O

proceedings

Backbone Index to Support Skyline Path Queries over
Multi-cost Road Networks

Qixu Gong
Computer Science, New Mexico State University
Las Cruces, NM, USA
gixugong @nmsu.edu

ABSTRACT

Skyline path queries (SPQs) extend skyline queries to multi-
dimensional networks, such as multi-cost road networks (MCRNSs).
Such queries return a set of non-dominated paths between two
given network nodes. Despite the existence of extensive works
on evaluating different SPQ variants, SPQ evaluation is still very
inefficient due to the nonexistence of efficient index structures
to support such queries. Existing index building approaches for
supporting shortest-path query execution, when directly extended
to support SPQs, use unreasonable amount of space and time to
build, making them impractical for processing large graphs. In
this paper, we propose a novel index structure, backbone index,
and a corresponding index construction method that condenses
an initial MCRN to multiple smaller summarized graphs with
different granularity. We also present efficient approaches to find
approximate solutions to SPQs. Our extensive experiments on
nine real-world large road networks show that our approaches can
efficiently find meaningful approximate SPQ solutions by utilizing
the compact index. The backbone index can be constructed with
reasonable time, which dramatically outperforms the construction
of other types of indexes for road networks. As far as we know,
this is the first compact index structure that can support efficient
approximate SPQ evaluation on large MCRNS.

1 INTRODUCTION

Skyline path queries (SPQs) extend skyline queries to multi-
dimensional networks (MDNSs) [29]. They generalize shortest-
path queries over single-cost graphs. Given an MDN, SPQs
return a set of non-dominated paths between two given graph
nodes. In this paper, we study SPQs on multi-cost road networks
(MCRNSs), which are the most widely studied MDNs while consid-
ering SPQs [17, 20, 29, 44, 46]. In real applications, the multiple
edge costs of MCRNs can represent different things such as dis-
tance, travel time, the number of traffic lights, gas consumption,
etc. Consider an application of utilizing a public transportation
system, the walking distance, the time traveled using the public
transportation system, and the number of transitions between dif-
ferent transportation lines can be the different weights. SPQs over
a public transportation system find Pareto optimal solutions of
bus routes that can take a user from a given bus stop to a target
bus stop, where the expense and travel time of those routes do
not dominate each other. In this scenario, a user may not like the
path (say pming) With the lowest expense but a long travel time
or the path (say pn,in) With the shortest travel time and a higher
expense. Instead, the user may want to use another path, which
either (a) has a slightly higher expense and much less travel time
than p,,inE, or (b) has a slightly longer travel time and much lower
expense than p,inT.

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

325

Huiping Cao
Computer Science, New Mexico State University
Las Cruces, New Mexico, USA
hcao@nmsu.edu

The evaluation of SPQs is very time consuming due to the large
number of solutions [20, 29] and the vast search space. Many
works attempt to accelerate the query process by reducing the
search space. In [29], the landmark index [28] is utilized to stop
growing a path when its upper-bound cost is dominated by the cost
of at least another result. To address the cold-start problem in [29],
Yang et al. [45] use the shortest path found for each dimension
as the initial results. Other works define different variations of
SPQs and propose specialized query processing approaches by
utilizing the properties of their SPQs to reduce the search space
[7,12, 17, 20, 44].

A general idea to speed up query evaluation is to utilize indexes.
The major challenge of designing index structures for SPQs is
the large number of skyline paths that need to be pre-calculated.
Multiple skyline paths (not just one shortest path) exist between
two nodes on an MCRN. Traditional indexes that are used to
support location-based queries (e.g., shortest path queries) [18,
26, 30, 32, 50], if directly adopted to solve SPQs, either incur
expensive index building and use much space (partition-based
method), or increase node degrees and the number of edges. As
a consequence, the query performance deteriorates. To the best
of our knowledge, no compact index structures exist to support

efficient SPQs.
We conduct an extensive analysis [19] of an improved SPQ eval-

uation method of [29] on two real-world MCRNs to understand
how the characteristics of road networks (e.g., high node-degree
distribution) and queries (e.g., long paths between the query nodes)
affect query performance. The study shows that the existing meth-
ods (even with improvements) are too inefficient to evaluate SPQs

even on small MCRNs.
Considering the above situations, this paper proposes a hierar-

chical index structure to support getting approximate answers for
SPQs. The design utilizes the concept of backbone, which captures
the core graph topology, to abstract the original graph. The idea is
similar to intuitive human behavior when navigating from a source
to a destination in a road network. Let us consider a scenario that
a student needs to drive from his/her university in city A to a
hotel in city B. He/she first finds the paths to the main street from
the university’s district. Then, the routes from the main street to
highway entrances of city A are identified. Highways between the
cities are utilized to lead him from city A to city B. Then, a similar
idea is adopted to find the paths from freeway ramps to the hotel in
city B. As Figure 1 illustrates, the search involves three levels: the
district level (paths to the main street), the intra-city level (routes
to highways’ entrances), and the inter-city level (highways from
city A to city B).

The idea of highway entrances is also utilized in partition-based
approaches [26, 30, 50] as border nodes between partitions. These
methods divide the original graph into non-overlapping partitions
and store extra information (e.g. the shortest path weight) between
every pair of border nodes for the partitions. The goal of their
design is to minimize the number of border nodes. Our design
is different in that we do not minimize the number of entrance

10.48786/edbt.2022.19

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.19

‘level

level

e o . LAt~
‘district O
‘level

: .

: /-

B ‘\Vs@

Figure 1: Example of a backbone index

nodes, instead the entrance nodes are used to preserve the over-
all topology of the original network while conducting network

summarization.
Our proposed backbone index is a hierarchical structure that

tries to preserve the topology of the original graph by condens-
ing/summarizing dense local graph units level by level. The ab-
stracted graphs at higher levels are more abstract than the lower-

level graphs, while maintaining the topological structure.
The main contributions of our work are as follows.

We propose a novel hierarchical index based on the concept of
backbone and clustering to abstract the original graph to several
summarized graphs with different summarization granularity.
The index is utilized to find approximate answers to SPQs.

We present an efficient index building algorithm and several
variations. The index construction algorithm summarizes a
graph by reducing the density of its dense local units (or clus-
ters).

A query evaluation algorithm is proposed to get approximate an-
swers of SPQs. The algorithm combines a dynamic-programming
search strategy at lower index levels and an optimized many-
to-many landmark-based skyline search algorithm at the most
abstracted graph level. The approximate answers are more suc-
cinct than the exact answers and enable users to focus on choos-
ing from fewer good results.

We analyze the quality of the approximate solutions and the
complexity of our proposed methods.

We conduct extensive experiments using nine real-world datasets,

including large road networks with millions of nodes and edges.
The rest of the paper is organized as follows. Section 2 dis-

cusses existing works that are related to our study. Section 3
defines the research problem, related concepts, and notations. Our
proposed index structure and the query algorithm are presented in
Sections 4 and 5. Experimental results are reported in Section 6.

2 RELATED WORKS

2.1 Skyline queries on road networks

The SPQ problem over an MCRN is first proposed and studied
in [29, 39]. Kriegel et al. [29] propose to use landmark index
to calculate lower bounds of paths and reduce the search space
of SPQs. Tian et al. [39] utilize the partial path dominance test
to prune search space. Yang et al. [45] define a stochastic domi-
nance relationship. Instead of using the landmark index, the lower
bound of the cost on each dimension is calculated using a reverse
Dijkstra [15] search.

326

More recent works evaluate different SPQ variants. The work [17,
44] conducts SPQs over moving objects on single-dimensional
road networks with multi-attributed points of interest (Pols). Gong
et al. [20] propose a Constrained Skyline Queries problem assum-
ing that Pols can be off an MCRN. The work [31] proposes a new
concept of skyline groups by considering the strength of social
ties and the spatial distance in a single-dimensional road network.

The previous techniques (except [29]) answer skyline queries
without the support of any index structures. Although using the
landmark index [29] and finding shortest paths on each dimen-
sion [45] are efficient ways to prune the search space, the query
process using these techniques are still very inefficient when node
degrees are high or the number of hops between query nodes is
large. In addition, constructing landmark index on a large graph is

expensive.
The work [47] is most similar to ours. It proposes a partition-

based single-level index. However, their index supports the opti-
mal path finding problem instead of SPQs. The query performance
decreases dramatically as the degree of border nodes grows be-
cause one border node in a partition connects to multiple border
nodes (or entrances) of its neighbor partitions.

2.2 Location-based queries on road networks
The shortest-path query is one type of fundamental location-
based queries for graph structured data. The Dijkstra [15] and
the A* [23] algorithms are the most successful and widely used
methods. These traditional search methods are not practical to
work for the large graphs collected in recent years. The design and
use of an index structure to keep pre-calculated path information
is inevitable.

For road networks, graph-partition [26, 30, 32, 50] and shortcut-
based [18, 43] approaches are two typical ways to design indexes
to support location-based queries. When such approaches are
directly utilized to process SPQs, the partition-based methods
find enormous number of skyline paths when the length of paths
between partitions is long, which leads to expensive index con-
struction and large disk use. The shortcut-based approaches create
shortcuts between two graph nodes. The number of shortcuts
grows exponentially with the increase of node degrees and the
length of paths between graph nodes. The huge number of short-
cuts does not improve the query performance, but deteriorates the
query evaluation. Our preliminary analysis [19] has verified the
statements about both types of methods. Several partition-based
methods [26, 30, 50] minimize the number of border nodes so that
fewer shortest paths need to be found in a partition. This does not
work to process SPQs because the number of skyline paths and
search time increase dramatically in dense partitions, which has

nothing to do with the number of border nodes.
Recent graph-partition based attempts [13, 35, 49] utilize tree

decomposition as the pre-process step for building hubs or short-
cuts among tree nodes. These methods either (i) face the issue
of huge disk use and high computational cost while storing the
skyline path information from each tree node to its ancestor tree
nodes [13, 35] or (ii) generate large number of shortcuts from
each tree node to its neighbors in the SPQ setting. Other ap-
proaches [6, 22, 37] to answer shortest-path queries apply Breadth-
First Search (BFS)-based methods with specially designed pruning
conditions. They run slowly if directly adopted to answer SPQs
for graphs with high node degrees. Different from all the existing
approaches, our proposed approach condenses local dense units
of a graph (i.e., inside a partition) and utilizes such condensed
partitions to support SPQ evaluation.

2.3 Finding backbones on graphs

Graph backbone extraction identifies critical nodes and edges to
preserve the topology and other essential information of a graph.
Recent works [10, 21, 25, 36, 38] study the backbone extraction
problem for different networks with specialized research interests.
In [36], the authors identify a network’s backbone that consists of a
set of paths maximizing the Bimodal Markovian Model likelihood.
5 The work [21] finds a tree-like backbone structure utilizing both
the node attribute and the graph topology in geo-social attribute
graphs. Graph backbone can also be extracted using the graph
structure. The work [25] merges nodes and edges by creating
shortcuts with the intention to preserve the topology of the original
graph. The works in [10, 38] define a criterion to examine the
importance or relevance to a network, and adopt strategies for
edge sampling [8] or edge filtering (or pruning) [10, 14] to create

backbone structures.
The above methods either conduct high-cost inference that is

not practical on large graphs, or dramatically increase the graph
size that causes the degradation of queries, or define specific
criteria [11, 14, 33] for specialized MCRNs. Thus, they cannot
be directly applied to build indexes to support SPQs over general
MCRNSs. Moreover, most of the existing methods [14] cannot
guarantee the connectivity of the extracted backbone graph.

3 PROBLEM STATEMENT

A multi-cost road network (MCRN) is represented as an undi-
rected graph G =(V,E, W) where V is the set of nodes, E is the
set of edges where EC VXV, and W e RIG-EIXd s 5 weight ten-
sor. Let |G.V| and |G.E| be the number of graph nodes and edges
respectively. Each edge e € E is associated with a d-dimensional
cost vector w, where w; is the value of the i-th cost of edge e.
Roads have directions. Two roads with opposite directions gener-
ally connect two same nodes, and the costs of the two opposite
directed roads do not differ much. Given these, we model a road
network as an undirected graph. When road networks are modeled
as directed graphs, our method can be easily extended to work

(more discussions see the end of Section 4.3.1).
A path p between a node vs and another node v; is denoted as

p(vs e v;). The cost of a path p, cost(p), is the summation of
the weights of the edges of p on each dimension. The cost(p) is
d-dimensional. The length of a path is the number of edges in the
path. Given two nodes, the path hop is defined to be the average
length of all the shortest paths when different single dimension is
utilized. Given two paths p; and p; where the ending node of p; is
the same to the starting node of p;, p; and p; can be concatenated
as pi||pj, where || denotes the concatenation of two paths.

3.1 Path domination and skyline path queries
For multiple paths with d-dimensional cost, we adopt their domi-
nation relationship from [20, 29] and define it below.

Definition 3.1 (Path domination). Given two paths p and p’
with multi-dimensional costs, the path p dominates another path
p’, denoted as p < p’, if and only if Vi € [0,d], cost(p)[i] <
cost(p”)[i] and Ji € [0, d], cost(p)[i] < cost(p”)[i].

Intuitively, p dominates p” when cost(p) is not worse than
cost(p’) on each dimension, and is strictly better than cost(p”) on
at least one dimension.

Definition 3.2 (Skyline Path Query (SPQ)). Given a graph G
representing an MCRN, a skyline path query (SPQ) is denoted
with a starting node vs and a target node v;. The answer to a SPQ
is a set of paths P satisfying (1) Vp € P, p is from v to v, (2)
Vp'¢P,ApePs.t.p < p’,and 3) VpeR, Ap’ ePs.t. p’ < p.

327

A path p(vs e v;) € Pis called a skyline path from v to v;.
Where there is no ambiguity in the context, we use p to represent
p(vs e v;). Given two nodes, one SPQ returns a set of paths
between the nodes while such paths do not dominate each other.

3.2 Degree pairs and single segments

Our approach utilizes graph density information. To better capture
and describe the density of subgraphs in a graph, we introduce sev-
eral concepts: degree pairs, degree-1 edges, and single segments.

Definition 3.3 (Degree Pair). Given an edge e with its two end
nodes se and ¢, the degree pair of e, DP(e) = (e.first, e.second),
is defined as follows.

(deg(se), deg(te)) deg(se) < deg(te)
(deg(te), deg(se))

where deg(v) is the degree of the node v. As the definition shows,
the elements in the degree-pair tuple are ordered where the first
element e.first is always smaller than or equal to the second
element e.second. An edge that has a degree pair (1, x) (x > 1) is
called a degree-1 edge.

1

Otherwise

DP(e) = {

Figure 2: Degree pair example, where DP(e1)=(4,4), DP(e;) =
(2,3), DP(e3) = (3,4), and DP(eq) = (1,4).

Example 3.4. Let use Figure 2 to demonstrate the concept of
degree pairs. For e;, whose two end nodes are v1 and vg, the degree
pair DP(e;) is (4, 4) because both nodes v; and v, have degree 4.
Similarly, we can get that DP(ez) = (2,3), DP(e3) = (3,4), and
DP(es4) = (1,4). eq is a degree-1 edge because eq.first is 1.

Definition 3.5 (Single Segment). A single segment is a path
consisting of consecutive (2, 2) degree-pair edges except the first
and the last edges for which one end-node’s degree is greater than

Condensing

Cluster/Map 1 Cluster/Map 2

Example 3.6. Figure 3 shows an example of a single segment
that connects two sub-graphs/maps with consecutive edges whose
degree pairs are (2, 2).

Single segments are utilized to condense graphs (Section 4.3.1).

4 THE BACKBONE INDEX

The core idea for building the backbone index structure is summa-
rizing the dense local units (clusters) of the original graph.

4.1 Hierarchical summarization
Before we present the index structure, we first introduce several

major factors where the design idea emerges from.
First, the effectiveness of an index for graphs is highly related to

the efficiency in the pre-calculation. For single-cost networks, pre-
calculating shortest paths and using them to answer shortest path
queries is a commonly used strategy. On MCRNs, multiple skyline
paths exist between two nodes. Compared with pre-calculating
shortest paths from single-cost networks, it is much more expen-
sive to pre-calculate skyline paths because the number of skyline
paths for a given query is highly impacted by node degrees and
the distance between two nodes [19]. To leverage this, we identify
local units to be dense graph components with nodes having more
neighbors (or neighbors of neighbors). The abstraction occurs on
each dense local unit by removing less critical nodes and edges.
The abstraction leads to a smaller index size and a shorter con-
struction time according to [19]. After the abstraction, we expect
that the degree distribution of the graph nodes does not change
much, which then can help us find useful results without missing

too much information.
Second, too much information may be missing when directly

summarizing the original graph to a very abstracted graph. Ag-
gressive abstraction strategy may not be able to effectively support
queries whose two query nodes are relatively close to each other.
Considering this, we design our index structure to consist of a
hierarchy of multiple abstracted graphs Go, Gy, - - -, Gr—1, G with
different granularity, where Gy is the original graph, Gy, is the
most abstracted graph, and G;11 (0 < i < L) directly summarizes
G;.
lThird, to compensate the information loss caused by the re-
moval of nodes and edges in dense clusters when summarizing
a graph G;, a facilitating structure I; is introduced to keep the
skyline paths from graph G; to Gj41. In particular, it stores the
skyline paths from each node in a dense cluster to all the nodes

that are still in G;41.
Based upon the design of the backbone index considering the

above three factors, our query method returns informative ap-
proximate solutions instead of exact solutions by searching the
summarized graphs from the finest granularity to the coarsest
granularity. When we cannot find a path to connect two nodes in a
lower-level graph G;, the search has to be conducted on its sum-
marized graph G;;; which generates approximate skyline paths
since Gj4+1 does not keep all the detailed information from its
lower-level graph G;.

4.2 Dense local units/clusters at each level

We introduce an important concept, dense clusters, in our back-
bone index. Intuitively, dense clusters represent local units or
subgraphs of a graph. The nodes in the dense clusters generally
have more neighbors (i.e., denser) than other subgraphs. We use
dense clusters and local units exchange-ably in this paper.

4.2.1 Dense clusters and node clustering coefficient.
DBSCAN [16] is one classical algorithm to find dense clusters.

328

Density based clustering on road networks [41, 48] adopts the
shortest path distance as the distance measurement. This is not
suitable for MCRNs. Without extra information such as user pat-
tern data [34], POIs [41], and trajectory location data [9], we need
to formally define the measurements that can be used to calculate
node density to conduct density based clustering on MCRNs. The
well-known local clustering coefficient [42] is designed for gen-
eral graphs where a node degree is usually more than hundreds.
For MCRNSs, where a node degree is generally no more than 5,
the local clustering coefficient cannot be used to distinguish dense
nodes from others. The cluster-coefficient concept should not only
reflect the degree of a node, but also consider its neighbors. In
Figure 2, node v1 and node vg have the same number of neighbors,
but intuitively, v; is more likely the center of its neighbors than
v9. Considering nodes v19 and vg, based on their different degrees
(deg(v10) = 3 and deg(vg) = 4), it seems vy is denser. However,
v10 connects tighter with its neighbors in a local community than
v9 when examining the structure of the graph. Removing v19 and
the edges connecting to it greatly reduces topological information
of the graph. Overall, it is difficult to differentiate the density of a

node by considering only node degrees.
We define a node’s cluster coefficient to capture the density

information of graph nodes. Let Nis¢(v) be the set of neighbors
of the node v and Ny,4(v) be the set of nodes that are two hops
away from v (which are also denoted as two-hop neighbors of
v) except the nodes in Nigt(v). We consider the node clustering
coefficient of a node v is proportional to the number of connections
between Nis¢(v) and Ny, (o). Following this idea, we introduce
the concept of cluster coefficient on road networks.

Definition 4.1 (A node’s cluster coefficient). The cluster coeffi-
cient of a node v is defined as
INeom|
[Nt (0)] * (IN1se (0)] = 1)
where N2, is the set of node pairs (u, w) where u € N (v) and
w € Nist(v) connect to a same node veom € Nopg(0).

cluster_coefficient(v) =

)

Example 4.2 (Node’s cluster coefficients). In Figure 2, the
cluster coefficient of node v; equals to 4373 = % since vy has 4
neighbors (v, v4, v6, and vg) and those neighbors share 3 common
nodes (v3, v5 and v7) in Ny, 4(01). For node v, the cluster coeffi-

. . 1 _ 1 .
cientis gz = 75 because the nodes in N1 (v9) share one common
1

3

If more second-order neighbors of v are connected through v’s
first-order neighbors (e.g., the center of a district), v has a higher
probability to be in a dense area. Our approach thus clusters the
nodes with bigger cluster coefficient first.

.. 2
node. For node v19, cluster_coef ficient(v19) is 355 =

4.2.2 Condensing threshold. Our graph summarization is
to keep the topology (thus the reachability) of the graph while
condensing a graph. We discuss the rationale behind our design.

Motivation of defining condensing threshold. There are sparse
components in real-world networks, such as secluded roads that
connect business areas in a city. These sparse components are
treated as noise clusters. Such noise clusters should not be com-
pletely condensed in the summarization stage. Otherwise, the

nodes in these clusters cannot be reached from other graph nodes.
A node v can be categorized as a noise node or non-noise node

using its node degree (i.e., the number of its first-order neigh-
bors |Nis¢(0)|) or its cluster coefficient (cluster_coefficient(v)).
We observe that using either measurement is not sufficient to
decide whether a node should be condensed or not. This is be-
cause the node degree (i.e., |Nis|) and the cluster coefficient

(decided by |Nis¢| or |Na,g|) of different nodes on road networks
have very similar values. ILe., the value ranges of node degrees
and cluster coefficients are small. For instance, most nodes have
degrees 2 and 3, and most nodes’ neighbors share no or few com-
mon N,,; neighbors. This makes the cluster coefficient values
very small. E.g., in Figure 2, cluster_coef ficient(v9) = % and
cluster_coef ficient(v19) = %

We need to investigate other measurements to decide whether
anode can be condensed. That measurement should have a larger
range and should capture the neighbor information so that a

smaller value indicates a less important node.
We observe that |Nig (v) + Ny, g(v)| has a much bigger value

range. Figure 2, | N1s;(v10)+Nyp,q(v10)| = 7 is less than [Ny (v9)+
Nopna(v9)| = 10. The node vy is a less important node because
it is connected with less other nodes. Thus, the cluster that vqg
belongs to can be condensed later than the cluster that vg be-
longs to since vg’s cluster is denser than v1¢’s cluster. Based on
|N1st(v) + Nopq(v)|, we introduce another parameter, condens-
ing threshold percentage p;, 4, to help identify nodes that can be

condensed.
Given a graph G, we can find the two-hop neighbors of all

the nodes and calculate the cardinality of such neighbor sets. For
each distinct two-hop neighbor cardinality k, we can find the
number of nodes having this cardinality (denoted as freq(k)). Le.,
freq(k) = |{v}| s.t. [N1s¢(v) + Nopg(v)| = k. Let L(G) be the list
of sorted frequency values calculated from a graph G, and Z[Jjl
be the frequency value at the j-th position in E(G), where j starts
with 0. We define the condensing threshold as follows.

Definition 4.3 (Condensing threshold). Given G, the sorted
frequency list I_:(G), a percentage p;nq € (0,1), the condensing
threshold noise_val is the cardinality value with frequency L [pos]
S.t.

pos—1 pos
D% Ll < ping *1G.VI <) LIi]
i=0 i=0

Example 4.4 (Condensing threshold). Given a graph G with 10
nodes, let the cardinality of the two-hop neighbor sets of the nodes
be {8,3,6,3,6,4,4,8,2,8}. The distinct cardinality values are 2,
3, 4, 6, and 8. Then, f(G) = (1,2,2,2,3) because freq(2)=1,
freq(3)=2, freq(4)=2, freq(6)=2, and freq(8)=3. Let pjnq =
0.3, then pjpg * |G.V| = 3. L[0] + L[1] =3 < 3and 3 < L[0] +
f[l] + i[z] = 5. The noise_uval of G is the cardinality value with
frequency f[l]. Since f[l] =2 = freq(3), noise_val of G is 3.

A node v is treated as a noise node if |Nis (v) + Nppq(0)] <
noise_val. The clustering procedure sets low-density nodes as
noises when the condensing threshold is used. For example, two
clusters, C; and Co, in Figure 4(a) contain low-density nodes.
These two clusters are condensed in the index construction process.
However, using the condensing threshold, these low-density nodes
are identified as noise nodes (Figure 4(b)). The noise nodes are
not condensed when creating the index to preserve the topology
structure that connects the low-density nodes.

4.2.3 Condensing dense clusters. Nodes on a map are
always connected. We desire that the connectivity of a graph is
preserved after condensing. We propose to use a spanning tree to
condense a dense cluster because all the nodes in a spanning tree
are connected. Minimum spanning trees (MSTs) are generated for
optimization purposes on single-cost graphs. It is not possible to
find MSTs from MCRNSs because of the multiple edge weights.
When using spanning trees to summarize a dense cluster, we build
a spanning tree from the perspective of preserving the graph’s

329

(b) clusters found using condensing
threshold

(a) clusters found without using con-
densing threshold

Figure 4: Example of dense clusters on C9_NY_5K

topology as much as possible. In particular, we keep higher degree-
pair edges because they can keep more information in the original
graph, which is consistent with [40].

4.2.4 Details to process dense clusters of G;. A graph G;
can be abstracted to a more summarized graph G;4+1 by removing
its nodes and edges. The removed node and edge information
needs to be saved as labels (Definition 4.7) to support future query
processing. This section discusses the process of condensing a
graph G; by utilizing its dense clusters. The detailed steps are

described in Algorithm 1.
The condensing process contains two steps: (i) finding dense

clusters of nodes (Lines 7-35) and (ii) abstracting each dense
cluster (Lines 36-39). The cluster finding process grows the node
with the highest cluster-coefficient value (the seed node) to the
first cluster (details see below), then grows the node (as seed node),
which has the highest cluster-coefficient value among all the nodes
not belonging to any clusters, to the second cluster. This process
of growing a seed node to a dense cluster stops until all the nodes
are marked either as belonging to one cluster or as a noise node.
After all the clusters are formed, small clusters (constrained by
a parameter mi, defined in Definition 4.8) are merged to avoid

cluster fragmentation (Line 35).
The details of growing a seed node v to a dense cluster C; j are

as follows. First, we calculate the threshold noise_val using the
parameter p;, 4 (Line 2) and create a cluster list C that stores dense
clusters of G; (Lines 3-5). We designate a special set (Cppjse) to
keep all the noise nodes and add this noise-node set to C (Lines
4-5).

%hen, a priority queue g is created to manage the growing
process (Lines 21-33). Initially, g has a seed node v. While q is
not empty, the node vy,p Wwith the highest cluster-coefficient value
in g is popped out. If vpp is not a noise node or has not been
visited yet, vpop is put into the cluster C; j (Line 30). Then, all the
neighbors o’ of vy are checked to see whether they need to be
added to q to grow the cluster C; j (Lines 31-33). When the cluster
Ci,j already contains mmqx nodes or when v’ is a noise node, we
do not need to add v’ to g. Once g is empty, the dense cluster C;

is added to the cluster list C (Line 34).
The second step of condensing G; is to condense each cluster.

We form a spanning tree of G; using a similar procedure as the
Kruskal’s algorithm with a different strategy on choosing edges.
Our method first chooses the edges (not a random edge) with
higher degree-pair values. Then degree-1 edges on the tree are
recursively removed to guarantee the road network to be a 2-core
graph after the removal. The removed nodes AV; and edges AE;
are kept to create the index structure later (Details see Section 4.3).

Algorithm 1: Creation of dense clusters

:Graph G; at the i-th level, maximum cluster size Mgy,
minimum cluster size m,,in, ping for the condensing
threshold, removed nodes AV;, removed edges AE;

Output : Updated AV;, updated AE;, and a list of clusters C

Input

1 begin

noise_val = findNosielndicator(p;,4);

Set the set of clusters C = 0;

Create a noise-node cluster Cppise = 0;

C-put(Cnuise);

/* Nodes in G;.V are sorted in the
descending order of their
cluster_coefficient values

7 foreach v € G;.V do

8 /+ If v is visited,

9 if v.isVisited then

10 ‘ continue;

/*

Y N I~

*/

skip it */

If the number of v’s two-hop
neighbors in MNist(0) U Nopg(v) is less
than the condensing threshold, v
is a noise node, skip it

if | Vist (0) + Nopa (0) | < noise_val then
Choise-add(0);

v.isVisited = true ;

*/

continue;

/* Nodes in the queue are sorted by
their cluster_coefficient values x/

j=size(C)+1 /* The j-th cluster for level i */;

C;,j=new cluster();

q = new priority queue();

g.add(v);

while /g.empty() do

Ypop = q-pop() /* vpop has the highest cluster

17

19
20
21
2
coefficient */;
23 if vpop.isVisited then
continue;
25
26

else if vp0p € Cpoise then
Choise-1emove(vpop);
27 Ci,j-add(vpop);
28

29

else

upop.isVisited = true;
30 Ci j-add(vpop);
31
32

foreach v’ € vyop.neighbors do
if |Ci,j.V| < Mpmax &
[Nist (0') + Nopag (') | = noise_val then
‘ q.add(v');
C.add(Cy j);
C.mergeSmallCluster(m,in);
foreach C;; € C do
SpanningTree t = C; j.findSpanningTree();
AV; = AV;U t.removeNode();
AE; = AE;U t.removeEdges();
return C, AV;, AE;

33
34
35

36
37
38
39

40

4.3 Backbone index

We introduce more terminologies and concepts. A given graph
G; may have multiple dense clusters, e.g., Ci1,Ci2, -+ -, Cic. Let
Ci,j.V denote the nodes in the dense cluster C; j and use Cj, j.V to
denote the remaining nodes after removal.

Definition 4.5 (Highway Entrance Set). Given G;j, its dense
clusters {C;i1,Ci2,- -, Cic}, and its abstracted graph Gj;1, the
highway entrances of any v € C;j ;.V from G; to Gj41 are Cj ;.V

330

and are denoted as H:™!. Correspondingly, the overall highway
entrances to Gj;1 from G;j, denoted as Hj.1, form a set of nodes
U;:lci, j.V.

Figure 5: Example of highway entrances

Example 4.6 (condense process and highway entrances). In
Figure 5, the given graph has two dense clusters C; 1 and C; 2, and
two noise nodes v; and vs5. The edges are shown in lines (solid
and dash lines). Initially, we find the spanning tree with higher
degree-pair edges in each cluster (solid lines). Then the degree-1
edges on the trees are removed. Finally, thicker solid blue lines
are the summary of dense clusters and are kept in G;4+;. This gives
us CMV = {v7, 08,010} and C,~’2.f/ = {v2,v4}. Gj4+1 consists of the
noise nodes (v1, v5) and nodes in Cijl.\N/ and C,-yz.\N/. The nodes
in C,~,1.X~/ and Ci,z.f/ are the highway entrances of the nodes in
Ci1 and in Cj to Gjyq respectively. Hiyq = Ci,l.V] Ci,z.f/ =
{v7, vs,v10, 02,04} is the highway entrance set from G; to Gjy1.

We use a facilitating structure I; to store the skyline paths from
each node v in C; ; to its highway entrance set Hi*1. An element
of I;, denoted as label(v), is defined below.

Definition 4.7 (label(v)). Given a graph G;, its dense clus-
ters {C;1,Ciz2, - -+, Cic}, and its abstracted graph G;41, the label

. i+1
of anode v € C;;.V is defined to be a triple (v, H,ﬂ“,IPﬁI”).
Here, Hz’,*'1 is the set of highway entrances from v to G;4+; and

Hi+1
P,°
a highway entrance h € Hi*1,

= Upepin P", where P! is the set of skyline paths from v to

A structure I; keeps labels for all the nodes in each cluster C; j.V
no matter whether the node is removed from Gj4; or preserved
in Git1. Le., [; Uveciyj'vlabel(v). For example, in Figure 5, the
label of the highway entrance v7, label(v7), needs to be created
if the path (v7,v¢,v9,011,010) is a skyline path from node v7 to
v10, which uses the removed edges (v7, vs), (v6, v9), (v9,v11), and
(011, v10)-

Definition 4.8 (Backbone Index). Given a graph G, two integer
thresholds mpax and my,in, and a percentage p, the backbone
index of G consists of (i) a list of graph summarization structures
(0,Ip), (1,Iy) - -+, (L — 1,I; 1), and (ii) the most abstracted graph
Gr. Here, mpax and myy;p, are the maximum and minimum num-
ber of nodes of a dense cluster, and p is the minimum percentage
of edges that must be condensed in each level.

For example, if we set the parameters to be myin = 30, Mpmax =
200, and p = 0.01, we expect (i) at most 200 nodes exist in each
cluster, (ii) clusters containing less than 30 nodes are merged, and
(iii) at least 1% of the edges need to be removed in the process
of index construction at each level to avoid generating too many
summarization structures. The parameter p decides the number of

edges that must be removed, thus controls the index level L.
Figure 6 shows a backbone index with three layers (i.e., L = 3).

The index provides a multi-level view of the original graph with
different abstraction power. For instance, G; is a summarized view

Figure 7: Paths in index

Figure 6: Index example

of the original graph Gy by condensing three dense clusters (local
units) A, B, and C. I keeps the labels of the nodes in Gy. The
highest level graph Gy (G3) is the most abstracted view of Gy.

4.3.1 Index construction. Algorithm 2 outlines the frame-

work of the index construction process. Initially, the backbone
index takes the original graph Gy as the root. Then, the index is
construed recursively. This summarization works in two steps:
(1) regular summarization and (2) aggressive summarization if
needed.
Regular summarization. We first remove the degree-1 edges
from graph G;. This action leads to the removal of paths consist-
ing of consecutive degree-1 edges. All the degree-1 edges are
removed until every remaining node in G; has a degree of 2 or
higher.

Then, we identify dense clusters (i.e., Ci1,...,Cij,...,Cic) of
G; (Algorithm 1). A more abstracted graph is formed after the
condensation. The removed nodes AV; and edges AE; are returned
to create label(v) of each node v in Cj ;. In label(v), the skyline
paths from o to its highway entrances H:*! are generated using
only the deleted edges E} of Cj j where E; C AE; by applying a
single source skyline path query algorithm (e.g., BBS mentioned
in Section 6s). This strategy not only preserves the deleted edge
information in the skyline paths, but also speeds up the query

process.
The index height L increases rapidly if G; is only condensed

in one iteration to form G;;. To prevent the rapid increase of the
index height, we keep abstracting G; until both of the following
two conditions are met: (i) some nodes and edges are left after the
current iteration (i.e., |Gj41.V| # 0), and (ii) sufficient number of
edges are removed from G; (i.e., |AE;| > p * |Go.E|). When these
conditions are met, the abstracted graph is considered as G;+1 and
used as the input of the summarization to the next level.

Aggressive summarization. While trying to maintain the graph’s
topology, it is possible that the regular summarization function
cannot remove sufficient nodes and edges (Line 9), with the con-
struction terminating with a large Gy, which leads to high compu-
tational cost during the query process. To address this issue, we
deploy a more aggressive strategy that condenses a special type of
paths, single segments (Definition 3.5), in G;41. In particular, it
builds shortcuts to replace single segments and creates labels for

the deleted nodes in the single segments.
The aggressive summarization strategy is simple, but when to

apply it is not trivial. The graph’s topology is destroyed if the
strategy is used during the regular summarization step. If it is
not applied, Gy, can still be very large, thus cannot help support
efficient query processing. If this strategy is called too frequently,
numerous short single segments are merged, which increases the
node degrees of the graph. This goes against our design principle
of reducing the graph’s node degrees and incurs longer index-
building process.

331

Example 4.9 (Condensing single segments.). Given a single
segment s=(u, vg, v1, - - * ,0j-1,0j, w), the aggressive strategy con-
denses it to an edge e = (u, w) by removing all the nodes vy, v1,
-++,and v;. The cost of e is the summation of the edge weights of
s. The labels are created for each v to its highway entrances {u, w}.
Figure 3 shows an example of condensing a single segment.

Algorithm 2: Framework of index construction

Input :Graph G, percentage p, maximum and minimum cluster
sizes Mmax and My, in
Output : Backbone index Ij;s;: (0, L), - - -, (L-1, I1.—1) and the

highest graph G,

1 begin

2 i=0;

3 Create index Ij;s; =0;

4 do

5 /% Step 1: Regular Summarization of G;

*/
6 (AE;, I, Git+1) = GraphSummarization(G;, p,
MmaxsMmin);
7 Ijist-put(i, I;);
8 /* Step 2: Aggressive Summarization
of Gijs1 */

9 if |Giy1.V| # 0 & AE; < p * |Gy.E| then

10 AEpnews Inew = AggressiveGraphSummarization(
Gi+1);

11 if |AE, e | # 0 then

12 Update I; using Ievy;

13 AE; = AE; U AE, 645

14 L=i, i=i+]

15 while |G;;+1.V|#0 and AE; > p*|Gy.E|;

16 landmark(Gy),

17 return [;;;, Gp

The index element I¢,,, Which is generated in the aggressive
graph summarization process, is used to update the existing index
item I;. In particular, every path p € Pg/ (where label(v) € I;) is
concatenated with every path p’ € IP’Z, (where label(v') € Inew)
where o’ is a highway entrance of v (i.e., o’ € H:*! and H:*! is in
label(v)). Finally, the landmark index [28] is built over the highest
level graph Gr.

Index maintenance. The backbone index can be dynamically
maintained when there are changes in the underlying road net-
works (e.g., addition or removal of nodes and edges). The basic
idea is to recalculate the skyline path information for the cluster
nodes that are involved in graph updates. We omit the details and
the experimental results due to space limitation, which can be

found from [19].
Extended to directed graphs. When road networks are modeled

as directed graphs, the index just needs to include the extra infor-
mation from highway entrances to each node in dense clusters.
Getting such information is straightforward because skyline path
information between all pairs of nodes in each dense cluster has
been calculated in the regular summarization process.

5 QUERY PROCESSING ALGORITHM
This section explains the query processing algorithm over a graph
G to get approximate solutions for a SPQ. A SPQ is denoted by
two nodes vs and v;. The query is processed on the backbone
index I={(0,1p), (1,11),--- , (L - 1,I1-1),Gr}.

Given a node vg € Gy.V, let us use vai to denote the set of
skyline paths from o to a highway entrance h; € HY in G;. A path

in Pf,‘; concatenates multiple skyline paths p(vs ¢~ hy), p(h1 e

hy),---,p(hi-1 e» h;) where h; is a highway entrance at G;.
Figure 7 shows an example of one path p in Pﬁs on subgraphs of
Gy, G1, and G2 where blue hollow circles in G; and G2 are the
highway entrances. p consists of three sub-paths p(vs ¢ hy) (in
G()), P(hl > hz) (in Gl), and p(hz > h3) (in Gg).

A node v can directly or indirectly reach a highway entrance
node A at different index levels through a path p(v «» h). We call
the set of highway entrance nodes at different index levels that
v can reach as o’s successor nodes and denote them as succ(v).
For example, all the nodes represented as blue hollow circles in

Figure 7 are successor nodes of the node vs.
Given a query with two nodes v and vy, the backbone paths

are formed as two types: (1) when two sets PZ‘S and]P’f,‘t reach a
common highway node h € Hy where k < L is an intermediate
index level (the first type), or (2) when both nodes vs and v; reach
the most abstracted graph Gy, through the highway nodes hs and
ht in Hy, which means that PZ: and IPZ[’ are connected using paths
p(hs ¢~ hy) in G, where hg and hy are successor nodes of vg and

v; respectively (the second type).
Algorithm 3 describes the process to find the first (Lines 6-28)

and the second type (Lines 29-32) of backbone paths between v
and v;. Given a node v, the function ReadLabel(v) reads the index
label of v and extracts the highway entrance nodes H_, that v can
reach G; from G;_; directly. When v does not exist in G;—1, then
H} is empty. The function addToSkyline adds paths to the result
set R while guaranteeing all the paths in R do not dominate each

other.
To find the first type of skyline paths, the algorithm grows sky-

line paths from ug and v; to their successor nodes. If the paths from
vs and v; meet at a common successor node, such paths are skyline
candidates. To manage the skyline path growing process, two map
structures, S and D, are created (Lines 3 and 4) to store the skyline
paths from v and v; to their successor nodes respectively. In S, a
key is the ending node of a path from vs and the corresponding
value for the key is a list of skyline paths from o to the ending
node. The initial key-value pair in S is (vs, {po, = {vs}}) (Line 3).
Similarly, D is constructed to manage skyline paths from v;.
Lines 6-15 grow the skyline paths from vs using the index

structure at each level i by utilizing the ending node sh of a path in
S. The algorithm finds all the paths P?h from sh to each highway
entrance node h at level i (i.e., h € H;h), which can be extracted
from label(sh) (Line 10) and concatenates them with the skyline
paths in IP’Z? (which can be found from S with key sh (Line 11).
If the highway entrance node h is another query node v;, the
formed skyline paths are used to update the result set R (Line 13).
Otherwise, the formed skyline paths are added to the intermediate

skyline path set S. This path growing process may reach level Gy..
A similar procedure is used to calculate backbone paths from

v to its successor nodes (Lines 16-28). The difference is that one
more condition is added to form new candidate paths, when one

successor h € succ(vy) is also in S (Lines 24-26).
The second type of skyline paths are found when the paths

in S and D reach Gp but cannot be concatenated. A many-to-
many method, m_BBS, is conducted (Line 32) to find the skyline
paths p(os «v o) = p(os > h)llp(hs e ho)llp(hr e vp).
p(hs e~ hy) represents any skyline path from hg to h; where hg
and h; are successor nodes of vg and v in Gy, respectively. The
m_BBS method is a modified version of BBS by accepting multiple
nodes as input and estimating the lower bounds of a path to all the
possible destination (not one destination in the original algorithm).
The proposed m_BBS just needs to be executed once, instead of
multiple times, for each pair of nodes in S.keys and D.keys.

332

Algorithm 3: Query processing algorithm

Input :Query nodes ug and v, the most abstracted graph Gy,
backbone index I

Output : The set of backbone skyline paths R

1 begin

2 Initialize the result set R = 0;

3 Create a new map S initialized with (vs, po,);

4 Create a new map D initialized with (o, py,);

5 /+ Find the first type of skyline paths

*/

6 foreach 0 <i < L do

7 foreach sh € S.keys do

8 ReadLabel(sh) and extract the highway entrances

H,:)

9 foreach h € H, do

10 Get the set of skyline paths]P’fh from sh to h
(ReadLabel(sh));

11 IPQ’S: combine all the paths in PZ? with all the
paths in IP’S’ ;

12 if h = u; then

13 | R.addToSkyline(PZ);

14 else

15 | S.putth, P2);

foreach 0 <i < L do

foreach dh € D.keys do

ReadLabel(dh) and extract the highway entrances
Heys)

foreach h € H), do

Get the set of skyline paths P, j, fromdh to h

17
18

20

d
(ReadLabel(dh));
21 IPZt = combine all the paths in]Pgth with all the
apho.
paths in P, ;
22 if h = u; then

23
24
25

| R.addToSkyline(P%,);
elseif h € S then
]P’Zi = new paths combining PZt with
S.get(h).PL ;
26 R.addToSkyline(P!);
else
| D.puth, P2):
/* BBS on G to find the second type of
skyline paths

27
28

29
*/
30 Spossible =GL.Vn S-keys 5

Dpossible =GL.vn D‘keys 5
R.addToSkyline(m_BBS(Gr, vs, v, SPOSSib167 Dpossible))

return R // Return the results

31
32

33

Support to other types of queries. The backbone index can
be used to support one-to-all SPQs to return approximate skyline
paths to all other nodes from a given query node. The details and

experimental results can be found in [19].
Solution bound. Given a graph G, its backbone index, a query

(vs, vr), the upper bound of an approximate solution path’s weight
is O((Fyq)¥). Here, L is the height of the index, and Fyg; is
the expected summation of the weights for all the edges in the
minimum spanning tree over a complete graph with a very large

number of nodes.
Complexity. The complexities of index construction time and

index size are O(|G.V|log(|G.V])) and O(|G.V|mmaxSnd) respec-
tively. Here, d is the number of dimensions of edge cost, and S,
is the average number of skyline paths between every node to its
highway entrance in each dense cluster and is almost constant

Table 1: Statistics of road networks

description vertex # edge # raw data size

C9_NY New York 254,346 365,050 16.2 MB
C9_BAY San Francisco Bay Area 321,270 397415 18.9 MB
C9_COL Colorado 435,666 521,200 38.9 MB
C9_FLA Florida 1,070,376 1,343,951 98.4 MB

C9_E East USA 3,598,623 4,354,029 337.7MB
C9_CTR Center USA 14,081,816 | 16,933,413 1304.0 MB
L_CAL California 21,048 21,693 1.3 MB

L_SF San Francisco 174,956 221,802 122 MB

L_NA USA 175,813 179,102 11.0 MB

when my,qx 1s small. Sy, is no more than 10 when m 4 is 200 in

our experiments.
The detailed complexity analysis for the upper bound of an

approximate solution, the index construction time, and the index
space is omitted here due to space limit and can be found at [19].

6 EXPERIMENTS

6.1 Experimental settings

Our experiments are conducted on a desktop with an Intel(R) 3.60
GHz CPU, 32 GB main memory, and 2 TB HDD, running Ubuntu
18.04. All the algorithms are implemented using Java 13 [3]. We
use Neo4j [4], the most popular graph database [2], to store all
the graphs. The page size and cache size of Neo4;j are set to 2 KB
and 2 GB respectively. The native JAVA APIs of Neo4j are used
to access neighbor nodes. Our backbone index is not stored in
Neod;.

Default parameter setting. The condensing threshold p;, 4 (Def-
inition 4.3) is set to 30%, the minimum and maximum cluster
sizes Myin and Mpyqx (Definition 4.8) are set to be 30 and 200 re-
spectively, and the percentage p used to decide whether sufficient
number of edges are removed (Definition 4.8) is 0.01. More dis-
cussions about the effect of these parameters are in Section 6.2.5.
Parameter value selection. To set values of different parameters,
users can take a strategy that is widely adopted in using machine
learning libraries: starting with the default setting and fine-tuning
the parameters. For any dataset, users can use the above default
setting to get query results with similar accuracy that we report. If
users accept query results with less accuracy guarantee, they can
increase mmqx and/or p. Otherwise, they need to decrease mpqax
and/or p. Users need to be aware that the index construction time
for larger/smaller datasets is longer/shorter. Generally, m,,;, and
Pina do not need to be changed. Or, users can follow the analysis
in Section 6.2.5 to fine tune them.

Data. Our experiments use nine real-world road networks [1, 5]
(details see Table 1). The original networks contain the coordinates
of nodes and one-dimensional edge weights (the spatial length of
road segments). We generate two extra synthetic edge weights by
sampling them from a uniform distribution in the range of [1,100]
following the practice in [12, 29]. A detailed comparison of dif-
ferent ways to generate synthetic costs is in Section 6.3. When
smaller subgraphs with a specific number of nodes are needed in
the experiments, we generate such subgraphs by conducting BF'S
from a random node on the real-world networks.
Approximation quality measurements. To evaluate the quality
of an approximate result set, we apply the following measure-
ments.

(1) The ratio of average cost on each dimension (RAC). We
introduce RAC; to measure the similarity between the approxi-
mate results and the exact solutions on the ith dimension. It is

repr Wi|wi€cost(p)) /[P’
defined as RAC; = 05> 10 =eost (o)) TP

the set of approximate skyline paths and the exact SPQ solutions
respectively. A RAC; value that is closer to 1 is better.
(2) Goodness. We modify the goodness measurement [20] to

where P’ and P are

333

1.8
Enone
Eeach
EEAnormal

EEnone
Eeach
EEAnormal

Average cost ratio
—
IS

Vi 7 v 7 7 7

N 7777777777 7]
) v i v v v v |

o
[v i i)

0

o

cluster size

(a) RAC on C9_NY_5K

cluster size
(b) RAC on C9_NY_15K
1.00

=
=3
=3

-~ MSSinone MSsinone
£ wazeach wazeach
©0.95 E=normal 0.95 E==normal
c

3

©0.90 0.90

4

£

50.85 0.85

o

(U]

o
©
o

0.80

200
cluster size

(c) Goodness on C9_NY_5K
Figure 8: Comparison of approximation quality

600

200

600
cluster size

(d) Goodness on C9_NY_15K

make it suitable for SPQs, which are different from the queries
in [20]. Given the exact solution set P and an approximate solu-
tion set P’ for an SPQ, the goodness score of P’ is defined as:
Y pep{argmax,scpr sim(p,p’) }
P

the similarity function betweelnlthe cost of two paths. We use the
cosine similarity (the higher the better) to calculate sim(p, p’).
Exact method. We implement the SPQ method in [29] and speed
up the query by initializing the result set with the shortest path on
each dimension. We call this implementation the Baseline Best-
first Search method (abbreviated as BBS). BBS returns exact SPQ
solutions that are used to verify the quality of the approximate
solutions.

Comparison methods. Since no existing index structure is partic-

ularly designed to support SPQs, to demonstrate the effectiveness
of our proposed index construction strategy backbone_normal
(Algorithm 2), we modify two representative shortest path indexes,
GTree [50] and CH [37], to compare with our index structures.
The index construction process of GTree and CH follows their
original contracting process. The difference is that we use skyline
paths (instead of shortest paths) as the new edges. We also imple-
ment two more variations (backbone_none and backbone_each)
of our index construction methods by varying the implementation
of triggering the aggressive graph summarization (Section 4.3.1).
The backbone_none only conducts regular graph summarization.
The backbone_each triggers the aggressive summarization at each
level.

goodness(P’) = where sim(p, p’) is

6.2 Experimental results

6.2.1 Effectiveness of the proposed index structure and
query method. We compare the query results with the exact
solutions returned by BBS. The BBS method does not work well on
large graphs [19]. Thus, we use small subgraphs of C9_NY with
5K and 15K nodes. On both C9_NY_5K and C9_NY_15K, we
randomly generate 300 queries (i.e., pairs of starting and ending
nodes of the queries). For these random queries, we run both
the BBS method and our methods to get exact and approximate
solutions for comparisons.

We examine how good the approximate results are. Figures 8(a-
b) show the RAC values. Three consecutive bars in the same color
and shape represent results from one method. The ratio for each
dimension is shown from left to right. Figures 8(c-d) plot the good-
ness values. We can see that backbone_none has the best (smallest)

average approximation in most cases among the three variations.
This is because the backbone_none variation keeps much more
nodes and edges in Gy while building the index. One exception
is that backbone_none is slightly worse than backbone_each on
CI9_NY_15K when myp,4,=600 . This is because the level L of
the index generated by the backbone_none (L=6) is larger than
the level of index generated by backbone_each (L=4). This is
consistent with our analysis about the index structure: an index

with a larger L (meaning a higher index) loses more information.
The backbone_each and backbone_normal variations perform

similarly because they all trigger the aggressive strategy. They
provide rough 1.5-approximation solutions (RAC) and get ~0.85
goodness scores. The approximation of backbone_normal is slightly
better than that of backbone_each for three settings (m;4x=200
for both graphs, and m;4,=600 for C9_NY_5K) because the in-
dexes generated using backbone_normal are larger than those gen-
erated using backbone_each in these three settings. On the other
hand, backbone_each slightly outperforms backbone_normal for
the remaining three settings (m;,qx=400 for both graphs, and
Mmax=600 for C9_NY_15K) because of a similar reason.

200 mBBS m—BBS
B none 250 Nnone
@A each @A each
150 E==normal 200 E==normal

of skyline paths
=
o
o

of skyline paths

u
=)

400 600

200

400 600
cluster size cluster size

(a) C9_NY_5K (b) C9_NY_15K
Figure 9: Comparison of result set size (# of skyline paths)

Figures 9 shows that all three variations can hugely reduce the
result-set sizes. When more nodes and edges are kept in Gy, more
skyline paths are found on Gy, which leads to a larger result set.
When cluster size increases, the backbone_none variation gen-
erates larger G; compared with the other two variations, which
slows down the m_BBS significantly. Figure 10 reports the aver-
aged query time for the 300 queries. The backbone_none variation
even needs more time than BBS in most situations because of the
large Gy . The query time of backbone_each and backbone_normal
is stably small because of a smaller Gy, (Figure 10). In summary,
our proposed index construction approach can achieve a good
trade off in preserving the graph information and effectively sup-
porting queries.

le3

gole3
B BBS A
@ainone Q
60| mmmeach | |
m =E==normal \ .
g, |
g
=] N %
> \
o 4
3
. O 2
0.0 0

400
cluster size

(b) C9_NY_15K

200 400 600 600

cluster size

(a) C9_NY_5K

Figure 10: Comparison of query time

6.2.2 Efficiency of index construction. We conduct experi-
ments to measure the index size and building time by comparing
our index structure with GTree and CH. We use subgraphs of
C9_NY with 5K, 10K, and 15K nodes. For the GTree method, the
fan out is set to be 4 and the number of vertices in a leaf node is
set to 64. These parameter values are used to generate the best

334

results in the original paper. The experimental results are reported
in Table 2.
The results show that the index size of GTree is comparable to

our proposed method. However, the construction time of GTree is
much more than our method. The main reason is that the graph
contracting process of GTree increases the graph size, which
grows exponentially in the number of nodes and edges. Such
graph-size increase slows down the performance of SPQs. For
example, the root node in the GTree contains 74794 and 169623
edges for C9_NY_5K and C9_NY_15K respectively. The index
on C9_NY_10K cannot be created in one day while processing a
non-leaf node with 2,754,341 edges. Given these, we can observe
that GTree index structure is not practical in supporting SPQs on
large graphs.
Table 2: Comparison of index construction

CY9_NY_S5K | CY_NY_10K | CY_NY_I5K
Construction Backbone 99 251 216
time (sec.) GTree 23,89 39,781
(6 hours) (11 hours)
CH 12,000 42,184 26,340
Index size Backbone 27 89 68
(MB) GTree 27.5 - 41.6
Size of the CH node # 4,071 9,654 13,499
most abstracted graph CH edge # 22,627 30,894 83,302

For the CH index, we report the graph size instead of the index
size because the final graph of the CH is used to speed up online
shortest path queries. The result shows that the number of nodes
does not change much after summarization. However, the number
of edges is at least 5 times more than that in the initial graph.
The huge final graph causes the deterioration of query processing.
The underlying reason is that multiple skyline paths (instead of
one shortest path) exist between two nodes. Furthermore, the
index building time also becomes impractical when the graph size
increases.

6.2.3 Effectiveness of using dense clusters to condense
G;. We evaluate the effectiveness of our approach of using dense
clusters to condense G; (Section 4.2). For comparison purpose,
we implement another approach to partition the nodes in G; to
different connected components by using BFS. Other partition
methods [24, 27] used in [26, 30, 32] that merely consider the
connectivity between partitions but not the density of the partitions
get similar results as the BFS partitioning method. Our method is
labeled as NODE and the alternative partition method is labeled
as BF'S. We measure the index size and the time to construct the
backbone index from the partitions discovered using our dense-
cluster based method and from the partitions found using BFS

method.
Figure 11 shows the results on dataset C9_NY_15K. When

the cluster size increases, building indexes using the partitions
found from the BF'S method requires longer time and uses more
space (can be more than three times for m,4x=800), compared
with creating indexes using graph partitions discovered from our

method.
This result demonstrates that our design of using dense clusters

to condense a graph is more appropriate than using partitions
which do not consider graph density.

6.2.4 Scalability test of query algorithms. We test the
scalability of our approach by comparing it with BBS on subgraphs
of C9_BAY with different number of nodes (from 10K to 100K).
We generate ten random queries for different datasets. To control
the randomness of queries, we constrain the distributions of the
number of hops between the starting and ending query nodes to
be similar for all the datasets. In particular, for each dataset, two

~300{ mEmBFS

BORNODE 300/ PSINODE

me (Sec
NN
o o u
o o o

[
=)

Construction time
=
o
o

400
cluster size

400
cluster size

600 600

(a) Construction time (b) Index size

Figure 11: Effectiveness of cluster-based condensing

queries have less than 50 hops, three queries have between 50 to
100 number of hops, and five queries have larger than 100 hops.
We also constrain that these queries can be finished in fifteen
minutes using the BBS method so that comparisons can be done
with reasonable time. We run these queries using our approach
and the BBS method, and report the averaged running results in
Table 3.

Table 3: Scalability of query algorithms (subgraphs of
C9_BAY)

of nodes 10K 40K 70K 100K
RAC 1.41,1.67,1.63 1.48,1.79,1.68 | 1.85,1.90,1.93 | 1.56,1.80,1.71
Goodness
(Cosine similarity) 0.88 0.85 0.87 0.87
BBS method 34,154 63,557 101,470 30,789
query time (ms)
Backbone index 461 410 437 470
query time (ms)
Speed-up ratio 74 155 232 65
Construction time
126,450 429,488 815,771 930,892

(ms)

The first observation is that our proposed algorithm achieves
reasonable RAC and goodness score in these different graphs.
Second, although the construction time grows as the graph size in-
creases, the improvement of query time is significant. Our method
speeds up the BBS method dramatically (more than 65 times in
all subgraphs). We are aware that the construction time of our
backbone index is not less than the average query time of BBS.
This is because the index construction needs to pre-calculate sky-
line path information for all the node pairs in each cluster. We
need to emphasize that the backbone index just needs to be built
once and can support any ad-hoc SPQs efficiently. To speed up the
index construction process, we need to improve the component of
pre-calculating skyline paths. A reasonable idea is to pre-calculate
less (but still good) skyline paths for the node pairs in clusters
utilizing strategies in [20].

The query time of both the BBS method and our method does
not show a steady trend with the increase of node numbers. This
is because the performance of the BBS method is more affected
by node degrees and the number of hops of queries according
to our preliminary study [19]. On the 100K subgraph, the BBS
method has abnormally low running time because of the lower
average node degree of this graph compared with other graphs and
the smaller average number of hops for queries on this subgraph.
Our proposed method takes a relatively constant time on different
subgraphs (vary from 410 ms to 470 ms). The queries over the
10K graph have larger query time because its index has more
levels (i.e., a larger L).

6.2.5 Effect of parameters. Figure 12 shows the impact
of the parameters p and myqx on the performance of index con-
struction. The index construction process is sensitive to the cluster

335

led le3 le3

&
o

—_ 3.5 —_ 2.8
‘ﬁi —e— construction time a —e— construction time
@/2'5 -B- index size 3.0 n3s -E- index size 7
& —
220 22 g __m[262
b= o 536 _B--\.g_____ g b
209 - P
c o c 25N
515 5 5
i) o x
=] 15x 534)
5 g B 243
210 1.0S 2 £
b= = 5
2 232 23
§os -
200 400 600 800 3.0 5 10 15 20 22
cluster size percentage
(a) Varying m,qx (b) Varying p

Figure 12: Index building time and index size for C9_NY

size as shown in Figure 12(a). Both the time of finding skyline
paths and the number of skyline paths in each cluster grow with
the increase of my,qx. The results indicate that it is practical to set
Mmax to be 200 and 400 to get reasonable building time and index
size. When my, 45 reaches 800, the algorithm can take 6 hours to
build the index and the index size is 3.5 times of G’s size, which
is not workable. On the contrary, the building time and the index
size are almost constant when p changes (Figure 12(b) because p
only affects the levels of the indexes L, which are almost the same
for different p values.

Iy
=]
S
Iy
=3
S

—e— Cosine sim.

"\r""’\._,__.\.

—e— Cosine sim.

e

4
©
a
4
©
a

o
©
o
o
©
o

o
©
[l
4
o
[l

o
@
=]
o
@
=]

°
S
G

Goodness (Cosine sim.)
o
<
&

Goodness (Cosine sim.)

o
~
=)

=]
~
=)

0 10 20 30

Pind
(a) Varying pinq

40 50 . 0 50 100

Mmin

150

(b) Varying m,in

[y
=3
S

—e— Cosine sim.

e A

im.)
e o o
=3 © ©o
w o w

Goodness (Cosine sim.
o o
~ [+
w o

e
~
o

i
o
S

500
Mmax

1000

(¢) Varying m;;qx

Figure 13: Goodness comparison on C9_NY_15K

We further examine the effect of three parameters, condensing
threshold p;,,4, minimum cluster size m;,;,, and maximum cluster
Size Mmgax on the quality of approximation results using a small
graph with 15K nodes (C9_NY_15K) because BBS is inefficient
on large graphs. The reported numbers in Figure 13 are averaged
from results of 100 random queries over C9_NY_15K. For the
parameter p;,q, the overall trend is that its effect fluctuates before
reaching a value (20 for this test) and slightly decreases after that.
In this test, the best performance is achieved with zero. This is be-
cause the dataset is obtained using BFS and it has less low-density
nodes. This is not the general conclusion for all the datasets. For
Mmin, a similar overall trend is observed: its effect fluctuates be-
fore reaching a value (mp,;,=50) and slightly decreases after that.
This is because the approximation is worse when we do not suffi-
ciently merge small clusters (smaller m;;,) or merge big clusters
(larger myyip,). For the parameter m 4y, the goodness score shows
fluctuations with an overall trend of decreasing performance with
the increase of m,qx. Given these, smaller m, 4, should be used

to achieve better query accuracy. However, very small m;qx (the
extreme case is mpyqx=1) should not be used because of much
longer query time.

6.2.6 Performance on larger graphs. We apply our index
construction approach to large real-world graphs. The results are
shown in Table 4. The size of the highest graph row shows the

Table 4: Scalability of backbone index construction

C9_NY |C9_BAY | C9_COL | C9_FLA | C9_E C9_CTR
IConstruction time (sec.) | 3,305 3,056 4,331 12,082 61,471 532,456
Index size (MB) 2,526 1,954 2,535 6,531 21,484 81,196
Size of the (node #) 193 152 4 219 97 167
highest graph (edge #) 193 152 6 306 131 217
Query time (ms) 419 426 414 505 526 516
(a)
[L_CAL | L_SF L_NA
(Construction time (sec.) 270 3,056 1,472
Index size (MB) 86 1954 709
Size of the (node #) 173 152 56
highest graph (edge #) 248 152 87
Query time (ms) 479 424 418

(®)

number of nodes (top number) and edges (bottom number) in
the most abstracted graph Gy . Table 4(a) shows the results on
the graphs [1] that have higher node degrees. Table 4(b) shows
the results on graphs with lower average node degrees [5]. Our
proposed algorithm scales well as the number of graph nodes
increases from 0.01 million (C9_NY_10) to 14 million (C9_CTR).
On the graph C9_CTR, the average search time is only 0.5 seconds.
A huge jump on the index construction time occurs on C9_CTR.
This is because the graph has higher node degrees, which make the
pre-calculation of skyline paths in dense clusters more expensive
than in other graphs.

mmBBS
NawBackbone

mmmBBS
NawBackbone

N
=)

N
=)

=
n

-
1%

=
=)

Query time (ms)
-
o

Query time (ms)

o

o
o
w

o
=)
o
=)

CORR ANTI INDE CORR ANTI

INDE

(a) C9_NY_20K (b) C9_BAY_20K

Figure 14: Query time (different edge-cost distributions)

iy
=3
=3

B Cosine Sim. B Cosine Sim.

m
o
©
a

m
o
©
a

e

o
©
S
o
©
=3

o
©
vl
o
©
vl

o
©
S
o
©
S

o
9
a
e
N
a

Goodness (Cosine Sim.)
Goodness (Cosin

0.70 0.70

CORR ANTI INDE CORR ANTI INDE

(a) C9_NY_20K (b) C9_BAY_20K

Figure 15: Goodness scores (different edge-cost distributions)

6.3 Effect of edge-cost distribution

We examine the effect of the distribution of edge cost on the
query time and the goodness score. We generate subgraphs with
20K nodes from the C9_NY and C9_BAY datasets. For these sub-
graphs, we generate synthetic edge cost that are correlated (CORR)
with, or anti-correlated (ANTI) with, or independent (INDE) from

336

the distance between two nodes. Over these subgraphs, 150 ran-
dom queries have been generated and executed. The average query
time is reported in Figure 14. The correlated edge cost leads to
the shortest BBS query time. Among the three types of edge cost,
BBS method has the longest query time when edges have anti-
correlated cost. On the contrary, the performance of our proposed
algorithm is relatively constant to the edge-cost distributions and
is much faster than the BBS method (Figure 14). Figure 15 shows
the similar performance of queries over the backbone index on
graphs with different types of edge-cost distributions. It is interest-
ing to note that our proposed approach works even slightly better
on graphs with anti-correlated or random edge cost than on graphs
with correlated edge cost. This shows the potential of applying
our methods to networks other than road networks because road-
network cost are generally correlated to the distance between two
nodes.

6.4 Case study

To illustrate the usefulness of the query results returned by our
method, we visualize the result sets returned by our method and
BBS from C9_NY_10K for a randomly picked query. Figure 16(a)
plots all the 293 exact skyline paths, which differ from each other
with only a tiny portion of the nodes/edges. When plotted, it
looks like there are only very few alternative routes. Thus, the
visualization cannot clearly show the many different routes. Fig-
ure 16(b) shows the five approximate skyline paths returned from
our method, where only the highway entrances and the abstracted
paths are drawn. The results returned by our method are more
representative and succinct than the large number of exact solu-
tions that share a large portion of nodes and edges, thus can better
support decision making.

" (b) Approximate search results

(a) Exact search results

Figure 16: Use case demonstration

7 CONCLUSIONS

This paper introduces a new index structure (denoted as backbone
index) to support efficient processing of SPQs over MCRNSs. This
index structure organizes the summarized graphs of the original
graph with different summarization granularity in a hierarchical
structure. Higher-level graphs summarize lower-level graphs by
reducing the graph density. We implement a practical index con-
struction approach that utilizes the idea of finding dense clusters to
condense graphs. A corresponding query processing method is in-
troduced to find approximate skyline paths by using our proposed
index. Extensive experiments are conducted on nine real-world
road networks. Our introduced query method can find reasonable
approximate results efficiently, which are comparable to the re-
sults found by an exact SPQ query algorithm. The results also
show that our backbone index has more efficient index size and
building time than two other index structures adopted from the
shortest-path-query supporting indexes.

REFERENCES

[1]
[2]
[3]
[4]
[5]

[6

[7

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

9th DIMACS Implementation Challenge.
challenge9/download.shtml.

DB-Engines Ranking of Graph DBMS. https://db-engines.com/en/ranking/
graph+dbms.

GitHub Repository for this work. https:/github.com/gongwolf/BackbonIndex.
Neo4j Graph Platform. https://neo4j.com/.

Real Datasets for Spatial Databases: Road Networks and Points of Interest.
https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm.

Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Fast exact shortest-path
distance queries on large networks by pruned landmark labeling. In Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data,
pages 349-360, 2013.

Saad Aljubayrin, Bin Yang, Christian S. Jensen, and Rui Zhang. Finding non-
dominated paths in uncertain road networks. Proceedings of the 24th ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems, 2016.

Neli Blagus, Lovro Subelj, and Marko Bajec. Assessing the effectiveness of
real-world network simplification. Physica A: Statistical Mechanics and its
Applications, 413:134-146, 2014.

G. Borruso. Network density estimation: A gis approach for analysing point
patterns in a network space. Trans. GIS, 12:377-402, 2008.

Zhan Bu, Zhiang Wu, Liqiang Qian, Jie Cao, and Guandong Xu. A backbone
extraction method with local search for complex weighted networks. 2014
IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining (ASONAM 2014), pages 85-88, 2014.

S. Chawla, Venkata Rama Kiran Garimella, A. Gionis, and Dominic Tsang.
Backbone discovery in traffic networks. International Journal of Data Science
and Analytics, 1:215-227, 2016.

Yi-Chung Chen and Chiang Lee. Skyline path queries with aggregate attributes.
IEEE Access, 4:4690-4706, 2016.

Zitong Chen, A. Fu, Minhao Jiang, Eric Lo, and Pengfei Zhang. P2h: Efficient
distance querying on road networks by projected vertex separators. Proceedings
of the 2021 International Conference on Management of Data, 2021.

Liang Dai, Ben Derudder, and Xingjian Liu. Transport network backbone
extraction: A comparison of techniques. Journal of Transport Geography,
69:271-281, 2018.

Edsger W Dijkstra. A note on two problems in connexion with graphs. Nu-
merische mathematik, 1(1):269-271, 1959.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, et al. A density-
based algorithm for discovering clusters in large spatial databases with noise.
In Kdd, volume 96, pages 226-231, 1996.

Xiaoyi Fu, Xiaoye Miao, Jianliang Xu, and Yunjun Gao. Continuous range-
based skyline queries in road networks. World Wide Web, 20(6):1443-1467,
2017.

Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Con-
traction hierarchies: Faster and simpler hierarchical routing in road networks.
In International Workshop on Experimental and Efficient Algorithms, pages
319-333. Springer, 2008.

Qixu Gong and Huiping Cao. Technical report, TR-CS-NMSU-2022-
0223, Supplementary Materials. https://computerscience.nmsu.edu/research/
technical-reports.html.

Qixu Gong, Huiping Cao, and Parth Nagarkar. Skyline queries constrained by
multi-cost transportation networks. 2019 IEEE 35th International Conference
on Data Engineering (ICDE), pages 926-937, 2019.

Sheng Guan, Hanchao Ma, and Yinghui Wu. Attribute-driven backbone dis-
covery. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 187-195, 2019.

Andrey Gubichev, Srikanta J. Bedathur, Stephan Seufert, and Gerhard Weikum.
Fast and accurate estimation of shortest paths in large graphs. In CIKM 10,
2010.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern.,
4:100-107, 1968.

Y. Huang, N. Jing, and Elke A. Rundensteiner. Effective graph clustering for
path queries in digital map databases. In CIKM "96, 1996.

Shalev Itzkovitz, Reuven Levitt, Nadav Kashtan, Ron Milo, Michael Itzkovitz,
and Uri Alon. Coarse-graining and self-dissimilarity of complex networks.
Phys. Rev. E, 71:016127, Jan 2005.

N. Jing, Y. Huang, and Elke A. Rundensteiner. Hierarchical encoded path views
for path query processing: An optimal model and its performance evaluation.
IEEE Trans. Knowl. Data Eng., 10:409-432, 1998.

G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular
graphs. J. Parallel Distributed Comput., 48:96-129, 1998.

Hans-Peter Kriegel, Peer Kroger, Peter Kunath, Matthias Renz, and Tim
Schmidt. Proximity queries in large traffic networks. In GIS, 2007.
Hans-Peter Kriegel, Matthias Renz, and Matthias Schubert. Route skyline
queries: A multi-preference path planning approach. 2010 IEEE 26th Interna-
tional Conference on Data Engineering (ICDE 2010), pages 261-272, 2010.
K. Lee, W. Lee, B. Zheng, and Yuan Tian. Road: A new spatial object search
framework for road networks. IEEE Transactions on Knowledge and Data
Engineering, 24:547-560, 2012.

Qiyan Li, Yuanyuan Zhu, and J. X. Yu. Skyline cohesive group queries in
large road-social networks. 2020 IEEE 36th International Conference on Data

http://users.diag.uniromal..it/

337

[32]

[33]

[34]

[35]

[36]

[37

[38]

[39]
[40]
[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Engineering (ICDE), pages 397-408, 2020.

Zijian Li, Lei Chen, and Yue Wang. G*-tree: An efficient spatial index on road
networks. 2019 IEEE 35th International Conference on Data Engineering
(ICDE), pages 268-279, 2019.

A. Maratea, A. Petrosino, and Mario Manzo. Extended graph backbone for
motif analysis. Proceedings of the 18th International Conference on Computer
Systems and Technologies, 2017.

D. Orellana and M. Guerrero. Exploring the influence of road network structure
on the spatial behaviour of cyclists using crowdsourced data. Environment and
Planning B: Urban Analytics and City Science, 46:1314 — 1330, 2019.

Dian Ouyang, Dong Wen, Lu Qin, Lijun Chang, Y. Zhang, and Xuemin Lin.
Progressive top-k nearest neighbors search in large road networks. Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data,
2020.

Ning Ruan, Ruoming Jin, Guan Wang, and Kun Huang. Network backbone
discovery using edge clustering. arXiv preprint arXiv:1202.1842, 2012.

Peter Sanders and Dominik Schultes. Highway hierarchies hasten exact shortest
path queries. In ESA, 2005.

M Angeles Serrano, Maridn Bogund, and Alessandro Vespignani. Extracting
the multiscale backbone of complex weighted networks. Proceedings of the
national academy of sciences, 106(16):6483—-6488, 2009.

Yuan Tian, K. Lee, and W. Lee. Finding skyline paths in road networks. In GIS
’09, 2009.

Ulrike von Luxburg, Agnes Radl, and Matthias Hein. Hitting and commute
times in large graphs are often misleading. 2010.

T. Wang, C. Ren, Y. Luo, and J. Tian. Ns-dbscan: A density-based clustering
algorithm in network space. ISPRS Int. J. Geo Inf., 8:218, 2019.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-
world’networks. nature, 393(6684):440-442, 1998.

Victor Junqiu Wei, R. C. Wong, and Cheng Long. Architecture-intact oracle
for fastest path and time queries on dynamic spatial networks. Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data,
2020.

Bin Xu, Jun Feng, and Jiamin Lu. Continuous skyline queries for moving
objects in road network based on mso. In Proc. of the 12th Intl. Conf. on
Ubiquitous Information Management and Communication, IMCOM, pages
53:1-53:6. ACM, 2018.

Bin Yang, Chenjuan Guo, Christian S. Jensen, Manohar Kaul, and Shuo Shang.
Multi-cost optimal route planning under time-varying uncertainty. 2013.

Bin Yang, Chenjuan Guo, Christian S. Jensen, Manohar Kaul, and Shuo Shang.
Stochastic skyline route planning under time-varying uncertainty. 20/4 I[EEE
30th International Conference on Data Engineering (ICDE), pages 136-147,
2014.

Yajun Yang, Hang Zhang, Hong Gao, Qing hua Hu, and Xin Wang. An efficient
index method for the optimal route query over multi-cost networks. ArXiv,
abs/2004.12424, 2020.

Man Lung Yiu and N. Mamoulis. Clustering objects on a spatial network. In
SIGMOD 04, 2004.

Mengxuan Zhang, Lei Li, Wen Hua, Rui Mao, Pingfu Chao, and Xiaofang
Zhou. Dynamic hub labeling for road networks. 2021 IEEE 37th International
Conference on Data Engineering (ICDE), pages 336-347, 2021.

Ruicheng Zhong, Guoliang Li, Kian-Lee Tan, and Lizhu Zhou. G-tree: An
efficient index for knn search on road networks. In Proceedings of the 22nd
ACM international conference on Information & Knowledge Management,
pages 39-48, 2013.

