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This empirical paper explores students’ conceptions of transformation as substitution equivalence by 
linking it to their definitions of substitution and equivalence. This work draws on Sfard’s (1995) 
framework to conceptualize conceptions of substitution equivalence and its components, equivalence 
and substitution, each on a spectrum from computational to structural. We provide examples of 
student work to illustrate how students’ understandings of substitution, equivalence, and substitution 
equivalence as an approach to justifying transformation may relate to one another. 
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Transformation has been framed as a core mathematical activity (Kieran, 2004), and all mathematical 
calculation can be viewed as a process of transformation. Researchers such as Kirschner & Awtry 
(2004) have found that students’ thinking about transforming symbols tends to be rooted in visual 
patterns of symbols rather than a deeper understanding of mathematical structures. Since algebraic 
transformation is often taught procedurally, there is a need to frame these manipulations in a structural 
way. By exploring the core mathematical ideas that justify why particular transformations are 
mathematically valid, we conceptualize transformation as a process of replacing one symbolic object 
with an equivalent one, and name this process substitution equivalence (Wladis et al., 2020). This 
includes the process of identifying sub-objects and replacing them with equivalent ones in order to 
generate a new equivalent object. This identification process is non-trivial for many students, and we 
hypothesize that thinking around substitution equivalence may be intimately connected to many of 
the struggles that students have with transforming symbolic mathematics in various contexts, yet this 
idea has rarely been explored in research. Here we present a model of students’ thinking around 
substitution equivalence and illustrate potential affordances it might have in analyzing student work.   

Conceptual framework and Prior Research 
Substitution equivalence as a lens for mathematical transformation 

In this paper, we focus on students’ thinking around substitution equivalence, or the notion that two 
expressions, equations, or other mathematical objects are equivalent if one can be generated from the 
other through a sequence of substitutions carried out using standard interpretations of syntactic 
structure and mathematically valid uses of mathematical properties (Wladis et al., 2020). 

Definition of substitution 

In order to see how all mathematical activity could be viewed through the lens of substitution 
equivalence, we define substitution more broadly than has been done explicitly in much existing 
research and curricula. Jones and colleagues (2012) describe substitution as “the replacement of one 



 
 
representation with another” (p.167). Our definition builds on this idea by requiring the equivalence 
of mathematical objects being replaced and extending to other mathematical objects as well, such as 
equations. For us, substitution is the process of replacing any mathematical object (or any unified 
subpart of an object) with any equivalent object, regardless of complexity. This includes not only the 
replacement of 𝑥 in 2𝑥! − 2𝑥 + 1 with −3, but also the replacement of  𝑥! − 6𝑥 = 1 with the 
equivalent equation 𝑥! − 6𝑥 − 1 = 0 during solving. 

Definition of equivalence 

Substitution equivalence is dependent upon an underlying equivalence relation. This may be a 
context-specific definition of equivalence (e.g., insertion equivalence in Zwetzschler and Prediger, 
2013), or a more generalized concept of equivalence (e.g., an equivalence relation). Indeed, any 
definition of equivalence that satisfies equivalence relation criteria could be used. 

Definition of substitution equivalence 

Despite the importance of substitution equivalence to algebraic justification, little research has 
focused explicitly on substitution equivalence (see e.g., Pinkernell et al., 2017). A search in ERIC 
(the education research database maintained by the US Institute of Education Sciences, 
https://eric.ed.gov/) yields no results for substitution equivalence, substitutional equivalence or 
substitution property of equality. Other researchers have explored the “substitution principle”, which 
refers to the structural sameness preserved when replacing a variable with a compound term, or vice 
versa (Musgrave et al., 2015). While this is related to our definition, as both rely on the substitution 
property of equality, this is not how we use this term. We define the domain of substitution 
equivalence as composed of two main ideas: 

1. The general notion of substitution equivalence: A student understands that we can replace an object 
with any other equivalent object when problem-solving.  

2. The notion that substitution of unified sub-objects preserves equivalence: A student understands 
that objects can be broken into unified sub-objects, and that replacing any unified sub-object with 
an equivalent unified sub-object produces an object that is equivalent to the original one (as long 
as substitution leaves the rest of the structure of that object unchanged).  

The second notion leads us to another core definition: We use the term subexpression (or sub-object, 
more generally) to denote a substring of an expression (or other object) that can be treated as a unified 
object without changing the syntactic meaning of the original expression (or object). For example, 
𝑎 − 𝑏 is a subexpression of 𝑎 − 𝑏 − 𝑐, but 𝑏 − 𝑐 is not (because putting brackets around 𝑏 − 𝑐 would 
change the syntactic meaning of the whole expression). This different from, but related to, what 
Kieran (1989) refers to as surface structure (identifying the syntactic meaning of a symbolic algebraic 
representation) and what Malle (1993) refers to as Termstrukturen (“expression structuring”) 
(identifying all algebraic expressions with the same syntactic meaning). 

In this paper, we use Sfard’s (1995) work to frame our thinking about student conceptions, where 
student thinking about a concept may be operational (as a process, often of computation) or structural 
(as an abstract object in and of itself). We conceptualize students’ definitions on a continuum that can 
be primarily structural, primarily operational, or somewhere in between. A student may vary along 
the spectrum flexibly, but the ability to think structurally, at least some of the time, is necessary in 



 
 
order to progress to some higher order processes (Sfard, 1995).   

Aside from Wladis et al. (2020), we have found little (if any) work on student conceptions of 
substitution equivalence, although there has been substantial work around equality. One common 
strand focuses on conceptions of the equal sign, where students see the symbol either operationally 
(as a ‘do something symbol), or relationally (as a relationship between two entities) (Knuth et al., 
2006). In terms of substitution, relatively little work has been done, although some research has 
explored student notions of substitution equivalence in the context of arithmetic (Jones et al., 2012). 

Model of operational and structural view of substitution equivalence 
Wladis et al (2020) described key features of students’ thinking around substitution equivalence on a 
spectrum from structural to operational approaches. This paper aims to take this further by drawing 
on empirical data to explicitly describe how students’ conceptions of substitution equivalence may 
be dependent upon their definitions of substitution and equivalence (see Figure 1). 

 

Figure 1: Model of student thinking about substitution equivalence  
Method 

This work draws on data collected from multiple classes across six years at an urban community 
college in the US, including cognitive interviews and open-ended questionnaires. Open-ended 
questionnaires and cognitive interviews were distributed to participants in courses from elementary 
algebra through linear algebra within a larger data collection process in efforts to develop an 
algebra concept inventory. These data were analyzed using grounded theory (Strauss & Corbin, 
1990) to generate and refine models of students’ conveyed meanings to explain their written and 
spoken work. Categories developed during analysis were heavily influenced by the work of Sfard 
(1995), and existing literature about students’ understanding of the equals sign (e.g., Knuth et al., 
2006). An initial coding scheme was developed by a single coder, and then in subsequent rounds, 
multiple coders revised the scheme until consensus was reached; coders included mathematicians, 
mathematics education researchers, and elementary algebra instructors.  

The Model 
Table 1: Components of substitution equivalence model 

  Operational Thinking Structural Thinking 
View of 

Transformation 
Students see transformations of 

expressions and equations (or other 
objects) as a process of “operating on” 
the original object itself. They may or 

may not see this as linked to any notion 
of equivalence.  

Students see each step in a transformation as the process 
of replacing one object with an equivalent one through 

substitution, using properties and existing syntactic 
structure. They appear to have some notion of an 
equivalence class as an object (which need not be 

formally defined).  



 
 

In the model in Figure 1, holding well-defined and standard definitions of both substitution and 
equivalence are necessary but not sufficient conditions for students to develop a view of 
transformation justified by substitution equivalence. A student may have trouble thinking of 
transformation as substitution equivalence because (a) their definitions of substitution are too narrow; 
(b) their definitions of equivalence are ill-defined, unstable, or mathematically invalid; (c) they do 
not draw on their knowledge of substitution and/or equivalence when performing transformation; or 
a combination of all of these. We conceptualize students’ views of substitution, equivalence, and 
transformation as being on a continuum from operational to structural (Table 1). This model is based 
on the notion that the ability to conceptualize transformation as a process of substitution equivalence 
may be useful for students in developing deeper understanding of the justification behind their 
transformation work (and a way of checking the validity of that work).  

Vignettes: A model in action 
We now provide examples of students’ written work from our dataset to illustrate how one might use 
the model we present here. These are intended to highlight the continuum of operational and structural 
views. To see how students’ views of transformation as substitution equivalence can vary along this 
spectrum, we present two developmental algebra (a non-credit course with similar content to Algebra 
I from secondary school) students’ responses about assessing whether two expressions are equivalent 
(Figure 2), where the first response (Figure 2a) exemplifies an operational view and the second 
response (Figure 2b) exemplifies a structural view.  

 
(a)        (b) 

Figure 2: Examples of responses rooted in an operational (a) and structural view (b) of equivalence  

The first student’s response (Figure 2a) foregrounds computation and symbolic manipulation, so we 
classify it as an operational view of transformation. In cognitive interviews, students on similar 
problems have provided similar work and explained that they can only tell if two expressions are 
equivalent if they both simplify to the same final “answer”. Hence we see the approach taken in 

Definition of 
Equivalence 

Students either ignore the notion of 
equivalence entirely, or appear to have 

only vague, ill-defined, or unstable 
notions of equivalence, or try to apply 

one definition of equivalence that works 
only in one context to another context.  

Students have a well-defined and relatively stable 
definition of equivalence, and recognize that it is 

context-dependent. They recognize that equivalence is a 
fixed trait (two objects are either equivalent under a 
particular definition or not—they do not “become” 

equivalent).  
Definition of 
Substitution 

Students see substitution only as 
plugging a number in for a variable (and 

then computing the result). They see 
variables as representing only numbers. 

Students see replacement of any object (or sub-object) 
with an equivalent one as substitution. They see 

variables as representing any valid mathematical object, 
including numbers or (potentially complex) expressions.  



 
 
Figure 2a as indicative of having an internal computational definition of equivalence of “expressions 
that simplify to the same thing”. In contrast, the response in Figure 2b illustrates exactly how the two 
equivalent subexpressions are substituted into the larger expressions using arrows to indicate the 
relationship between each piece and to highlight the structure of the two expressions. This student 
mapped each unified subexpression in the first expression to an equivalent unified subexpression in 
the same place in the second, in order to illustrate why the two expressions are equivalent. Though 
the student didn’t use the word “substitution”, we see evidence that they were depicting a replacement 
or exchange of one equivalent sub-part with another.  

Student definitions of equivalence 

To see how students’ definitions of equivalence can vary, we refer to the previous examples and 
consider the definitions of equivalence the students seem to be evoking. These responses exemplify 
operational and structural definitions of equivalence, respectively. In Figure 2a, the student attempted 
to simplify the expressions to determine whether they are equivalent, and then appeared to decide 
that the expressions were not equivalent after they could not simplify them further. This definition 
(“two expressions are equivalent only if they simplify to the same thing”) of equivalence appears to 
be computational, and their work doesn’t seem to explicitly acknowledge equivalence relationships 
which justify their work. Because the student abandoned the attempt after simplifying did not work, 
this suggests that they did not see a way to use the structure of the given expressions to determine 
equivalence beyond simplifying both sides to see if the results are the same. In contrast, the response 
in Figure 2b suggests that the student may have a structural definition of equivalence. They drew on 
the structure of two complex expressions to show how they map to one another in such a way that 
each subexpression is either the same or equivalent, and they leveraged that structure to show that the 
final result is equivalent. This definition of equivalence appears to be well-defined and to be 
identifying fixed traits of the expressions. 

Student definitions of substitution 

To demonstrate differences along this spectrum, we look at two students’ definitions of substitution 
evoked from the prompt “In math, what is substitution? (Or what does it mean to substitute?)”. One 
student wrote “To substitute is to replace a number with a variable”, and further provided an example 
“2𝑥 + 3 = 9; 2(3) + 3 = 9; 𝑥 = 3”. This response (“putting a number in for a letter”) was one of 
the most common given by students at all levels, from elementary algebra through linear algebra. We 
classify this narrow definition of substitution as operational, whereas the response “To replace one 
number, variable, or expression for another” (a response from another student) was classified as 
structural definition of substitution. This is because their definition affords a greater variety of terms 
to be replaced for one another, which involves conceptualizing complex subexpressions as objects. 

In order to see how students’ views of substitution may impact their view of transformation of 
expressions, we further examined their responses to a task to identify instances of substitution, and 
found that their responses were typically consistent with their definitions (e.g., only recognizing 
transformation as substitution when it involved a number being substituted in for a letter if that was 
their stated definition); we include one such example of this in the next section.  



 
 
Using the framework to analyze student work longitudinally 
In order to illustrate the potential of this model for deeper analysis, we consider examples from a 
single Algebra I student (whom we call Epsilon, like ε) across multiple tasks and points in time.  

Substitution 

We first consider Epsilon’s definition of substitution, who gave the response that classified as an 
operational definition of substitution in the prior section. This correlates with the extent to which they 
identify different computations as substitution in the following work (Figure 3).  

 
Figure 3: Epsilon’s interpretations of substitution in specific contexts  

We can see in Figure 3 that Epsilon rarely identified computation as substitution when it was more 
complex or generalized. They noticed, for example, that the expressions in the last question in Figure 
3 are equivalent, but they did not see replacement of the subexpression 𝑥! − 9 with (𝑥 + 3)(𝑥 − 3) 
as an instance of substitution (“nothing is being replaced”), which is consistent with the more limited 
operational definition of substitution that they provided in the previous section. 

Equivalence 

Now we consider Epsilon’s definition of equivalent expressions. When given the prompt “How could 
you check whether two mathematical expressions are equivalent? (An expression is a mathematical 
phrase that does not contain an equals or inequality sign)”, Epsilon wrote “If they both have the same 
correct answer”. Epsilon provided a seemingly correct (if perhaps incomplete or ill-defined) 
definition of equivalent expressions. We cannot be sure whether they understand that expressions 
must have the same value for every possible combination of variable values or that this applies to 
algebraic and not just arithmetic expressions, and the word “answer” is ill-defined; however, their 
definition is in line with the standard definition used in algebra, and they correctly identified that the 
algebraic expressions in the last question in Figure 3 were equivalent (as well as in other questions 
not shown here). Their definition also appears to be operational, as it is rooted in computations with 
expressions.  

Substitution equivalence 

Now we consider the extent to which Epsilon recognized instances of substitution equivalence in 
certain algebra examples. Epsilon was given the following two questions: 1.) “Suppose we know that 
2𝑥! − 𝑦 is equivalent to 8𝑧. Does that mean that (2𝑥! − 𝑦)(3𝑧 − 7) is equivalent to (8𝑧)(3𝑥 − 7)?” 
and “Suppose we know that 3𝑎 + 𝑏 is equivalent to 42𝑎. Does that mean that 7𝑎 − 5 + (3𝑎 + 𝑏) +
𝑏! − 3𝑎! is equivalent to 7𝑎 − 5 + 42𝑎 + 𝑏! − 3𝑎!?”. Epsilon did not recognize either example as 
substitution equivalence, given that his response was “I don’t know”. To the first prompt, they wrote 



 
 
“24𝑧! − 64𝑧” seemingly to simplify the expression “(8𝑧)(3𝑥 − 7)” (in line with their definition of 
equivalence in the prior section), but this did not help them to identify whether the two expressions 
are equivalent. They did not appear to draw on the given fact that 2𝑥! − 𝑦 is equivalent to 8𝑧 when 
attempting to determine if the two larger expressions are equivalent. They provided no additional 
inscriptions in response to the second question. 

This suggests that they may not have a notion of substitution equivalence or may be unable to draw 
on it in this problem context. Epsilon’s operational approach when attempting to determine if the two 
expressions are equivalent suggests that their operational conception of equivalence may be limiting 
their ability to recognize and use substitution equivalence when performing mathematical 
transformations. Another potential barrier to Epsilon developing a robust notion of substitution 
equivalence and linking this to their transformation work may be their narrow notion of substitution 
itself. They likely did not recognize the transformations in the questions presented here as substitution 
just like they did not recognize most of the transformations in Figure 3 as substitution. 

Potential impacts of instruction 

Epsilon was part of a cohort that took part in a semester-long classroom intervention in which students 
were taught broader structural definitions of substitution, equivalence, and how to view 
transformation as substitution equivalence explicitly (as well as other concepts). After the 
intervention, Epsilon was not able to identify substitution equivalence in all cases, but they were able 
to recognize it in cases similar to those in the prior section. When given the prompt “Suppose that 
3𝑥 = 2𝑦 + 1. Does that mean that 5𝑥! − (3𝑥) + 7 = 5𝑥! − (2𝑦 + 1) + 7?”, Epsilon wrote “Yes 
because 3𝑥 = 2𝑦 + 1; its plugged in correctly”. From this response, we see how they were able to 
recognize a complex equation as an equivalence relationship between two structurally identical 
expressions where one equivalent subexpression could be conceptualized as having been substituted 
for another. Epsilon’s use of the words “plugged in” is a common phrase often used by students to 
indicate substitution. We do note, however, that this language still suggests a computational approach. 
However, Epsilon is drawing on structural features of equivalent algebraic expressions through the 
lens of substitution equivalence, even if their approach is still partially operational. We have 
insufficient space to discuss the intervention at length here—we simply include this short example to 
demonstrate that more structural and well-defined definitions of substitution, equivalence, and 
substitution equivalence approaches to transformation can all be learned by students, even those in 
developmental mathematics courses, when students are given the right supports.  

Conclusion 
We have presented a model that describes how students’ definitions of substitution and equivalence 
may related to their ability to justify transformation through the lens of substitution equivalence. 
Using students’ work, we have illustrated some of the affordances of this lens. We have demonstrated 
that students may struggle with substitution equivalence for different reasons, which may then require 
different instructional approaches. For example, if a student’s definition of equivalence is ill-defined, 
it may be important to find ways for them to improve their personal definition; whereas if a student 
has broad and well-defined definitions of substitution and equivalence, a more effective approach 
may be to help them to see connections between this existing knowledge and their computational 
work when performing transformations. These are very different approaches to solving what might 



 
 
on the surface look like similar errors, but which stem from very different underlying patterns of how 
students think about mathematics. Thus, we hope that this model may aid us to better tailor instruction 
to respond to how to students think, and to better think about how definitions of substitution and 
equivalence are presented in instruction. We have also shown through one student’s work that, with 
the right kind of instructional approaches, students can learn to think about transformation through a 
substitution equivalence lens. Further research is needed to investigate which ways of thinking may 
be most productive for students in different contexts.  
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