weighted Diversity for Task-Aware
Sampling Lastly, we take into account user-defined quality,
in addition to diversity, to construct datasets that are not only bal-
anced but also task-aware. This study is dedicated to pointwise
design quality, where a pointwise n×1 quality vector q(z, p̂) as-
sociated with a design task serves as an additional weight to the
low-rank feature V . The resulting feature Dv×n matrix V ′′ reads

V ′′ = [

Dv︷ ︸︸ ︷
q(z, p̂(t)) . . .q(z, p̂(t))]T ◦V ′, (6)

where ◦ denotes the Hadamard product (i.e. elementwise mult-
plication).

3.4 The t-METASET Algorithm
In this section, we detail how to seamlessly integrate the

three main components introduced: (i) the latent shape descrip-
tor from the shape VAE, (ii) a sparse regressor as the start-up
agent, and (iii) the batch sequential DPP-based sampling that
suppresses undesirable bias and enforces desirable one. Visual
illustration of t-METASET is presented in Figure 4.

3.4.1 Initialization Figure 4(b) illustrates the initial-
ization of t-METASET, which involves VAE training, shape de-
scriptor, and RFF-based low-rank feature extraction of the la-
tent shape descriptor based on the shape-only data sets. The
t-METASET takes the following input arguments: the shape
dataset S comprising SDF instances φ(x,y) ∈ S (also applicable
to pixel/voxel images or point clouds [30, 10]), batch cardinal-
ity k, the ratio of property samples in each batch ε , and option-
ally a pointwise quality function q(z, p̂) that reflects a design task

declared in advance. A shape VAE is trained on S with the di-
mension of latent space Dz as 10-D (Figure 4(b)). Then we draw
Dv× n low-rank RFF Vz (4) of the n× n shape similarity kernel
Lz. In this study, we set the low-rank feature size as Dv = 3,000.
This feature is to be recursively updated based on conditioning
on a series of batches to be collected. For initialization of condi-
tional DPPs given the shape feature, we follow the procedure of
R.H. Affandi et al. [40].

3.4.2 Stage I During Stage I , the roughness shows
large fluctuation due to lack of data. The sampling only relies on
shape diversity, because the property prediction of the GP given
unseen latent variables is not reliable yet. This stage also can
be viewed as initial exploration driven by the pairwise shape dis-
similarity – as an analog to initial passive space-filling design –
under |D| ∼ O(104) discrete datapoints.

3.4.3 Stage II Figure 4(c) provides an overview of
Stage II – the core sampling stage of t-METASET. As more data
come in, the roughness residual r(t) (Eq. 1) approaches to zero
and becomes stable. Provided that the roughness residual falls
under the first threshold τ1 for five consecutive iterations, the t-
METASET framework assumes that the GP prediction is ready to
be appreciated. t-METASET transits to the next sampling phase
Stage II, where t-METASET uses estimated property diversity,
in addition to shape diversity, as the main curator. The key is to
introduce the low-rank estimated property RFF V̂p building on
the GP prediction p̂ = G(z).

Now we walk you through each step described in Fig-
ure 4(c). (i) Given a batch composition ε , the DPP sampler draws
εk (integer) instances from the property RFF to control property
distribution. (ii) The rest of the batch is filled by (1− ε)k sam-
ples from the shape RFF, to complement potential lack of ex-
ploration in the shape descriptor space Ωz. Herein, the shape
RFF must be updated with respect to batch Bε first, to reflect
the latest information. Once sampled, the shape feature is up-
dated again with respect to the rest shapes B1−ε just selected, for
the next iteration. (iii) The microstructures of the batch are ob-
served by design evaluation – FEM with energy-based homoge-
nization [44,45] in this study – to obtain the true properties (e.g.,
p = {C11,C12,C22}). (iv) The true properties replace the GP pre-
diction in the given batch B(t). (v) Then the evaluated batch up-
dates the GP to refine the property prediction as p̂(t) = GP(t)(z)
for the next iteration. (vi) The refined prediction demands the
update of a new property RFF, and to condition it on the whole
dataD(t) =

⋃t
l=1B(l) collected by then. (vii) If a quality function

q(z, p̂) over design attributes has been specified, it can be incor-
porated into the latest property RFF by invoking Eq. 6, to prompt
a “task-aware” dataset.
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FIGURE 4. Visual illustration of t-METASET. (a) Overview. (b) Initialization. The VAE is trained on the given shape dataset S. The latent variables
are roughly distributed as multivariate Gaussian. The latent representation is taken as the shape descriptor, whose concatenation forms the |S| ×Dz

matrix, where |S| is the shape set cardinality (∼ O(104)). RFF follows to obtain a |S|×Dv low-rank feature of shape feature to be used for the DPP
sampling based on shape diversity. (c) A simplified flowchart of Stage II. Details of are stated in the main body. Stage I shares the structure of Stage II
but is driven only by shape feature. Stage III is equivalent Stage II except GP update.

3.4.4 Stage III Stage III shares all the settings of Stage
II except for the GP update. The main computational overhead
of Stage II comes from GP fitting as it involves matrix inver-
sion with the time complexity ∼ O(|D(t)|3). To bypass the over-
head, we stop updating the GP if the roughness residual falls
under τ2 = 0.01 for five consecutive iterations, which is even
smaller than the earlier τ1 = 0.02. During Stage III, our algo-
rithm can quickly identify diverse instances from a large-scale
dataset (∼ O(104)), without scalability issue. The main product
of t-METASET is a high-quality dataset D =

⋃imax
i=1 B(t), which

is not only diverse but task-aware. In this study, we particularly
focus on producing datasets with size of either 3,000 or 5,000.

4 RESULTS
In this section, the results of t-METASET are presented.

As benchmarks, the two large-scale mechanical metamaterial li-
braries are used for the validation [19, 28]. Data description on
the two datasets is provided in Section 4.1. We propose an in-
terpretable diversity metric in Section 4.2 for fair evaluation of
t-METASET. To accommodate various end-uses in DDMD, we
validate t-METASET under three hypothetical deployment sce-
narios: (i) diversity only for generic use (balanced datasets; Sec-

tion 4.3), (ii) quality-weighted diversity for particular use (task-
aware datasets; Section 4.4), and (iii) joint diversity for tailorable
use (tunable datasets; Section 4.5).

4.1 Datasets

We introduce two mechanical metamaterial datasets, in ad-
dition to Dlat , to be used for validating t-METASET: (i) 2-D
multiclass blending dataset (Dmix) [19], and (ii) 2-D topology
optimization dataset (DTO) [28]. Table 1 compares key charac-
teristics of the datasets. Figure. 5 illustrates each dataset and
their shape generation heuristic. Note that the purpose of in-
volving the two datasets is to corroborate the versatility of our t-
METASET framework in that the method can accommodate any
dataset, born from different methods for different end-uses, in a
unified and principled way. What we aim to provide is quality
assessment within one of the datasets, not across them. In ad-
dition, while all the datasets in the original references provide
the homogenized properties, we assume in all the upcoming nu-
merical experiments that only the shapes are given, without any
property evaluated a priori.
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TABLE 1. Dataset Description

Dlat [15] Dmix [19] DTO [28]

Cardinality 9,882 57,000 88,180

Shape primitive Bar SDF of basis unit cell N/A (used TO)

Shape population Parametric sweep
Continuous sampling of basis weights

& Blending

Stochastic shape perturbation

& Iterative sampling

Topological freedom Predefined Quasi-free Free

Property {C11,C12,C22,C13,C23,C33} {C11,C12,C22} {C11,C12,C22}

FEM discretization 100×100 50×50 50×50

FEM solver Energy-based homogenization [44, 45]

FIGURE 5. Illustration on shape generation schemes of each dataset.
(a) Dmix [19]: example of blending the SDFs of basis shapes and varying
their volume fractions to produce new unit cells. (b) DTO [28]: (left)
an example of design evolution by inverse topology optimization w.r.t.
a target property; (right) stochastic shape perturbation applied to a given
micstrocture.

4.2 Diversity Metric: Distance Gain
We discuss an interpretable diversity metric needed to quan-

titatively evaluate the efficacy of t-METASET. In the literature
of DDMD, Y. C. Chan et al. [11] compared the determinant
of jointly diverse subsets’ similarity kernels against those of iid
replicates, following the usual practice of reporting set diversity
in the DPP literature [18], as the metric to claim the efficacy of
the proposed downsampling. We point out possible issues of us-
ing either similarity or determinant for diversity evaluation: (i)
similarity values si j depend on data preprocessing; (ii) a decreas-
ing transformation from distance to similarity (si j = T (h(xi,x j)))
for constructing DPP kernels also involves arbitrary scaling, de-
pending on the type of associated transformation T and their tun-
ing parameters (e.g., bandwidth of the Gaussian kernels); (iii) the
raw values of both similarity and determinant enable the “better
or worse” type comparison yet lack intuitive interpretation on
“how much better or worse”.

To this end, we propose a distance-based metric that is more

interpretable and less arbitrary. Given a metamaterial set D, we
compute the mean Euclidean distance d of pairwise distances of
attributes (shape/property) as

d(D) = 1
|D|

|D|

∑
j=1

|D|

∑
i=1

h(xi,y j) =
1
|D|

|D|

∑
j=1

|D|

∑
i=1

√
‖xi− x j‖2. (7)

Intuitively, the larger d(D) is, the more diverse D is. The mean
metric still depends on data preprocessing, as similarity does.
Herein, key idea is to normalize d(D) it with that of an iid coun-
terpart d(Diid) with the same cardinality |Diid |= |D| so that data
preprocessing does not affect in a relative sense. To account
for the stochasticity of iid realizations, we generate nrep = 30
replicates, take the mean of each mean distance, and compute
the relative gain as: (distance gain) = d(D)/ 1

nrep
∑

nrep
l=1 d((Diid)l),

where (Diid)l denotes the l-th iid replicate with |(Diid)l | = |D|.
We call the diversity metric “distance gain”, as the metric rela-
tively gauges how more diverse a given set is than the iid coun-
terpart is. For example, the gain of 1.5 given a property set P
implies that the Euclidean distances between property pairs are
1.5 times larger on average than those of Piid in the property
space. The proposed metric offers intuitive interpretation based
on distance, avoids the dependency on both data scaling and
distance-to-similarity transformation, and thus offers a means for
fair diversity evaluation of a given dataset. In addition, the met-
ric generalizes to sequential sampling with (diveristy gain)(t) at
t-th iteration as well, allowing quantitative assessment across it-
erations involving different cardinality. Hence, we report all the
upcoming results based on the distance gain proposed.

4.3 Scenario I: Diversity Only
Figure. 6 shows the t-METASET results applied to DTO only

based on diversity. The basic setting includes: batch cardinal-
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FIGURE 6. Scenario I result for DTO. (a) History of distance gains.
The horizontal dotted line denotes the distance gain of 30 iid replicates,
which is unity by the definition in Section 4.2. The two vertical lines
indicate the first (τ1) and second (τ2) roughness convergence, respec-
tively. (b) History of roughness residual. The two vertical lines indicate
the first and second roughness convergence, respectively. (c) Property
distribution in projected property space

ity as k = 10; property sample ratio during Stage II as ε = 0.8,
maximum iteration as imax = 500; first and second threshold of
roughness parameters as τ2 = 0.02 and τ1 = 0.01, respectively;
iteration tolerance of roughness convergence as itol = 5; the num-
ber of iid replicates for distance gain as nrep = 30.

From Figure 6(a), we observe the evolution of the distance
gain, as a relative proxy for set diversity, at each iteration. At
Stage I the proposed sampling solely relies on shape diversity.
The shape gain exceeds unity at the early stage, meaning the
exploration by t-METASET shows better shape diversity than
that of the iid replicates. Meanwhile, property diversity of t-
METASET is even less than the iid counterpart; this is another
evidence that shape diversity does not contribute to property di-
versity [11]. During this transient stage, t-METASET keeps
monitoring the residual of roughness parameters. Figure 6(b)
shows the history up to few hundred cardinality; the residuals
with little data show large residuals, indicating large fluctuations
of the hyperparameters. The mild convergence defined by τ1
occurs at the 19-th iteration with 10× 19 = 190 observations.
This is approximately twice larger than the rule-of-thumb for
the initial space-filling design: Dz × 10 = 100 [46]. Rigorous
comparison between our pairwise based initial exploration and

space-filling design (e.g., Latin hypercube sampling [47]) is fu-
ture work.

Once the first convergence criterion on the GP roughness ω

is met, t-METASET starts to respect the GP prediction and, by
extension, the low-rank feature of the estimated property DPP
kernel as well. During Stage II, shape diversity decreases even
less than unity. This implies that pursuing property diversity
causes a compromise of shape diversity. After about 300 iter-
ations, each gain seems to stabilize with minute fluctuations, and
reach a plateau of about 1.3 for property and 0.95 for shape, re-
spectively. Beyond the maximum iteration set as 500, we fore-
cast that the mean of property Euclidean distances – the numerate
of property gain – will eventually decrease because: (i) we have
finite |DTO| = 88,180 shapes to sample from; (ii) the property
gamut ∂Ω

(t)
p at the t-th iteration grows yet ultimately approaches

to the finite gamut as ∂Ω
(t)
p → ∂Ω∗p, where ∂Ω∗p denotes the prop-

erty gamut of fully observed Dmix, which obviously exists yet is
unknown in our scenarios; (iii) adding more datapoints within
the confined boundary ∂Ω∗ would decrease pairwise distances
on average. The convergence behavior of the numerator of the
property gain may possibly give a hint to answering the funda-
mental research question in data-driven design: “How much data
do we need?”. This is our future work. In addition, adjusting the
batch composition – the ratio of property versus shape – would
lead to different results. The parameter study on ε is addressed
and discussed in Section 4.5.

Figure 6(c) shows a qualitative view on the resulting prop-
erty distributions. Figure 6(c) shows data distribution in the pro-
jected property space, whose property components have been
standardized. In the C11-C12 space, the iid realization shows
significant bias on the southeast region near [−1 ≤ C11 ≤ 1]×
[−1.5 ≤C12 ≤ 1], whereas only tiny samples are located on the
upper region. Other 3,000-size iid realizations also result in
property bias: local details are different, but the overall distribu-
tional bias is more or less the same. On the other hand, the prop-
erty distribution of t-METASET shows significantly reduced bias
in the property spaces, in terms of projected pairwise distances
and the property gamut ∂Ωp as well.

4.4 Scenario II: Task-Aware Quality-Weighted Diver-
sity

Diversity alone does not necessarily ensure successful de-
ployment of DDMD for design purposes. Imagine a case where
a 50k-size dataset with perfect uniformity has been prepared,
yet the region of design interest happens to include few sam-
ples. In such a scenario, artificial data bias is rather desirable
to invest more resources in the region of central interest, which
can be declared by users. The scope of this work is dedicated to
pointwise quality, where the task-related “value” of each obser-
vation is modeled based on a score function. It can be a func-
tion of properties (e.g., stiffness anisotropy), shape (e.g., bound-
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ary smoothness), or even both (stiffness-to-mass ratio). With a
proper formulation and scaling, the quality function can join t-
METASET as a secondary supervisor. We present two examples,
each of which involves either (i) only property (Section 4.4.1) or
(ii) both shape and property (Section 4.4.2), respectively. All
the results in this subsection assumes the maximum cardinality
is fixed as |

⋃imax
l=1 B

(l)|= 3,000.

4.4.1 Task II-1: Stiffness-to-Mass Ratio Superior
stiffness-to-mass ratio is one of the key advantages of mechani-
cal metamaterial systems against conventional structures [1]. If
lightweight design is of interest, users could attempt to prioritize
observations with high stiffness-to-mass ratio. We take C11 as an
example to with an associated score q(·) formulated as

q1(z, p̂) =
Ĉ11

v f +δ
(8)

where v f is the volume fraction of a given binary shape I(x,y)
implicitly associated with z, and δ is a small positive number to
avoid singularity. Here, we use raw values of C11 to ensure that
all the values are nonnegative. Note that the property p̂ takes
both (i) ground-truth properties from the finite element analysis
and (ii) predicted properties from the regressor GP . To accom-
modate various datasets at different scales without manual scal-
ing, we standardize q1 into q′1. Then it is passed to the following
sigmoid transformation: a1(·) = 1−1/(1+ exp(−20(·))), where
a1(·) is the decreasing sigmoid activation. To accommodate the
design attributes associated with the quality function a1(q′), the
low-rank feature V of the property diversity kernel L̂P has the
pointwise quality on board according to Eq. 6.

Figure 7 presents the result for Dmix. As indicated by the
arrow, the quality function aims to bias the distribution in the
(C11)raw-v f space towards the northwest direction. For C11, we
used its raw value for better scaling with volume fraction v f . In
Figure 7(b), the resulting distribution of t-METASET shows a
even stronger bias to the upper region than that of the iid repli-
cates, whereas the datapoints near the bottom right gamut are
more sparse. Figure 7(c) provides even more intuitive evidence:
(top) t-METASET without the quality function does not show
distributional difference with the iid case. (bottom) In contrast,
the quality-based t-METASET leads to the strongly biased dis-
tribution – virtually opposite to the iid one – congruent with
the enforced quality over high stiffness-to-volume ratio. Both
plots corroborate that t-METASET can accommodate the prefer-
ence of high stiffness-to-volume ratio, even when starting with
no property at all. Along the way, t-METASET does not fail to
address property diversity as well, as indicated by the distance
gain of property that exceeds unity (Figure 7(a)).

FIGURE 7. Task II-1 (stiffness-to-mass ratio) result for Dmix. Each
black arrow indicates the preferred direction of distributional bias. (a)
History of distance gains. (b) Data distribution in the attribute space
of interest. (c) Histogram of the quality metric: (top) iid (gray) vs t-
METASET (blue); (bottom) iid (gray) vs t-METASET with q1 (green).

4.4.2 Task II-2: Stiffness Anisotropy Property
anisotropy of unit cells is another key quality that mechanical
metamaterials could leverage to achieve strong directional per-
formances at system levels. With STO, we attempt to deliberately
bias the property distribution towards strong elastic anisotropy
between C11 and C22. We devise the anisotropy index as the as-
sociated quality function:

q2(z, p̂) =
|arctan(Ĉ22/Ĉ11)−π/4|

π/4
, (9)

where Ĉ11 and Ĉ22 denote the raw non-negative elastic con-
stants predicted by the GP model, without any normalization;
arctan(Ĉ22/Ĉ11) ∈ [0,π/2] is the polar angle in the C11-C22
space. If isotropic (i.e. C11 = C22), the index is 0. As ei-
ther C22/C11 → 0+ or C22/C11 → ∞, the index goes to 1. By
the definition the quality function ranges between [0,1]. We di-
rectly pass it to a monotonically increasing sigmoid activation:
a2(·) = 1/(1+ exp(−20((·)−0.5))). In a similar vein with the
first example above, a2(q2) is incorporated to the low-rank prop-
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FIGURE 8. Task II-2 (stiffness anisotropy) result for DTO. Each
black arrow indicates the preferred direction of distributional bias. (a)
History of distance gains. (b) Data distribution in the attribute space of
interest. (c) Histogram of polar angles of data: (top) iid (gray) vs t-
METASET (blue); (bottom) iid (gray) vs t-METASET with q2 (green).

erty feature using Eq. 6.
Figure 8 illustrates the result for DTO under the anisotropy

preference. The two arrows indicate the bias direction of interest:
Samples with isotropic elasticity on the line C22 = C11, denoted
as the black dotted line, are least preferred. From the scatter
plot of Figure 8(a), the distribution of t-METASET exhibits clear
bias towards the preferred direction, compared to the iid case,
while samples near the isotropic line is very sparse except near
the origin. The trend is even more apparent in the histograms of
Figure 8(b): both the results from iid and vanilla t-METASET
share a similar distribution in terms of polar angle. In contrast,
task-aware t-METASET exhibits a bimodal distribution that is
highly skewed to either 0 and π/2.

In Figure 8(a), we recognize an interesting point that reveals
the power of t-METASET: unlike the other cases introduced, the
shape gain also exceeds unity at the plateau stage, with a mild
loss in the property gain. Note that we did not enforce the frame-
work to assign more resources on shape diversity; (i) the quality
function q2(C11,C22) has been defined over only the two prop-
erties, not shape, and (ii) during Stage II t-METASET can take
only two samples from shape diversity in each batch due to the

setting ε = 0.8, commonly shared by the other cases introduced.
This indicates that: the decent exploration in the shape space –
the shape gain even large than the property gain during Stage II
– is what t-METASET autonomously decided on its own via ac-
tive learning, to fulfill the mission specified by the given task.
The result demonstrates the power of t-METASET in that, given
a large-scale dataset and on-demand design quality, it can in-
telligently decide how to properly tailor distributional biases in
shape/property space to meet given design goals, without human
supervision.

We emphasize that the result came out from the same al-
gorithmic settings of t-METASET shared with the other cases,
except for the quality functions. Hence, the two case studies, in-
vestigated with respect to different datasets and different quality
functions, demonstrate that t-METASET has fulfilled the mis-
sion: growing task-aware yet balanced datasets by active learn-
ing.

4.5 Scenario III: Joint Diversity

The proposed t-METASET can tune joint diversity when
building datasets. Y. C. Chan et al. [11] demonstrated that,
given a fully observed dataset, the DPP-based sampling method
can identify a representative subset with adjustable joint diver-
sity [11]. The capacity builds on the fact that any linear combi-
nation of PSD shape/property kernels to create the joint diversity
LJ = (1−ε)Ls+εLp is also PSD. Yet the linear combination ap-
proach does not apply to our proposed t-METASET, driven by
the low-rank feature V , because the linear combination of V does
not guarantee the resulting joint kernel to be PSD.

Instead, our framework achieves joint diversity by adjusting
the shape/property sampling ratio ε of a batch. Figure. 9 shows
the parameter study over the batch composition ε with respect to
Dmix and DTO with |

⋃imax
l=1 B

(l)| = 5,000. Both results manifest
(i) better average diversity in terms of Euclidean distances than
that of the iid replicates, and (ii) the trade-off between shape di-
versity and property diversity. Additionally, the results support
the previous finding: the near-zero correlation between shape di-
versity and property diversity [11]. The substantial distinction of
t-METASET lies in: We sequentially achieve the jointly diverse
datasets, beginning from scratch in terms of property. In addi-
tion, t-METASET can dynamically adjust ε as well, based on
either manual real-time monitoring over diversity gains or some
user-defined rigorous criteria. This capacity could possibly help
designers steer the sequential data acquisition at will, in partic-
ular if growing a large-scale dataset (∼ O(104)) is of interest,
where applying a single sampling criterion over the whole gen-
eration procedure might not necessarily result in the best dataset
for given design tasks.
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FIGURE 9. Scenario III (joint diversity) results for Dmix and DTO. ε

denotes the ratio of property samples in each batch. (a) Mean Euclidean
distance for Dmix. (b) Mean Euclidean distance for DTO.

5 CONCLUSION
We have presented t-METASET as a novel framework

dedicated to task-aware acquisition of metamaterial datasets.
Uniquely, t-METASET specializes in a scenario that design-
ers quite often encounter in early stages of DDMD: a massive
shape library has been prepared with no properties observed for
a new design scenario. The central idea of t-METASET for
building a task-aware dataset, in general, is to (i) leverage a
compact yet expressive shape descriptor (VAE latent represen-
tation) for shape dimension reduction, (ii) sequentially update
a sparse agent model (e.g., GP regressor) for the nonlinear re-
gression with sparse observations, and (iii) sequentially sample
in the shape descriptor space based on estimated property di-
versity and estimated quality (DPP) for distribution control of
shape/property. Our t-METASET contributes to the design re-
search by: (i) proposing a data acquisition methodology at early
stages of data collection, (ii) sequentially combating property
bias, and along the way (iii) accommodating task-aware design
quality as well. We emphasize again that, starting without evalu-
ated properties, all the results tested on two large-scale metama-
terial datasets (Dmix and DTO) were automatically achieved by
t-METASET, in three different scenarios, without human super-
vision and arduous parameter tuning. We argue t-METASET can
handle a variety of metamaterial datasets in general, by virtue of
scalability, modularity, task-aware data customizability, and in-
dependence from both shape generation heuristics and domain
knowledge.

The imperative future work is inference-level validation of
dataset quality, which aims to shed light on the downstream im-
pact of data quality at deployment stage of data-driven models.
Among a plethora of data-driven models, we are particularly in-
terested in conditional generative models [48, 49], due to their
on-the-fly inverse design capability expected to be highly sen-
sitive to data quality. This is underway. The validation would
further demonstrate the efficacy of t-METASET at a high level,
in addition to that which we have shown at the intuitive met-

ric level. Moreover, we point out two interesting topics to be
explored: (i) the proposed diversity gain as a termination indica-
tor of data generation, which could offer insight into “how much
data?” (detailed in Section 4.3) and (ii) quantitative comparison
between the quality-weighted diversity sampling (Section 3.3.4)
presented in this work and Bayesian optimization [34].

Through producing and sharing open-source datasets, t-
METASET ultimately aims to (i) provide a methodological
guideline on how to generate a dataset that can meet individual
needs, (ii) publicly offer datasets as a reference to a variety of
benchmark design problems in different domains, and (iii) help
designers diagnose their dataset quality on their own. This will
lay solid foundation for the future advancements of DDMD.
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