
KO codes: Inventing Nonlinear Encoding and Decoding for Reliable Wireless
Communication via Deep-learning

Ashok Vardhan Makkuva * 1 Xiyang Liu * 2 Mohammad Vahid Jamali 3 Hessam Mahdavifar 3 Sewoong Oh 2

Pramod Viswanath 1

Abstract

Landmark codes underpin reliable physical layer
communication, e.g., Reed-Muller, BCH, Con-
volution, Turbo, LDPC and Polar codes: each
is a linear code and represents a mathematical
breakthrough. The impact on humanity is huge:
each of these codes has been used in global wire-
less communication standards (satellite, WiFi, cel-
lular). Reliability of communication over the
classical additive white Gaussian noise (AWGN)
channel enables benchmarking and ranking of
the different codes. In this paper, we construct
KO codes, a computationaly efficient family of
deep-learning driven (encoder, decoder) pairs that
outperform the state-of-the-art reliability perfor-
mance on the standardized AWGN channel. KO
codes beat state-of-the-art Reed-Muller and Po-
lar codes, under the low-complexity successive
cancellation decoding, in the challenging short-
to-medium block length regime on the AWGN
channel. We show that the gains of KO codes are
primarily due to the nonlinear mapping of infor-
mation bits directly to transmit real symbols (by-
passing modulation) and yet possess an efficient,
high performance decoder. The key technical in-
novation that renders this possible is design of a
novel family of neural architectures inspired by
the computation tree of the Kronecker Operation
(KO) central to Reed-Muller and Polar codes.
These architectures pave way for the discovery
of a much richer class of hitherto unexplored non-
linear algebraic structures. The code is available
at https://github.com/deepcomm/KOcodes.

*Equal contribution 1Department of Electrical and Computer
Engineering, University of Illinois at Urbana-Champaign 2Paul G.
Allen School of Computer Science & Engineering, University of
Washington 3Department of Electrical Engineerign and Computer
Science, University of Michigan. Correspondence to: Ashok,
Xiyang <makkuva2@illinois.edu, xiyangl@cs.washington.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

1. Introduction
Physical layer communication underpins the information
age (WiFi, cellular, cable and satellite modems). Codes,
composed of encoder and decoder pairs, are the basic math-
ematical objects enabling reliable communication: encoder
maps original data bits into a longer sequence, and decoders
map the received sequence to the original bits. Reliability
is precisely measured: bit error rate (BER) measures the
fraction of input bits that were incorrectly decoded; block
error rate (BLER) measures the fraction of times at least
one of the original data bits was incorrectly decoded.

Landmark codes include Reed-Muller (RM), BCH, Turbo,
LDPC and Polar codes (Richardson & Urbanke, 2008): each
is a linear code and represents a mathematical breakthrough
discovered over a span of six decades. The impact on
humanity is huge: each of these codes has been used in
global communication standards over the past six decades.
These codes essentially operate at the information-theoretic
limits of reliability over the additive white Gaussian noise
(AWGN) channel, when the number of information bits is
large, the so-called “large block length" regime. In the small
and medium block length regimes, the state-of-the-art codes
are algebraic: encoders and decoders are invented based
on specific linear algebraic constructions over the binary
and higher order fields and rings. Especially prominent bi-
nary algebraic codes are RM codes and closely related polar
codes, whose encoders are recursively defined as Kronecker
products of a simple linear operator and constitute the state
of the art in small-to-medium block length regimes.

Inventing new codes is a major intellectual activity both in
academia and the wireless industry; this is driven by emerg-
ing practical applications, e.g., low block length regime
in Internet of Things (Ma et al., 2019). The core chal-
lenge is that the space of codes is very vast and the sizes
astronomical; for instance a rate 1/2 code over even 100
information bits involves designing 2100 codewords in a 200
dimensional space. Computationally efficient encoding and
decoding procedures are a must, apart from high reliability.
Thus, although a random code is information theoretically
optimal, neither encoding nor decoding is computationally
efficient. The mathematical landscape of computationally

https://github.com/deepcomm/KOcodes

KO codes

efficient codes has been plumbed over the decades by some
of the finest mathematical minds, resulting in two distinct
families of codes: algebraic codes (RM, BCH – focused on
properties of polynomials) and graph codes (Turbo, LDPC –
based on sparse graphs and statistical physics). The former
is deterministic and involves discrete mathematics, while the
latter harnesses randomness, graphs, and statistical physics
to behave like a pseudorandom code. A major open ques-
tion is the invention of new codes, and especially fascinating
would be a family of codes outside of these two classes.

Our major result is the invention of a new family of codes,
called KO codes, that have features of both code families:
they are nonlinear generalizations of the Kronecker oper-
ation underlying the algebraic codes (e.g., Reed-Muller)
parameterized by neural networks; the parameters are learnt
in an end-to-end training paradigm in a data driven manner.
Deep learning (DL) has transformed several domains of
human endeavor that have traditionally relied heavily on
mathematical ingenuity, e.g., game playing (AlphaZero (Sil-
ver et al., 2018)), biology (AlphaFold (Senior et al., 2019)),
and physics (new laws (Udrescu & Tegmark, 2020)). Our
results can be viewed as an added domain to the successes
of DL in inventing mathematical structures.

A linear encoder is defined by a generator matrix, which
maps information bits to a codeword. The RM and the
Polar families construct their generator matrices by recur-
sively applying the Kronecker product operation to a simple
two-by-two matrix and then selecting rows from the result-
ing matrix. The careful choice in selecting these rows is
driven by the desired algebraic structure of the code, which
is central to achieving the large minimum pairwise distance
between two codewords, a hallmark of the algebraic family.
This encoder can be alternatively represented by a computa-
tion graph. The recursive Kronecker product corresponds
to a complete binary tree, and row-selection corresponds
to freezing a set of leaves in the tree, which we refer to as
a “Plotkin tree", inspired by the pioneering construction in
(Plotkin, 1960).

The Plotkin tree skeleton allows us to tailor a new neural
network architecture: we expand the algebraic family of
codes by replacing the (linear) Plotkin construction with a
non-linear operation parametrized by neural networks. The
parameters are discovered by training the encoder with a
matching decoder, that has the matching Plotkin tree as a
skeleton, to minimize the error rate over (the unlimited)
samples generated on AWGN channels.

Algebraic and the original RM codes promise a large worst-
case pairwise distance (Alon et al., 2005). This ensures that
RM codes achieve capacity in the large block length limit
(Kudekar et al., 2017). However, for short block lengths,
they are too conservative as we are interested in the average-
case reliability. This is the gap KO codes exploit: we seek a

better average-case reliability and not the minimum pairwise
distance.

−13 −12 −11 −10 −9 −8 −7 −6 −5
10−6

10−5

10−4

10−3

10−2

10−1

100

RM(9,2) BLER
KO(9,2) BLER
RM(9,2) BER
KO(9,2) BER

Signal-to-noise ratio (SNR) [dB]

E
rr

or
ra

te

Figure 1. KO(9, 2), discovered by training a neural network with
a carefully chosen architecture in §3, significantly improves upon
state-of-the-art RM(9, 2) both in BER and BLER. (For both codes,
the code block length is 29 = 512 and the number of transmit-
ted message bits is

(︁
9
0

)︁
+

(︁
9
1

)︁
+

(︁
9
2

)︁
= 55. Also, both codes

are decoded using successive cancellation decoding with similar
decoding complexity)

Figure 1 illustrates the gain for the example of RM(9, 2)
code. Using the Plotkin tree of RM(9, 2) code as a skele-
ton, we design the KO(9, 2) code architecture and train on
samples simulated over an AWGN channel. We discover a
novel non-linear code and a corresponding efficient decoder
that improves significantly over the RM(9, 2) code baseline,
assuming both codes are decoded using successive cancella-
tion decoding with similar decoding complexity. Analyzing
the pairwise distances between two codewords reveals a
surprising fact. The histogram for KO code nearly matches
that of a random Gaussian codebook. The skeleton of the
architecture from an algebraic family of codes, the training
process with a variation of the stochastic gradient descent,
and the simulated AWGN channel have worked together to
discover a novel family of codes that harness the benefits of
both algebraic and pseudorandom constructions.

28 30 32 34
0.0

0.1

0.2

0.3

0.4

0.5

0.6

RM(9,2)
Gaussian
KO(9,2)

Pairwise distance between two codewords

N
or

m
al

iz
ed

co
un

t

Figure 2. Histogram of pairwise distances between codewords of
the KO(9, 2) code shows a strong resemblance to that of the Gaus-
sian codebook, unlike the classical Reed-Muller code RM(9, 2).

KO codes

In summary, we make the following contributions: We in-
troduce novel neural network architectures for the (encoder,
decoder) pair that generalizes the Kronecker operation cen-
tral to RM/Polar codes. We propose training methods that
discover novel non-linear codes when trained over AWGN
and provide empirical results showing that this family of
non-linear codes improves significantly upon the baseline
code it was built on (both RM and Polar codes) whilst having
the same encoding and decoding complexity. Interpreting
the pairwise distances of the discovered codewords reveals
that a KO code mimics the distribution of codewords from
the random Gaussian codebook, which is known to be re-
liable but computationally challenging to decode. The de-
coding complexities of KO codes are O(n log n) where n
is the block length, matching that of efficient decoders for
RM and Polar codes.

We highlight that the design principle of KO codes serves
as a general recipe to discover new family of non-linear
codes improving upon their linear counterparts. In partic-
ular, the construction is not restricted to a specific decod-
ing algorithm, such as successive cancellation (SC). In this
paper, we focus on the SC decoding algorithm since it is
one of the most efficient decoders for the RM and Polar
family. At this decoding complexity, i.e. O(n log n), our
results demonstrate that we achieve significant gain over
these codes. Our preliminary results show that KO codes
achieve similar gains over the RM codes, when both are
decoded with list-decoding. We refer to §B for more de-
tails. Designing KO-inspired codes to improve upon the
RPA decoder for RM codes (with complexity O(nr log n)
(Ye & Abbe, 2020)), and the list-decoded Polar codes (with
complexity O(Ln log n) (Tal & Vardy, 2015)) where L is
the list size, are promising active research directions, and
outside the scope of this paper.

2. Problem formulation and background
We formally define the channel coding problem and pro-
vide background on Reed-Muller codes, the inspiration for
our approach. Our notation is the following. We denote
Euclidean vectors by bold face letters like m,L, etc. For
L ∈ Rn, Lk:m ≜ (Lk, . . . , Lm). If v ∈ {0, 1}n, we define
the operator ⊕v as x⊕v y ≜ x+ (−1)vy.

2.1. Channel coding

Let m = (m1, . . . ,mk) ∈ {0, 1}k denote a block of in-
formation/message bits that we want to transmit. An en-
coder gθ(·) is a function parametrized by θ that maps these
information bits into a binary vector x of length n, i.e.
x = gθ(m) ∈ {0, 1}n. The rate ρ = k/n of such a code
measures how many bits of information we are sending per
channel use. These codewords are transformed into real
(or complex) valued signals, called modulation, before be-

ing transmitted over a channel. For example, Binary Phase
Shift Keying (BPSK) modulation maps each xi ∈ {0, 1} to
1 − 2xi ∈ {±1} up to a universal scaling constant for all
i ∈ [n]. Here, we do not strictly separate encoding from
modulation and refer to both binary encoded symbols and
real-valued transmitted symbols as codewords. The code-
words also satisfy either a hard or soft power constraint.
Here we consider the hard power constraint, i.e., ∥x∥2 = n.

Upon transmission of this codeword x across a noisy chan-
nel PY |X(·|·), we receive its corrupted version y ∈ Rn.
The decoder fϕ(·) is a function parametrized by ϕ that sub-
sequently processes the received vector y to estimate the
information bits m̂ = fϕ(y). The closer m̂ is to m, the
more reliable the transmission. An error metric, such as Bit-
Error-Rate (BER) or Block-Error-Rate (BLER), gauges the
performance of the encoder-decoder pair (gθ, fϕ). Note that
BER is defined as BER ≜ (1/k)

∑︁
i P [m̂i ̸= mi], whereas

BLER ≜ P [m̂ ̸= m].

The design of good codes given a channel and a fixed set of
code parameters (k, n) can be formulated as:

(θ, ϕ) ∈ argmin
θ,ϕ

BER(gθ, fϕ) , (1)

which is a joint classification problem for k binary classes,
and we train on the surrogate loss of cross entropy to make
the objective differentiable. While classical optimal codes
such as Turbo, LDPC, and Polar codes all have linear en-
coders, appropriately parametrizing both the encoder gθ(·)
and the decoder fϕ(·) by neural networks (NN) allows for
a much broader class of codes, especially non-linear codes.
However, in the absence of any structure, NNs fail to learn
non-trivial codes and end up performing worse than simply
repeating each message bit n/k times (Kim et al., 2018;
Jiang et al., 2019b).

A fundamental question in machine learning for channel
coding is thus: how do we design architectures for our neural
encoders and decoders that give the appropriate inductive
bias? To gain intuition towards addressing this, we focus on
Reed-Muller (RM) codes. In §3, we present a novel family
of non-linear codes, KO codes, that strictly generalize and
improve upon RM codes by capitalizing on their inherent
recursive structure. Our approach seamlessly generalizes to
Polar codes, explained in §5.

2.2. Reed-Muller (RM) codes

We use a small example of RM(3, 1) and refer to Ap-
pendix E for the larger example in our main results.

Encoding. RM codes are a family of codes parametrized
by a variable size m ∈ Z+ and an order r ∈ Z+ with
r ≤ m, denoted as RM(m, r). It is defined by an encoder,
which maps binary information bits m ∈ {0, 1}k to code-
words x ∈ {0, 1}n. RM(m, r) code sends k =

∑︁r
i=0

(︁
m
i

)︁

KO codes

information bits with n = 2m transmissions. The code dis-
tance measures the minimum distance between all (pairs of)
codewords. Table 1 summarizes these parameters.

Code length Code dimension Rate Distance

n = 2m k =
∑︁r

i=0

(︁
m
i

)︁
ρ=k/n d=2m−r

Table 1. Parameters of a RM(m, r) code

One way to define RM(m, r) code is via the recursive appli-
cation of a Plotkin construction. The basic building block is
a mapping Plotkin : {0, 1}ℓ × {0, 1}ℓ → {0, 1}2ℓ, where

Plotkin(u,v) = (u,u⊕ v) , (2)

with ⊕ representing a coordinate-wise XOR and (·, ·) denot-
ing concatenation of two vectors (Plotkin, 1960).

In view of the Plotkin construction, RM codes are recur-
sively defined as a set of codewords of the form:

RM(m, r) = {(u,u⊕ v) : u ∈ RM(m− 1, r),

v ∈ RM(m− 1, r − 1)}, (3)

where RM(m, 0) is a repetition code that repeats a single in-
formation bit 2m times, i.e., x = (m1,m1, . . . ,m1). When
r = m, the full-rate RM(m,m) code is also recursively
defined as a Plotkin construction of two RM(m− 1,m− 1)
codes. Unrolling the recursion in Eq. (3), a RM(m, r) en-
coder can be represented by a corresponding (rooted and
binary) computation tree, which we refer to as its Plotkin
tree. In this tree, each branch represents a Plotkin mapping
of two codes of appropriate lengths, recursively applied
from the leaves to the root.

Figure 3a illustrates such a Plotkin tree decomposition
of RM(3, 1) encoder. Encoding starts from the bottom
right leaves. The leaf RM(1, 0) maps m3 to (m3,m3)
(repetition), and another leaf RM(1, 1) maps (m1,m2) to
(m1,m1 ⊕m2) (Plotkin mapping of two RM(0, 0) codes).
Each branch in this tree performs the Plotkin construction
of Eq. (2). The next operation is the parent of these two
leaves, which performs Plotkin(RM(1, 1),RM(1, 0)) =
Plotkin((m1,m1 ⊕ m2), (m3,m3)) which outputs the
vector (m1,m1 ⊕ m2,m1 ⊕ m3,m1 ⊕ m2 ⊕ m3),
which is known as RM(2, 1) code. This coordinate-
wise Plotkin construction is applied recursively one more
time to combine RM(2, 0) and RM(2, 1) at the root of
the tree. The resulting codewords are RM(3, 1) =
Plotkin(RM(2, 1),RM(2, 0)) = Plotkin((m1,m1 ⊕
m2,m1 ⊕m3,m1 ⊕m2 ⊕m3), (m4,m4,m4,m4)).

This recursive structure of RM codes (i) inherits the good
minimum distance property of the Plotkin construction and
(ii) enables efficient decoding.

Decoding. Since (Reed, 1954), there have been several de-
coders for RM codes; (Abbe et al., 2020) is a detailed survey.

We focus on the most efficient one, called Dumer’s recur-
sive decoding (Dumer, 2004; 2006; Dumer & Shabunov,
2006b) that fully capitalizes on the recursive Plotkin con-
struction in Eq. (3). The basic principle is: to decode an
RM codeword x = (u,u⊕ v) ∈ RM(m, r), we first recur-
sively decode the left sub-codeword v ∈ RM(m− 1, r− 1)
and then the right sub-codeword u ∈ RM(m − 1, r), and
we use them together to stitch back the original codeword.
This recursion is continued until we reach the leaf nodes,
where we perform maximum a posteriori (MAP) decoding.
Dumer’s recursive decoding is also referred to as successive
cancellation decoding in the context of polar codes (Arikan,
2009).

Figure 3c illustrates this decoding procedure for RM(3, 1).
Dumer’s decoding starts at the root and uses the soft-
information of codewords to decode the message bits. Sup-
pose that the message bits m = (m1, . . . ,m4) are encoded
into an RM(3, 1) codeword x ∈ {0, 1}8 using the Plotkin
encoder in Figure 3a. Let y ∈ R8 be the corresponding
noisy codeword received at the decoder. To decode the bits
m, we first obtain the soft-information of the codeword x,
i.e., we compute its Log-Likehood-Ratio (LLR) L ∈ R8:

Li = log
P [yi|xi = 0]

P [yi|xi = 1]
, i = 1, . . . , 8.

We next use L to compute soft-information for its left and
right children: the RM(2, 0) codeword v and the RM(2, 1)
codeword u. We start with the left child v.

Since the codeword x = (u,u⊕ v), we can also represent
its left child as v = u⊕ (u⊕ v) = x1:4 ⊕ x5:8. Hence its
LLR vector Lv ∈ R4 can be readily obtained from that of
x. In particular it is given by the log-sum-exponential trans-
formation: Lv = LSE(L1:4,L5:8), where LSE(a, b) ≜
log((1+ea+b)/(ea+eb)) for a, b ∈ R. Since this feature Lv

corresponds to a repetition code, v = (m4,m4,m4,m4),
majority decoding (same as the MAP) on the sign of Lv

yields the decoded message bit as m̂4. Finally, the left
codeword is decoded as v̂ = (m̂4, m̂4, m̂4, m̂4).

Having decoded the left RM(2, 0) codeword v̂, our goal
is to now obtain soft-information Lu ∈ R4 for the right
RM(2, 1) codeword u. Fixing v = v̂, notice that the code-
word x = (u,u ⊕ v̂) can be viewed as a 2-repetition
of u depending on the parity of v̂. Thus the LLR Lu

is given by LLR addition accounting for the parity of v̂:
Lu = L1:4 ⊕v̂ L5:8 = L1:4 + (−1)v̂L5:8. Since RM(2, 1)
is an internal node in the tree, we again recursively decode
its left child RM(1, 0) and its right child RM(1, 1), which
are both leaves. For RM(1, 0), decoding is similar to that
of RM(2, 0) above, and we obtain its information bit m3ˆ
by first applying the log-sum-exponential function on the
feature Lu and then majority decoding. Likewise, we ob-
tain the LLR feature Luu ∈ R2 for the right RM(1, 1)
child using parity-adjusted LLR addition on Lu. Finally,

KO codes

RM(3,1)

Plotkin

RM(2,0) Plotkin

RM(1,0) RM(1,1)

m4

m3 m1,m2

RM(2,1)

(a) Plotkin encoder

KO(3,1)

g1(·)

RM(2,0) g2(·)

RM(1,0) RM(1,1)

m4

m3 m1,m2

(b) KO encoder

y L

MAP dec. Lu

MAP dec. MAP dec.

m̂4

m̂3 m̂1, m̂2

LSE ⊕v̂

LSE ⊕v̂

RM(2,0) RM(2,1)

RM(1,0) RM(1,1)

(c) Dumer’s decoder

y

Soft-MAP yu

Soft-MAP Soft-MAP

m̂4

m̂3 m̂1, m̂2

f1 f2

f3 f4

(d) KO decoder

Figure 3. Plotkin trees for RM(3, 1) and KO(3, 1) codes; Leaves are shown in green. Red arrows indicate the bit decoding order.

we decode its corresponding bits (m̂1, m̂2) using efficient
MAP-decoding of first order RM codes (Abbe et al., 2020).
Thus we obtain the full block of decoded message bits as
m̂ = (m̂1, m̂2, m̂3, m̂4).

An important observation from Dumer’s algorithm is that
the sequence of bit decoding in the tree is: RM(2, 0) →
RM(1, 0) → RM(1, 1). A similar decoding order holds for
all RM(m, 2) codes, where all the left leaves (order-1 codes)
are decoded first from top to bottom, and the right-most leaf
(full-rate RM(2, 2)) is decoded at the end.

3. KO codes: Novel Neural codes
We design KO codes using the Plotkin tree as the skeleton
of a new neural network architecture, which strictly improve
upon their classical counterparts.

KO encoder. Earlier we saw the design of RM codes via
recursive Plotkin mapping. Inspired by this elegant construc-
tion, we present a new family of codes, called KO codes,
denoted as KO(m, r, gθ, fϕ). These codes are parametrized
by a set of four parameters: a non-negative integer pair
(m, r), a finite set of encoder neural networks gθ, and a fi-
nite set of decoder neural networks fϕ. In particular, for any
fixed pair (m, r), our KO encoder inherits the same code
parameters (k, n, ρ) and the same Plotkin tree skeleton of
the RM encoder. However, a critical distinguishing compo-
nent of our KO(m, r) encoder is a set of encoding neural
networks gθ = {gi} that strictly generalize the Plotkin
mapping: to each internal node i of the Plotkin tree, we
associate a neural network gi that applies a coordinate-wise
real valued non-linear mapping (u,v) ↦→ gi(u,v) ∈ R2ℓ

as opposed to the classical binary valued Plotkin mapping
(u,v) ↦→ (u,u ⊕ v) ∈ {0, 1}2ℓ. Figure 3b illustrates this
for the KO(3, 1) encoder.

The significance of our KO encoder gθ is that by allowing for
general nonlinearities gi to be learnt at each node we enable
for a much richer and broader class of nonlinear encoders
and codes to be discovered on a whole, which contribute to
non-trivial gains over standard RM codes. Further, we have
the same encoding complexity as that of an RM encoder
since each gi : R2 → R is applied coordinate-wise on its
vector inputs. The parameters of these neural networks
gi are trained via stochastic gradient descent on the cross
entropy loss. See §G for experimental detailas.

KO decoder. Training the encoder is possible only if we
have a corresponding decoder. This necessitates the need
for an efficient family of matching decoders. Inspired by
the Dumer’s decoder, we present a new family of KO de-
coders that fully capitalize on the recursive structure of KO
encoders via the Plotkin tree.

Our KO decoder has three distinct features: (i) Neural de-
coder: The KO decoder architecture is parametrized by a set
of decoding neural networks fϕ = {(f2i−1, f2i)}. Specifi-
cally, to each internal node i in the tree, we associate f2i−1

to its left branch whereas f2i corresponds to the right branch.
Figure 3d shows this for the KO(3, 1) decoder. The pair of
decoding neural networks (f2i−1, f2i) can be viewed as
matching decoders for the corresponding encoding network
gi: While gi encodes the left and right codewords arriving at
this node, the outputs of f2i−1 and f2i represent appropriate
Euclidean feature vectors for decoding them. Further, f2i−1

and f2i can also be viewed as a generalization of Dumer’s
decoding to nonlinear real codewords: f2i−1 generalizes the
LSE function, while f2i extends the operation ⊕v̂ . Note that
both the functions f2i−1 and f2i are also applied coordinate-
wise and hence we inherit the same decoding complexity
as Dumer’s. (ii) Soft-MAP decoding: Since the classical
MAP decoding to decode the bits at the leaves is not dif-

KO codes

ferentiable, we design a new differentiable counterpart, the
Soft-MAP decoder. Soft-MAP decoder enables gradients
to pass through it, which is crucial for training the neural
(encoder, decoder) pair (gθ, fϕ) in an end-to-end manner.
(iii) Channel agnostic: Our decoder directly operates on the
received noisy codeword y ∈ Rn while Dumer’s decoder
uses its LLR transformation L ∈ Rn. Thus, our decoder
can learn the appropriate channel statistics for decoding
directly from y alone; in contrast, Dumer’s algorithm re-
quires precise channel characterization, which is not usually
known.

4. Main results
We train the KO encoder gθ and KO decoder fϕ from §3
using an approximation of the BER loss in (1). The details
are provided in §G. In this section we focus on the second-
order KO(8, 2) and KO(9, 2) codes.

4.1. KO codes improve over RM codes

In Figure 1, the trained KO(9, 2) improves over the compet-
ing RM(9, 2) both in BER and BLER. The superiority in
BLER is unexpected as our training loss is a surrogate for
the BER. Though one would prefer to train on BLER as it is
more relevant in practice, it is challenging to design a surro-
gate loss for BLER that is also differentiable: all literature
on learning decoders minimize only BER (Kim et al., 2020;
Nachmani et al., 2018; Dörner et al., 2017). Consequently,
improvements in BLER with trained encoders and/or de-
coders are rare. We discover a code that improves both BER
and BLER, and we observe a similar gain with KO(8, 2) in
Figure 4. Performance of a binarized version KO-b(8, 2) is
also shown, which we describe further in §4.4.

−10 −9 −8 −7 −6 −5 −4 −3

10−5

10−4

10−3

10−2

10−1

100

RM(8, 2) BLER
KO-b(8, 2) BLER
KO(8, 2) BLER
RM(8, 2) BER
KO-b(8, 2) BER
KO(8, 2) BER

Signal-to-noise ratio (SNR) [dB]

E
rr

or
ra

te

Figure 4. Neural network based KO(8, 2) and KO-b(8, 2) improve
upon RM(8, 2) in BER and BLER, but the gain is small for the
binarized codewords of KO-b(8, 2) (for all the codes, the code
dimension is 37 and block length is 256).

4.2. Interpreting KO codes

We interpret the learned encoders and decoders to explain
the source of the performance gain.

Interpreting the KO encoder. To interpret the learned
KO code, we examine the pairwise distance between code-
words. In classical linear coding, pairwise distances are
expressed in terms of the weight distribution of the code,
which counts how many codewords of each specific Ham-
ming weight 1, 2, . . . , n exist in the code. The weight distri-
bution of linear codes are used to derive analytical bounds,
that can be explicitly computed, on the BER and BLER over
AWGN channels (Sason & Shamai, 2006). For nonlinear
codes, however, the weight distribution does not capture
pairwise distances. Therefore, we explore the distribution
of all the pairwise distances of non-linear KO codes that can
play the same role as the weight distribution does for linear
codes.

The pairwise distance distribution of the RM codes remains
an active area of research as it is used to prove that RM
codes achieve the capacity (Kaufman et al., 2012; Abbe
et al., 2015; Sberlo & Shpilka, 2020) (Figure 5 blue). How-
ever, these results are asymptotic in the block length and
do not guarantee a good performance, especially in the
small-to-medium block lengths that we are interested in. On
the other hand, Gaussian codebooks, codebooks randomly
picked from the ensemble of all Gaussian codebooks, are
known to be asymptotically optimal, i.e., achieving the ca-
pacity (Shannon, 1948), and also demonstrate optimal finite-
length scaling laws closely related to the pairwise distance
distribution (Polyanskiy et al., 2010) (Figure 5 orange).

Remarkably, the pairwise distance distribution of KO code
shows a staggering resemblance to that of the Gaussian
codebook of the same rate ρ and blocklength n (Figure 5
red). This is an unexpected phenomenon since we minimize
only BER. We posit that the NN training has learned to
construct a Gaussian-like codebook, in order to minimize
BER. Most importantly, unlike the Gaussian codebook, KO
codes constructed via NN training are fully compatible with
efficient decoding. This phenomenon is observed for all
order-2 codes we trained (e.g., Figure 2 for KO(9, 2)).

18 20 22 24 26
0.0

0.1

0.2

0.3

0.4

0.5

0.6

RM(8,2)
Gaussian
KO(8,2)
KO-b(8,2)

Pairwise distance between two codewords

Figure 5. Histograms of pairwise distances between codewords for
(8, 2) codes reveal that KO(8, 2) code has learned an approximate
Gaussian codebook that can be efficiently decoded.

KO codes

Interpreting the KO decoder. We now analyze how the
KO decoder contributes to the gains in BLER over the RM
decoder. Let m = (m(7,1), . . . ,m(2,2)) denote the block
of transmitted message bits, where the ordered set of indices
L = {(7, 1), . . . , (2, 2)} correspond to the leaf branches
(RM codes) of the Plotkin tree. Let m̂ be the decoded
estimate by the KO(8, 2) decoder.

We provide Plotkin trees of RM(8, 2) and KO(8, 2) de-
coders in Figures 15a and 15b in the appendix. Recall
that for this KO(8, 2) decoder, similar to the KO(3, 1) de-
coder in Figure 3d, we decode each sub-code in the leaves
sequentially, starting from the (7, 1) branch down to (2, 2):
m̂(7,1) → . . . → m̂(2,2). In view of this decoding order,
BLER, defined as P [m̂ ̸= m], can be decomposed as

P [m̂ ̸= m]=
∑︂
i∈L

P [m̂i ̸= mi, m̂1:i−1 = m1:i−1] . (4)

In other words, BLER can also be represented as the sum of
the fraction of errors the decoder makes in each of the leaf
branches when no errors were made in the previous ones.
Thus, each term in Eq. (4) can be viewed as the contribution
of each sub-code to the total BLER.

This is plotted in Figure 6, which shows that the KO(8, 2)
decoder achieves better BLER than the RM(8, 2) decoder
by making major gains in the leftmost (7, 1) branch (which
is decoded first) at the expense of other branches. However,
the decoder (together with the encoder) has learnt to better
balance these contributions evenly across all branches, re-
sulting in lower BLER overall. The unequal errors in the
branches of the RM code has been observed before, and
some efforts made to balance them (Dumer & Shabunov,
2001); that KO codes learn such a balancing scheme purely
from data is, perhaps, remarkable.

RM(8, 2)

KO(8, 2)

BLER

Figure 6. Separating each sub-code contribution in the KO(8, 2)
decoder and the RM(8, 2) decoder reveals that KO(8, 2) improves
in the total BLER by balancing the contributions more evenly over
the sub-codes.

4.3. Robustness to non-AWGN channels

As the environment changes dynamically in real world chan-
nels, robustness is crucial in practice. We therefore test the
KO code under canonical channel models and demonstrate
robustness, i.e., the ability of a code trained on AWGN to
perform well under a different channel without retraining.
It is well known that Gaussian noise is the worst case noise
among all noise with the same variance (Lapidoth, 1996;
Shannon, 1948) when an optimal decoder is used, which
might take an exponential time. When decoded with ef-
ficient decoders, as we do with both RM and KO codes,
catastrophic failures have been reported in the case of Turbo
decoders (Kim et al., 2018). We show that both RM codes
and KO codes are robust and that KO codes maintain their
gains over RM codes as the channels vary.

−10 −9 −8 −7 −6 −5 −4 −3
10−3

10−2

10−1

100

RM BLER
KO BLER
RM BER
KO BER

Signal-to-noise ratio (SNR) [dB]

E
rr

or
ra

te

Figure 7. KO(8, 2) trained on AWGN is robust when tested on a
fast fading channel and maintains a significant gain over RM(8,2).

We first test on a Rayleigh fast fading channel, defined as
yi = aixi+ni, where xi is the transmitted symbol, yi is the
received symbol, ni ∼ N (0, σ2) is the additive Gaussian
noise, and a is from a Rayleigh distribution with the variance
of a chosen as E[a2i] = 1.

We next test on a bursty channel, defined as yi = xi + ni +
wi, where xi is the input symbol, yi is the received symbol,
ni ∼ N (0, σ2) is the additive Gaussian noise, and wi ∼
N (0, σ2

b) with probability ρ and wi = 0 with probability
1−ρ. In the experiment, we choose ρ = 0.1 and σb =

√
2σ.

−10 −9 −8 −7 −6 −5 −4 −3

10−4

10−3

10−2

10−1

100

RM BLER
KO BLER
RM BER
KO BER

Signal-to-noise ratio (SNR) [dB]

E
rr

or
ra

te

Figure 8. KO(8, 2) trained on AWGN is robust when tested on a
bursty channel and maintains a significant gain over RM(8, 2).

KO codes

4.4. Ablation studies

In comparison to the classical RM codes, the KO codes
have two additional features: real-valued codewords and
non-linearity. It is thus natural to ask how each of these
components contribute to its gains over RM codes. To
evaluate their contribution, we did ablation experiments
for KO(8, 2): (i) First, we constrain the KO codewords
to be binary but allow for non-linearity in the encoder gθ.
The performance of this binarized version KO-b(8, 2) is
illustrated in Figure 9 below. We observe that this binarized
KO-b(8, 2) performs similar to RM(8, 2) except for slight
gains at high SNRs but uniformly worse than KO(8, 2). (ii)
Now we transmit the real-valued codewords but constrain
the encoder gθ to be linear (in real-value operations). The
resulting code, KO-linear(8, 2), performs almost identical
to RM(8, 2) but worse than KO(8, 2), as highlighted by the
orange curve in Figure 9.

10 9 8 7 6 5 4 3

10 5

10 4

10 3

10 2

10 1

RM(8, 2) BER
KO-linear(8, 2) BER
KO-b(8, 2) BER
KO(8, 2) BER

Signal-to-noise ratio (SNR) [dB]

E
rr

or
ra

te

Figure 9. Ablation studies highlight that both non-linearity and
real-valued codewords are equally important for good performance
of KO codes. The linear version, KO-linear(8, 2), and the bi-
nary version, KO-b(8, 2), both perform worse than KO(8, 2) and
similar to RM(8, 2).

These ablation experiments suggest us that presence of both
the non-linearity and real-valued codewords are necessary
for the good performance of KO codes and removal of any
of these components hurts the gains it achieves over RM
codes. Further, this also highlights that in absence of either
of these components, the performance drops back to that of
the original RM codes.

4.5. Complexity of KO decoding

Ultra-Reliable Low Latency Communication (URLLC) is
increasingly required for modern applications including ve-
hicular communication, virtual reality, and remote robotics
(Sybis et al., 2016; Jiang et al., 2020). In general, a
KO(m, r) code requires O(n log n) operations to decode
which is the same as the efficient Dumer’s decoder for
an RM(m, r) code, where n = 2m is the block length.
More precisely, the successive cancellation decoder for

RM(8, 2) requires 11268 operations whereas KO(8, 2) re-
quires 550644 operations which we did not try to optimize
for this project. We discuss promising preliminary results
in reducing the computational complexity in §6, where KO
decoders achieve a computational efficiency comparable to
the successive cancellation decoders of RM codes.

5. KO codes improve upon Polar codes
Results from §4 demonstrate that our KO codes significantly
improve upon RM codes on a variety of benchmarks. Here,
we focus on a different family of capacity-achieving land-
mark codes: Polar codes (Arikan, 2009).

Polar and RM codes are closely related, especially from
an encoding point of view. The generator matrices of
both codes are chosen from the same parent square ma-
trix by following different row selection rules. More pre-
cisely, consider a RM(m, r) code that has code dimension
k =

∑︁r
i=0

(︁
m
i

)︁
and blocklength n = 2m. Its encoding

generator matrix is obtained by picking the k rows of the

square matrix Gn×n :=

[︃
0 1
1 1

]︃⊗m

that have the largest

Hamming weights (i.e., Hamming weight of at least 2m−r),
where [·]⊗m denotes the m-th Kronecker power. The Polar
encoder, on the other hand, picks the rows of Gn×n that
correspond to the most reliable bit-channels (Arikan, 2009).

The recursive Kronecker structure inherent to the parent
matrix Gn×n can also be represented by a computation
graph: a complete binary tree. Thus the corresponding
computation tree for a Polar code is obtained by freezing
a set of leaves (row-selection). We refer to this encoding
computation graph of a Polar code as its Plotkin tree. This
Plotkin tree structure of Polar codes enables a matching
efficient decoder: the successive cancellation (SC). The SC
decoding algorithm is similar to Dumer’s decoding for RM
codes. Hence, Polar codes can be completely characterized
by their corresponding Plotkin trees.

Inspired by the Kronecker structure of Polar Plotkin trees,
we design a new family of KO codes to strictly improve
upon them. We build a novel NN architecture that capitalizes
on the Plotkin tree skeleton and generalizes it to nonlinear
codes. This enables us to discover new nonlinear algebraic
structures. The KO encoder and decoder can be trained in
an end-to-end manner using variants of stochastic gradient
descent (§A).

In Figure 10, we compare the performance of our KO code
with its competing Polar(64, 7) code, i.e., code dimension
k = 7 and block length n = 64, in terms of BER. Figure 10
highlights that our KO code achieves significant gains over
Polar(64, 7) on a wide range of SNRs. In particular, we
obtain a gain of almost 0.7 dB compared to that of Polar
at the BER 10−4. For comparison we also plot the per-

KO codes

formance of both codes with the optimal MAP decoding.
We observe that the BER curve of our KO decoder, unlike
the SC decoder, almost matches that of the MAP decoder,
convincingly demonstrating its optimality.

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3

10−5

10−4

10−3

10−2

10−1

Polar
Polar with MAP
KO
KO with MAP

Signal-to-noise ratio (SNR) [dB]

B
it

E
rr

or
R

at
e

(B
E

R
)

Figure 10. Neural network based KO code improves upon the
Polar(64, 7) code when trained on AWGN channel. KO decoder
also matches the optimal MAP decoder.

We also observe similar improvements for BLER (Figure
12, §A). This successful case study with training KO (en-
coder, decoder) pairs further demonstrates that our novel
neural architectures seamlessly generalize to codes with an
underlying Kronecker product structure.

6. Tiny KO
In this section we focus on further reducing the total number
of mathematical operations required for our KO decoder
with the objective of achieving similar computational effi-
ciency as the successive cancellation decoder of RM codes.

As detailed in §G.3, each neural component in the KO en-
coder and decoder has 3 hidden layers with 32 nodes each.
For the decoder, the total number of parameters in each
decoder neural block is 69 × 32. We replace all neural
blocks with a smaller one with 1 hidden layer of 4 nodes.
This decoder neural block has 20 parameters, obtaining a
factor of 110 compression in the number of parameters.
The computational complexity of this compressed decoder,
which we refer to as TinyKO, is within a factor of 4 from
Dumer’s successive cancellation decoder. Each neural net-
work component has two matrix multiplication steps and
one activation function on a vector, which can be fully paral-
lelized on a GPU. With the GPU parallelization, TinyKO has
the same time complexity/latency as Dumer’s SC decoding.

Table 2 shows that there is almost no loss in reliability
for the compressed KO(8, 2) encoder and decoder in this
manner. Training a smaller neural network take about two
times more iterations compared to the larger one, although
each iteration is faster for the smaller network.

If one is allowed more computation time (e.g., O(nr log n)),

SNR (dB) TinyKO(8, 2) BER KO(8, 2) BER
-10 0.38414 ± 2e-7 0.36555 ± 2e-7
-9 0.29671 ± 2e-7 0.27428 ± 2e-7
-8 0.18037 ± 2e-7 0.15890 ± 2e-7
-7 0.07455 ± 2e-7 0.06167 ± 1e-7
-6 0.01797 ± 8e-8 0.01349 ± 7e-8
-5 2.18083e-3 ± 3e-8 1.46003e-3 ± 2e-8
-4 1.18919e-4 ± 7e-9 0.64702e-4 ± 4e-9
-3 4.54054e-6 ± 1e-9 3.16216e-6 ± 1e-9

Table 2. The smaller TinyKO neural architecture with 100 times
smaller number of parameters achieve similar bit-error-rates as the
bigger KO architecture.

then (Ye & Abbe, 2020) proposes a recursive projection-
aggregation (RPA) decoder for RM(m, r) codes that signifi-
cantly improves over Dumer’s successive cancellation. With
list decoding, this is empirically shown to approach the per-
formance of the MAP decoder. It is a promising direction to
explore deep learning architectures upon the computation
tree of the RPA decoders to design new family of codes.

7. Related work
There is tremendous interest in the coding theory commu-
nity to incorporate deep learning methods. In the context
of channel coding, the bulk of the works focus on decod-
ing known linear codes using data-driven neural decoders
(Nachmani et al., 2016; O’shea & Hoydis, 2017; Dörner
et al., 2017; Gruber et al., 2017; Nachmani et al., 2018;
Kim et al., 2018; Vasić et al., 2018; Teng et al., 2019; Jiang
et al., 2019a; Nachmani & Wolf, 2019; Buchberger et al.,
2020; Habib et al., 2020; Chen & Ye, 2021); even here, most
works have limited themselves to small block lengths due
to the difficulty in generalization (for instance, even when
nearly 90% of the codewords of a rate 1/2 Polar code over 8
information bits are exposed to the neural decoder (Gruber
et al., 2017)).

On the other hand, very few works in the literature focus
on discovering both encoders and decoders; the few which
do, operate at very small block lengths (O’Shea et al., 2016;
O’shea & Hoydis, 2017). One of the major challenges here
is to jointly train the (encoder, decoder) pairs without getting
stuck in local optima as the losses are non-convex. In (Jiang
et al., 2019b), the authors employ clever training tricks to
learn a novel autoencoder based codes that outperform the
classical Turbo codes, which are sequential in nature. In con-
trast, here we focus on the generalizations of the Kronecker
operation that underpins the RM and Polar family.

RM and Polar codes have seen active research, especially
on improving decoding using neural networks: (Tallini &
Cull, 1995; Xu et al., 2017; Cammerer et al., 2017; Ben-

KO codes

natan et al., 2018; Doan et al., 2018; Lian et al., 2019; Wang
et al., 2019; Carpi et al., 2019; Ebada et al., 2019). A com-
mon theme across majority of these works is to consider
iterative/sequential decoding algorithms, such as belief prop-
agation (BP), bit-flipping (BF), etc., and improve upon their
performance by introducing learnable neural network com-
ponents in them. On the other hand, our KO decoder strictly
improves upon the natural SC decoder. Further, we learn
the matching KO encoder whereas the encoding is fixed for
them.

8. Conclusion
We introduce KO codes that generalize the recursive Kro-
necker operation crucial to designing RM and Polar codes.
Using the computation tree (known as a Plotkin tree) of
these classical codes as a skeleton, we propose a novel
neural network architecture tailored for channel commu-
nication. Training over the AWGN channel, we discover
the first family of non-linear codes that are not built upon
any linear structure. KO codes significantly outperform
the baseline Polar and RM codes under similar successive
cancellation decoding architectures, which we call Dumer’s
decoder for the RM codes. The pairwise distance profile
reveals that KO code combines the analytical structure of
algebraic codes with the random structure of the celebrated
random Gaussian codes.

Acknowledgements
Ashok would like to thank his colleagues Mona Zehni and
Konik Kothari for helpful discussions about the project.

References
Abbe, E., Shpilka, A., and Wigderson, A. Reed–muller

codes for random erasures and errors. IEEE Transactions
on Information Theory, 61(10):5229–5252, 2015.

Abbe, E., Shpilka, A., and Ye, M. Reed-muller codes:
Theory and algorithms, 2020.

Alon, N., Kaufman, T., Krivelevich, M., Litsyn, S., and Ron,
D. Testing reed-muller codes. IEEE Transactions on
Information Theory, 51(11):4032–4039, 2005.

Arikan, E. Channel polarization: A method for construct-
ing capacity-achieving codes for symmetric binary-input
memoryless channels. IEEE Transactions on information
Theory, 55(7):3051–3073, 2009.

Bennatan, A., Choukroun, Y., and Kisilev, P. Deep learning
for decoding of linear codes-a syndrome-based approach.
In 2018 IEEE International Symposium on Information
Theory (ISIT), pp. 1595–1599. IEEE, 2018.

Buchberger, A., Häger, C., Pfister, H. D., Schmalen, L., and
Amat, A. G. Pruning neural belief propagation decoders.
In 2020 IEEE International Symposium on Information
Theory (ISIT), pp. 338–342. IEEE, 2020.

Cammerer, S., Gruber, T., Hoydis, J., and Ten Brink, S.
Scaling deep learning-based decoding of polar codes via
partitioning. In GLOBECOM 2017-2017 IEEE global
communications conference, pp. 1–6. IEEE, 2017.

Carpi, F., Häger, C., Martalò, M., Raheli, R., and Pfis-
ter, H. D. Reinforcement learning for channel coding:
Learned bit-flipping decoding. In 2019 57th Annual Aller-
ton Conference on Communication, Control, and Com-
puting (Allerton), pp. 922–929. IEEE, 2019.

Chen, X. and Ye, M. Cyclically equivariant neural decoders
for cyclic codes. arXiv preprint arXiv:2105.05540, 2021.

Doan, N., Hashemi, S. A., and Gross, W. J. Neural suc-
cessive cancellation decoding of polar codes. In 2018
IEEE 19th international workshop on signal processing
advances in wireless communications (SPAWC), pp. 1–5.
IEEE, 2018.

Dörner, S., Cammerer, S., Hoydis, J., and Ten Brink, S.
Deep learning based communication over the air. IEEE
Journal of Selected Topics in Signal Processing, 12(1):
132–143, 2017.

Dumer, I. Recursive decoding and its performance for low-
rate reed-muller codes. IEEE Transactions on Informa-
tion Theory, 50(5):811–823, 2004.

Dumer, I. Soft-decision decoding of reed-muller codes: a
simplified algorithm. IEEE transactions on information
theory, 52(3):954–963, 2006.

Dumer, I. and Shabunov, K. Near-optimum decoding for
subcodes of reed-muller codes. In Proceedings. 2001
IEEE International Symposium on Information Theory,
pp. 329. IEEE, 2001.

Dumer, I. and Shabunov, K. Soft-decision decoding of
reed-muller codes: recursive lists. IEEE Transactions on
information theory, 52(3):1260–1266, 2006a.

Dumer, I. and Shabunov, K. Soft-decision decoding of
reed-muller codes: recursive lists. IEEE Transactions on
information theory, 52(3):1260–1266, 2006b.

Ebada, M., Cammerer, S., Elkelesh, A., and ten Brink, S.
Deep learning-based polar code design. In 2019 57th
Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pp. 177–183. IEEE, 2019.

Gruber, T., Cammerer, S., Hoydis, J., and ten Brink, S.
On deep learning-based channel decoding. In 2017 51st

KO codes

Annual Conference on Information Sciences and Systems
(CISS), pp. 1–6. IEEE, 2017.

Habib, S., Beemer, A., and Kliewer, J. Learning to decode:
Reinforcement learning for decoding of sparse graph-
based channel codes. arXiv preprint arXiv:2010.05637,
2020.

Jamali, M. V., Liu, X., Makkuva, A. V., Mahdavifar, H., Oh,
S., and Viswanath, P. Reed-Muller subcodes: Machine
learning-aided design of efficient soft recursive decoding.
arXiv preprint arXiv:2102.01671, 2021.

Jiang, Y., Kannan, S., Kim, H., Oh, S., Asnani, H., and
Viswanath, P. Deepturbo: Deep turbo decoder. In 2019
IEEE 20th International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), pp. 1–5.
IEEE, 2019a.

Jiang, Y., Kim, H., Asnani, H., Kannan, S., Oh, S., and
Viswanath, P. Turbo autoencoder: Deep learning based
channel codes for point-to-point communication channels.
In Advances in Neural Information Processing Systems,
pp. 2758–2768, 2019b.

Jiang, Y., Kim, H., Asnani, H., Kannan, S., Oh, S., and
Viswanath, P. Learn codes: Inventing low-latency codes
via recurrent neural networks. IEEE Journal on Selected
Areas in Information Theory, 2020.

Kaufman, T., Lovett, S., and Porat, E. Weight distribution
and list-decoding size of reed–muller codes. IEEE trans-
actions on information theory, 58(5):2689–2696, 2012.

Kim, H., Jiang, Y., Rana, R., Kannan, S., Oh, S., and
Viswanath, P. Communication algorithms via deep learn-
ing. arXiv preprint arXiv:1805.09317, 2018.

Kim, H., Oh, S., and Viswanath, P. Physical layer communi-
cation via deep learning. IEEE Journal on Selected Areas
in Information Theory, 2020.

Kudekar, S., Kumar, S., Mondelli, M., Pfister, H. D.,
Şaşoǧlu, E., and Urbanke, R. L. Reed–muller codes
achieve capacity on erasure channels. IEEE Transactions
on information theory, 63(7):4298–4316, 2017.

Lapidoth, A. Nearest neighbor decoding for additive non-
gaussian noise channels. IEEE Transactions on Informa-
tion Theory, 42(5):1520–1529, 1996.

Lian, M., Carpi, F., Häger, C., and Pfister, H. D. Learned
belief-propagation decoding with simple scaling and snr
adaptation. In 2019 IEEE International Symposium on
Information Theory (ISIT), pp. 161–165. IEEE, 2019.

Ma, Z., Xiao, M., Xiao, Y., Pang, Z., Poor, H. V., and
Vucetic, B. High-reliability and low-latency wireless

communication for internet of things: challenges, fun-
damentals, and enabling technologies. IEEE Internet of
Things Journal, 6(5):7946–7970, 2019.

Nachmani, E. and Wolf, L. Hyper-graph-network decoders
for block codes. Advances in Neural Information Pro-
cessing Systems, 32:2329–2339, 2019.

Nachmani, E., Be’ery, Y., and Burshtein, D. Learning to
decode linear codes using deep learning. In 2016 54th
Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pp. 341–346. IEEE, 2016.

Nachmani, E., Marciano, E., Lugosch, L., Gross, W. J.,
Burshtein, D., and Be’ery, Y. Deep learning methods
for improved decoding of linear codes. IEEE Journal
of Selected Topics in Signal Processing, 12(1):119–131,
2018.

O’Shea, T. J., Karra, K., and Clancy, T. C. Learning to
communicate: Channel auto-encoders, domain specific
regularizers, and attention. In 2016 IEEE International
Symposium on Signal Processing and Information Tech-
nology (ISSPIT), pp. 223–228. IEEE, 2016.

O’shea, T. and Hoydis, J. An introduction to deep learning
for the physical layer. IEEE Transactions on Cognitive
Communications and Networking, 3(4):563–575, 2017.

Plotkin, M. Binary codes with specified minimum distance.
IRE Transactions on Information Theory, 6(4):445–450,
1960.

Polyanskiy, Y., Poor, H. V., and Verdú, S. Channel coding
rate in the finite blocklength regime. IEEE Transactions
on Information Theory, 56(5):2307–2359, 2010.

Reed, I. A class of multiple-error-correcting codes and the
decoding scheme. Transactions of the IRE Professional
Group on Information Theory, 4(4):38–49, 1954.

Richardson, T. and Urbanke, R. Modern coding theory.
Cambridge University Press, 2008.

Sason, I. and Shamai, S. Performance analysis of linear
codes under maximum-likelihood decoding: A tutorial.
2006.

Sberlo, O. and Shpilka, A. On the performance of reed-
muller codes with respect to random errors and erasures.
In Proceedings of the Fourteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 1357–1376. SIAM,
2020.

Senior, A. W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre,
L., Green, T., Qin, C., Žídek, A., Nelson, A. W., Bridg-
land, A., et al. Protein structure prediction using multiple
deep neural networks in the 13th critical assessment of

KO codes

protein structure prediction (casp13). Proteins: Structure,
Function, and Bioinformatics, 87(12):1141–1148, 2019.

Shannon, C. E. A mathematical theory of communication.
The Bell system technical journal, 27(3):379–423, 1948.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., et al. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Sci-
ence, 362(6419):1140–1144, 2018.

Sybis, M., Wesolowski, K., Jayasinghe, K., Venkatasubra-
manian, V., and Vukadinovic, V. Channel coding for ultra-
reliable low-latency communication in 5g systems. In
2016 IEEE 84th vehicular technology conference (VTC-
Fall), pp. 1–5. IEEE, 2016.

Tal, I. and Vardy, A. How to construct polar codes. IEEE
Trans. Inf. Theory, 59(10):6562–6582, 2013.

Tal, I. and Vardy, A. List decoding of polar codes. IEEE
Transactions on Information Theory, 61(5):2213–2226,
2015.

Tallini, L. and Cull, P. Neural nets for decoding error-
correcting codes. In IEEE Technical applications con-
ference and workshops. Northcon/95. Conference record,
pp. 89. IEEE, 1995.

Teng, C.-F., Wu, C.-H. D., Ho, A. K.-S., and Wu, A.-Y. A.
Low-complexity recurrent neural network-based polar
decoder with weight quantization mechanism. In ICASSP
2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1413–1417.
IEEE, 2019.

Udrescu, S.-M. and Tegmark, M. Ai feynman: A physics-
inspired method for symbolic regression. Science Ad-
vances, 6(16):eaay2631, 2020.

Vasić, B., Xiao, X., and Lin, S. Learning to decode ldpc
codes with finite-alphabet message passing. In 2018
Information Theory and Applications Workshop (ITA), pp.
1–9. IEEE, 2018.

Wang, X., Zhang, H., Li, R., Huang, L., Dai, S., Huangfu,
Y., and Wang, J. Learning to flip successive cancellation
decoding of polar codes with lstm networks. In 2019
IEEE 30th Annual International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC), pp.
1–5. IEEE, 2019.

Welling, M. Neural augmentation in wireless communica-
tion, 2020.

Xu, W., Wu, Z., Ueng, Y.-L., You, X., and Zhang, C. Im-
proved polar decoder based on deep learning. In 2017

IEEE International workshop on signal processing sys-
tems (SiPS), pp. 1–6. IEEE, 2017.

Ye, M. and Abbe, E. Recursive projection-aggregation
decoding of reed-muller codes. IEEE Transactions on
Information Theory, 66(8):4948–4965, 2020.

KO codes

Appendix

A. Polar(64, 7) code
Recall from Section 5 that the Plotkin tree for a Polar code is obtained by freezing a set of leaves in a complete binary tree.
These frozen leaves are chosen according to the reliabilities, or equivalently, error probabilities, of their corresponding bit
channels. In other words, we first approximate the error probabilities of all the n-bit channels and pick the k-smallest of
them using the procedure from (Tal & Vardy, 2013). These k active set of leaves correspond to the transmitted message bits,
whereas the remaining n− k frozen leaves always transmit zero.

Here we focus on a specific Polar code: Polar(64, 7), with code dimension k = 7 and blocklength n = 64. For Polar(64, 7),
we obtain these active set of leaves to be A = {48, 56, 60, 61, 62, 63, 64}, and the frozen set to be Ac = {1, 2, · · · 64} \ A.
Using these set of indices and simplifying the redundant branches, we obtain the Plotkin tree for Polar(64, 7) to be Figure 11.
We observe that this Polar Plotkin tree shares some similarities with that of a RM(6, 1) code (with same k = 7 and n = 64)
with key differences at the topmost and bottom most leaves.

Polar(64, 7)

Plotkin

RM(5,0) Plotkin

RM(4,0) Plotkin

RM(3,0) Plotkin

RM(2,0) Plotkin

PlotkinPlotkin

RM(0,0)RM(0,0)RM(0,0)RM(0,0)

RM(1,1)RM(1,1)

RM(2,2)

0

m7

m6

m5

m4 m3 m2 m1

(a) Polar(64, 7) encoder

KO counterpart of Polar(64, 7)

Plotkin

RM(5,0) g1(·)

RM(4,0) g2(·)

RM(3,0) g3(·)

RM(2,0) g4(·)

g5(·)g6(·)

RM(0,0)RM(0,0)RM(0,0)RM(0,0)

0

m7

m6

m5

m4 m3 m2 m1

(b) Our KO encoder counterpart

Figure 11. Plotkin trees for the Polar(64, 7) encoder and our neural KO encoder counterpart. Both codes have dimension k = 7 and
blocklength n = 64.

Capitalizing on the encoding tree structure of Polar(64, 7), we build a corresponding KO encoder gθ which inherits this
tree skeleton. In other words, we generalize the Plotkin mapping blocks at the internal nodes of tree, except for the root
node, and replace them with a corresponding neural network gi. Figure 11 depicts the Plotkin tree of our KO encoder.

KO codes

The KO decoder fϕ is designed similarly. Training of the (encoder, decoder) pair (gθ, fϕ) is similar to that of the KO(8, 2)
training which we detail in §4.

Figure 12 shows the BLER performance of the Polar(64, 7) code and its competing KO code, for the AWGN channel.
Similar to the BER performance analyzed in Figure 10, the KO code is able to significantly improve the BLER performance.
For example, we achieve a gain of around 0.5 dB when KO encoder is combined with the MAP decoding. Additionally, the
close performance of the KO decoder to that of the MAP decoder confirms its optimality.

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3

10−4

10−3

10−2

10−1

Polar
Polar with MAP
KO
KO with MAP

Signal-to-noise ratio (SNR) [dB]

B
lo

ck
er

ro
rr

at
e

(B
L

E
R

)

Figure 12. KO code achieves a significant gain over the Polar(64, 7) code in BLER when trained on AWGN channel. KO decoder also
matches the optimal MAP decoder.

B. Gains with list decoding
Successive cancellation decoding can be significantly improved by list decoding. List decoding allows one to gracefully
tradeoff computational complexity and reliability by maintaining a list (of a fixed size) of candidate codewords during the
decoding process. The following figure demonstrates that KO(8,2) code with list decoding enjoys a significant gain over the
non-list counterpart. This promising result opens several interesting directions, which are current focuses of active research.

RM(8, 2)+SC decoder: without list
KO(8, 2): without list
RM(8, 2)+SC decoder: list size 256
KO(8, 2): list size 256

Signal-to-noise ratio (SNR) [dB]

B
it

er
ro

rr
at

e

Figure 13. The same KO(8,2) encoder and decoder as those used in Figure 4 achieve a significant gain (without any retraining or
fine-tuning) when list decoding is used together with the KO decoder. The magnitude of the gain is comparable to the gain achieved by
the same list decoding technique on the successive cancellation decoder of the RM(8,2) code. We used the list decoding from (Dumer &
Shabunov, 2006a) but without the permutation technique.

KO codes

Polar codes with list decoding achieves the state-of-the-art performances (Tal & Vardy, 2015). It is a promising direction
to design large block-lengths KO codes (based on the skeleton of Polar codes) that can improve upon the state-of-the-art
list-decoded Polar codes. One direction is to train KO codes as we propose and include list decoding after the training.
A more ambitious direction is to include list decoding in the training, potentially further improving the performance by
discovering an encoder tailored for list decoding.

Unlike Polar codes, RM codes have an extra structure of an algebraic symmetry; a RM codebook is invariant under certain
permutations. This can be exploited in list decoding as shown in (Dumer & Shabunov, 2006a), to get a further gain over
what is shown in Figure 13. However, when a KO code is trained based on a RM skeleton, this symmetry is lost. A question
of interest is whether one can discover nonlinear codes with such symmetry.

C. Discussion
C.1. On modulation and practicality of KO codes

We note that our real-valued KO codewords are entirely practical in wireless communication; the peak energy of a symbol is
only 22.48% larger than the average in KO codes. The impact on the power amplifier is not any different from that of a
more traditional modulation (like 16-QAM). Training KO code is a form of jointly designing the coding and modulation
steps; this approach has a long history in wireless communication (e.g., Trellis coded modulation) but the performance gains
have been restricted by the human ingenuity in constructing the heuristics.

C.2. Comparison with LDPC and BCH codes

We expect good performance for BCH at the short blocklengths considered in the paper though with high-complexity
(polynomial time) decoders such as ordered statistics decoder (OSD). On the other hand, there does not exist good LDPC
codes at the k and n regimes of this paper; thus, we do not expect good performance for LDPC at these regimes.

D. Plotkin construction
Plotkin (1960) proposed this scheme in order to combine two codes of smaller code lengths and construct a larger code
with the following properties. It is relatively easy to construct a code with either a high rate but a small distance (such as
sending the raw information bits directly) or a large distance but a low rate (such as repeating each bit multiple times).
Plotkin construction combines such two codes of rates ρu > ρv and distances du < dv , to design a larger block length code
satisfying rate ρ = (ρu + ρv)/2 and distance min{2du, dv}. This significantly improves upon a simple time-sharing of
those codes, which achieves the same rate but distance only min{du, dv}.

Note: Following the standard convention, we fix the leaves in the Plotkin tree of a first order RM(m, 1) code to be zeroth
order RM codes and the full-rate RM(1, 1) code. On the other hand, a second order RM(m, 2) code contains the first order
RM codes and the full-rate RM(2, 2) as its leaves.

E. KO(8, 2): Architecture and training
As highlighted in §4, our KO codes improve upon RM codes significantly on a variety of benchmarks. We present the
architectures of the KO(8, 2) encoder and the KO(8, 2) decoder, and their joint training methodology that are crucial for this
superior performance.

E.1. KO(8, 2) encoder

Architecture. KO(8, 2) encoder inherits the same Plotkin tree structure as that of the second order RM(8, 2) code and thus
RM codes of first order and the second order RM(2, 2) code constitute the leaves of this tree, as highlighted in Figure 14b.
On the other hand, a critical distinguishing component of our KO(8, 2) encoder is a set of encoding neural networks
gθ = {g1, . . . , g6} that strictly generalize the Plotkin mapping. In other words, we associate a neural network gi ∈ gθ to
each internal node i of this tree. If v and u denote the codewords arriving from left and right branches at this node, we
combine them non-linearly via the operation (u,v) ↦→ gi(u,v).

We carefully parametrize each encoding neural network gi so that they generalize the classical Plotkin map Plotkin(u,v) =

KO codes

RM(8,2)

Plotkin

RM(7,1) Plotkin

RM(6,1) RM(6,2)

Plotkin

RM(2,1) RM(2,2)

RM(7,2)

RM(3,2)

m(7,1)

m(6,1)

m(2,1) m(2,2)

(a) RM(8,2) encoder

KO(8,2)

g1(·)

RM(7,1) g2(·)

RM(6,1)

g6(·)

RM(2,1) RM(2,2)

m(7,1)

m(6,1)

m(2,1) m(2,2)

(b) KO(8,2) encoder

Figure 14. Plotkin trees for RM(8,2) and KO(8,2) encoders. Leaves are highlighted in green. Both codes have dimension k = 37 and
blocklength n = 256.

(u,u⊕ v). In particular, we represent them as gi(u,v) = (u, ˜︁gi(u,v) + u⊕ v), where ˜︁gi : R2 → R is a neural network
of input dimension 2 and output size 1. Here ˜︁gi is applied coordinate-wise on its inputs u and v. This clever parametrization
can also be viewed as a skip connection on top of the Plotkin map. Similar skip-like ideas have been successfully used in the
literature though in a different context of learning decoders (Welling, 2020). On the other hand, we exploit these ideas for
both encoders and decoders which further contribute to significant gains over RM codes.

Encoding. From an encoding perspective, recall that the KO(8, 2) code has code dimension k = 37 and block length
n = 256. Suppose we wish to transmit a set of 37 message bits denoted as m = (m(2,2),m(2,1), . . . ,m(7,1)) through
our KO(8, 2) encoder. We first encode the block of four message bits m(2,2) into a RM(2, 2) codeword c(2,2) using
its corresponding encoder at the bottom most leaf of the Plotkin tree. Similarly we encode the next three message bits
m(2,1) into an RM(2, 1) codeword c(2,1). We combine these codewords using the neural network g6 at their parent
node, which yields the codeword c(3,2) = g6(c(2,2), c(2,1)) ∈ R8. The codeword c(3,2) is similarly combined with its
corresponding left codeword and this procedure is thus recursively carried out till we reach the top most node of the tree,
which outputs the codeword c(8,2) ∈ R256. Finally we obtain the unit-norm KO(8, 2) codeword x by normalizing c(8,2), i.e.
x = c(8,2)/∥c(8,2)∥2.

Note that the map of encoding the message bits m into the codeword x, i.e. x = gθ(m), is differentiable with respect to θ
since all the underlying operations at each node of the Plotkin tree are differentiable.

E.2. KO(8, 2) decoder

Architecture. Capitalizing on the recursive structure of the encoder, the KO(8, 2) decoder decodes the message bits from
top to bottom, similar in style to Dumer’s decoding in §2. More specifically, at any internal node of the tree we first decode
the message bits along its left branch, which we utilize to decode that of the right branch and this procedure is carried out
recursively till all the bits are recovered. At the leaves, we use the Soft-MAP decoder to decode the bits.

Similar to the encoder gθ, an important aspect of our KO(8, 2) decoder is a set of decoding neural networks fϕ =
{f1, f2, . . . , f11, f12}. For each node i in the tree, f2i−1 : R2 → R corresponds to its left branch whereas f2i : R4 → R

KO codes

y L

MAP dec. Lu

MAP dec.

L(3,2)
u

MAP dec. MAP dec.

m̂(7,1)

m̂(6,1)

m̂(2,1) m̂(2,2)

LSE ⊕v̂

LSE ⊕v̂

LSE ⊕v̂

(a) RM(8, 2) decoder

y

Soft-MAP yu

Soft-MAP

y
(3,2)
u

Soft-MAP Soft-MAP

m̂(7,1)

m̂(6,1)

m̂(2,1) m̂(2,2)

f1 f2

f3 f4

f11 f12

(b) KO(8, 2) decoder

Figure 15. Plotkin tres for the RM(8, 2) and KO(8, 2) decoders. Red arrows indicate the bit decoding order.

corresponds to the right branch. The pair of decoding neural networks (f2i−1, f2i) can be viewed as matching decoders
for the corresponding encoding network gi: While gi encodes the left and right codewords arriving at this node, the
outputs of f2i−1 and f2i represent appropriate Euclidean feature vectors for decoding them. Further, f2i−1 and f2i can
also be viewed as a generalization of Dumer’s decoding to nonlinear real codewords: f2i−1 generalizes the LSE function,
while f2i extends the operation ⊕v̂ . More precisely, we represent f2i−1(y1,y2) =

˜︁f2i−1(y1,y2) + LSE(y1,y2) whereas
f2i(y1,y2,yv, v̂) =

˜︁f2i(y1,y2,yv, v̂) + y1 + (−1)v̂y2, where (y1,y2) are appropriate feature vectors from the parent
node, and yv is the feature corresponding to the left-child v, and v̂ is the decoded left-child codeword. We explain about
these feature vectors in more detail below. Note that both the functions ˜︁f2i−1 and ˜︁f2i are also applied coordinate-wise.

Decoding. At the decoder suppose we receive a noisy codeword y ∈ R256 at the root upon transmission of the actual
codeword x ∈ R256 along the channel. The first step is to obtain the LLR feature for the left RM(7, 1) codeword: we obtain
this via the left neural network f1, i.e. yv = f1(y1:128,y129:256) ∈ R128. Subsequently, the Soft-MAP decoder transforms
this feature into an LLR vector for the message bits, i.e. L(7,1) = Soft-MAP(f1(y1:128,y129:256)). Note that the message
bits m(7,1) can be hard decoded directly from the sign of L(7,1). Instead here we use their soft version via the sigmoid
function σ(·), i.e., m̂(7,1) = σ(L(7,1)). Thus we obtain the corresponding RM(7, 1) codeword v̂ by encoding the message
m̂(7,1) via an RM(7, 1) encoder. The next step is to obtain the feature vector for the right child. This is done using the right
decoder f2, i.e. yu = f2(y1:128,y129:256,yv, v̂). Utilizing this right feature yu the decoding procedure is thus recursively
carried out till we compute the LLRs for all the remaining message bits m(6,1), . . . ,m(2,2) at the leaves. Finally we obtain
the full LLR vector L = (L(7,1), . . . ,L(2,2)) corresponding to the message bits m. A simple sigmoid transformation, σ(L),
further yields the probability of each of these message bits being zero, i.e. σ(L) = P [m = 0].

Note that the decoding map fϕ : y ↦→ L is fully differentiable with respect to ϕ, which further ensures a differentiable loss
for training the parameters (θ, ϕ).

KO codes

E.3. Training

Recall that we have the following flow diagram from encoder till the decoder when we transmit the message bits m:

m
gθ−→ x

Channel−−−−−−→ y
fϕ−→ L

σ(·)−−→ σ(L). In view of this, we define an end-to-end differentiable cross entropy loss function
to train the parameters (θ, ϕ), i.e.

L(θ, ϕ) =
∑︂
j

mj log(1− σ(Lj)) + (1−mj) log σ(Lj).

Finally we run Algorithm 1 on the loss L(θ, ϕ) to train the parameters (θ, ϕ) via gradient descent.

F. Soft-MAP decoder
As discussed earlier (see also Figure 15), Dumer’s decoder for second-order RM codes RM(m, 2) performs MAP decoding
at the leaves while our KO decoder applies Soft-MAP decoding at the leaves. The leaves of both RM(m, 2) and KO(m, 2)
codes are comprised of order-one RM codes and the RM(2, 2) code. In this section, we first briefly state the MAP decoding
rule over general binary-input memoryless channels and describe how the MAP rule can be obtained in a more efficient way,
with complexity O(n log n), for first-order RM codes. We then present the generic Soft-MAP decoding rule and its efficient
version for first-order RM codes.

MAP decoding. Given a length-n channel LLR vector l ∈ Rn corresponding to the transmission of a given (n, k) code, i.e.
code dimension is k and block length is n, with codebook C over a general binary-input memoryless channel, the MAP
decoder picks a codeword c∗ according to the following rule (Abbe et al., 2020)

c∗ = argmax
c∈C

⟨l, 1− 2c⟩, (5)

where ⟨·, ·⟩ denotes the inner-product of two vectors. Obviously, the MAP decoder needs to search over all 2k codewords
while each time computing the inner-product of two length-n vectors. Therefore, the MAP decoder has a complexity
of O(n2k). Thus the MAP decoder can be easily applied to decode small codebooks like an RM(2, 2) code, that has
blocklength n = 4 and a dimension k = 4, with complexity O(1). On the other hand, a naive implementation of the MAP
rule for RM(m, 1) codes, that have 2k = 2m+1 = 2n codewords, requires O(n2) complexity. However, utilizing the special
structure of order-1 RM codes, one can apply the fast Hadamard transform (FHT) to implement their MAP decoding in a
more efficient way, i.e., with complexity O(n log n). The idea behind the FHT implementation is that the standard n× n
Hadamard matrix H contains half of the the 2n codewords of an RM(m, 1) code (in ±1), and the other half are just −H.
Therefore, FHT of the vector l, denoted by lWH, lists half of the 2n inner-products in (5), and the other half are obtained the
as −lWH. Therefore, the FHT version of the MAP decoder for first-order RM codes can be obtained as

c∗ = (1− sign(lWH(i
∗))hi∗)/2 s.t. i∗ = argmax

i∈[n]

|lWH(i)|, (6)

where lWH(i) is the i-th element of the vector lWH, and hi is the i-th row of the matrix H. Given that lWH can be efficiently
computed with O(n log n) complexity, the FHT version of the MAP decoder for the first-order RM codes, described in (6),
has a complexity of O(n log n).

Soft-MAP. Note that the MAP decoder and its FHT version involve argmax(·) operation which is not differentiable. In
order to overcome this issue, we obtain the soft-decision version of the MAP decoder, referred to as Soft-MAP decoder,
to come up with differentiable decoding at the leaves (Jamali et al., 2021). The Soft-MAP decoder obtains the soft LLRs
instead of hard decoding of the codes at the leaves. Particularly, consider an AWGN channel model as y = s+ n, where y
is the length-n vector of the channel output, s := 1− 2c, c ∈ C, and n is the vector of the Gaussian noise with mean zero
and variance σ2 per element. The LLR of the i-th information bit ui is then defined as

linf(i) := ln

(︃
Pr(ui = 0|y)
Pr(ui = 1|y)

)︃
. (7)

By applying the Bayes’ rule, the assumption of Pr(ui = 0) = Pr(ui = 1), the law of total probability, and the distribution
of the Gaussian noise, we can write (7) as

linf(i) = ln

(︄∑︁
s∈C0

i
exp

(︁
−||y − s||22/σ2

)︁∑︁
s∈C1

i
exp (−||y − s||22/σ2)

)︄
. (8)

KO codes

We can also apply the max-log approximation to approximate (8) as follows.

linf(i) ≈
1

σ2
min
c∈C1

i

||y − s||22 −
1

σ2
min
c∈C0

i

||y − s||22, (9)

where C0
i and C1

i denote the subsets of codewords that have the i-th information bit ui equal to zero and one, respectively.
Finally, given that the length-n LLR vector of the cahhnel output can be obtained as l := 2y/σ2 for the AWGN channels,
and assuming that all the codewords s’s have the same norm, we obtain a more useful version of the Soft-MAP rule for
approximating the LLRs of the information bits as

linf(i) ≈ max
c∈C0

i

⟨l, 1− 2c⟩ − max
c∈C1

i

⟨l, 1− 2c⟩. (10)

It is worth mentioning at the end that, similar to the MAP rule, one can compute all the 2k inner products in O(n2k)
time complexity, and then obtain the soft LLRs by looking at appropriate indices. As a result, the complexity of the
Soft-MAP decoding for decoding RM(m, 1) and RM(2, 2) codes is O(n2) and O(1) respectively. However, one can apply
an approach similar to (6) to obtain a more efficient version of the Soft-MAP decoder, with complexity O(n log n), for
decoding RM(m, 1) codes.

G. Experimental details
We provide our code at https://github.com/deepcomm/KOcodes.

G.1. Training algorithm

Algorithm 1: Training algorithm for KO(8,2)
Input: number of epochs T , number of encoder training steps Tenc, number of decoder training steps Tdec, encoder

training SNR SNRenc, decoder training SNR SNRdec, learning rate for encoder lrenc, learning rate for
decoder lrdec

1 Initialize (θ, ϕ)
2 for T steps do
3 for Tdec steps do
4 Generate a minibatch of random message bits m
5 Simulate AWGN channel with SNRdec

6 Fix θ, update ϕ by minimizing L(θ, ϕ) using Adam with learning rate lrdec

7 for Tenc steps do
8 Generate a minibatch of random message bits m
9 Simulate AWGN channel with SNRenc

10 Fix ϕ, update θ by minimizing L(θ, ϕ) using Adam with learning rate lrenc

Output: (θ, ϕ)

G.2. Hyper-parameter choices for KO(8,2)

We choose batch size B = 50000, encoder training SNR SNRenc = −3dB, decoder trainint SNR SNRdec = −5dB,
number of epochs T = 2000, number of encoder training steps Tenc = 50, number of decoder training steps Tdec = 500.
For Adam optimizer, we choose learning rate for encoder lrenc = 10−5 and for decoder lrdec = 10−4.

G.3. Neural network architecture of KO(8,2)

G.3.1. INITIALIZATION

We design our (encoder, decoder) neural networks to generalize and build upon the classical (Plotkin map, Dumer’s decoder).
In particular, as discussed in Section E.1, we parameterize the KO encoder gθ, as gi(u,v) = (u, ˜︁gi(u,v)+u⊕v), where ˜︁g :
R2 → R is a fully connected neural network, which we delineate in Section G.3.2. Similarly, for KO decoder, we parametrize

https://github.com/deepcomm/KOcodes

KO codes

it as f2i−1(y1,y2) =
˜︁f2i−1(y1,y2) + LSE(y1,y2) and f2i(y1,y2,yv, v̂) =

˜︁f2i(y1,y2,yv, v̂) + y1 + (−1)v̂y2, where˜︁f2i−1 : R2 → R and ˜︁f2i : R4 → R are also fully connected neural networks whose architectures are described in
Section G.3.4 and Section G.3.3. If ˜︁f ≈ 0 and ˜︁g ≈ 0, we are able to thus recover the standard RM(8, 2) encoder and its
corresponding Dumer decoder. By initializing all the weight parameters (θ, ϕ) sampling from N (0, 0.022), we are able to
approximately recover the performance RM(8, 2) at the beginning of the training which acts as a good initialization for our
algorithm.

G.3.2. ARCHITECTURE OF ˜︁gi
• Dense(units=2× 32)

• SeLU()

• Dense(units=32× 32)

• SeLU()

• Dense(units=32× 32)

• SeLU()

• Dense(units=32× 1)

G.3.3. ARCHITECTURE OF ˜︁f2i
• Dense(units=4× 32)

• SeLU()

• Dense(units=32× 32)

• SeLU()

• Dense(units=32× 32)

• SeLU()

• Dense(units=32× 1)

G.3.4. ARCHITECTURE OF ˜︁f2i−1

• Dense(units=2× 32)

• SeLU()

• Dense(units=32× 32)

• SeLU()

• Dense(units=32× 32)

• SeLU()

• Dense(units=32× 1)

H. Results for Order-1 codes
Here we focus on first order KO(m, 1) codes, and in particular KO(6, 1) code that has code dimension k =7 and blocklength
n = 64. The training of the (encoder, decoder) pair (gθ, fϕ) for KO(6, 1)is almost identical to that of the second order
RM(8, 2) described in §3. The only difference is that we now use the Plotkin tree structure of the corresponding RM(6, 1)
code. In addition, we also train our neural encoder gθ together with the differentiable MAP decoder, i.e. the Soft-MAP, to
compare its performance to that of the RM codes. Figure 16 illustrates these results.

The left panel of Figure 16 highlights that KO(6, 1) obtains significant gain over RM(6, 1) code (with Dumer decoder)
when both the neural encoder and decoder are trained jointly. On the other hand, in the right panel, we notice that we match
the performance of that of the RM(6, 1) code (with the MAP decoder) when we just train the encoder gθ (with the MAP
decoder). In other words, under the optimal MAP decoding, KO(6, 1) and RM(6, 1) codes behave the same. Note that

KO codes

the only caveat for KO(6, 1) in the second setting is that its MAP decoding complexity is O(n2) while that of the RM is
O(n log n).

−12 −10 −8 −6 −4
10−4

10−3

10−2

10−1

RM BLER
KO BLER
RM BER
KO BER

Signal-to-noise ratio (SNR) [dB]

E
rr

or
ra

te

−12 −10 −8 −6 −4

10−4

10−3

10−2

10−1

Gaussian BLER
RM BLER
KO BLER
Gaussian BER
RM BER
KO BER

Signal-to-noise ratio (SNR) [dB]

E
rr

or
ra

te

Figure 16. KO(6, 1) code. Left: KO(6, 1) code achieves significant gain over RM(6, 1) code (with Dumer) when trained on AWGN
channel. Right: Under the optimal MAP decoding, KO(6, 1) and RM(6, 1) codes achieve the same performance. Error rates for a random
Gaussian codebook are also plotted as a baseline.

