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This empirical paper explores students’ conceptions of transformation as substitution equivalence by
linking it to their definitions of substitution and equivalence. This work draws on Sfard’s (1995)
framework to conceptualize conceptions of substitution equivalence and its components, equivalence
and substitution, each on a spectrum from computational to structural. We provide examples of
student work to illustrate how students’ understandings of substitution, equivalence, and substitution
equivalence as an approach to justifying transformation may relate to one another.
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Transformation has been framed as a core mathematical activity (Kieran, 2004), and all mathematical
calculation can be viewed as a process of transformation. Researchers such as Kirschner & Awtry
(2004) have found that students’ thinking about transforming symbols tends to be rooted in visual
patterns of symbols rather than a deeper understanding of mathematical structures. Since algebraic
transformation is often taught procedurally, there is a need to frame these manipulations in a structural
way. By exploring the core mathematical ideas that justify why particular transformations are
mathematically valid, we conceptualize transformation as a process of replacing one symbolic object
with an equivalent one, and name this process substitution equivalence (Wladis et al., 2020). This
includes the process of identifying sub-objects and replacing them with equivalent ones in order to
generate a new equivalent object. This identification process is non-trivial for many students, and we
hypothesize that thinking around substitution equivalence may be intimately connected to many of
the struggles that students have with transforming symbolic mathematics in various contexts, yet this
idea has rarely been explored in research. Here we present a model of students’ thinking around
substitution equivalence and illustrate potential affordances it might have in analyzing student work.

Conceptual framework and Prior Research
Substitution equivalence as a lens for mathematical transformation

In this paper, we focus on students’ thinking around substitution equivalence, or the notion that two
expressions, equations, or other mathematical objects are equivalent if one can be generated from the
other through a sequence of substitutions carried out using standard interpretations of syntactic
structure and mathematically valid uses of mathematical properties (Wladis et al., 2020).

Definition of substitution

In order to see how all mathematical activity could be viewed through the lens of substitution
equivalence, we define substitution more broadly than has been done explicitly in much existing
research and curricula. Jones and colleagues (2012) describe substitution as “the replacement of one



representation with another” (p.167). Our definition builds on this idea by requiring the equivalence
of mathematical objects being replaced and extending to other mathematical objects as well, such as
equations. For us, substitution is the process of replacing any mathematical object (or any unified
subpart of an object) with any equivalent object, regardless of complexity. This includes not only the
replacement of x in 2x? — 2x + 1 with —3, but also the replacement of x2 — 6x = 1 with the
equivalent equation x? — 6x — 1 = 0 during solving.

Definition of equivalence

Substitution equivalence is dependent upon an underlying equivalence relation. This may be a
context-specific definition of equivalence (e.g., insertion equivalence in Zwetzschler and Prediger,
2013), or a more generalized concept of equivalence (e.g., an equivalence relation). Indeed, any
definition of equivalence that satisfies equivalence relation criteria could be used.

Definition of substitution equivalence

Despite the importance of substitution equivalence to algebraic justification, little research has
focused explicitly on substitution equivalence (see e.g., Pinkernell et al., 2017). A search in ERIC
(the education research database maintained by the US Institute of Education Sciences,
https://eric.ed.gov/) yields no results for substitution equivalence, substitutional equivalence or
substitution property of equality. Other researchers have explored the “substitution principle”, which
refers to the structural sameness preserved when replacing a variable with a compound term, or vice
versa (Musgrave et al., 2015). While this is related to our definition, as both rely on the substitution
property of equality, this is not how we use this term. We define the domain of substitution

equivalence as composed of two main ideas:

1. The general notion of substitution equivalence: A student understands that we can replace an object
with any other equivalent object when problem-solving.

2. The notion that substitution of unified sub-objects preserves equivalence: A student understands
that objects can be broken into unified sub-objects, and that replacing any unified sub-object with
an equivalent unified sub-object produces an object that is equivalent to the original one (as long
as substitution leaves the rest of the structure of that object unchanged).

The second notion leads us to another core definition: We use the term subexpression (or sub-object,
more generally) to denote a substring of an expression (or other object) that can be treated as a unified
object without changing the syntactic meaning of the original expression (or object). For example,
a — b is a subexpression of a — b — ¢, but b — c is not (because putting brackets around b — ¢ would
change the syntactic meaning of the whole expression). This different from, but related to, what
Kieran (1989) refers to as surface structure (identifying the syntactic meaning of a symbolic algebraic
representation) and what Malle (1993) refers to as Termstrukturen (“‘expression structuring”)
(identifying all algebraic expressions with the same syntactic meaning).

In this paper, we use Sfard’s (1995) work to frame our thinking about student conceptions, where
student thinking about a concept may be operational (as a process, often of computation) or structural
(as an abstract object in and of itself). We conceptualize students’ definitions on a continuum that can
be primarily structural, primarily operational, or somewhere in between. A student may vary along
the spectrum flexibly, but the ability to think structurally, at least some of the time, is necessary in



order to progress to some higher order processes (Sfard, 1995).

Aside from Wladis et al. (2020), we have found little (if any) work on student conceptions of
substitution equivalence, although there has been substantial work around equality. One common
strand focuses on conceptions of the equal sign, where students see the symbol either operationally
(as a ‘do something symbol), or relationally (as a relationship between two entities) (Knuth et al.,
2006). In terms of substitution, relatively little work has been done, although some research has
explored student notions of substitution equivalence in the context of arithmetic (Jones et al., 2012).

Model of operational and structural view of substitution equivalence

Wiladis et al (2020) described key features of students’ thinking around substitution equivalence on a
spectrum from structural to operational approaches. This paper aims to take this further by drawing
on empirical data to explicitly describe how students’ conceptions of substitution equivalence may
be dependent upon their definitions of substitution and equivalence (see Figure 1).

Definition of Definition of
Substitution Equivalence

N\ /

View of Transformation:
(Substitution Equivalence)

Figure 1: Model of student thinking about substitution equivalence
Method

This work draws on data collected from multiple classes across six years at an urban community
college in the US, including cognitive interviews and open-ended questionnaires. Open-ended
questionnaires and cognitive interviews were distributed to participants in courses from elementary
algebra through linear algebra within a larger data collection process in efforts to develop an
algebra concept inventory. These data were analyzed using grounded theory (Strauss & Corbin,
1990) to generate and refine models of students’ conveyed meanings to explain their written and
spoken work. Categories developed during analysis were heavily influenced by the work of Sfard
(1995), and existing literature about students’ understanding of the equals sign (e.g., Knuth et al.,
2006). An initial coding scheme was developed by a single coder, and then in subsequent rounds,
multiple coders revised the scheme until consensus was reached; coders included mathematicians,
mathematics education researchers, and elementary algebra instructors.

The Model
Table 1: Components of substitution equivalence model
Operational Thinking Structural Thinking
View of Students see transformations of Students see each step in a transformation as the process
Transformation expressions and equations (or other of replacing one object with an equivalent one through
objects) as a process of “operating on” substitution, using properties and existing syntactic
the original object itself. They may or structure. They appear to have some notion of an
may not see this as linked to any notion equivalence class as an object (which need not be
of equivalence. formally defined).




Definition of Students either ignore the notion of Students have a well-defined and relatively stable
Equivalence equivalence entirely, or appear to have definition of equivalence, and recognize that it is
only vague, ill-defined, or unstable context-dependent. They recognize that equivalence is a
notions of equivalence, or try to apply fixed trait (two objects are either equivalent under a
one definition of equivalence that works particular definition or not—they do not “become”
only in one context to another context. equivalent).
Definition of Students see substitution only as Students see replacement of any object (or sub-object)
Substitution | plugging a number in for a variable (and with an equivalent one as substitution. They see
then computing the result). They see | variables as representing any valid mathematical object,
variables as representing only numbers. | including numbers or (potentially complex) expressions.

In the model in Figure 1, holding well-defined and standard definitions of both substitution and
equivalence are necessary but not sufficient conditions for students to develop a view of
transformation justified by substitution equivalence. A student may have trouble thinking of
transformation as substitution equivalence because (a) their definitions of substitution are too narrow;
(b) their definitions of equivalence are ill-defined, unstable, or mathematically invalid; (c) they do
not draw on their knowledge of substitution and/or equivalence when performing transformation; or
a combination of all of these. We conceptualize students’ views of substitution, equivalence, and
transformation as being on a continuum from operational to structural (Table 1). This model is based
on the notion that the ability to conceptualize transformation as a process of substitution equivalence
may be useful for students in developing deeper understanding of the justification behind their
transformation work (and a way of checking the validity of that work).

Vignettes: A model in action

We now provide examples of students’ written work from our dataset to illustrate how one might use
the model we present here. These are intended to highlight the continuum of operational and structural
views. To see how students’ views of transformation as substitution equivalence can vary along this
spectrum, we present two developmental algebra (a non-credit course with similar content to Algebra
I from secondary school) students’ responses about assessing whether two expressions are equivalent
(Figure 2), where the first response (Figure 2a) exemplifies an operational view and the second
response (Figure 2b) exemplifies a structural view.

Suppose that we know that 2x? — y is equivalent to 8z. Suppuse that we know that 2x2 — y is equivalent to 8z,
_ N _5, . Does this mean that (2x2 — y)(3z — 7) is equivalent to (82)(3z — 7)?
Does this mean that (2x* — y)(3z —7) is equivalent to (82)(3z — "circte one: . Yes) No There isn’t enough information o tell
Circle one: Yes No There isn’t enough information to tell { (,:\ € ” S 2 quiva lga+r 4> (3 ?\.
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Figure 2: Examples of responses rooted in an operational (a) and structural view (b) of equivalence

The first student’s response (Figure 2a) foregrounds computation and symbolic manipulation, so we
classify it as an operational view of transformation. In cognitive interviews, students on similar
problems have provided similar work and explained that they can only tell if two expressions are
equivalent if they both simplify to the same final “answer”. Hence we see the approach taken in



Figure 2a as indicative of having an internal computational definition of equivalence of “expressions
that simplify to the same thing”. In contrast, the response in Figure 2b illustrates exactly how the two
equivalent subexpressions are substituted into the larger expressions using arrows to indicate the
relationship between each piece and to highlight the structure of the two expressions. This student
mapped each unified subexpression in the first expression to an equivalent unified subexpression in
the same place in the second, in order to illustrate why the two expressions are equivalent. Though
the student didn’t use the word “substitution”, we see evidence that they were depicting a replacement
or exchange of one equivalent sub-part with another.

Student definitions of equivalence

To see how students’ definitions of equivalence can vary, we refer to the previous examples and
consider the definitions of equivalence the students seem to be evoking. These responses exemplify
operational and structural definitions of equivalence, respectively. In Figure 2a, the student attempted
to simplify the expressions to determine whether they are equivalent, and then appeared to decide
that the expressions were not equivalent after they could not simplify them further. This definition
(“two expressions are equivalent only if they simplify to the same thing”) of equivalence appears to
be computational, and their work doesn’t seem to explicitly acknowledge equivalence relationships
which justify their work. Because the student abandoned the attempt after simplifying did not work,
this suggests that they did not see a way to use the structure of the given expressions to determine
equivalence beyond simplifying both sides to see if the results are the same. In contrast, the response
in Figure 2b suggests that the student may have a structural definition of equivalence. They drew on
the structure of two complex expressions to show how they map to one another in such a way that
each subexpression is either the same or equivalent, and they leveraged that structure to show that the
final result is equivalent. This definition of equivalence appears to be well-defined and to be
identifying fixed traits of the expressions.

Student definitions of substitution

To demonstrate differences along this spectrum, we look at two students’ definitions of substitution
evoked from the prompt “In math, what is substitution? (Or what does it mean to substitute?)”. One
student wrote “To substitute is to replace a number with a variable”, and further provided an example
“2x +3=9;2(3) +3 =9; x = 3”. This response (“putting a number in for a letter”’) was one of
the most common given by students at all levels, from elementary algebra through linear algebra. We
classify this narrow definition of substitution as operational, whereas the response “To replace one
number, variable, or expression for another” (a response from another student) was classified as
structural definition of substitution. This is because their definition affords a greater variety of terms
to be replaced for one another, which involves conceptualizing complex subexpressions as objects.

In order to see how students’ views of substitution may impact their view of transformation of
expressions, we further examined their responses to a task to identify instances of substitution, and
found that their responses were typically consistent with their definitions (e.g., only recognizing
transformation as substitution when it involved a number being substituted in for a letter if that was
their stated definition); we include one such example of this in the next section.



Using the framework to analyze student work longitudinally

In order to illustrate the potential of this model for deeper analysis, we consider examples from a
single Algebra I student (whom we call Epsilon, like €) across multiple tasks and points in time.

Substitution

We first consider Epsilon’s definition of substitution, who gave the response that classified as an
operational definition of substitution in the prior section. This correlates with the extent to which they
identify different computations as substitution in the following work (Figure 3).

Is it Explaln how you know.
substitution? | If you don't know, please explain what you are b+ -
Clrcle one. thinking that makes you unsure of the answer. | _ ;x_'_ ‘;; Yas ‘E‘?—) “u“\lﬁw v Gt ew
x=-9 es No . 1 . - - -
-2)-9 * is belng ceplactd don'tknow (e glaced
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(O+2)+8 |Yes (o) \ =2(x-1)+3y - a
. { Vi aeLes Gi e 1
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Figure 3: Epsilon’s interpretations of substitution in specific contexts

We can see in Figure 3 that Epsilon rarely identified computation as substitution when it was more
complex or generalized. They noticed, for example, that the expressions in the last question in Figure
3 are equivalent, but they did not see replacement of the subexpression x? — 9 with (x + 3)(x — 3)
as an instance of substitution (“nothing is being replaced”), which is consistent with the more limited
operational definition of substitution that they provided in the previous section.

Equivalence

Now we consider Epsilon’s definition of equivalent expressions. When given the prompt “How could
you check whether two mathematical expressions are equivalent? (An expression is a mathematical
phrase that does not contain an equals or inequality sign)”, Epsilon wrote “If they both have the same
correct answer”. Epsilon provided a seemingly correct (if perhaps incomplete or ill-defined)
definition of equivalent expressions. We cannot be sure whether they understand that expressions
must have the same value for every possible combination of variable values or that this applies to
algebraic and not just arithmetic expressions, and the word “answer” is ill-defined; however, their
definition is in line with the standard definition used in algebra, and they correctly identified that the
algebraic expressions in the last question in Figure 3 were equivalent (as well as in other questions
not shown here). Their definition also appears to be operational, as it is rooted in computations with
expressions.

Substitution equivalence

Now we consider the extent to which Epsilon recognized instances of substitution equivalence in
certain algebra examples. Epsilon was given the following two questions: 1.) “Suppose we know that
2x% — y is equivalent to 8z. Does that mean that (2x2 — y)(3z — 7) is equivalent to (82)(3x — 7)?”
and “Suppose we know that 3a + b is equivalent to 42a. Does that mean that 7a — 5 + (3a + b) +
b? — 3a? is equivalent to 7a — 5 + 42a + b? — 3a??”. Epsilon did not recognize either example as
substitution equivalence, given that his response was “I don’t know”. To the first prompt, they wrote



“24z% — 642> seemingly to simplify the expression “(82z)(3x — 7)” (in line with their definition of
equivalence in the prior section), but this did not help them to identify whether the two expressions
are equivalent. They did not appear to draw on the given fact that 2x2 — y is equivalent to 8z when
attempting to determine if the two larger expressions are equivalent. They provided no additional
inscriptions in response to the second question.

This suggests that they may not have a notion of substitution equivalence or may be unable to draw
on it in this problem context. Epsilon’s operational approach when attempting to determine if the two
expressions are equivalent suggests that their operational conception of equivalence may be limiting
their ability to recognize and use substitution equivalence when performing mathematical
transformations. Another potential barrier to Epsilon developing a robust notion of substitution
equivalence and linking this to their transformation work may be their narrow notion of substitution
itself. They likely did not recognize the transformations in the questions presented here as substitution
just like they did not recognize most of the transformations in Figure 3 as substitution.

Potential impacts of instruction

Epsilon was part of a cohort that took part in a semester-long classroom intervention in which students
were taught broader structural definitions of substitution, equivalence, and how to view
transformation as substitution equivalence explicitly (as well as other concepts). After the
intervention, Epsilon was not able to identify substitution equivalence in all cases, but they were able
to recognize it in cases similar to those in the prior section. When given the prompt “Suppose that
3x = 2y + 1. Does that mean that 5x? — (3x) + 7 = 5x? — (2y + 1) + 7?7, Epsilon wrote “Yes
because 3x = 2y + 1; its plugged in correctly”. From this response, we see how they were able to
recognize a complex equation as an equivalence relationship between two structurally identical
expressions where one equivalent subexpression could be conceptualized as having been substituted
for another. Epsilon’s use of the words “plugged in” is a common phrase often used by students to
indicate substitution. We do note, however, that this language still suggests a computational approach.
However, Epsilon is drawing on structural features of equivalent algebraic expressions through the
lens of substitution equivalence, even if their approach is still partially operational. We have
insufficient space to discuss the intervention at length here—we simply include this short example to
demonstrate that more structural and well-defined definitions of substitution, equivalence, and
substitution equivalence approaches to transformation can all be learned by students, even those in
developmental mathematics courses, when students are given the right supports.

Conclusion

We have presented a model that describes how students’ definitions of substitution and equivalence
may related to their ability to justify transformation through the lens of substitution equivalence.
Using students’ work, we have illustrated some of the affordances of this lens. We have demonstrated
that students may struggle with substitution equivalence for different reasons, which may then require
different instructional approaches. For example, if a student’s definition of equivalence is ill-defined,
it may be important to find ways for them to improve their personal definition; whereas if a student
has broad and well-defined definitions of substitution and equivalence, a more effective approach
may be to help them to see connections between this existing knowledge and their computational
work when performing transformations. These are very different approaches to solving what might



on the surface look like similar errors, but which stem from very different underlying patterns of how
students think about mathematics. Thus, we hope that this model may aid us to better tailor instruction
to respond to how to students think, and to better think about how definitions of substitution and
equivalence are presented in instruction. We have also shown through one student’s work that, with
the right kind of instructional approaches, students can learn to think about transformation through a
substitution equivalence lens. Further research is needed to investigate which ways of thinking may
be most productive for students in different contexts.
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