
Private Anomaly Detection in Linear Controllers:
Garbled Circuits vs. Homomorphic Encryption

Andreea B. Alexandru† Luis Burbano‡,∗ Mestan F. Çeliktuğ♯,∗ Juanita Gomez‡

Alvaro A. Cardenas‡ Murat Kantarcioglu♯ Jonathan Katz†

Abstract— Anomaly detection can ensure the operational in-
tegrity of control systems by identifying issues such as faulty
sensors and false data injection attacks. At the same time, we
need privacy to protect personal data and limit the information
attackers can get about the operation of a system. However,
anomaly detection and privacy can sometimes be at odds, as
monitoring the system’s behavior is impeded by data hiding.
Cryptographic tools such as garbled circuits and homomorphic
encryption can help, but each of these is best suited for
certain different types of computation. Control with anomaly
detection requires both types of computations so a naive crypto-
graphic implementation might be inefficient. To address these
challenges, we propose and implement protocols for privacy-
preserving anomaly detection in a linear control system using
garbled circuits, homomorphic encryption, and a combination
of the two. In doing so, we show how to distribute private com-
putations between the system and the controller to reduce the
amount of computation–in particular at the low-power system.
Finally, we systematically compare our proposed protocols in
terms of precision, computation, and communication costs.

I. INTRODUCTION

Encrypted control offers provable guarantees on the pri-
vacy of the underlying data in a control system [1]. The stan-
dard setup for an encrypted control system is that the state,
input, and output of a plant are cryptographically protected
with schemes that enable a controller to perform estimation
and control without learning private information.

Privacy alone, however, cannot guarantee the integrity and
fitness of data. To catch potential data injection attacks, we
need additional checks such as anomaly detection [2]. Incor-
porating it within existing privacy-preserving control solu-
tions is challenging since the leading cryptographic tools—
garbled circuits and homomorphic encryption—are each
suited for different computation types, and anomaly detection
requires both types. Here, we study for the first time the chal-
lenges and methods for providing both control performance
and anomaly detection in a privacy-preserving manner.

A. Related work

Most existing works focus on linear controllers, or split the
computations so that the controller only has to perform linear

† Department of Computer Science, University of Maryland, College
Park, MD 20742, USA {aandreea,jkatz2}@umd.edu. Work sup-
ported by NSF award #1837517.

‡Department of Computer Science and Engineering, University of
California, Santa Cruz, CA 95064, USA {lburbano,jgomez91,
alacarde}@ucsc.edu. Work supported by NSF award #1929410

♯Department of Computer Science, University of Texas at Dallas, TX
75080, USA {muratk,mestanfirat.celiktug}@utdallas.edu.
Work supported by NSF award #1929410

∗ These authors contributed equally.

operations [3]–[7]. Partially homomorphic encryption (PHE)
is a popular tool in this context because it allows efficient
evaluations of linear functions on private data, but is not
sufficient to implement private non-linear controllers. Some
works augment PHE with secret sharing private data into
two shares and using many rounds of interaction to carry
out non-linear private computations [8], [9]. Another option
is to employ leveled homomorphic encryption, which enables
the evaluation of (low-degree) polynomials over private data,
to approximate non-linear computations. Existing works that
use this approach with a single server for the controller either
implement polynomial control without refreshing [10], [11]
or approximate non-polynomial control [12], [13].

Circuit garbling is a two-party tool where one party garbles
an arbitrary function, along with its own input, and sends
these to a second party who evaluates the garbled function
once, on its local input. Although a powerful tool, garbled
circuits have been used less frequently for encrypted control.
In [14], [15], two servers are used at the controller side to
implement non-polynomial control and sensor fusion, exter-
nal to the system. The closest work to ours is [16], which
directly employs both homomorphic encryption and garbled
circuits to privately compute path intersection, but does not
discuss parties’ asymmetry or compare to other solutions. In
addition, as far as we are aware, no other work in encrypted
control has considered anomaly detection.

B. Contributions

As noted above, homomorphic encryption (HE) and gar-
bled circuits (GC) provide two different paradigms of private
computation between two mutually distrusting parties. At a
high level, HE encrypts the data to be computed upon, while
GC garbles the function to be computed. HE is designed to
evaluate arithmetic circuits, and is efficient for e.g., matrix-
vector multiplications (essential for control computation),
while GC is designed to evaluate Boolean circuits, and is
efficient for e.g., comparisons (essential for anomaly detec-
tion). Most HE schemes use public-key operations, while GC
mostly relies on more efficient symmetric-key operations.

Our work sets out to establish, for control and anomaly
detection, the best way to use HE and GC to achieve privacy.
Specifically, our goal is to design and implement a privacy-
preserving anomaly-detection protocol based on cumulative
statistics over a Linear Quadratic Gaussian regulator such
that the controller cannot infer any information about the
values of the state estimates, measurements, or control inputs,
but can still identify anomalies and trigger alarms. While the



control part involves linear operations, the alarm computa-
tion is non-polynomial. Hence, it is not immediately clear
whether it is more efficient to use homomorphic encryption,
garbled circuits, or a combination of the two. We design and
implement optimized control and anomaly detection proto-
cols for a physical system and a single cloud-controller using:
1) Garbled circuits only. Since the roles of garbling and

evaluation are not symmetric, we consider both the cloud
as garbler and the cloud as evaluator.

2) Leveled homomorphic encryption for the computation at
the cloud, and secret sharing for refreshing the state in
order to support repeated computations.

3) Leveled homomorphic encryption for the control part and
garbled circuits for anomaly detection.

Finally, we compare all three cases for various system sizes
in terms of precision, communication, and computation, and
identify efficiency trade-offs. The results can be used to
design solutions for other control applications in this setting.

II. PROBLEM STATEMENT

Consider a system consisting of sensors, actuators and a
physical plant, and a digital controller implemented at a
cloud server, depicted in Figure 1. Our goals are to (i) control
the plant to track a desired reference and (ii) perform anom-
aly detection to ensure correct functioning. We also want to
achieve both objectives in a privacy-preserving manner. First,
we describe the intended operation in the absence of privacy.

The physical system is described by a state x ∈ Rn and an
output z ∈ Rp that evolve according to difference equations

x[k + 1] = Ax[k] +Bu[k] + v[k] (1)
z[k] = Cx[k] +w[k], (2)

where A ∈ Rn×n,B ∈ Rn×m,C ∈ Rp×n are constant sys-
tem matrices, and v ∈ Rn is the random process noise. We
assume (A,B) is controllable and (A,C) is observable.

The sensors obtain measurements y ∈ Rp that can differ
from the true output z, both because of random measurement
noise w ∈ Rp and data injection attacks ya ∈ Rp. This
can happen when an attacker uses a physical phenomenon

Fig. 1: Two-party setting for control computation and anom-
aly detection. Only the system should know the blue quan-
tities in the system’s box, only the cloud should know the
magenta quantities in the cloud’s box, and both should know
the alarm. Not shown quantities should be hidden from both.

affecting the measurement, e.g., electromagnetic interference
that changes the analog to digital conversion of the sensed
value [17], or digitally injects noise. Note that an attack sig-
nal ya injected outside of the system is easier to detect than
one injected at the sensors (e.g., by using message authenti-
cation codes). Therefore, we consider the more challenging
scenario and model this false data injection attack at the
sensors as an additional signal distorting the measurements:

y[k] = z[k] +w[k] + ya[k]. (3)

Sensors then send these measurements to the cloud con-
troller, which computes an estimate of the state x̂e ∈ Rn. We
assume the cloud has an initial estimate x̂e[0] = x[0]. In the
following steps, the estimate is computed as

x̂e[k] = Ax̂e[k − 1] +Bu[k − 1] (4)
+ L (y[k]−C (Ax̂e[k − 1] +Bu[k − 1])) ,

where L ∈ Rp×n is the estimation gain. Given the control
gain K ∈ Rm×n and the references xr ∈ Rn,ur ∈ Rm, the
control action u is computed as

u[k] = −K (x̂e[k]− xr) + ur. (5)

Furthermore, the cloud also has the role of an anomaly-
detection system performing two steps: model-based pre-
diction and anomaly detection. The predicted system state
x̂p ∈ Rn is computed as:

x̂p[k] = Ax̂e[k − 1] +Bu[k − 1]. (6)

We assume the cloud has an initial estimation x̂p[0] = x[0].
For anomaly detection, we define the residues r ∈ Rp as

the distance between the measured output and the expected
output, where the squaring is done element-wise:

r[k] = (y[k]−Cx̂p[k])
2
. (7)

Following [18], we define an additional statistic s ∈ Rp,
called the nonparametric cumulative sum (CUSUM), which
is initialized to zero and computed recursively as shown
below. The CUSUM requires two constant design vectors
ν ∈ Rp and τ ∈ Rp, whose elements are strictly positive.
An alarm is triggered in sensor i ∈ {1, . . . , p} if s(i)[k]
> τ (i) and the CUSUM is then reset to zero: s(i)[k+1] = 0.
Otherwise, for i ∈ {1, . . . , p}, the CUSUM takes the value:

s(i)[k + 1] = max{0, s(i)[k] + r(i)[k]− ν(i)}. (8)

Equivalently, the cloud has to set:

alarm[k]=I(0,∞)(s[k]− τ ) (9)
s[k + 1]=max{0, s[k] + r[k]− ν}⊙(1− alarm[k]), (10)

where I(0,∞) is the indicator function on the positive axis
and ⊙ represents element-wise product. I(0,∞) and max are
applied element-wise. The CUSUM parameters are tuned
based on the simulation of the physical system [2] in order
to strike a balance between maintaining a low false alarm
rate, and a high probability of detecting an attack.

The cloud logs the alarm, then sends the control input and
alarm, u[k] and alarm[k], to the system.



Security requirements. In this work, we assume the cloud
has previously performed system identification to obtain the
system model, computed the control gains, and designed the
CUSUM vectors using proprietary knowledge, so it wants to
keep those values secret. In future work, we will consider the
case where this information is given encrypted to the cloud.
The system’s owner wants to conceal the measurements, ref-
erences, states and control actions from the cloud. However,
there might be physical or cyber injection attacks against
the sensors. These can impact computations and decisions
both at the system and cloud controller, so both parties
wish to know whether attacks have been detected and alarms
raised. Thus, the two parties want a protocol that efficiently
computes reference-tracking controls and accurately detects
attacks on the sensors. In short, our goal is to design pro-
tocols which ensure control performance, precise anomaly
detection, privacy of sensitive data, and real-time efficiency.

Notice that we are defending against (i) an external adver-
sary that can perform injection attacks, and (ii) an internal
adversary that wants to access the data at the system or at the
cloud. We want our anomaly detection system to quickly and
accurately identify attacks by the first adversary. The second
adversary is computationally bounded and semi-honest, i.e.,
correctly follows the steps of the protocol but may store the
transcript of the messages exchanged and process it to try to
learn more information than allowed. A two-party protocol
between the system and the cloud is defined to be private
if all information obtained by a party during execution of
the protocol, including intermediate computations, can be
deduced only from the allowed inputs and outputs of that
party [19, Ch. 7]. In this work, we use this privacy definition
to develop privacy-preserving protocols.

III. CRYPTOGRAPHIC PRELIMINARIES

A. Oblivious transfer (OT)

Oblivious transfer allows a receiver to get a secret σb out
of a pair σ0, σ1 held by a sender. The sender learns nothing
about b ∈ {0, 1} and the receiver learns nothing about σ1−b.

B. Garbled circuits (GC)

Garbled circuits [20] allow two parties to evaluate an
arbitrary function represented as a Boolean circuit on private
inputs from both parties, leaking nothing beyond the output
of the function. A garbling scheme is a tuple of algorithms
GC = (Garble,Eval,Decode). During Garble, the garbler
party creates a “garbled” representation of a Boolean circuit
in which each wire is associated with two cryptographic keys,
called labels, one for 0 and one for 1. In the garbled rep-
resentation, the gates of the circuit are tables of ciphertexts
encrypted using the wire labels (e.g., via AES). The garbled
circuit consisting of all garbled gates is sent to the evaluator
party. Then, the garbler provides the input garbled values to
the evaluator. For its own input bits, the garbler directly sends
the corresponding garbled labels. For the evaluator’s input
bits, the two parties run OT protocols, enabling the evaluator
to obtain the garbled labels without revealing its inputs.
During Eval, the evaluator evaluates the garbled circuit on the

received garbled labels. Finally, the garbled output is decoded
using the corresponding output wire labels in Decode.

Formally, the GC algorithms are:
• Garble(f, x) → (C, X, d): on input function f and input

bits x ∈ {0, 1}n, outputs garbled representation C, garbled
input labels pairs X = {lab0i , lab

1
i }i∈[n], decoding map d.

• Eval(C, X̄) → Y : on input garbled representation C and a
set of garbled input labels X̄ = {labxi

i }i∈[n] associated to
input x ∈ {0, 1}n, output garbled output labels Y .

• Decode(d, Y ) → y: on input decoding map d and garbled
output labels Y , output the circuit’s output y.
A garbling scheme is correct if Decode outputs y = f(x)

for the desired function f and input x. A garbling scheme is
private if, given C, the garbled input labels X̄ of the circuit
wires and the decoding map d, an adversary learns nothing
apart from the number of inputs, the size of the circuit and y.

C. Leveled homomorphic encryption (HE)

A leveled homomorphic encryption scheme supports the
encrypted evaluation of bounded-degree polynomials or
bounded-depth arithmetic circuits. In HE schemes based on
the Learning with Errors hardness problem, each operation
evaluated on ciphertexts introduces some noise, which can
cause incorrect decryption if it overflows. Multiplications
introduce the most noise, therefore we want to evaluate low-
depth circuits, i.e., few sequential multiplications.

Plaintexts and ciphertexts can encode a vector of scalars;
an operation applied on a ciphertext is applied component-
wise on the encrypted vector. This allows us to perform
component-wise additions and multiplications between ci-
phertexts or between a plaintext and a ciphertext, and vector
rotations (cyclic permutations of the encrypted vector).

Formally, a leveled homomorphic encryption scheme is a
tuple of algorithms LHE = (KeyGen,Enc,Dec,Eval):
• KeyGen → (pk, sk, evk): outputs a public key pk, a secret

key sk, and an evaluation key evk.
• Encpk(m) → c: on input public key pk and a message m,

output a ciphertext c.
• Decsk(c) → m: on input secret key sk and a ciphertext c,

output a message m.
• Evalevk(f, c1, c2,m3) → c: on input evaluation key evk,

ciphertexts c1, c2 encrypting messages m1,m2, a message
m3 and a depth-d arithmetic circuit f , output a new
ciphertext c. The inputs c2, m3 are optional.
Briefly, LHE is correct if Decsk(Encpk(m)) = m and

Decsk(Evalevk(f,Encpk(m),Encpk(m
′))) = f(m,m′). LHE

is IND-CPA secure if the encryptions of any two messages
are computationally indistinguishable, and function private
if a ciphertext obtained from the homomorphic evaluation
of a function, together with the private key, reveals only the
result of the evaluation and nothing else about the function.

D. Statistical additive blinding

In additive blinding, a secret m of l bits is split into two
shares: a uniform random value s of l + λ bits, and m+ s.
This guarantees that both shares together allow recovery of m
yet each share on its own reveals nothing about m.



Both GC and HE schemes are κ-computationally secure,
i.e., an adversary has to do O(1/2κ) operations in order to
break the underlying cryptographic problem. Additive blind-
ing is λ-statistically secure, i.e., an adversary has O(1/2λ)
probability of guessing the secret based on the given shares.

IV. OVERVIEW OF OUR SOLUTIONS

Based on the theoretical preliminaries from Section III, we
design efficient solutions for the privacy-preserving control
and anomaly detection problem, using garbled circuits in
Section V and homomorphic encryption in Section VI.

Our first step is to process the functionality of equa-
tions (4)–(10) in a Boolean circuit representation for GC and
in an arithmetic circuit for HE, and push computations on
constant matrices in a one-time preprocessing phase. For the
GC solutions, we want to build a circuit with few multi-
plications, which require fewer AND gates—the gates most
expensive to transmit. For the HE solution, we want to build
a low-depth circuit, since fewer sequential multiplications
imply smaller ciphertexts. Further, we need to transform the
comparison-based computations into polynomials for HE; to
this end, we use the Chebyshev interpolation and select the
lowest polynomial degree that maintains sufficient accuracy.

The second step is to reduce the data size dependence. In
the GC approach, we reuse some already generated garbled
labels while still preserving privacy, in order to reduce the
overhead associated with data transmission, which is exac-
erbated as the data size increases. In the HE approach, we
use vector packing, which makes computations independent
or only logarithmically dependent on the data size.

Noting the advantages and disadvantages of the GC and
HE solutions, in Section VII, we design a hybrid solution that
computes (4)–(5) as an arithmetic circuit, evaluated with HE,
and (9), (10) as a Boolean circuit, evaluated with GC.

The system and the cloud are asymmetric from a computa-
tional power perspective; we expect a low-power microcon-
troller at the system side and a more powerful server at the
cloud side. Therefore, in Section VIII, we run experiments
to determine which of the four protocols (two GC, one
HE and one hybrid) guarantees the lowest computation and
communication overhead for the system, while offering good
precision. Our experimental observations match the theoret-
ical predictions, but also illustrate quantifiable differences
between the protocols’ performance.

V. A SOLUTION BASED ON GARBLED CIRCUITS

We first modify equation (4) to have fewer multiplications
and precompute the matrix products at the cloud. Then,
we transform it, along with (5)–(10), in a Boolean circuit
denoted by C. Below, we explore two possible scenarios:
1) the cloud is the garbler and the system is the evaluator,
and 2) the system is the garbler and the cloud is the evaluator.

A. Cloud is the garbler

Preprocessing: Cloud generates pairs of labels for the input
wires of C. It stores the labels corresponding to its secrets (all

are constant) and sends them to the system. It then performs
OT with the system for xr, ur.

Online step k

1) System measures y[k] after inputting u[k − 1].
2) Cloud performs OT with the system for the labels corre-

sponding to y[k].
3) Cloud computes circuit C and sends it to the system, along

with the decoding scheme for u[k] and alarm[k].
4) System evaluates C and decodes u[k] and alarm[k].
5) System sends alarm[k] to the cloud.

B. System is the garbler

Preprocessing: System generates pairs of labels for the
input wires of C. It stores the labels, sends the labels
corresponding to the references xr,ur and performs OT with
the cloud for the cloud’s secrets (all are constant).

Online step k

1) System measures y[k] after inputting u[k − 1].
2) System sends to the cloud the labels for y[k].
3) System computes C and sends it to the cloud, along with

the decoding scheme for alarm[k].
4) Cloud evaluates C and decodes alarm[k].
5) Cloud sends alarm[k] and the encoded u[k] to the system.
6) System decodes u[k].

C. Optimizations

We use the Efficient Multiparty (EMP) toolkit [21] to im-
plement our solution. EMP applies several improvements for
GC: i) OT extension: push public-key operations to the pre-
processing phase, ii) free XOR: an encoding such that
evaluating XOR gates does not require transmission of the
garbled gate, iii) garbled row reduction: only three rows are
computed and sent for a non-XOR gate, iv) reduced number
of non-XOR gates in the Boolean circuit, v) pipelined circuit
execution: the entire circuit is not fully stored in memory,
but computed as needed based on the available wires.

Further, we use the following optimizations for the circuit:
• Reuse the input wire labels for constant inputs (e.g., model,

references) across circuits for different iterations.
• Hardwire zeros for the CUSUM statistic s[k + 1] corre-

sponding to the raised alarms.
• Do not decode x̂e[k] and s[k] between iterations. The

garbler uses the output wire labels corresponding to x̂e[k]
and s[k] from the circuit at time k as input wire labels for
circuit at time k+1. This avoids performing online OT for
those labels, since the evaluator already has them.

• If the garbler has enough memory, it pregenerates the
circuits for consecutive iterations and stores them, which
saves time in the online iterations.
Neither optimization causes any privacy leakage. To pro-

vide privacy, we need to generate new labels for the non-
constant inputs of the circuits at every time step, but we can
reuse the labels for constant inputs as long as the evaluator
cannot decode them. Moreover, feeding output labels as input
labels in the circuit at the subsequent time step is also private,
since the evaluator does not have their decoding scheme and
the garbler does not receive these labels from the evaluator.



D. Communication and computation

When the cloud is the garbler, in the preprocessing phase it
sends to the system the labels for the model and they perform
OT for the references. At each time step k, the cloud sends to
the system the circuit and the decoding scheme, the system
sends the alarm back, and the two parties perform OT for
labels for y[k]. When the system is the garbler, the above are
reversed, with the difference that the cloud sends back the
encoded u[k] and there is no online OT for y[k], but many
more OTs for the model at the cloud in preprocessing phase.

When the cloud is the garbler, it has to perform the label
generation and circuit computation, and is the sender in the
OTs, while the system is the receiver in the OTs, evaluates
the circuit and performs decoding. When the system is the
garbler, these are reversed.

Circuit garbling is more intensive than circuit evaluation,
because i) it involves computing cryptographic primitives for
each entry of the truth table, but the evaluation only computes
them for one entry and ii) it requires sampling many random
values, which can be expensive on low-power platforms.

The preprocessing phase requires two rounds of commu-
nication between the parties, while an online step requires
one round of communication such that the evaluator obtains
the output and one round of communication for the evaluator
to communicate the alarm back.

VI. A SOLUTION BASED ON HOMOMORPHIC ENCRYPTION

The parameters of a leveled HE scheme are set to support
a fixed multiplicative depth—the lower the depth, the smaller
the ciphertext size. We design a low-depth circuit to compute
the functionality of equations (4)–(10), by precomputing
matrix multiplications at the cloud and minimizing the
amount of sequential online multiplications. We then use
the CKKS leveled approximate homomorphic scheme [22]
to homomorphically evaluate the circuit, which is designed
to have better precision for real-valued inputs1.

Since our computations continue over an unspecified num-
ber of time steps, we need to support circuits deeper than a
fixed depth, so we have to refresh the noise in the ciphertexts.
We do this by having the system, who owns the secret
key, decrypt and re-encrypt ciphertexts. In order to preserve
privacy of the intermediate results, the cloud first applies
additive blinding on the ciphertexts that need to be refreshed.

A. Packed-matrix multiplication

We compute products such as q = Mp between a plain-
text matrix M ∈ Rm×n and an encrypted vector p ∈ Rn. We
take advantage of the encrypted vector encoding to perform
this efficiently, with only a logarithmic dependence on the
data size. Note that qi = ⟨Mi,p⟩ = ⟨1n,Mi ⊙ p⟩, i ∈
{1, . . . ,m}, where Mi is the i-th row of M, ⟨, ⟩ denotes the
inner product, ⊙ denotes element-wise multiplication and 1n

is the vector of n ones. We encode the matrix M row-by-row
in one plaintext. We encode m copies of p in a ciphertext

1In the CKKS scheme, quantifying the leakage from the noise about the
inputs, i.e., function privacy, is an open research problem.

and perform only one homomorphic multiplication to get a
ciphertext of [M1 ⊙ p, M2 ⊙ p, . . . , Mm ⊙ p]. Summing
elements of an encrypted vector involves repeatedly adding
copies of that ciphertext rotated to the left accordingly.
Specifically, we perform O(log n) homomorphic rotations
and O(log n) homomorphic additions to obtain the encryp-
tion of q = [q1, ∗, . . . , ∗,q2, ∗, . . . , ∗, qm, ∗], where the
elements of the result are every n positions and by ∗ we
denote partial sums. We also ensure that the ciphertexts in the
subsequent operations involving q have the same encoding
(the relevant values are in positions which are multiples of n).

B. Polynomial approximation for comparisons

Leveled HE can evaluate polynomials on encrypted values,
but comparisons are not natively supported. Thus, we evalu-
ate polynomial approximations of the non-polynomial func-
tions. The Chebyshev series polynomial interpolation [23]
is a near-minimax approximation of a continuous function
on the interval [−1, 1]. If the input interval is not [−1, 1],
we first apply a linear transformation on the inputs. The
quality of the approximation increases with the degree of
the polynomial. Nevertheless, polynomial approximations of
functions with discontinuities will have larger approximation
errors compared to smooth functions for the same degree.

Both the CUSUM statistic and the alarm are non-
polynomial functions, so we use Chebyshev interpolation
to evaluate them on encrypted data. We choose 16 as the
lowest degree that provides good accuracy. Define s̄[k] :=
max{0, s[k] + r[k] − ν}, where the maximum is applied
element-wise. Importantly, we will compute Enc(s̄[k]) and
Enc(alarm[k]) with only one polynomial evaluation each
(recall that the ciphertexts encode vectors and a function can
be homomorphically applied element-wise).

C. Workflow

We minimize the depth of the computed arithmetic circuit
by writing x̂e[k],u[k],xp[k] as depth-1 circuits, r[k] as a
depth-2 circuit, the evaluation of the Chebyshev approxima-
tion of degree-16 as a depth-6 circuit, and thus alarm[k] as
a depth-6 circuit and s[k + 1] as a depth-8 circuit.

To avoid excess notation, we implicitly assume the cloud
additively blinds all slots containing partial information when
it sends Enc(u[k]), Enc(alarm[k]) to the system. We denote
the additive blinding of a vector m by (⟨m⟩1, ⟨m⟩2).

Preprocessing
1) System generates keys (pk, sk, evk) and encrypts xr,ur

under the appropriate encoding for packed-matrix multi-
plication. It sends pk, evk,Enc(xr),Enc(ur) to the cloud.

2) Cloud encodes matrices A,B,C,L,K and the relevant
products between them for packed-matrix multiplication.
Online step k

1) System measures y[k] after inputting u[k − 1].
2) System encrypts and sends Enc(y[k]), Enc(⟨x̂e[k− 1]⟩1)

under the appropriate encodings.
3) Cloud recovers Enc(x̂e[k−1]) and computes Enc(x̂e[k]),

Enc(u[k]), Enc(x̂p[k]), Enc(r[k]) as in equations (4)–(7).



4) Cloud computes Enc(alarm[k]) via a polynomial approx-
imation for Enc(I[0,∞](s[k]− τ )).

5) Cloud computes Enc(s̄[k + 1]) via a polynomial approx-
imation for Enc(max{0, s[k] + r[k]− ν}).

6) Cloud samples random shares and sends Enc(⟨s̄[k+1]⟩1),
Enc(⟨x̂e[k]⟩1), Enc(u[k]), Enc(alarm[k]) to the system.

7) System decrypts all ciphertexts. It rounds the alarm and
resets the elements in s[k + 1] corresponding to a trig-
gered alarm. It sends to the cloud fresh encryptions
Enc(⟨x̂e[k]⟩1), Enc(⟨s[k+ 1]⟩1) along with the alarm[k].

8) Cloud obtains a fresh encryption Enc(⟨x̂e[k]⟩1) by adding
⟨x̂e[k]⟩2. Then, the cloud obtains a fresh encryption of
Enc(s[k+1]) by subtracting ⟨s[k+1]⟩2⊙ (1− alarm[k]).

D. Communication and computation

In the preprocessing phase, the system sends the public
and evaluation keys to the cloud, which stores them. The
system can erase the evaluation keys afterwards.

At every iteration k the system sends four fresh ci-
phertexts: Enc(⟨x̂e[k − 1]⟩1),Enc(⟨s[k]⟩), two encodings
of Enc(y[k]), and a plaintext alarm[k − 1], and receives
four ciphertexts: Enc(⟨x̂e[k]⟩1), Enc(u[k]), Enc(alarm[k])
and Enc(⟨s̄[k + 1]⟩1). Computation-wise, the system only
performs four encryptions and four decryptions. On the other
hand, the cloud needs to evaluate high degree polynomials
and perform rotations over ciphertexts.

The preprocessing requires one communication round
from the system to the cloud, while an online time step
requires one round from the system to the cloud to send
the initial ciphertexts and one round from the cloud to the
system to send the encrypted output and states.

VII. A HYBRID SOLUTION

The problem of private anomaly detection involves both
arithmetic and Boolean circuits. Therefore, we aim to com-
bine the best of both worlds in a hybrid approach, where the
computation of the state estimates, control input and residues,
which involve matrix-vector multiplications, is done via HE,
and the computation of the cumulative sum and alarm, which
involve non-polynomial operations, is done via GC. Here,
we consider the cloud to be the garbler. The garbled circuit
for equations (9), (10) is denoted by C′. The optimizations
described for GC and HE should be applied here as well.

Preprocessing
1) Perform steps 1) and 2) of the HE preprocessing.
2) Cloud generates pairs of labels for the input wires of C′.

It stores the labels corresponding to constant secrets τ
and ν and sends them to the system.
Online step k

1) Perform steps 1)–3) of the HE online step k.
2) Cloud sends Enc(u[k]), Enc(⟨x̂e[k]⟩1) and Enc(⟨r[k]⟩1).
3) System decrypts all ciphertexts.
4) Cloud performs OT with the system for the labels corre-

sponding to ⟨r[k]⟩1 and sends the labels for ⟨r[k]⟩2.
5) Cloud computes circuit C′ and sends it to the system,

along with the decoding scheme for alarm[k].
6) System evaluates C′ and decodes alarm[k].

7) System sends alarm[k] to the cloud.
The preprocessing phase requires two rounds of commu-

nication between the parties, while an online step requires
one round of communication from the system to the cloud
for the HE-based computation, one round of communication
from the cloud to the system for the OT and circuit transfer,
and finally, another round of communication from the system
to the cloud to send back the alarm.

VIII. IMPLEMENTATION AND COMPARISON

We illustrate the performance of the proposed protocols on
the problem of temperature control in a building with two
zones described in [7], that has p = 10 sensors and m = 2
actuators. The sampling time is 420 seconds. We set the
reference for the indoors air temperature to be 15◦C and
25◦C, respectively. The CUSUM discount parameter ν and
threshold parameter τ are designed in order to obtain a
0.01% false alarm rate in nominal conditions. To see how
performance scales with data size, we also consider two other
systems of size (p = 20,m = 4) and (p = 50,m = 10).

The GC protocols were implemented using EMP [21] and
the HE protocol using SEAL [24]. The parameters for all
protocols are selected for 128-bit computational security and
20-bit statistical security for the secret refresh.

A. Precision

We show the simulation results for the above system in
Figure 2. To capture the quality of the anomaly detection,
we add both process and measurement noise, as well as a

0 20 40 60 80 100 120
Time step k

0

10

20

Ro
om

s T
em

pe
ra

tu
re

 [°
C]

Attack

HE
GC

Plaintext
References

(a) System measurements y[k] for air temperature in the two rooms.

0 20 40 60 80 100 120
Time step k

0.00

0.25

0.50

0.75

1.00

1.25

No
rm

al
ize

d 
CU

SU
M

HE
GC
Plaintext
Threshold

(b) Normalized CUSUM statistic s[k] for the sensor associated to
the temperature in the first room.

Fig. 2: Comparison between the simulation obtained from the
plaintext, GC and HE implementations. There is an attack on
the first sensor, which can be observed both in (a) and (b).



targeted attack on the sensor for the indoor temperature for
the first room, between time steps 80 and 82, which can be
observed in Figure 2a. The behavior of the CUSUM statistic
shown in Figure 2b is as expected, increasing at time step
81 and triggering an alarm at step 82, then resetting.

The HE implementation perfectly matches the plaintext
results for the outputs y,u, x̂e, x̂p, r. However, the CUSUM
results slightly differ due to the errors in the polynomial
approximation of non-smooth functions. Nevertheless, the
true values are tracked closely, thus raising no false alarms.

We implement the garbled circuit protocols using a fixed-
point representation of 48-bit with half of the bits used for
the integer part and the rest for the fractional part, which
also track the plaintext results for all quantities.

The hybrid output (not shown) is identical to HE output
shown in Figure 2a and identical to GC output in Figure 2b.

B. Computation

To understand which solution is the most appropriate for a
system with computational constraints, we run and compare
on the same mid-range machine with Intel Core i5 and 8GB
of RAM the amount of work that each party has to do in the
proposed protocols. All numerical results are averaged over
120 instances. The cloud platform is usually more powerful,
while the system platform is usually lower-power.

We approximate the work of a party in GC by the number
of calls to the cryptographic hash function used—the most
computationally expensive part. Figure 3 shows that the
garbler performs roughly twice as much computation work
as the evaluator. For this reason, in the hybrid protocol, we
use the cloud as garbler and the system as evaluator.

(10, 2) (20, 4) (50, 10)
System size

0.0

0.5

1.0

1.5

Nu
m

be
r o

f h
as

he
s

1e8
Evaluator
Garbler

Fig. 3: Computation overhead for garbling and evaluating.

(10, 2) (20, 4) (50, 10)
System size

102

103

Ex
ec

ut
io

n 
tim

e 
[m

s] GC - C
GC - S

HE
Hybrid 

Fig. 4: Average execution time for one online iteration in the
four protocols. In the legend, C means that the cloud is the
garbler and S means that the system is the garbler.

In the HE protocol, the system’s work is negligible com-
pared to the cloud’s work: the system’s runtime in one step
(< 1 second) is 17% of the cloud’s runtime, hence also
negligible compared to the system runtime in GC.

Figure 4 depicts the total runtime per time step obtained
with the two GC protocols, the HE and hybrid protocols. We
observe that the runtime for the two GC instances is almost
equal, showing that circuit garbling by far dominates the OTs
and decoding. For the small and medium system sizes, the
GC solution outperforms the HE approach, but is matched
by it at the largest system. This happens because in GC,
a larger system size implies more (cheaper) symmetric-key
operations, whereas the HE scheme supports encoding a large
vector in one ciphertext and performing only one (expensive)
public-key encrypted operation corresponding to a vectorized
operation. The hybrid approach is always the most efficient.

C. Communication

The GC protocols are communication intensive (Figure 5)
due to the transfer of the garbled tables and the input wire
labels, each of 128 bits. During preprocessing, the communi-
cation between parties is approximately half of quantity for
one online time step. The communication pattern between
the garbler and evaluator is almost identical regardless of
which party is the garbler, so we only depict the case where
the cloud is the garbler and the system is the evaluator.

Ensuring 128-bits of security also comes at a high commu-
nication cost in the HE protocol. Moreover, to allow additive
shares of 20 bits, we need to add an extra level. During
preprocessing, the system sends the keys and the reference
ciphertexts to the cloud, amounting to 40.07 MiB for the
(10, 2) and (20, 4) systems, and 56.87 MiB for the (50, 10)
system. The online iterations are communication intensive, as
shown in Figure 5, but remain constant with the system size,
again because of the packing capabilities of HE. Since the
hybrid solution is designed to use the advantages of both GC
and HE, it has the most efficient communication overhead
both for the online iterations and for the prepreprocessing
(roughly a 10x improvement compared to HE). However,
the hybrid solution requires one additional communication
round per time step compared to pure GC and pure HE, and
extra interaction is undesirable in low-latency networks.

102

104

106

Tr
an

sf
er

re
d 

da
ta

 [K
iB

]

GC HE Hybrid GC HE Hybrid GC HE Hybrid
(10,2) (20,4) (50,10)

S-> C
C-> S

Fig. 5: Communication between the cloud C and the system
S. The arrow in the legend shows the data flow. The GC
implementation is with the cloud being the garbler.



IX. CONCLUSIONS

After the theoretical and practical analyses of our baseline
protocols, our results indicate the following conclusions.

GC. The garbled circuit generation is more intensive than
the evaluation so it is preferable for the cloud to garble and
the system to evaluate. In this setting, we need fewer OTs
for preprocessing (since the cloud has more data), but we
need an OT for y[k] at each online step; however, these are
negligible compared to the circuit transmission.

Runtime. Using GC is faster than using HE for medium-
sized systems, since symmetric-key operations are faster than
public-key operations. However, the number of operations
done by the system in the HE protocol is much smaller than
in the GC protocol; the system is mostly idle during a time
step in the former. Further, the runtime of the HE protocol
is largely constant with the data size up until very large
matrices, thanks to packing, whereas the runtime for GC
scales quadratically with the matrices’ size difference.

Communication. The GC protocols are more expensive
than the HE protocol, since they require the transmission
of the garbled tables at every time step, but have cheaper
preprocessing. If the network latency is significant and the
data size is large, the communication overhead of the GC
can be prohibitive. The HE protocol has an intensive pre-
processing, where the evaluation keys need to be transmitted
and requires a lower communication overhead for each time
step that is mostly constant with the data size, but the bulk
of the communication originates at the system.

Precision. All solutions offer very good precision. De-
creasing the precision requirements would improve the com-
putation and communication overheads. It is worth noting
that the particular application of anomaly detection is for-
giving of polynomial approximation errors: the alarm is
decrypted and rounded at the system and the outputs of
the polynomial approximations are not used in subsequent
multiplications. In general, a GC approach is more precise for
non-polynomials than the HE approach, since the operations
are performed exactly, rather than approximated.

Privacy. The GC implementation leaks no information
about the private data of each party and its security guaran-
tees are well understood. The hardness of the cryptographic
problem underlying the HE scheme is still actively studied.

Hybrid. The hybrid protocol proves to be the most effi-
cient solution, by combining the best parts of HE and GC.
The circuit size and the number of OTs are much smaller,
as the matrix-vector multiplications are not garbled, thus
removing the communication overhead. The comparisons are
not done over encrypted data, thus significantly reducing the
depth of the encrypted arithmetic circuit and improving the
precision. These improvements come at the cost of one more
communication round compared to the HE and GC protocols.

We note that the main bottleneck of the proposed protocols
is the communication overhead. We plan to further improve
the baseline implementations of the protocols we presented
here, by reducing the number of levels needed in the HE
solution via more efficient polynomial evaluation, and to
reduce the garbled circuit size by a customized design.

REFERENCES

[1] M. S. Darup, A. B. Alexandru, D. E. Quevedo, and G. J. Pappas,
“Encrypted control for networked systems: An illustrative introduction
and current challenges,” Control Systems Magazine, vol. 41, no. 3, pp.
58–78, 2021.

[2] A. A. Cárdenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and
S. Sastry, “Attacks against process control systems: risk assessment,
detection, and response,” in Proc. of the 6th ACM Symposium on Infor-
mation, Computer and Communications Security, 2011, pp. 355–366.

[3] K. Kogiso and T. Fujita, “Cyber-security enhancement of networked
control systems using homomorphic encryption,” in Conference on
Decision and Control. IEEE, 2015, pp. 6836–6843.

[4] F. Farokhi, I. Shames, and N. Batterham, “Secure and private control
using semi-homomorphic encryption,” Control Engineering Practice,
vol. 67, pp. 13–20, 2017.

[5] M. S. Darup, A. Redder, I. Shames, F. Farokhi, and D. Quevedo, “To-
wards encrypted MPC for linear constrained systems,” IEEE Control
Systems Letters, vol. 2, no. 2, pp. 195–200, 2017.

[6] C. Murguia, F. Farokhi, and I. Shames, “Secure and private implemen-
tation of dynamic controllers using semihomomorphic encryption,”
IEEE Transactions on Automatic Control, vol. 65, no. 9, pp. 3950–
3957, 2020.

[7] A. B. Alexandru and G. J. Pappas, “Encrypted LQG using labeled ho-
momorphic encryption,” in Proc. of the 10th ACM/IEEE International
conference on cyber-physical systems, 2019, pp. 129–140.

[8] F. J. Gonzalez-Serrano, A. Amor-Martın, and J. Casamayon-Anton,
“State estimation using an extended kalman filter with privacy-
protected observed inputs,” in International Workshop on Information
Forensics and Security. IEEE, 2014, pp. 54–59.

[9] A. B. Alexandru, M. Morari, and G. J. Pappas, “Cloud-based MPC
with encrypted data,” in Conference on Decision and Control. IEEE,
2018, pp. 5014–5019.

[10] N. Schlüter, M. Neuhaus, and M. S. Darup, “Encrypted dynamic
control with unlimited operating time via FIR filters,” in European
Control Conference. IEEE, 2021, pp. 952–957.

[11] J. Kim, H. Shim, and K. Han, “Dynamic controller that operates
over homomorphically encrypted data for infinite time horizon,” IEEE
Transactions on Automatic Control, 2022.

[12] A. B. Alexandru, A. Tsiamis, and G. J. Pappas, “Towards private data-
driven control,” in Conference on Decision and Control. IEEE, 2020,
pp. 5449–5456.

[13] J. Suh and T. Tanaka, “SARSA (0) reinforcement learning over
fully homomorphic encryption,” in SICE International Symposium on
Control Systems. IEEE, 2021, pp. 1–7.

[14] K. Tjell, N. Schlüter, P. Binfet, and M. S. Darup, “Secure learning-
based MPC via garbled circuit,” in Conference on Decision and
Control. IEEE, 2021, pp. 4901–4908.

[15] W. E. Curran, C. A. Rojas, L. Bobadilla, and D. A. Shell, “Oblivious
sensor fusion via secure multi-party combinatorial filter evaluation,”
in Conference on Decision and Control. IEEE, 2021, pp. 5613–5620.

[16] L. Li, A. Bayuelo, L. Bobadilla, T. Alam, and D. A. Shell, “Coor-
dinated multi-robot planning while preserving individual privacy,” in
International Conference on Robotics and Automation. IEEE, 2019,
pp. 2188–2194.

[17] C. Yan, H. Shin, C. Bolton, W. Xu, Y. Kim, and K. Fu, “Sok:
A minimalist approach to formalizing analog sensor security,” in
Symposium on Security and Privacy. IEEE, 2020, pp. 233–248.

[18] J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths,
N. O. Tippenhauer, H. Sandberg, and R. Candell, “A survey of physics-
based attack detection in cyber-physical systems,” ACM Computing
Surveys, vol. 51, no. 4, pp. 1–36, 2018.

[19] O. Goldreich, Foundations of Cryptography: Volume 2, Basic Appli-
cations. Cambridge University Press, 2004.

[20] A. C.-C. Yao, “How to generate and exchange secrets,” in Symposium
on Foundations of Computer Science. IEEE, 1986, pp. 162–167.

[21] X. Wang, A. J. Malozemoff, and J. Katz, “EMP-toolkit: Efficient
MultiParty computation toolkit,” https://github.com/emp-toolkit, 2016.

[22] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in International Conference
on the Theory and Application of Cryptology and Information Security.
Springer, 2017, pp. 409–437.

[23] J. C. Mason and D. C. Handscomb, Chebyshev polynomials. CRC
press, 2002.

[24] “Microsoft SEAL (release 3.6.2),” https://github.com/Microsoft/SEAL,
Feb. 2021, Microsoft Research, Redmond, WA.


