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Abstract

We provide an information-theoretic analy-
sis of the generalization ability of Gibbs-
based transfer learning algorithms by focus-
ing on two popular empirical risk minimiza-
tion (ERM) approaches for transfer learning,
α-weighted-ERM and two-stage-ERM. Our
key result is an exact characterization of the
generalization behavior using the conditional
symmetrized Kullback-Leibler (KL) informa-
tion between the output hypothesis and the
target training samples given the source train-
ing samples. Our results can also be applied
to provide novel distribution-free generaliza-
tion error upper bounds on these two afore-
mentioned Gibbs algorithms. Our approach
is versatile, as it also characterizes the gener-
alization errors and excess risks of these two
Gibbs algorithms in the asymptotic regime,
where they converge to the α-weighted-ERM
and two-stage-ERM, respectively. Based on
our theoretical results, we show that the ben-
efits of transfer learning can be viewed as a
bias-variance trade-off, with the bias induced
by the source distribution and the variance
induced by the lack of target samples. We
believe this viewpoint can guide the choice of
transfer learning algorithms in practice.

1 INTRODUCTION

A common assumption in supervised learning is that
both the training and test data samples are generated
from the same distribution. However, this assumption
does not always hold in many applications, as we often
have easy access to samples generated from a source
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distribution, and we want to use the hypothesis trained
using source training samples, which can be readily
available, on a different target task, from which only
limited data is available. Transfer learning and do-
main adaptation methods are developed to tackle this
challenge, and the state-of-the-art transfer learning al-
gorithms based on pre-trained models and fine-tuning
have led to significant improvements in various appli-
cations such as computer vision, natural language pro-
cessing, and more (Li et al., 2012; Long et al., 2015;
Yosinski et al., 2014; Raffel et al., 2019).

Many works have attempted to explain the empiri-
cal success of transfer learning from different perspec-
tives. The first theoretical analysis for domain adap-
tation is proposed by Ben-David et al. (2007) for bi-
nary classification, where the authors provide a VC-
dimension-based excess risk bound for the zero-one
loss in terms of dA-distance as a measure of dis-
crepancy between source and target tasks. A new
notion of discrepancy measure for transfer learning
called transfer-exponent under the covariate-shift as-
sumption is proposed in Hanneke and Kpotufe (2019).
A minimax lower bound on the generalization error
for transfer learning in neural networks is derived
in Kalan and Fabian (2020). Recently, an Empirical
Risk Minimization (ERM) algorithm via representa-
tion learning is proposed in Tripuraneni et al. (2020),
and an upper bound on the excess risk of the new
task is provided in terms of Gaussian complexity.
Wang et al. (2019) provides an upper bound on excess
risk based on instance weighting. Using KL divergence
as a measure of similarity between the source and
target data-generating distribution, an information-
theoretic generalization error upper bound for transfer
learning is proposed in Wu et al. (2020).

However, these upper bounds on excess risk and gener-
alization error may not entirely capture the generaliza-
tion ability of a transfer learning algorithm. One im-
mediate concern is the tightness issue, as the proposed
bounds (Wang et al., 2019) can be loose or even vac-
uous when evaluated in practice. More importantly,
the current definitions of discrepancy metric do not



Generalization Error of Transfer Learning with Gibbs Algorithm

fully characterize all the aspects that could influence
the performance of a transfer learning approach, e.g.,
most discrepancy measures are either algorithm in-
dependent (KL divergence in Wu et al. (2020)), or
only depend on the hypothesis class (dA-distance in
Ben-David et al. (2007)), or apply only under spe-
cific assumptions (the transfer exponent under covari-
ate shift assumption in Hanneke and Kpotufe (2019)).
Therefore, our understanding of transfer learning algo-
rithms is still limited.

To overcome these limitations, we study transfer learn-
ing approaches using two Gibbs algorithms, i.e., α-
weighted Gibbs algorithm and two-stage Gibbs algo-
rithm, which can be viewed as randomized versions of
two ERM-based transfer learning algorithms, i.e., α-
weighted-ERM (Ben-David et al., 2010; Zhang et al.,
2012) and two-stage-ERM (Tripuraneni et al., 2020;
Donahue et al., 2014) by information-theoretic tools.

Our main contributions are as follows:

• We derive exact characterizations of the general-
ization errors for α-weighted Gibbs algorithm and
two-stage Gibbs algorithm in terms of the condi-
tional symmetrized KL information. We also pro-
vide novel distribution-free upper bounds, which
quantify how the number of samples from the
source and target will influence the generalization
error of these transfer learning algorithms.

• We further demonstrate how to use our method to
characterize the asymptotic behavior of the gen-
eralization error for these two Gibbs algorithms
under large inverse temperature, where the α-
weighted Gibbs algorithm and two-stage Gibbs
algorithm converge to the α-weighted-ERM and
two-stage-ERM, respectively.

• Finally, by studying the excess risk of the α-
weighted-ERM and two-stage-ERM algorithms in
the asymptotic regime, we show that transfer
learning algorithms admit a bias-variance trade-
off viewpoint, whereby the choice of a transfer
learning algorithm should depend on both the bias
induced by the source distribution and the vari-
ance caused by the limited target samples.

Notations: Throughout the paper, upper-case letters
denote random variables (e.g., Z), lower-case letters
denote the realizations of random variables (e.g., z),
and calligraphic letters denote spaces (e.g., Z). All the
logarithms are the natural ones, and all information
measure units are in nats. N (µ,Σ) denotes a Gaussian
distribution with mean µ and covariance matrixΣ.

2 PROBLEM FORMULATION

Let Ds = {Zs
i }ni=1 and Dt = {Zt

j}mj=1 be the source
and target training sets, respectively, where Zs

i and Zt
j

are defined on the same alphabet Z. Note that Ds and
Dt are independent, but neither Ds nor Dt is required
to be i.i.d generated from the data-generating source
or target distributions P s

Z or P t
Z . We denote the joint

distribution of all source training samples as PDs
and

that of the target training samples as PDt
. We denote

the hypotheses by w ∈ W, where W is a hypothesis
class. The performance of any hypotheses is measured
by a non-negative loss function ℓ : W ×Z → R

+
0 , and

we can define the empirical risk and the population
risk of a source task for a given source dataset ds as

LE(w, ds) ,
1

n

n∑

i=1

ℓ(w, zsi ), (1)

LP (w,PDs
) , EPDs

[LE(w,Ds)], (2)

and the empirical risk and the population risk of the
target task for a given target dataset dt,

LE(w, dt) ,
1

m

m∑

j=1

ℓ(w, ztj), (3)

LP (w,PDt
) , EPDt

[LE(w,Dt)]. (4)

A transfer learning algorithm can be modeled as a ran-
domized mapping from the source and target train-
ing sets (Ds, Dt) onto a hypothesis W ∈ W according
to the conditional distribution PW |Ds,Dt

. Thus, the
expected transfer generalization error quantifying the
degree of over-fitting on the target training data can
be written as

gen(PW |Ds,Dt
, PDs

, PDt
) ,

EPW,Ds,Dt
[LP (W,PDt

)− LE(W,Dt)], (5)

where the expectation is taken over the joint distribu-
tion PW,Ds,Dt

= PW |Ds,Dt
⊗ PDs

⊗ PDt
.

2.1 Transfer Learning Algorithms

We focus on the following two transfer learning ap-
proaches: α-weighted-ERM and two-stage-ERM.

α-Weighted-ERM Transfer Learning: We denote
the hypothesis by wα ∈ W as the output of α-
weighted-ERM learning algorithm. The hypothesis wα

is typically obtained by minimizing a convex combina-
tion of the source and target task empirical risks as
in Ben-David et al. (2010), i.e.,

LE(wα,ds,dt) = (1−α)LE(wα,ds)+αLE(wα,dt), (6)

for 0 ≤ α ≤ 1.
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{Ds, Dt}
P γ

Wα|Ds,Dt

Wα

Figure 1: α-weighted Gibbs Algorithm

Two-stage-ERM Transfer Learning: Suppose
that the hypothesis w ∈ W can be written as w =
(wφ, wc), where wφ ∈ Wφ is the shared hypothesis
(parameter) across both source and target tasks, and
ws

c ∈ Wc and wt
c ∈ Wc denote some task-specific hy-

pothesis (parameter) for the source and target tasks,
respectively. In practice, wφ aggregates the param-
eters of the first few layers of a neural network for
both tasks (e.g., shared featurizer), and ws

c , wt
c col-

lect the remaining parameters for the source and tar-
get tasks, respectively. The performance of the pair
(wφ, wc) is measured by a non-negative loss function
ℓ : Wc × Wφ × Z → R

+
0 . We consider the following

two-stage-ERM transfer learning algorithm inspired by
Tripuraneni et al. (2020).

First Stage: The algorithm first learns the shared
hypothesis wφ and the source-specific hypothesis ws

c

by minimizing the following empirical risk function de-
fined on the source dataset at Stage 1:

LS1
E (wφ, w

s
c , ds) ,

1

n

n∑

i=1

ℓ(wφ, w
s
c , z

s
i ). (7)

Second Stage: The algorithm fixes the shared hy-
pothesis wφ and learns the target-specific hypothesis
wt

c by minimizing the following empirical risk function
defined on the target dataset at Stage 2:

LS2
E (wφ, w

t
c, dt) =

1

m

m∑

j=1

ℓ(wφ, w
t
c, z

t
j). (8)

2.2 Transfer Learning with Gibbs algorithms

Intending to understand the generalization behav-
ior of transfer learning techniques, we now consider
the Gibbs counterpart of the aforementioned ERM-
based transfer learning algorithms. In particular, the
(γ, π(w), f(w, d))-Gibbs distribution, which was first
proposed by Gibbs (1902) in statistical mechanics, is
defined as:

P γ

W |D(w|d) , π(w)e−γf(w,d)

V (d, γ)
, γ ≥ 0, (9)

where γ is the inverse temperature, π(w) is an arbi-
trary prior distribution on W , f(w, d) is energy func-
tion, and V (d, γ) ,

∫
π(w)e−γf(w,d)dw is the partition

function.

Ds

Wφ

PWφ,W s
c |Ds

Wφ

W s
c

Dt

P γ

W t
c |Dt,Wφ

W t
c

Figure 2: Two-stage Gibbs Algorithm

The (γ, π(w), LE(w, dt))-Gibbs distribution can be
viewed as a randomized version of an ERM algorithm
using only target samples if we specify the energy func-
tion f(w, d) = LE(w, dt). Moreover, as the inverse
temperature γ → ∞, the prior distribution π(w) be-
comes negligible, and the Gibbs algorithm converges
to the standard supervised-ERM algorithm.

Similarly, we can immediately define the following α-
weighted Gibbs algorithm and two-stage Gibbs algo-
rithm, which can be viewed as randomized versions of
α-weighted-ERM and two-stage-ERM, respectively.

α-weighted Gibbs algorithm generalizes the α-
weighted-ERM via a (γ, π(wα), LE(wα, ds, dt))-Gibbs
algorithm (see, Figure 1)

P γ

Wα|Ds,Dt
(wα|ds, dt) =

π(wα)e
−γLE(wα,ds,dt)

Vα(ds, dt, γ)
. (10)

The expected transfer generalization error of the α-
weighted Gibbs algorithm is denoted as

genα(PDs
, PDt

) , gen(P γ

Wα|Ds,Dt
, PDs

, PDt
). (11)

Two-stage Gibbs algorithm generalizes the two-
stage-ERM via a (γ, π(wt

c), L
S2
E (wφ, w

t
c, dt))-Gibbs al-

gorithm algorithm

P γ

W t
c |Dt,Wφ

(wt
c|dt, wφ) =

π(wt
c)e

−γL
S2
E

(wφ,w
t
c,dt)

Vβ(wφ, dt, γ)
(12)

in the second stage, where the shared hypothesis wφ

is the output of the learning algorithm PWφ,W s
c |Ds

at
the first stage. As shown in Figure 2, the two-stage
Gibbs algorithm is constructed by concatenating two
randomized mappings P γ

W t
c |Dt,Wφ

and PWφ,W s
c |Ds

.

The population risk for the target task is defined as:

LP (wφ, w
t
c, PDt

) = EPDt
[LS2

E (wφ, w
t
c, Dt)], (13)

and the expected transfer generalization error under
two-stage Gibbs algorithm can be denoted as

genβ(PDs
, PDt

) , (14)

EPWφ,Wt
c ,Dt

[LP (Wφ,W
t
c , PDt

)− LS2
E (Wφ,W

t
c , Dt)],

where the expectation is taken over the joint distribu-
tion PWφ,W t

c ,Dt
= P γ

W t
c |Dt,Wφ

⊗ PWφ
⊗ PDt

.
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2.3 Information Measures

We will characterize the aforementioned generalization
errors using various information measures. If P and Q
are probability measures over space X , and P is ab-
solutely continuous with respect to Q, the Kullback-
Leibler (KL) divergence between P and Q is given by

D(P‖Q) ,
∫
X
log

(
dP
dQ

)
dP . If Q is absolutely continu-

ous with respect to P , the symmetrized KL divergence
(a.k.a., Jeffrey’s divergence (Jeffreys, 1946)) is

DSKL(P‖Q) , D(P‖Q) +D(Q‖P ). (15)

The mutual information between two random variables
X and Y is the KL divergence between the joint dis-
tribution and product-of-marginal distribution

I(X;Y ) , D(PX,Y ‖PX ⊗ PY )

or equivalently, the conditional KL divergence between
PY |X and PY averaged over PX , D(PY |X‖PY |PX) ,∫
X
D(PY |X=x‖PY )dPX(x). By swapping the role of

PX,Y and PX ⊗ PY in mutual information, we get the
lautum information introduced by Palomar and Verdú
(2008),

L(X;Y ) , D(PX ⊗ PY ‖PX,Y ).

Finally, the symmetrized KL information between X
and Y is given by Aminian et al. (2015):

ISKL(X;Y ) , (16)

DSKL(PX,Y ‖PX ⊗ PY ) = I(X;Y ) + L(X;Y ).

The conditional mutual information between two ran-
dom variables X and Y conditioned on Z is the KL
divergence between PX,Y |Z and PX|Z ⊗PY |Z averaged
over PZ ,

I(X;Y |Z) ,

∫

Z

D(PX,Y |Z=z‖PY |Z=z⊗PX|Z=z)dPZ(z).

Similarly, we can also define the conditional lau-
tum information L(X;Y |Z), and the conditional sym-
metrized KL information is given by

ISKL(X;Y |Z) , I(X;Y |Z) + L(X;Y |Z). (17)

3 RELATED WORK

Other Interpretations for Gibbs Algorithm: Be-
sides viewing the Gibbs algorithm as a randomized
ERM, there are additional interpretations for consid-
ering Gibbs algorithm in transfer learning.

SGLD: The Stochastic Gradient Langevin Dynam-
ics (SGLD), which can be viewed as noisy version of
Stochastic Gradient Descent (SGD), is defined as:

Wk+1 = Wk−η∇LE(Wk, dt)+

√
2β

γ
ζk, k = 0, 1, · · · ,

where ζk is a standard Gaussian random vector and
η > 0 is the step size. In Raginsky et al. (2017),
it is proved that under some conditions on the loss
function, the conditional distribution PWk|Dt

induced
by SGLD algorithm is close to (γ, π(W0), LE(wk, dt))-
Gibbs distribution in 2-Wasserstein distance for suffi-
ciently large k.

Information Risk Minimization: The Gibbs algo-
rithm also arises within the information risk minimiza-
tion framework, where one adopts a conditional KL
divergence regularizer to reduce over-fitting. In par-
ticular, it is shown in (Xu and Raginsky, 2017; Zhang,
2006; Zhang et al., 2006) that the solution to the reg-
ularized ERM problem

P ⋆
W |Dt

= arg inf
PW |Dt

(
EPW,Dt

[LE(W,Dt)]

+
1

γ
D(PW |Dt

‖π(W )|PDt
)
)
,

corresponds to the (γ, π(w), LE(w, dt))-Gibbs distribu-
tion. The inverse temperature γ controls the regular-
ization term and balances between over-fitting and gen-
eralization.

Supervised Learning with the Gibbs Algorithm:

An exact characterization of the generalization er-
ror of the Gibbs algorithm in terms of symmetrized
KL information is provided by Aminian et al. (2021).
The authors also provide a generalization error up-
per bound with the rate of O (α/n) under the sub-
Gaussian assumption. An information-theoretic up-
per bound with similar rate O (α/n) is provided in
Raginsky et al. (2016) for the Gibbs algorithm with
bounded loss function, and PAC-Bayesian bounds us-
ing a variational approximation of Gibbs posteriors
are studied in Alquier et al. (2016). Asadi and Abbe
(2020); Kuzborskij et al. (2019) both focus on bound-
ing the excess risk of the Gibbs algorithm.

Other Analyses of Transfer Learn-

ing: In hypothesis transfer learning problem
(Kuzborskij and Orabona, 2013), where we only have
access to the learned source hypotheses instead of
the source training data, an upper bound on the
leave-one-out error measured by square loss is pro-
vided. An extension of hypothesis transfer learning is
studied in Kuzborskij and Orabona (2017), involving
an algorithm combining the hypotheses from multiple
sources based on regularized ERM principle. There
are also works focusing on the theoretical aspects
of domain adaptation, see (Ben-David et al., 2007,
2010; Mansour et al., 2009a,b; Germain et al., 2016;
David et al., 2010), which are also related to our
problem. Note that in domain adaptation, there
is no labeled target data and only unlabeled target
samples are available. Actually, having access to
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target labeled data would improve the performance of
the learning algorithm for target task (Mansour et al.,
2021; Wang et al., 2019).

Note that we provide an exact characterization of
the generalization error for these Gibbs algorithms
in transfer learning scenarios, which differs from this
body of research.

4 GENERALIZATION ERROR OF

TRANSFER LEARNING

ALGORITHM

We now offer exact characterizations of the expected
transfer generalization errors in terms of symmetrized
KL information for the α-weighted and two-stage
Gibbs algorithms, respectively. Then, combining the
exact characterization of expected transfer generaliza-
tion error for Gibbs algorithms with a conditional
mutual information-based generalization error upper
bound, we derive novel distribution-free upper bounds
for these two Gibbs algorithms. Finally, we provide
another exact characterization of the generalization er-
rors in terms of symmetrized KL divergence, which is
shown to be useful in the asymptotic analysis.

4.1 Exact Characterization of Generalization

Error Using Conditional Symmetrized

KL Information

One of our main results, which characterizes the
exact expected transfer generalization error of the
α-weighted Gibbs algorithm with prior distribution
π(wα), is as follows:

Theorem 1 (Proved in Appendix A). For the α-
weighted Gibbs algorithm, 0 < α < 1 and γ > 0,

P γ

Wα|Ds,Dt
(wα|ds, dt) =

π(wα)e
−γLE(wα,ds,dt)

Vα(ds, dt, γ)
, (18)

the expected transfer generalization error is given by

genα(PDs
, PDt

) =
ISKL(Wα;Dt|Ds)

γα
. (19)

We also provide an exact characterization of the
expected transfer generalization error for two-stage
Gibbs algorithm using conditional symmetrized KL in-
formation.

Theorem 2 (Proved in Appendix A). The expected
transfer generalization error of the two-stage Gibbs al-
gorithm in (12) is given by

genβ(PDs
, PDt

) =
ISKL(W

t
c ;Dt|Wφ)

γ
. (20)

To the best of our knowledge, these results are the first
exact characterizations of the expected transfer gener-
alization error for the α-weighted and two-stage Gibbs
algorithm. Note that both Theorem 1 and Theorem 2
only assume that the loss function is non-negative and
the training set of source and target are independent,
and they hold even for non-i.i.d source and target train-
ing samples.

The expected transfer generalization errors are
non-negative, i.e., genα(PDs

, PDt
) ≥ 0 and

genβ(PDs
, PDt

) ≥ 0, which follows by the non-
negativity of the conditional symmetrized KL
information.

4.2 Example: Mean Estimation

We now consider a simple mean estimation problem,
where the symmetrized KL information can be com-
puted exactly, to demonstrate the usefulness of our
Theorems. All details are provided in Appendix B.

Consider the problem of learning the mean µt ∈ R
d

of the target task using n i.i.d. source samples Ds =
{Zs

i }ni=1 and m i.i.d. target samples Dt = {Zt
j}mj=1.

We assume that the samples from the source and tar-
get tasks satisfying E[Zs] = µs, cov[Z

s] = σ2
sId and

E[Zt] = µt, cov[Z
t] = σ2

t Id, respectively. We adopt
the mean-squared loss ℓ(w, z) = ‖z−w‖22, and assume
a Gaussian prior for the mean π(w) = N (µ0, σ

2
0Id).

For the α-weighted Gibbs algorithm, if we set the
inverse-temperature γ = m+n

2σ2 and α = m
m+n

, then the

(m+n
2σ2 ,N (µ0, σ

2
0Id), LE(wα, ds, dt))-Gibbs algorithm is

given by the following posterior (Murphy, 2007),

P γ

Wα|Dt,Ds
(wα|Ds, Dt) ∼ N

(
mα, σ

2
1Id

)
, (21)

with mα =
σ2
1

σ2
0
µ0 +

σ2
1

σ2

(∑n
i=1 Z

s
i +

∑m
j=1 Z

t
j

)
, and

σ2
1 =

σ2
0σ

2

(m+n)σ2
0+σ2 . Since P γ

Wα|Ds,Dt
is Gaussian, the

conditional symmetrized KL information does not de-
pend on the distribution PZt as long as cov[Zt] = σ2

t Id,
i.e.,

ISKL(Wα;Dt|Ds) =
mdσ2

0σ
2
t

((m+ n)σ2
0 + σ2)σ2

. (22)

From Theorem 1, the expected transfer generalization
error of this algorithm can be computed exactly as:

genα(PDs
, PDt

) =
ISKL(Wα;Dt|Ds)

γα

=
2dσ2

0σ
2
t

(m+ n)(σ2
0 +

1
2γ )

. (23)

For the two-stage Gibbs algorithm, we learn the first
dφ components µφ ∈ R

dφ using source samples. Then,
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we set inverse temperature γ = m
2σ2 and use the

( m
2σ2 ,N (µ0,c, σ

2
0Idc

), LS2
E (µφ,w

t
c, dt))-Gibbs algorithm

to learn the remaining dc = d − dφ components. Fol-
lowing similar steps, by Theorem 2, we have

genβ(PDs
, PDt

) =
ISKL(W

t
c ;Dt|Wφ)

γ

=
2dcσ

2
0σ

2
t

m(σ2
0 +

1
2γ )

. (24)

Remark 1 (Comparison with Supervised Learning).
It is shown in Aminian et al. (2021) that the general-
ization error of a supervised Gibbs algorithm for this
mean estimation example is

gen(P γ

W |Dt
, PDt

) =
2dσ2

0σ
2
t

m(σ2
0 +

1
2γ )

, (25)

where P γ

W |Dt
is ( m

2σ2 ,N (µ0, σ
2
0Id), LE(w, dt))-Gibbs al-

gorithm. Comparing to the supervised Gibbs algorithm,
the α-weighted Gibbs algorithm reduces the generaliza-
tion error to O( d

m+n
) by fitting n source samples and

m target samples simultaneously, and the two-stage
Gibbs algorithm achieves the rate of O(dc

m
) by only

learning wt
c ∈ R

dc from the target samples Dt.

Remark 2 (Effect of Source samples). As shown in
(23) and (24), the transfer generalization errors of this
mean estimation problem do not depend on the distri-
bution of sources samples Ds. The reason is that the
effect of sources samples is cancelled out in general-
ization error by subtracting the empirical risk from the
population risk. Although different source distributions
do not change generalization errors, they will influence
the population risks and excess risks, and more detailed
discussion is provided in Appendix B.

4.3 Distribution-free Upper Bounds

To understand the behavior of expected transfer gen-
eralization error, we also provide distribution-free up-
per bounds in this subsection. These bounds quan-
tify how the generalization errors of the α-weighted
and two-stage Gibbs algorithms depend on the number
of target (source) samples m (n), and can be applied
when directly computing symmetrized KL information
is hard.

We first provide a conditional mutual information
based upper bound on the expected transfer generaliza-
tion error for any general learning algorithm PW |Ds,Dt

under i.i.d and σ-sub-Gaussian assumptions.

Theorem 3 (Proved in Appendix C). Suppose that
the target training samples Dt = {Zt

j}mj=1 are i.i.d gen-
erated from the distribution P t

Z , and the non-negative
loss function ℓ(W,Z) is σ-sub-Gaussian1 under the dis-

1A random variable X is σ-sub-Gaussian if
logE[eλ(X−EX)] ≤ σ

2
λ
2

2
, ∀λ ∈ R.

tribution P t
Z ⊗ PW . Then the following upper bound

holds

|gen(PW |Ds,Dt
, PDs

,PDt
)| ≤

√
2σ2

m
I(W ;Dt|Ds). (26)

The following distribution-free upper bound on the
expected transfer generalization error for α-weighted
Gibbs algorithm can be obtained by combining the
upper bound in Theorem 3 with the exact characteri-
zation in Theorem 1.

Theorem 4 (Proved in Appendix D). Suppose that
the target training samples Dt = {Zt

j}mj=1 are i.i.d gen-
erated from the distribution P t

Z , and the non-negative
loss function ℓ(W,Z) is σα-sub-Gaussian under the
distribution P t

Z ⊗ PWα
. If we further assume Cα ≤

L(Wα;Dt|Ds)
I(Wα;Dt|Ds)

for some Cα ≥ 0, then for the α-weighted

Gibbs algorithm and 0 < α < 1,

genα(PDs
, PDt

) ≤ 2σ2
αγα

(1 + Cα)m
. (27)

Remark 3. Let α = m
n+m

, then we have

genα(PDs
, PDt

) ≤ 2σ2
αγ

(1 + Cα)(n+m)
, (28)

which is lower than the distribution-free upper bound
for supervised learning under (γ, π(w), LE(w, dt))-
Gibbs algorithm P γ

W |Dt
provided in (Aminian et al.,

2021, Theorem 2), i.e., genα(P
γ

W |Dt
,PDt

) ≤ 2σ2γ
(1+CE)m ,

if CE=Cα and σ2=σ2
α.

Using similar approach, we can obtain a distribution-
free upper bound on the expected transfer generaliza-
tion error for the two-stage Gibbs algorithm.

Theorem 5 (Proved in Appendix D). Suppose that
the target training samples Dt = {Zt

j}mj=1 are i.i.d gen-
erated from the distribution P t

Z , and the non-negative
loss function ℓ(Wc, wφ, Z) is σβ-sub-Gaussian under
distribution P t

Z ⊗ PW t
c |Wφ=wφ

for all wφ ∈ Wφ. If we

further assume Cβ ≤ L(W t
c ;Dt|Wφ)

I(W t
c ;Dt|Wφ)

for some Cβ ≥ 0,

then for the two-stage Gibbs algorithm in (12), we have

genβ(PDs
, PDt

) ≤
2σ2

βγ

(1 + Cβ)m
. (29)

Remark 4 (Choice of Cβ and Cα). Setting Cα = 0
in Theorem 4 and Cβ = 0 in Theorem 5 is always
valid since the lautum information is always positive
whenever the mutual information is positive.

4.4 Exact Characterization of Generalization

Error Using Conditional Symmetrized

KL Divergence

In this section, we provide exact characterizations of
expected transfer generalization errors for α-weighted
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and two-stage Gibbs algorithms using conditional sym-
metrized KL divergence by considering the Gibbs al-
gorithm with the population risks as energy functions
in (9). Such a result is very useful in the asymptotic
analysis Section 5.1.

Theorem 6 (Proved in Appendix E). The expected
transfer generalization error of the α-weighted Gibbs
algorithm in (10) is given by:

genα(PDs
, PDt

) = (30)

DSKL(P
γ

Wα|Ds,Dt
‖P γ,Lα(wα,ds,PDt

)

Wα|Ds
|PDs

PDt
)

γα
,

where P
γ,Lα(wα,ds,PDt

)

Wα|Ds
is (γ, π(wα), Lα(wα, ds, PDt

))-

Gibbs algorithm with Lα(w, ds, PDt
) , αLP (wα, PDt

)+
(1− α)LE(wα, ds).

A similar result can be obtained for the two-stage
Gibbs algorithm.

Theorem 7 (Proved in Appendix E). The expected
transfer generalization error of the two-stage Gibbs al-
gorithm in (12) is given by:

genβ(PDs
, PDt

) = (31)

DSKL(P
γ

W t
c |Dt,Wφ

‖P γ,LP (wφ,w
t
c,PDt

)

W t
c |Wφ

|PDt
PWφ

)

γ
,

where P
γ,LP (wφ,w

t
c,PDt

)

W t
c |Wφ

is (γ,π(wt
c),LP (wφ,w

t
c,PDt

))-

Gibbs algorithm.

More discussions about the connection between the re-
sults obtained using symmetrized KL information and
those of symmetrized KL divergence are provided in
Appendix E.

5 ASYMPTOTIC BEHAVIOR OF

GENERALIZATION ERROR AND

EXCESS RISK

In this section, we first consider the asymptotic behav-
ior of the generalization error for the two Gibbs algo-
rithms as the inverse temperature γ → ∞. Note that,
in this regime, both Gibbs algorithms converge to the
corresponding ERM algorithms, and the distribution-
free upper bounds obtained in the previous section be-
come vacuous. Then, we show that such results can
be applied to characterize the excess risks of the two
ERM algorithms as m,n → ∞, leading up to useful in-
tuition about how to select different transfer learning
approaches.

5.1 Generalization Error

α-weighted-ERM: We assume that there exists a
unique Ŵα(Ds, Dt) and a unique Ŵα(Ds) that min-

imizes the risk LE(w,Ds, Dt) and Lα(w,Ds, PDt
), re-

spectively, i.e.,

Ŵα(Ds, Dt) = argmin
w∈W

LE(w,Ds, Dt), (32)

Ŵα(Ds) = argmin
w∈W

Lα(w,Ds, PDt
). (33)

It is shown in Hwang (1980) that if the following Hes-
sian matrices

H∗(Ds, Dt) , ∇2
wLE(w,Ds, Dt)

∣∣
w=Ŵα(Ds,Dt)

, (34)

H∗(Ds) , ∇2
wLα(w,Ds, PDt

)
∣∣
w=Ŵα(Ds)

(35)

are not singular, then, as γ → ∞

P γ

Wα|Ds,Dt
→ N (Ŵα(Ds, Dt),

1

γ
H∗(Ds, Dt)

−1),

P
γ,Lα(wα,ds,PDt

)

Wα|Ds
→ N (Ŵα(Ds),

1

γ
H∗(Ds)

−1). (36)

Thus, the conditional symmetrized KL divergence in
Theorem 6 can be evaluated directly using Gaussian
approximations.

Proposition 1 (Proved in Appendix F.1). If the Hes-
sian matrices H∗(Ds, Dt) = H∗(Ds) = H∗ are inde-
pendent of Ds and Dt, then the generalization error of
the α-weighted-ERM algorithm is

genα(PDt
,PDs

) =
EPDs⊗PDt

[‖Ŵα(Ds,Dt)− Ŵα(Ds)‖2H∗ ]

α
,

where ‖W‖2H , W⊤HW .

Remark 5. The assumptions that the two Hessian
matrices H∗(Ds, Dt) and H∗(Ds) coincide and are in-
dependent of Ds and Dt, are only needed to simplify
the expression in Proposition 1. Note that these as-
sumptions are satisfied in the asymptotic regime where
m,n → ∞ in standard maximum likelihood estimates
(MLE) setting discussed below.

We can use Proposition 1 to obtain the generalization
error of (MLE) in the asymptotic regime m,n → ∞.
More specifically, suppose that we have m and n i.i.d.
samples generated from the target distribution P t

Z

and source distribution P s
Z , respectively. We want

to fit the training data with a parametric distribu-
tion family {f(z|wα)} using the α-weighted-ERM al-
gorithm, where wα ∈ W ⊂ R

d denotes the parameter
of the model. Here, the true data-generating distri-
bution may not belong to the parametric family, i.e.,
P s
Z , P

t
Z /∈ {f(·|wα)|wα ∈ W}.

If we use the log-loss ℓ(wα, z) = − log f(z|wα) in the
α-weighted Gibbs algorithm, and set α = m

m+n
, as

γ → ∞, it converges to the α-weighted-ERM algo-
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rithm, which is equivalent to the following MLE, i.e.,

Ŵα(Ds, Dt) (37)

= argmax
wα∈W

n∑

i=1

log f(Zs
i |wα) +

m∑

j=1

log f(Zt
j |wα).

If we further let m,n → ∞, under regularization condi-
tions for MLE (details in Appendix F.2) which guaran-

tee that Ŵα(Ds, Dt) and Ŵα(Ds) are unique, we can
show that

Ŵα(Ds,Dt)−Ŵα(Ds) →N
(

0,
mJ̄(w∗

α)
−1Ī(w∗

α)J̄(w
∗

α)
−1

(m+ n)2
)

,

where

w∗
α , argmin

w∈W
nD(P s

Z‖f(·|w)) +mD(P t
Z‖f(·|w)),

J̄(w∗
α) is the weighted expectation of the Hessian ma-

trix, and Ī(w∗
α) is the weighted Fisher information

matrix. Detailed definitions of J̄ and Ī and proofs are
provided in Appendix F.3.

In addition, the Hessian matrix H∗(Ds, Dt) → J̄(w∗
α)

as m,n → ∞, which is independent of the samples
Ds, Dt. Thus, Proposition 1 gives

genα(PDt
, PDs

) =
tr(Ī(w∗

α)J̄(w
∗
α)

−1)

n+m
, (38)

which scales as O( d
m+n

).

Two-stage-ERM: We assume that there exists one
unique Ŵ t

c (Dt,Wφ) which minimize the empirical risk
of stage 2,

Ŵ t
c (Dt,Wφ) , argmin

wc∈Wc

LS2
E (Wφ, wc, Dt), (39)

and there is one unique Ŵ t
c (Wφ) which minimize the

population risk given a fixed Wφ,

Ŵ t
c (Wφ) , argmin

wc∈Wc

LP (Wφ, wc, PDt
). (40)

Similarly, if the following Hessian matrices

H∗
c (Dt,Wφ) , ∇2

wc
LS2
E (Wφ,wc,Dt)

∣∣
wc=Ŵ t

c (Dt,Wφ)
(41)

H∗
c (Wφ) , ∇2

wc
LP (Wφ, wc, PDt

)
∣∣
wc=Ŵ t

c (Wφ)
(42)

are not singular, we can obtain the following result by
evaluating the conditional symmetrized KL divergence
in Proposition 7 using similar Gaussian approximation
as in (36).

Proposition 2 (Proved in Appendix F.1). If Hessian
matrices H∗

c (Dt,Wφ) = H∗
c (Wφ) = H∗

c are indepen-
dent of Ds, Dt, then the generalization error of the
two-stage-ERM algorithm is

genβ(PDt
, PDs

)

= EPDs,Dt,Wφ
[‖Ŵ t

c (Dt,Wφ)− Ŵ t
c (Wφ)‖2H∗

c
].

Consider a similar MLE setting as we did for the
α-weighted-ERM algorithm, except that now we
want to fit data with a parametric distribution fam-
ily {f(ztj |wφ,w

t
c)}mj=1 using the two-stage-ERM algo-

rithm, where wφ ∈ Wφ ⊂ R
dφ ,wt

c ∈ Wc ⊂ R
dc denote

the shared and specific parameters, respectively.

If we use the log-loss ℓ(wφ,w
t
c, z) = − log f(z|wφ,w

t
c)

in the two-stage Gibbs algorithm, as γ → ∞, it con-
verges to the following two-stage MLE approach,

[Ŵφ(Ds), Ŵ
s
c (Ds)] , argmax

[wφ,wc]∈W

n∑

i=1

log f(Zs
i |wφ,wc),

Ŵ t
c (Dt, Ŵφ) , argmax

wc∈Wc

m∑

j=1

log f(Zt
j |Ŵφ,wc).

As m,n → ∞, under similar regularization conditions
(details in Appendix F.2) which guarantee the unique-
ness of these estimates, we can show that

Ŵ t
c (Dt, Ŵφ)− Ŵ t

c (Ŵφ) →

N
(
0,

J t
c(w

s∗
φ ,wst∗

c )−1It
c(w

s∗
φ ,wst∗

c )J t
c(w

s∗
φ ,wst∗

c )−1

m

)
,

where

[ws∗
φ ,ws∗

c ] , argmin
[wφ,wc]∈W

D(PZs‖f(·|wφ,wc)), (43)

wst∗
c , argmin

wc∈Wc

D(PZt‖f(·|ws∗
φ ,wc)), (44)

and J t
c(w

s∗
φ ,wst∗

c ), It
c(w

s∗
φ ,wst∗

c ) stands for the ex-
pected Hessian matrix and Fisher information ma-
trix over wc under target distribution, respectively.
Detailed proofs are provided in Appendix F.3. As
the Hessian matrix H∗

c (Dt,Wφ) = H∗
c (Wφ) →

J t
c(w

s∗
φ ,wst∗

c ) as m,n → ∞, by Proposition 2, we have

genβ(PDt
, PDs

) = O(
dc
m

). (45)

5.2 Excess Risk in MLE Setting

We further consider the excess risks of the α-weighted-
ERM algorithm and the two-stage-ERM algorithm in
the aforementioned MLE setting when m,n → ∞, and
show that such analyses provide some intuitions in se-
lecting different transfer learning algorithms. All the
details are provided in Appendix F.4.

The excess risk (Mohri et al., 2018) is defined as the
difference between the population risk achieved by the
learning algorithm and that achieved by the optimal
hypothesis given the knowledge of the true target dis-
tribution PZt

, i.e.,

Er(PW ) ,EPW,Ds,Dt
[LP (W,PDt

)]− LP (w
∗
t , PDt

),

with w∗
t , argmin

w∈W
LP (w, PDt

), (46)
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Table 1: Comparison of different algorithms under MLE setting.

Standard ERM α-weighted-ERM Two-stage-ERM

Excess risk bias 0 ‖w∗
α −w∗

t ‖2Jt(w∗
t )

∥∥[ws∗
φ ,wst∗

c ]− [wt∗
φ ,wt∗

c ]
∥∥2
Jt(wt∗

φ
,wt∗

c )

Excess risk variance O( d
m
) O( d

m+n
) O( d

n
+ dc

m
)

Generalization error O( d
m
) O( d

m+n
) O(dc

m
)

where w∗
t = argmin

w∈W D(P t
Z‖f(·|w)) holds in the

MLE setting considered here.

α-weighted-ERM: In general, a proper transfer
learning algorithm should have small excess risk Er,
which justifies the following approximation of the ex-
cess risk

Er(PŴα(Ds,Dt)
) ≈ 1

2
EPDs,Dt

[∥∥Ŵα(Ds, Dt)−w∗
t

∥∥2
Jt(w∗

t )

]

=
1

2
‖w∗

α −w∗
t ‖2Jt(w∗

t )
+

tr
(
Jt(w

∗
t )Cov(Ŵα(Ds, Dt))

)

2
.

As we can see from the above expression, the excess
risk can be decomposed into squared bias and variance
terms. The bias is caused by learning from the mix-
ture of the source and target distributions instead of
just the target distribution P t

Z . In addition, it can be

shown that tr(Jt(w
∗
t )Cov(Ŵα(Ds, Dt))) = O( d

m+n
),

which has the same order as the generalization error
in (38).

Two-stage-ERM: In the two-stage algorithm, wt∗

can be written as wt∗ = [wt∗
φ ,wt∗

c ], and using similar
approximation, we have

Er(PŴφ(Ds),Ŵ t
c (Dt,Ŵφ)

)

≈ 1

2

∥∥[ws∗
φ ,wst∗

c ]− [wt∗
φ ,wt∗

c ]
∥∥2
Jt(wt∗

φ
,wt∗

c )
(47)

+
tr
(
Jt(w

t∗
φ ,wt∗

c )Cov(Ŵφ(Ds), Ŵ
t
c (Dt, Ŵφ))

)

2
.

Here the bias is caused by sharing the parameter ws∗
φ

learned from the source distribution. If wt∗
φ = ws∗

φ ,

then wst∗
c = wt∗

c and the bias is zero. It can be shown
that the variance term scales as O( d

n
+ dc

m
). When

n ≫ m, it reduces to O(dc

m
), which is the same as the

generalization error in (45).

In Table 1, we summarize the excess risk, and gen-
eralization error results for the two transfer learn-
ing algorithms studied in the paper and those of
the standard supervised learning under MLE setting
(Van der Vaart, 2000) as m,n → ∞. The improve-
ment of the excess risk for transfer learning algorithms
comes from trading the variance induced by the lack of
target samples with the bias introduced by the source
distribution, which suggests that the choice of learning

algorithm should depend on both source distribution
and the number of samples m,n.

The bias term in the excess risks can be interpreted
as another notion of discrepancy measure, which is
algorithm-dependent, as w∗

α and ws∗
φ ,ws∗

c are defined
as the optimal parameters under different algorithms
given the knowledge of both source and target distribu-
tions. Sometimes, these bias terms are more useful in
choosing an algorithm than the discrepancy measure
used in the literature. For example, consider the mean
estimation example in Section 4.2, if we set µs = µt,
σ2
s ≪ σ2

t , and let m,n → ∞, then the bias term for
both α-weighted-ERM and two-stage-ERM should be
zero, and transfer learning algorithms are preferred
over the standard ERM. However, the KL divergence
between the source and target distribution, which is
proposed as a discrepancy measure in Wu et al. (2020),
would be large.

The generalization error can be interpreted as the vari-
ance of the excess risk when n ≫ m, and the analysis
provided in the paper could help us to find a good bal-
ance in the bias and variance trade-off. Our results
can be also used in transfer learning algorithm selec-
tion in the MLE setting by comparing the sum of the
corresponding generalization error term and empirical
risk achieved by each algorithm, which generalizes the
standard Akaike information criterion (AIC) (Akaike,
1998) used in the supervised learning to transfer learn-
ing setting.

6 CONCLUSION

We provide an exact characterization of the general-
ization error for two Gibbs-based transfer learning al-
gorithms, i.e., α-weighted Gibbs algorithm and two-
stage-ERM Gibbs algorithm, using conditional sym-
metrized KL information and divergence. Based on
our results, we show that the benefits of transfer learn-
ing can be viewed as a bias-variance trade-off, and im-
portantly, the term relating to the bias points to a new
discrepancy measure that merits further investigation.
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Supplementary Material:
Characterizing and Understanding the Generalization Error of

Transfer Learning with Gibbs Algorithm

A Exact Characterization of Generalization Error Based on Symmetrized KL

Information

A.1 α-weighted Gibbs Algorithm

Theorem 1. (restated) For the α-weighted Gibbs algorithm, 0 < α < 1 and γ > 0,

P γ

Wα|Ds,Dt
(wα|ds, dt) =

π(wα)e
−γLE(wα,ds,dt)

Vα(ds, dt, γ)
,

the expected transfer generalization error is given by

genα(PDs
, PDt

) =
ISKL(Wα;Dt|Ds)

γα
.

Proof. By the definition of conditional symmetrized KL information, we have

ISKL(Wα;Dt|Ds) = EPDs

[
EPWα,Dt|Ds

[
log

(P γ

Wα|Ds,Dt

PWα|Ds

)]
+ EPWα|Ds

PDt|Ds

[
log

( PWα|Ds

P γ

Wα|Ds,Dt

)]]

= EPDs

[
EPWα,Dt|Ds

[log(P γ

Wα|Ds,Dt
)]− EPWα|Ds

PDt|Ds
[log(P γ

Wα|Ds,Dt
)]
]
. (48)

Combining with fact that Ds and Dt are independent, and plug in the posterior of α-weighted Gibbs algorithm,
we have

ISKL(Wα;Dt|Ds) = EPDs
[γEPWα,Dt|Ds

[LE(Wα, Ds, Dt)]− γEPWα|Ds
PDt

[LE(Wα, Ds, Dt)]]

= γEPDs
[EPWα,Dt|Ds

[(1− α)LE(wα, ds) + αLE(wα, dt)]]

− γEPDs
[EPWα|Ds

PDt
[(1− α)LE(wα, ds) + αLE(wα, dt)]]

= γα
[
EPWα,Dt,Ds

[LE(wα, dt)]− [EPWα,DsPDt
[LE(wα, dt)]

]
(49)

= γαgenα(PDs
, PDt

).

Due to the symmetry of the α-weighted Gibbs algorithm, if we use genα(PDt
, PDs

) to denote the generalization

error of treating PDt
as source task and Ds as the target, we can obtain that genα(PDt

, PDs
) = ISKL(Wα;Ds|Dt)

γα
.

It is also worthwhile to mention that the α-weighted expected generalization error of both source and target
tasks can be characterized in terms of symmetrized KL information as shown in the following Proposition.

Proposition 3. For (γ, π(wα), LE(wα, ds, dt))-Gibbs algorithm and 0 < α < 1, we have

αgenα(PDs
, PDt

) + (1− α)genα(PDt
, PDs

) =
ISKL(Wα;Dt, Ds)

γ
. (50)

Proof. The symmetrized KL information can be written as

ISKL(Wα;Dt, Ds) = EPWα,Dt,Ds

[
log(P γ

Wα|Ds,Dt
)
]
− EPWαPDt,Ds

[
log(P γ

Wα|Ds,Dt
)
]
. (51)
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Plug in the posterior of α-weighted Gibbs algorithm,

ISKL(Wα;Dt, Ds)

= EPWα,Dt,Ds

[
− γLE(wα, ds, dt)

]
+ EPWαPDt,Ds

[
γLE(wα, ds, dt)

]

= −γEPWα,Dt,Ds
[αLE(wα, dt) + (1− α)LE(wα, ds)] + γEPWαPDt,Ds

[αLE(wα, dt) + (1− α)LE(wα, ds)] (52)

= αγgenα(PDs
, PDt

) + (1− α)γgenα(PDt
, PDs

).

Note that the Proposition 3 holds even for dependent source Ds and target Dt samples.

A.2 Two-stage Gibbs Algrotihm

Theorem 2. (restated) The expected transfer generalization error of the two-stage Gibbs algorithm,

P γ

W t
c |Dt,Wφ

(wt
c|dt, wφ) =

π(wt
c)e

−γL
S2
E

(wφ,w
t
c,dt)

Vβ(wφ, dt, γ)
,

is given by

genβ(PDs
, PDt

) =
ISKL(Dt;W

t
c |Wφ)

γ
.

Proof. In the second stage we freeze the share parameters Wφ, and we will update the specific target task
parameter. Thus,

ISKL(W
t
c ;Dt|Wφ)

= EPWφ

[
EPWt

c ,Dt|Wφ
[log(PW t

c |Dt,Wφ
)]− EPWt

c |Wφ
PDt|Wφ

[log(PW t
c |Ds,Wφ

)]
]

= γ
(
EPWφ

[
EPWt

c |Wφ
PDt|Wφ

[LS2
E (Wφ,W

t
c , Dt)]− EPWs

c ,Dt|Wφ
[LS2

E (Wφ,W
t
c , Dt)]

])
(53)

= γgenβ(PDs
, PDt

).

B Example: Mean Estimation

B.1 Symmetrized KL Divergence

The following lemma from Palomar and Verdú (2008) characterizes the mutual and lautum information for the
Gaussian channel.

Lemma 1. (Palomar and Verdú, 2008, Theorem 14) Consider the following model

Y = AX +NG, (54)

where X ∈ R
dX denotes the input random vector with zero mean (not necessarily Gaussian), A ∈ R

dY ×dX

denotes the linear transformation undergone by the input, Y ∈ R
dY is the output vector, and NG ∈ R

dY is a
Gaussian noise vector independent of X. The input and the noise covariance matrices are given by Σ and ΣNG

.
Then, we have

I(X;Y ) =
1

2
tr
(
Σ−1

NG
AΣA⊤

)
−D

(
PY ‖PNG

)
, (55)

L(X;Y ) =
1

2
tr
(
Σ−1

NG
AΣA⊤

)
+D

(
PY ‖PNG

). (56)

In the α-weighted Gibbs algorithm, the output Wα can be written as

Wα =
σ2
1

σ2
0

µ0 +
σ2
1

σ2

( n∑

i=1

Zs
i +

m∑

j=1

Zt
j

)
+N =

σ2
1

σ2

m∑

j=1

(Zt
j − µt) +

σ2
1

σ2
0

µ0 +
mσ2

1

σ2
µt +

σ2
1

σ2

n∑

i=1

Zs
i +N, (57)
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where N ∼ N (0, σ2
1Id), and σ2

1 =
σ2
0σ

2

(m+n)σ2
0+σ2 . For fixed sources training sample ds, we can set PNG

∼ N (
σ2
1

σ2
0
µ0+

mσ2
1

σ2 µt +
σ2
1

σ2

∑n
i=1 z

s
i , σ

2
1Id) and Σ = σ2

t Ind in Lemma 1 gives

ISKL(Wα;Dt|Ds = ds) = tr
(
Σ−1

NG
AΣA⊤

)
= tr

(σ2
t

σ2
1

AA⊤
)
. (58)

Noticing that AA⊤ =
mσ4

1

σ4 Id and taking expectation over PS , we have

ISKL(Wα;Dt|Ds) =
mdσ2

0σ
2
t

((m+ n)σ2
0 + σ2)σ2

. (59)

For the two-stage Gibbs algorithm, the output W t
c can be written as

W t
c =

σ2
c

σ2
0

µ0,c +
σ2
c

σ2

m∑

j=1

Zt
j,c +Nc =

σ2
c

σ2

m∑

j=1

(Zt
j,c − µt,c) +

σ2
c

σ2
0

µ0,c +
nσ2

c

σ2
µt,c +Nc, (60)

where Nc ∼ N (0, σ2
cIdc

), σ2
c =

σ2
0σ

2

mσ2
0+σ2 , and subscript c stands for the task-specific component of the parameters.

Since W t
c is independent of the source samples, setting PNG

∼ N (
σ2
c

σ2
0
µ0,c +

nσ2
c

σ2 µt,c, σ
2
cIdc

) and Σ = σ2
t Indc

in

Lemma 1 gives

ISKL(W
t
c ;Dt|Wφ) = tr

(
Σ−1

NG
AΣA⊤

)
= tr

(σ2
t

σ2
c

AA⊤
)
=

mdcσ
2
0σ

2
t

(mσ2
0 + σ2)σ2

, (61)

where the last step follows due to the fact AA⊤ =
mσ4

c

σ4 Idc
in this case.

B.2 Effect of Source samples

As shown in (23) and (24), the transfer generalization errors of this mean estimation problem only depend on
the number of samples of Ds, and do not depend on the distribution PDs

. In this subsection, we will show
that, though different sources samples (distribution) do not change generalization error, they will influence the
population risks and excess risks.

In this mean estimation example, the population risk of any W can be decomposed into

LP (W,PDt
) = EZt

[‖W − Zt‖22] = EZt
[‖W − E[W ] + E[W ]− µt + µt − Zt‖22]

= ‖E[W ]− µt‖22 + tr(Cov[W ]) + dσ2
t , (62)

where the first term, ‖E[W ]− µt‖22, is the squared bias, and the second term, tr(Cov[W ]), is the variance. It is
easy to verify that the optimal w∗ = argminLP (W,PDt

) is just the target mean µt, and LP (w
∗, PDt

) = dσ2
t ,

then the excess risk defined in (46) can be written as,

Er(PW ) = ‖E[W ]− µt‖22 + tr(Cov[W ]). (63)

For the α-weighted Gibbs algorithm in (60), it can be shown that

Bias = E[Wα]− µt =
σ2(µ0 − µt) + nσ2

0(µs − µt)

(m+ n)σ2
0 + σ2

, (64)

tr(Cov[Wα]) =
dσ4

1

σ4
(nσ2

s +mσ2
t ) + dσ2

1 . (65)

The Bias term will be zero if µ0 = µs = µt. Thus, the excess risk of α-weighted Gibbs algorithm will be
minimized when µs = µt and σ2

s = 0, which is equivalent to the case that the target mean µt is known.

For the two-stage Gibbs algorithm, if we learn the first dφ components µφ ∈ R
dφ using the

( n
2σ2 ,N (µ1,φ, σ

2
0Idφ

), LS1
E (wφ,w

s
c , ds))-Gibbs algorithm, and use the ( m

2σ2 ,N (µ2,c, σ
2
0Idc

), LS2
E (µφ,w

t
c, dt))-Gibbs
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algorithm to learn the remain dc components in the second stage, it can be shown that

Biasφ = E[Wφ]− µt,φ =
σ2(µ1,φ − µt,φ) + nσ2

0(µs,φ − µt,φ)

nσ2
0 + σ2

, (66)

Biasc = E[W t
c ]− µt,c =

σ2(µ2,c − µt,c)

mσ2
0 + σ2

, (67)

tr(Cov[Wφ]) =
ndφσ

4
φσ

2
s

σ4
+ dφσ

2
φ, (68)

tr(Cov[W t
c ]) =

mdcσ
4
cσ

2
t

σ4
+ dcσ

2
c , (69)

with σ2
φ =

σ2
0σ

2

nσ2
0+σ2 and σ2

c =
σ2
0σ

2

mσ2
0+σ2 . The excess risk of the two-stage Gibbs algorithm will be minimized when

µs,φ = µt,φ and σ2
s = 0, i.e., the optimal shared parameter µt,φ is known.

C Expected Transfer Generalization Error Upper Bound for General Learning

Algorithm

C.1 Preliminaries

We first provide some preliminaries for our proofs in this section by introducing the notion of cumulant generating
function, which characterizes different tail behaviors of random variables.

Definition 1. The cumulant generating function (CGF) of a random variable X is defined as

ΛX(λ) , logE[eλ(X−EX)]. (70)

Assuming ΛX(λ) exists, it can be verified that ΛX(0) = Λ′
X(0) = 0, and that it is convex.

Definition 2. For a convex function ψ defined on the interval [0, b), where 0 < b ≤ ∞, its Legendre dual ψ⋆ is
defined as

ψ⋆(x) , sup
λ∈[0,b)

(
λx− ψ(λ)

)
. (71)

The following lemma characterizes a useful property of the Legendre dual and its inverse function.

Lemma 2. (Boucheron et al., 2013, Lemma 2.4) Assume that ψ(0) = ψ′(0) = 0. Then ψ⋆(x) defined above
is a non-negative convex and non-decreasing function on [0,∞) with ψ⋆(0) = 0. Moreover, its inverse function
ψ⋆−1(y) = inf{x ≥ 0 : ψ⋆(x) ≥ y} is concave, and can be written as

ψ⋆−1(y) = inf
λ∈[0,b)

(y + ψ(λ)

λ

)
, b > 0. (72)

We consider the distributions with the following tail behaviors in the appendices:

• Sub-Gaussian: A random variable X is σ-sub-Gaussian, if ψ(λ) = σ2λ2

2 is an upper bound on ΛX(λ), for
λ ∈ R. Then by Lemma 2,

ψ⋆−1(y) =
√

2σ2y.

• Sub-Exponential: A random variable X is (σ2
e , b)-sub-Exponential, if ψ(λ) =

σ2
eλ

2

2 is an upper bound on
ΛX(λ), for 0 ≤ |λ| ≤ 1

b
and b > 0. Using Lemma 2, we have

ψ⋆−1(y) =

{ √
2σ2

ey, if y ≤ σ2
e

2b ;

by +
σ2
e

2b , otherwise.

• Sub-Gamma: A random variable X is Γ(σ2
s , cs)-sub-Gamma (Zhang and Chen, 2020), if ψ(λ) =

λ2σ2
s

2(1−cs|λ|)

is an upper bound on ΛX(λ), for 0 < |λ| < 1
cs

and cs > 0. Using Lemma 2, we have

ψ⋆−1(y) =
√

2σ2
sy + csy.
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C.2 Proof of Theorem 3

We prove a more general form of Theorem 3 as follows:

Theorem 8. Suppose that the target training samples Dt = {Zt
j}mj=1 are i.i.d generated from the distribution P t

Z

and the loss function ℓ(W,Z) satisfies Λℓ(W,Z)(λ) ≤ ψ(−λ), for λ ∈ (−b, 0) and Λℓ(W,Z)(λ) ≤ ψ(λ), for λ ∈ (0, b)
and b > 0 under the distribution P t

Z ⊗ PW . The following upper bound holds:

|gen(PW |Ds,Dt
, PDs

, PDt
)| ≤ ψ⋆−1(

I(W ;Dt|Ds)

m
). (73)

Proof. The generalization error can be written as

|gen(PW |Ds,Dt
, PDs

, PDt
)| ≤ 1

m

m∑

i=1

|EP
W,Zt

i

[ℓ(W,Zt
i )]− EPW⊗P t

Z
[ℓ(W,Zt)]|. (74)

Using the Donsker–Varadhan variational representation (Boucheron et al., 2013), for all λ ∈ (−b,+b),

D(PW,Zt
i |ds

‖PW |ds
⊗ P t

Z) ≥ EP
W,Zt

i
|ds

[λℓ(W,Zt
i )]− log(EPW |ds⊗P t

Z
[eλℓ(W,Zt)]). (75)

Taking expectation respect to Ds over both sides, then we have

I(W ;Zt
i |Ds) ≥ EP

W,Zt
i

[λℓ(W,Zt
i )]− EPDs

[log(EPW |Ds
⊗P t

Z
[eλℓ(W,Zt)])]

≥ EP
W,Zt

i

[λℓ(W,Zt
i )]− log(EPW⊗P t

Z
[eλℓ(W,Zt)])

≥ λ(EP
W,Zt

i

[ℓ(W,Zt
i )]− EPW⊗P t

Z
[ℓ(W,Zt)])− ψ(λ). (76)

Using similar approach as in (Bu et al., 2020, Theorem 1),

|EP
W,Zt

i

[ℓ(W,Zt
i )]− EPW⊗P t

Z
[ℓ(W,Zt)]| ≤ ψ⋆−1(I(W ;Zt

i |Ds)). (77)

Now by combining (74) and (77), we have:

|gen(PW |Ds,Dt
, PDs

, PDt
)| ≤ 1

m

m∑

i=1

ψ⋆−1(I(W ;Zt
i |Ds))

≤ ψ⋆−1
( 1

m

m∑

i=1

I(W ;Zt
i |Ds)

)

≤ ψ⋆−1
(I(W,Dt|Ds)

m

)
, (78)

where the inequality follows due to the concavity of ψ⋆−1 function and the Independence between Zt
i .

Theorem 3. (restated) Suppose that the target training samples Dt = {Zt
j}mj=1 are i.i.d generated from the

distribution P t
Z , and the non-negative loss function ℓ(W,Z) is σ-sub-Gaussian under the distribution P t

Z ⊗ PW .
Then, the following upper bound holds

|gen(PW |Ds,Dt
, PDs

, PDt
)| ≤

√
2σ2

m
I(W ;Dt|Ds).

Proof. For σ-subgaussian assumption, we have ψ⋆−1(y) =
√

2σ2y in Theorem 8 and this completes the proof.

Remark 6. Similar upper bound on the expected transfer generalization error in Theorem 3 holds by considering
a different assumption that the loss function ℓ(w,Z) is σ-sub-Gaussian under the distribution P t

Z for all w ∈ W.
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C.3 Other Tail Distributions

Using Theorem 8, we can also provide upper bounds on the expected transfer generalization error for any general
learning algorithms under sub-Exponential and sub-Gamma assumptions.

Corollary 1 (Sub-Exponential). Suppose that the target training samples Dt = {Zt
j}mj=1 are i.i.d generated

from the distribution P t
Z , and the non-negative loss function ℓ(W,Z) (σ2

e , b)-sub-Exponential under distribution
P t
Z ⊗ PW . Then the following upper bound holds

|gen(PW |Ds,Dt
, PDs

, PDt
)| ≤





√
2σ2

e
I(W ;Dt|Ds)

m
, if I(W ;Dt|Ds)

m
≤ σ2

e

2b ;

b I(W ;Dt|Ds)
m

+
σ2
e

2b , otherwise.
. (79)

Corollary 2 (Sub-Gamma). Suppose that the target training samples Dt = {Zt
j}mj=1 are i.i.d generated from the

distribution P t
Z , and the non-negative loss function ℓ(W,Z) is Γ(σ2

s , cs)-sub-Gamma under distribution P t
Z ⊗PW .

Then, the following upper bound holds

|gen(PW |Ds,Dt
, PDs

, PDt
)| ≤

√
2σ2

s

I(W ;Dt|Ds)

m
+ cs

I(W ;Dt|Ds)

m
. (80)

D Distribution-free Upper Bound on Generalization Error

Theorem 4. (restated) Suppose that the target training samples Dt = {Zt
j}mj=1 are i.i.d generated from the

distribution P t
Z , and the non-negative loss function ℓ(W,Z) is σα-sub-Gaussian under the distribution P t

Z ⊗PWα
.

If we further assume Cα ≤ L(Wα;Dt|Ds)
I(Wα;Dt|Ds)

for some Cα ≥ 0, then for the α-weighted Gibbs algorithm and 0 < α < 1,

genα(PDs
, PDt

) ≤ 2σ2
αγα

(1 + Cα)m
.

Proof. By equation (26) in Theorem 3, we have

genα(PDs
, PDt

) =
ISKL(Wα;Dt|Ds)

γα
(81)

≤
√

2σ2I(Wα;Dt|Ds)

m
.

As we have I(Wα;Dt|Ds)(1 + Cα) ≤ ISKL(Wα;Dt|Ds) in the assumption, the following upper bound holds:

I(Wα;Dt|Ds)(1 + Cα)

γα
≤

√
2σ2

αI(Wα;Dt|Ds)

m
, (82)

which implies that

I(Wα;Dt|Ds) ≤
2σ2

αγ
2α2

(1 + Cα)2m
. (83)

Combining (83) with (81) completes the proof.

Theorem 5. (restated) Suppose that the target training samples Dt = {Zt
j}mj=1 are i.i.d generated from the

distribution P t
Z , and the non-negative loss function ℓ(Wc, wφ, Z) is σβ-sub-Gaussian under distribution P t

Z ⊗
PW t

c |Wφ=wφ
for all wφ ∈ Wφ. If we further assume Cβ ≤ L(W t

c ;Dt|Wφ)
I(W t

c ;Dt|Wφ)
for some Cβ ≥ 0, then for the two-stage

Gibbs algorithm,

P γ

W t
c |Dt,Wφ

(wt
c|dt, wφ) =

π(wt
c)e

−γL
S2
E

(wφ,w
t
c,dt)

Vβ(wφ, dt, γ)
,

we have

genβ(PDs
, PDt

) ≤
2σ2

βγ

(1 + Cβ)m
.
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Proof. Using Theorem 3 by considering W = (W t
C ,Wφ),

|genβ(PDs
, PDt

)| ≤
√

2σ2

m
I(W t

c ,Wφ;Dt|Ds).

Now, based on chain rule for mutual information we have

I(W t
c ,Wφ;Dt|Ds) = I(Wφ;Dt|Ds) + I(W t

c ;Dt|Ds,Wφ)

= I(W t
c ;Dt|Wφ),

where I(Wφ;Dt|Ds) = 0 due to the fact that Wφ is independent from Dt given Ds, and I(W t
c ;Dt|Wφ, Ds) =

I(W t
c ;Dt|Wφ) since Ds ⊥ (W t

c , Dt)|Wφ.

Using Theorem 2, it can be shown that

genβ(PDs
, PDt

) =
ISKL(Dt;W

t
c |Wφ)

γ
≤

√
2σ2

β

m
I(W t

c ;Dt|Wφ). (84)

As we have I(W t
c ;Dt|Wφ)(1 + Cβ) ≤ ISKL(W

t
c ;Dt|Wφ), the following bound holds:

I(W t
c ;Dt|Wφ)(1 + Cβ)

γ
≤

√
2σβI(W t

c ;Dt|Wφ)

m
, (85)

which implies that

I(W t
c ;Dt|Wφ) ≤

2σ2
βγ

2

(1 + Cβ)2m
. (86)

Combining (86) with (84) completes the proof.

We could provide distribution-free upper bounds under sub-Exponential and sub-Gamma assumption using
similar approach as in Theorem 4 and Theorem 5 for α-weighted Gibbs algorithm and two-stage Gibbs algorithm,
respectively.

sub-Exponential: For α-weighted Gibbs algorithm, we assume that the loss function is (σ2
α,e, bα)-sub-

Exponential under distribution P t
Z ⊗PWα

. And for two-stage Gibbs algorithm, we assume that the loss function
is (σ2

β,e, bβ)-sub-Exponential under distribution P t
Z ⊗ PW t

c |Wφ=wφ
for all wφ ∈ Wφ. We provide the results in

Table 2. Denote Bα , ⌈ γαbα
1+Cα

⌉, Bβ , ⌈ γbβ
1+Cβ

⌉, Iα ,
2bαI(Wα;Dt|Ds)

σ2
α,e

and Iβ ,
2bβI(W

t
c ;Dt|Wφ)

σ2
β,e

in Table 2.

sub-Gamma: For α-weighted Gibbs algorithm, we assume that the loss function is Γ(σ2
α,s, cα,s)-sub-Gamma

under distribution P t
Z ⊗PWα

and m >
γαcα,s

(1+Cα) . For two-stage Gibbs algorithm, we assume that the loss function

is Γ(σ2
β,s, cβ,s)-sub-Gamma under distribution P t

Z ⊗ PW t
c |Wφ=wφ

for all wφ ∈ Wφ and m >
γcβ,s

(1+Cβ)
. We provide

the results in Table 2.

Table 2: Distribution-free Upper Bounds under different Tail Distributions.

sub-Exponential sub-Gamma

α-weighted
Gibbs Algorithm





2σ2
α,eγα

m(1+Cα) , if m ≥ Iα;
σ2
α,e

2bα

(
γαbα

(m(1+Cα)−γαbα) + 1
)
, if Bα < m < Iα

2σ2
α,sγα

(1+Cα)m−γαcα,s

(
1 +

γαcα,s

(1+Cα)m−γαcα,s

)

Two-stage
Gibbs Algorithm





2σ2
β,eγ

m(1+Cβ)
, if m ≥ Iβ ;

σ2
β,e

2bβ

(
γbβ

(m(1+CE)−γbβ)
+ 1

)
, if Bβ < m < Iβ

2σ2
β,sγ

(1+Cβ)m−γcβ,s

(
1 +

γcβ,s

(1+Cβ)m−γcβ,s

)
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E Exact Characterization of Generalization Error Based on Symmetrized KL

divergence

We first present the following Lemma to prove the results related to symmetrized KL divergence.

Lemma 3. Denote the (γ, π(w), LE(w, dt))-Gibbs algorithm as P γ

W |Dt
and the (γ, π(w), LP (w,PDt

))-Gibbs al-

gorithm as P
γ,LPDt

W . Then, the following equality holds for these two Gibbs distributions with the same inverse
temperature and prior distribution

E
∆(Pγ

W |Dt=dt
,P

γ,LPDt
W

)
[LP (W,PDt

)− LE(W,dt)] =
DSKL(P

γ

W |Dt=dt
‖P γ,LPDt

W )

γ
, (87)

where E
∆(Pγ

W |Dt=dt
,P

γ,LPDt
W

)
[f(W )] = EP

γ

W |Dt=dt

[f(W )]− E
P

γ,LPDt
W

[f(W )].

Proof.

DSKL(P
γ

W |Dt=dt
‖P γ,LPDt

W ) =

∫

W

(P γ

W |Dt=dt
− P

γ,LPDt

W ) log

(
P γ

W |Dt=dt

P
γ,LPDt

W

)
dw

=

∫

W

(P γ

W |Dt=dt
− P

γ,LPDt

W ) log(e−γ(LE(w,dt)−LP (w,PDt
)))dw (88)

= γE
∆(Pγ

W |Dt=dt
,P

γ,LPDt
W

)
[LP (W,PDt

)− LE(W,dt)].

Using Lemma 3, we provide different characterizations of α-weighted Gibbs algorithm and two-stage Gibbs
algorithm using symmetrized KL divergence.

E.1 α-weighted Gibbs Algorithm

Theorem 6. (restated)The expected transfer generalization error of the α-weighted Gibbs algorithm in (10) is
given by:

genα(PDs
, PDt

) =
DSKL(P

γ

Wα|Ds,Dt
‖P γ,Lα(wα,ds,PDt

)

Wα|Ds
|PDs

PDt
)

γα
, (89)

where P
γ,Lα(wα,ds,PDt

)

Wα|Ds
is the (γ, π(wα), Lα(wα, ds, PDt

))-Gibbs algorithm with Lα(w, ds, PDt
) , αLP (wα, PDt

)+

(1− α)LE(wα, ds).

Proof. Applying Lemma 3 to the α-weighted Gibbs algorithm and (γ, π(wα), Lα(w, ds, PDt
))-Gibbs algorithm

gives

DSKL(P
γ

Wα|Ds=ds,Dt=dt
‖P γ,Lα(wα,ds,PDt

)

Wα|Ds=ds
)

γ
(90)

= E
∆
(
P

γ

Wα|Ds=ds,Dt=dt
,P

γ,Lα(wα,ds,PDt
)

Wα|Ds=ds

) [Lα(Wα, ds, PDt
)− LE(Wα, ds, dt)]

= αE
∆
(
P

γ

Wα|Ds=ds,Dt=dt
,P

γ,Lα(wα,ds,PDt
)

Wα|Ds=ds

) [LP (Wα, PDt
)− LE(Wα, dt)] .

Notice the fact that

E
P

γ,Lα(wα,ds,PDt
)

Wα|Ds=ds

[LP (Wα, PDt
)] = EPDt

[
E
P

γ,Lα(wα,ds,PDt
)

Wα|Ds=ds

[LE(Wα, Dt)]
]
,

and taking expectation over Ds and Dt, we have

DSKL(P
γ

Wα|Ds,Dt
‖P γ,Lα(wα,ds,PDt

)

Wα|Ds
|PDs

PDt
) = EPDsPDt

[DSKL(P
γ

Wα|ds,dt
‖P γ,Lα(wα,ds,PDt

)

Wα|ds
)],

= γαgenα(PDs
, PDt

).
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In the following, we provide an explanation for the existence of two different characterizations of the expected
transfer generalization error, i.e., Theorem 6 and Theorem 1.

For an arbitrary conditional distribution on hypothesis space QWα|Ds
, we can write

I(Wα;Dt|Ds) = D(PWα,Dt|Ds
‖QWα|Ds

⊗ PDt
|PDs

)−D(PWα|Ds
‖QWα|Ds

|PDs
), (91)

L(Wα;Dt|Ds) = EPDs

[
EPDt

⊗PWα|Ds
[log(QWα|Ds

/PWα|Dt,Ds
)]
]
+D(PWα|Ds

‖QWα|Ds
|PDs

). (92)

Thus, the symmetrized KL information can be written as

ISKL(Wα;Dt|Ds) = I(Wα;Dt|Ds) + L(Wα;Dt|Ds)

= D(PWα,Dt|Ds
‖QWα|Ds

⊗ PDt
|PDs

) + EPDs

[
EPDt

⊗PWα|Ds
[log(QWα|Ds

/PWα|Dt,Ds
)]
]
, (93)

which holds for all QWα|Ds
. We compare this expression with the following representation:

D(PWα,Dt|Ds
‖QWα|Ds

⊗ PDt
|PDs

) +D(QWα|Ds
⊗ PDt

‖PWα,Dt|Ds
|PDs

). (94)

The difference between these two expressions is as follows:

ISKL(Wα;Dt|Ds)−
(
D(PWα,Dt|Ds

‖QWα|Ds
⊗ PDt

|PDs
) +D(QWα|Ds

⊗ PDt
‖PWα,Dt|Ds

|PDs
)
)

= EPDs

[
EPDt

⊗PWα|Ds
[log(QWα|Ds

/PW |Dt,Ds
)]
]
−D(QWα|Ds

⊗ PDt
‖PWα,Dt|Ds

|PDs
)

= EPDs

[
EPDt

⊗PWα|Ds
[log(QWα|Ds

/PWα|Dt,Ds
)]− EPDt

⊗QWα|Ds
[log(QWα|Ds

/PWα|Dt,Ds
)]
]

= EPDs

[
E∆(PWα|Ds

,QWα|Ds
)[EPDt

[log(QWα|Ds
/PWα|Dt,Ds

)]]
]
. (95)

Thus, if QWα|Ds
satisfies the following condition

E∆(PWα|Ds
−QWα|Ds

)[EPDt
[log(QWα|Ds

/PWα|Dt,Ds
)]] = 0, (96)

then we have

ISKL(Wα;Dt) = D(PWα,Dt|Ds
‖QWα|Ds

⊗ PDt
|PDs

) +D(QWα|Ds
⊗ PDt

‖PWα,Dt|Ds
|PDs

). (97)

Now, if we set (γ, π(w), LE(w, ds, dt))-Gibbs algorithm as PWα|Dt,Ds
, then it can be verified that using

(γ, π(w), Lα(wα, ds, PDt
))-Gibbs algorithm as QWα|Ds

would satisfy the condition in (96). Thus, we can rep-
resent the expected transfer generalization error using both symmetrized KL information and divergence.

E.2 Two-stage Gibbs Algorithm

Theorem 7. (restated) The expected transfer generalization error of the two-stage Gibbs algorithm in (12) is
given by:

genβ(PDs
, PDt

) =
DSKL(P

γ

W t
c |Dt,Wφ

‖P γ,LP (wφ,w
t
c,PDt

)

W t
c |Wφ

|PDt
PWφ

)

γ
,

where P
γ,LP (wφ,w

t
c,PDt

)

W t
c |Wφ

is the (γ, π(wt
c), LP (wφ, w

t
c, PDt

))-Gibbs algorithm.

Proof. Applying Lemma 3 to the two-stage Gibbs algorithm and (γ, π(wt
c), LP (wφ, w

t
c, PDt

))-Gibbs algorithm,
we have

DSKL(P
γ

W t
c |Dt=dt,Wφ=wφ

‖P γ,LP (wφ,W
t
c ,PDt

)

W t
c |Wφ=wφ

)

γ
(98)

= E
∆

(

P
γ

Wt
c |Dt=dt,Wφ=wφ

,P
γ,LP (wφ,wt

c,PDt
)

Wt
c |Wφ=wφ

)

[
LP (W

t
c , wφ, PDt

)− LE(W
t
c , wα, dt)

]
.

Notice the fact that

E
P

γ,LP (wφ,wt
c,PDt

)

Wt
c |Wφ=wφ

[LP (W
t
c , wφ, PDt

)] = EPDt

[
E
P

γ,LP (wφ,wt
c,PDt

)

Wt
c |Wφ=wφ

[LE(W
t
c , wφ, dt)]

]
,

and taking expectation over Wφ and Dt completes the proof.



Yuheng Bu⋆, Gholamali Aminian⋆, Laura Toni, Gregory W. Wornell, Miguel R. D. Rodrigues

F Asymptotic Behavior of Generalization Error for Gibbs Algorithm

We first provide a summary of different variables used in the Appendix F in Table 3.

Table 3: Notations and Definitions

Notation Definition

‖W‖2H W⊤HW

Ŵα(Ds, Dt) argminw∈W LE(w,Ds, Dt)

Ŵα(Ds) argminw∈W Lα(w,Ds, PDt
)

w∗
α argmin

w∈W nD(P s
Z‖f(·|w)) +mD(P t

Z‖f(·|w))

Ŵ t
c (Dt,Wφ) argminwc∈Wc

LS2
E (Wφ, wc, Dt)

Ŵ t
c (Wφ) argminwc∈Wc

LP (Wφ, wc, PDt
)

[ws∗
φ ,ws∗

c ] argmin[wφ,wc]∈W D(PZs‖f(·|wφ,wc))

wst∗
c argmin

wc∈Wc
D(PZt‖f(·|ws∗

φ ,wc))

F.1 Generalization Error

Proposition 1. (restated) If the Hessian matrices H∗(Ds, Dt) = H∗(Ds) = H∗ are independent of Ds and Dt,
then the generalization error of the α-weighted-ERM algorithm is

genα(PDt
, PDs

) =
EPDs,Dt

[‖Ŵα(Ds, Dt)− Ŵα(Ds)‖2H∗ ]

α
.

Proof. It is shown in Hwang (1980) that if the following Hessian matrices

H∗(Ds, Dt) , ∇2
wLE(w,Ds, Dt)

∣∣
w=Ŵα(Ds,Dt)

, (99)

H∗(Ds) , ∇2
wLα(w,Ds, PDt

)
∣∣
w=Ŵα(Ds)

(100)

are not singular, then, as γ → ∞

P γ

Wα|Ds,Dt
→ N (Ŵα(Ds, Dt),

1

γ
H∗(Ds, Dt)

−1),

and P γ,Lα

Wα|Ds
→ N (Ŵα(Ds),

1

γ
H∗(Ds)

−1), (101)

and we use P γ,Lα

Wα|Ds
to denote P

γ,Lα(wα,ds,PDt
)

Wα|Ds
.

Thus, the conditional symmetrized KL divergence in Theorem 6 can be evaluated directly using Gaussian ap-
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proximations under the assumption that H∗(Ds, Dt) = H∗(Ds) = H∗,

DSKL(P
γ

Wα|Ds,Dt
‖P γ,Lα

Wα|Ds
|PDs

PDt
)

= EPDt,Ds

[
EP

γ

Wα|Ds,Dt

[
log

P γ

Wα|Ds,Dt

P γ,Lα

Wα|Ds

]
− E

P
γ,Lα
Wα|Ds

[
log

P γ

Wα|Ds,Dt

P γ,Lα

Wα|Ds

]]

= EPDt,Ds

[
E∆(Pγ

Wα|Ds,Dt
,P

γ,Lα
Wα|Ds

)

[
− γ

2
(Wα − Ŵα(Ds, Dt))

⊤H∗(Wα − Ŵα(Ds, Dt))

+
γ

2
(Wα − Ŵα(Ds))

⊤H∗(Wα − Ŵα(Ds))
]]

= γEPDt,Ds

[
E∆(Pγ

Wα|Ds,Dt
,P

γ,Lα
Wα|Ds

)

[
W⊤

α H∗Ŵα(Ds, Dt)−W⊤
α H∗Ŵα(Ds)

]]

= γEPDt,Ds

[
Ŵα(Ds, Dt)

⊤H∗Ŵα(Ds, Dt)− Ŵα(Ds, Dt)
⊤H∗Ŵα(Ds)

− Ŵα(Ds)
⊤H∗Ŵα(Ds, Dt)− Ŵα(Ds)

⊤H∗Ŵα(Ds)
]

= γEPDt,Ds

[
(Ŵα(Ds, Dt)− Ŵα(Ds))

⊤H∗(Ŵα(Ds, Dt)− Ŵα(Ds))
]
. (102)

Thus,

genα(PDs
, PDt

) =
DSKL(P

γ

Wα|Ds,Dt
‖P γ,Lα

Wα|Ds
|PDs

PDt
)

γα
=

EPDs,Dt
[‖Ŵα(Ds, Dt)− Ŵα(Ds)‖2H∗ ]

α
.

Proposition 2. (restated) If Hessian matrices H∗
c (Dt,Wφ) = H∗

c (Wφ) = H∗
c are independent of Ds, Dt, then

the generalization error of the two-stage-ERM algorithm is

genβ(PDt
, PDs

) = EDs,Dt,Wφ
[‖Ŵ t

c (Dt,Wφ)− Ŵ t
c (Wφ)‖2H∗

c
].

Proof. It is shown in Hwang (1980) that if the following Hessian matrices

H∗
c (Dt,Wφ) , ∇2

wc
LS2
E (Wφ,wc,Dt)

∣∣
wc=Ŵ t

c (Dt,Wφ)
(103)

H∗
c (Wφ) , ∇2

wc
LP (Wφ, wc, PDt

)
∣∣
wc=Ŵ t

c (Wφ)
(104)

are not singular, then, as γ → ∞

P γ

W t
c |Dt,Wφ

→ N (Ŵ t
c (Dt,Wφ),

1

γ
H∗

c (Dt,Wφ)
−1),

P γ,LP

W t
c |Wφ

→ N (Ŵ t
c (Wφ),

1

γ
H∗(Ds)

−1), (105)

where we use P γ,LP

W t
c |Wφ

to denote P
γ,LP (wφ,w

t
c,PDt

)

W t
c |Wφ

. Thus, the conditional symmetrized KL divergence in Theorem 7

can be evaluated directly using Gaussian approximations under the assumption that H∗
c (Dt,Wφ) = H∗

c (Wφ) =
H∗

c .

DSKL(P
γ

W t
c |Dt,Wφ

‖P γ,LP

W t
c |Wφ

|PDt
PWφ

)

= EPDt,Wφ

[
EP

γ

Wt
c |Dt,Wφ

[
log

P γ

W t
c |Dt,Wφ

P γ,LP

W t
c |Wφ

]
− E

P
γ,LP

Wt
c |Wφ

[
log

P γ

W t
c |Dt,Wφ

P γ,LP

W t
c |Wφ

]]

= EPDt,Wφ

[
E
∆(Pγ

Wt
c |Dt,Wφ

,P
γ,LP

Wt
c |Wφ

)

[
− γ

2
(W t

c − Ŵ t
c (Dt,Wφ))

⊤H∗
c (W

t
c − Ŵ t

c (Dt,Wφ))

+
γ

2
(W t

c − Ŵ t
c (Wφ))

⊤H∗
c (W

t
c − Ŵ t

c (Wφ))
]]

= γEPDt,Wφ

[
E
∆(Pγ

Wt
c |Dt,Wφ

,P
γ,LP

Wt
c |Wφ

)

[
(W t

c )
⊤H∗

c Ŵ
t
c (Dt,Wφ)− (W t

c )
⊤H∗

c Ŵ
t
c (Wφ)

]]

= γEPDt,Wφ

[
Ŵ t

c (Dt,Wφ)
⊤H∗

c Ŵ
t
c (Dt,Wφ)− Ŵ t

c (Dt,Wφ)
⊤H∗

c Ŵ
t
c (Wφ)

− Ŵ t
c (Wφ)

⊤H∗
c Ŵ

t
c (Dt,Wφ)− Ŵ t

c (Wφ)
⊤H∗

c Ŵ
t
c (Wφ)

]

= γEPDt,Wφ

[
(Ŵ t

c (Dt,Wφ)− Ŵ t
c (Wφ))

⊤H∗
c (Ŵ

t
c (Dt,Wφ)− Ŵ t

c (Wφ))
]
. (106)
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Thus,

genβ(PDt
, PDs

) =
DSKL(P

γ

W t
c |Dt,Wφ

‖P γ,LP

W t
c |Wφ

|PDt
PWφ

)

γ
= EDt,Wφ

[‖Ŵ t
c (Dt,Wφ)− Ŵ t

c (Wφ)‖2H∗
c
].

F.2 Regularity Conditions for MLE

In this section, we present the regularity conditions required by the asymptotic normality (Van der Vaart, 2000)
of maximum likelihood estimates.

Assumption 1. Regularity Conditions for MLE:

1. f(z|w) 6= f(z|w′) for w 6= w′.

2. W is an open subset of Rd.

3. The function log f(z|w) is three times continuously differentiable with respect to w.

4. There exist functions F1(z) : Z → R, F2(z) : Z → R and M(z) : Z → R, such that

EZ∼f(z|w)[M(Z)] < ∞,

and the following inequalities hold for any w ∈ W,

∣∣∣∣
∂ log f(z|w)

∂wi

∣∣∣∣ < F1(z),

∣∣∣∣
∂2 log f(z|w)

∂wi∂wj

∣∣∣∣ < F1(z),

∣∣∣∣
∂3 log f(z|w)

∂wi∂wj∂wk

∣∣∣∣ < M(z), i, j, k = 1, 2, · · · , d.

5. The following inequality holds for an arbitrary w ∈ W,

0 < EZ∼f(z|w)

[
∂ log f(z|w)

∂wi

∂ log f(z|w)

∂wj

]
< ∞, i, j = 1, 2, · · · , d.

F.3 Generalization error in MLE

α-weighted ERM: We use the following notations to denote the expectation of the Hessian matrices and the
Fisher information matrices,

Js(wα) , EP s
Z

[
−∇2

wα
log f(Z|wα)

]
, Jt(wα) , EP t

Z

[
−∇2

wα
log f(Z|wα)

]
,

Is(wα) , EP s
Z

[
∇wα

log f(Z|wα)∇wα
log f(Z|wα)

⊤
]
, It(wα) , EP t

Z

[
∇wα

log f(Z|wα)∇wα
log f(Z|wα)

⊤
]
,

J̄(wα) =
n

m+ n
Js(wα) +

m

m+ n
Jt(wα), Ī(wα) =

n

m+ n
Is(wα) +

m

m+ n
It(wα).

Lemma 4. Under Assumption 1, for any fixed source samples ds, if we let m → ∞, then the α-weighted ERM
satisfies √

m
(
Ŵα(ds, Dt)− Ŵα(ds)

)
→ N

(
0, α2J̃(Ŵα(ds))

−1It(Ŵα(ds))J̃(Ŵα(ds))
−1

)
, (107)

where J̃(Ŵα(ds)) , αJt(Ŵα(ds)) + (1 − α)∇2
wLE(w, ds)

∣∣
w=Ŵα(ds)

, and It(Ŵα(ds)) is the covariance matrix of

∇w log f(Zt|Ŵα(ds)).

Proof. By using a Taylor expansion of the first derivative of the weighted log-likelihood LE(Ŵα(ds, Dt), ds, Dt)
around Ŵα(ds), we obtain

0 = ∇wLE(w, ds, Dt)
∣∣
w=Ŵα(ds,Dt)

(108)

≈ ∇wLE(w, ds, Dt)
∣∣
w=Ŵα(ds)

+∇2
wLE(w, ds, Dt)

∣∣
w=Ŵα(ds)

(Ŵα(ds, Dt)− Ŵα(ds)).
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From the Taylor series expansion formula, the following approximation can be obtained

−∇2
wLE(w, ds, Dt)

∣∣
w=Ŵα(ds)

(Ŵα(ds, Dt)− Ŵα(ds)) ≈ ∇wLE(w, ds, Dt)
∣∣
w=Ŵα(ds)

. (109)

By the law of large numbers, when m → ∞, it can be shown that

−∇2
wLE(Ŵα(ds), Dt) =

1

m

m∑

i=1

∇2
w log f(Zt

i |Ŵα(ds)) → −Jt(Ŵα(ds)). (110)

Thus, the LHS of (109) can be written as

∇2
wLE(w, ds, Dt)

∣∣
w=Ŵα(ds)

= ∇2
w

[
αLE(w,Dt) + (1− α)LE(w, ds)

]∣∣
w=Ŵα(ds)

→ J̃(Ŵα(ds)), (111)

where J̃(Ŵα(ds)) = αJt(Ŵα(ds)) + (1− α)∇2
wLE(w, ds)

∣∣
w=Ŵα(ds)

.

As for the RHS of (109), note that

√
m∇wLE(w,Dt)

∣∣
w=Ŵα(ds)

= − 1√
m

m∑

i=1

∇w log f(Zt
i |Ŵα(ds)), (112)

by multivariate central limit theorem

1√
m

n∑

i=1

(
−∇w log f(Zt

i |Ŵα(ds)) + EZt [∇w log f(Zt|Ŵα(ds))]
)
→ N (0, It(Ŵα(ds))), (113)

where It(Ŵα(ds)) is the covariance matrix of ∇w log f(Zt|Ŵα(ds)).

Due to the definition of Ŵα(ds), we have ∇wLE(w, ds, PDt
)
∣∣
w=Ŵα(ds)

= 0, i.e.,

(1− α)∇wLE(Ŵα(ds), ds) = αEZt [∇w log f(Zt|Ŵα(ds))]. (114)

Thus, the RHS of (109) will converge to

√
m∇wLE(w,Ds, Dt)

∣∣
w=Ŵα(Ds)

→ N
(
0, α2It(Ŵα(ds))

)
. (115)

Combining with (110), when m → ∞, we obtain

√
m
(
Ŵα(ds, Dt)− Ŵα(ds)

)
→ N

(
0, α2J̃(Ŵα(ds))

−1It(Ŵα(ds))J̃(Ŵα(ds))
−1

)
. (116)

In the main body of the paper, we further let n → ∞, then Ŵα(ds) → w∗
α, and J̃(Ŵα(ds)) → J̄(w∗

α),
It(Ŵα(ds)) → It(w∗

α). For α = m
m+n

, using Lemma 4, we can show that

Ŵα(Ds, Dt)− Ŵα(Ds) → N
(
0,

m

(m+ n)2
J̄(w∗

α)
−1It(w∗

α)J̄(w
∗
α)

−1
)
. (117)

In addition, the Hessian matrix H∗(Ds, Dt) → J̄(w∗
α) as m,n → ∞, which is independent of the samples Ds, Dt.

Proposition 1 gives

genα(PDt
, PDs

) =
tr(It(w∗

α)J̄(w
∗
α)

−1)

n+m
= O(

d

m+ n
).

Two-stage ERM:

We use the following notations to denote the expectation of the Hessian matrix and the Fisher information matrix
with respect to wc,

J t
c(wφ,wc) , EP t

Z

[
−∇2

wc
log f(Z|[wφ,wc])

]
,

It
c(wφ,wc) , EP t

Z
[∇wc

log f(Z|[wφ,wc)])∇⊤
wc

log f(Z|[wφ,wc])].
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Lemma 5. Under Assumption 1, for any fixed ŵφ, if we let m → ∞, then the two-stage ERM satisfies

√
m
(
(Ŵ t

c (Dt, ŵφ)− ŵt
c(ŵφ))

)
→ N

(
0, J t

c(ŵφ, ŵ
t
c(ŵφ))

−1It
c(ŵφ, ŵ

t
c(ŵφ))J

t
c(ŵφ, ŵ

t
c(ŵφ))

−1
)
. (118)

Proof. For any fixed ŵφ, using a Taylor expansion of the gradient with respect to wc of the log-likelihood

LS2
E (ŵφ, Ŵ

t
c (Dt, ŵφ), Dt) around ŵt

c(ŵφ), we obtain

0 = ∇wc
LS2
E (ŵφ, Ŵ

t
c (Dt, ŵφ), Dt)

≈ ∇wc
LS2
E (ŵφ, ŵ

t
c(ŵφ), Dt) +∇2

wc
LS2
E (ŵφ, ŵ

t
c(ŵφ), Dt)(Ŵ

t
c (Dt, ŵφ)− ŵt

c(ŵφ)).

From the Taylor series expansion formula, the following approximation can be obtained

−∇2
wc

LS2
E (ŵφ, ŵ

t
c(ŵφ), Dt)(Ŵ

t
c (Dt, ŵφ)− ŵt

c(ŵφ)) ≈ ∇wc
LS2
E (ŵφ, ŵ

t
c(ŵφ), Dt). (119)

By the law of large numbers, when m → ∞, it can be shown that

−∇2
wc

LS2
E (ŵφ, ŵ

t
c(ŵφ), Dt) =

1

m

m∑

i=1

∇2
wc

log f(Zt
i |[ŵφ, ŵ

t
c(ŵφ)]) → −J t

c(ŵφ, ŵ
t
c(ŵφ)). (120)

As for the RHS of (119), note that EP t
Z
[∇wc

log f(Z|[ŵφ, ŵ
t
c(ŵφ)])] = 0 due to the definition of ŵt

c(ŵφ), by
multivariate central limit theorem, we have

1√
m

n∑

i=1

(
−∇wc

log f(Zt
i |[ŵφ, ŵ

t
c(ŵφ)])

)
→ N (0, It

c(ŵφ, ŵ
t
c(ŵφ))), (121)

where It
c(ŵφ, ŵ

t
c(ŵφ)) = EP t

Z
[∇wc

log f(Z|[ŵφ, ŵ
t
c(ŵφ)])∇⊤

wc
log f(Z|[ŵφ, ŵ

t
c(ŵφ)])].

Thus, the RHS of (119) will converge to

√
m∇wc

LS2
E (ŵφ,wc, Dt)

∣∣
wc=ŵt

c(ŵφ)
→ N

(
0, It

c(ŵφ, ŵ
t
c(ŵφ))

)
. (122)

When m → ∞, we obtain

√
m
(
(Ŵ t

c (Dt, ŵφ)− ŵt
c(ŵφ))

)
→ N

(
0, J t

c(ŵφ, ŵ
t
c(ŵφ))

−1It
c(ŵφ, ŵ

t
c(ŵφ))J

t
c(ŵφ, ŵ

t
c(ŵφ))

−1
)
. (123)

In the main body of the paper, we further let n → ∞, then ŵφ → ws∗
φ , and ŵt

c(ŵφ) → wst∗
c . Using Lemma 5,

we can show that

Ŵ t
c (Dt, Ŵφ)− Ŵ t

c (Ŵφ) → N
(
0,

J t
c(w

s∗
φ ,wst∗

c )−1It
c(w

s∗
φ ,wst∗

c )J t
c(w

s∗
φ ,wst∗

c )−1

m

)
.

As the Hessian matrix H∗
c (Dt,Wφ) = H∗

c (Wφ) → J t
c(w

s∗
φ ,wst∗

c ) as m,n → ∞. By Proposition 2, we have

genβ(PDt
, PDs

) =
tr
(
It
c(w

s∗
φ ,wst∗

c )J t
c(w

s∗
φ ,wst∗

c )−1
)

m
= O(

dc
m

). (124)

F.4 Excess risk

α-weighted ERM: In the following lemma, we characterize the variance of the α-weighted ERM algorithm.

Lemma 6. Under Assumption 1, if we let m,n → ∞, then the α-weighted ERM satisfies

√
m+ n

(
Ŵα(Ds, Dt)−w∗

α

)
→ N

(
0, J̄(w∗

α)
−1Īt(w∗

α)J̄(w
∗
α)

−1
)
. (125)
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Proof. By using a Taylor expansion of the first derivative of the weighted log-likelihood LE(Ŵα(Ds, Dt), Ds, Dt)
around w∗

α, we obtain

0 = ∇wLE(w,Ds, Dt)
∣∣
w=Ŵα(Ds,Dt)

≈ ∇wLE(w,Ds, Dt)
∣∣
w=w∗

α

+∇2
wLE(w,Ds, Dt)

∣∣
w=w∗

α

(Ŵα(Ds, Dt)−w∗
α).

From the Taylor series expansion formula, the following approximation can be obtained

−∇2
wLE(w,Ds, Dt)

∣∣
w=w∗

α

(Ŵα(Ds, Dt)−w∗
α) ≈ ∇wLE(w,Ds, Dt)

∣∣
w=w∗

α

. (126)

By the law of large numbers, when m,n → ∞, it can be shown that

−∇2
wLE(w

∗
α, Dt) =

1

m

m∑

i=1

∇2
w log f(Zt

i |w∗
α) → −Jt(w

∗
α), (127)

−∇2
wLE(w

∗
α, Ds) =

1

n

n∑

i=1

∇2
w log f(Zs

i |w∗
α) → −Js(w

∗
α). (128)

Thus, the LHS of (126) converges to

∇2
wLE(w,Ds, Dt)

∣∣
w=w∗

α

→ J̄(w∗
α), (129)

where J̄(w∗
α) , αJt(w

∗
α) + (1− α)Jt(w

∗
α).

As for the RHS of (126), by multivariate central limit theorem

1√
m

n∑

i=1

(
−∇w log f(Zt

i |w∗
α) + EZt [∇w log f(Zt|w∗

α)]
)
→ N (0, It(w∗

α)), (130)

1√
n

n∑

i=1

(
−∇w log f(Zs

i |w∗
α) + EZs [∇w log f(Zs|w∗

α)]
)
→ N (0, Is(w∗

α)), (131)

where It(w∗
α) and Is(w∗

α) are the covariance matrix of ∇w log f(Zt|w∗
α) and ∇w log f(Zs|w∗

α), respectively.

Due to the definition of w∗
α, we have

(1− α)EZs [∇w log f(Zs|w∗
α)] + αEZt [∇w log f(Zt|w∗

α)] = 0. (132)

Thus, the RHS of (126) will converge to

∇wLE(w,Ds, Dt)
∣∣
w=w∗

α

→ N
(
0,

α2

m
It(w∗

α) +
(1− α)2

n
Is(w∗

α)
)
. (133)

When m,n → ∞, we obtain

(
Ŵα(Ds, Dt)−w∗

α

)
→ N

(
0, J̄(w∗

α)
−1(

α2

m
It(w∗

α) +
(1− α)2

n
Is(w∗

α))J̄(w
∗
α)

−1
)
. (134)

For α = m
m+n

, if we denote Ī(wα) =
n

m+n
Is(wα) +

m
m+n

It(wα), we have

(
Ŵα(Ds, Dt)−w∗

α

)
→ N

(
0,

1

m+ n
J̄(w∗

α)
−1Ī(w∗

α)J̄(w
∗
α)

−1
)
. (135)

Thus, the variance term in the excess risk can be computed as:

tr(Jt(w
∗
t )Cov(Ŵα(Ds, Dt))) =

tr(Jt(w
∗
t )J̄(w

∗
α)

−1Ī(w∗
α)J̄(w

∗
α)

−1)

m+ n
= O(

d

m+ n
). (136)

Two-stage ERM: We use the following notations to denote the expectation of the Hessian matrix and the
Fisher information matrix with respect to wφ,

J t
c,φ(wφ,wc) , EP t

Z

[
−∇2

wc,wφ
log f(Z|[wφ,wc])

]
,

Js
φ(wφ) , EP s

Z

[
−∇2

wφ
log f(Z|[wφ,wc])

]
,

Is
φ(wφ,wc) , EP s

Z
[∇wφ

log f(Z|[wφ,wc)])∇⊤
wφ

log f(Z|[wφ,wc])].

In the following lemma, we characterize the variance of the two-stage ERM algorithm.
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Lemma 7. Under Assumption 1, if we let m,n → ∞, then the two-stage ERM satisfies

(
Ŵ t

c (Ŵφ, Dt)−wst∗
c

)
→ N

(
0, J t

c(w
s∗
φ ,wst∗

c )−1 (137)

( 1

m
It
c(w

s∗
φ ,wst∗

c ) +
1

n
J t
c,φ(w

s∗
φ ,wst∗

c )Js
φ(w

s∗
φ )−1Is

φ(w
s∗
φ )Js

φ(w
s∗
φ )−1J t

c,φ(w
s∗
φ ,wst∗

c )
)
J t
c(w

s∗
φ ,wst∗

c )−1
)
.

Proof. By using a Taylor expansion of the gradient with respect to wc of the log-likelihood
LS2
E (Ŵφ(Ds), Ŵ

t
c (Ŵφ, Dt), Dt) around [ws∗

φ ,wst∗
c ], we obtain

0 = ∇wc
LS2
E (Ŵφ(Ds), Ŵ

t
c (Ŵφ, Dt), Dt)

≈ ∇wc
LS2
E (ws∗

φ ,wst∗
c , Dt) +∇2

wc,wφ
LS2
E (ws∗

φ ,wst∗
c , Dt)(Ŵφ(Ds)−ws∗

φ )

+∇2
wc

LS2
E (ws∗

φ ,wst∗
c , Dt)(Ŵ

t
c (Ŵφ, Dt)−wst∗

c ).

From the Taylor series expansion formula, the following approximation can be obtained

−∇2
wc

LS2
E (ws∗

φ ,wst∗
c , Dt)(Ŵ

t
c (Ŵφ, Dt)−wst∗

c )

≈ ∇wc
LS2
E (ws∗

φ ,wst∗
c , Dt) +∇2

wc,wφ
LS2
E (ws∗

φ ,wst∗
c , Dt)(Ŵφ(Ds)−ws∗

φ ). (138)

By the law of large numbers, when m → ∞, it can be shown that

−∇2
wc

LS2
E (ws∗

φ ,wst∗
c , Dt) =

1

m

m∑

i=1

∇2
wc

log f(Zt
i |[ws∗

φ ,wst∗
c ]) → −J t

c(w
s∗
φ ,wst∗

c ), (139)

−∇2
wc,wφ

LS2
E (ws∗

φ ,wst∗
c , Dt) =

1

m

m∑

i=1

∇2
wc,wφ

log f(Zt
i |[ws∗

φ ,wst∗
c ]) → −J t

c,φ(w
s∗
φ ,wst∗

c ). (140)

As for the first term in the RHS of (138), note that EP t
Z
[∇wc

log f(Z|[ws∗
φ ,wst∗

c ])] = 0, by multivariate central
limit theorem, we have

1√
m

n∑

i=1

(
−∇wc

log f(Zt
i |[ws∗

φ ,wst∗
c ])

)
→ N (0, It

c(w
s∗
φ ,wst∗

c )). (141)

When n → ∞, due to the asymptotic normality of maximum likelihood estimate, we have

√
n(Ŵφ(Ds)−ws∗

φ ) → N (0, Js
φ(w

s∗
φ )−1Is

φ(w
s∗
φ )Js

φ(w
s∗
φ )−1), (142)

where Is
φ(w

s∗
φ ) = EP s

Z
[∇wφ

log f(Z|[ws∗
φ ,ws∗

c ])∇⊤
wφ

log f(Z|[ws∗
φ ,ws∗

c ])].

Thus, the RHS of (138) converges to

N
(
0,

1

m
It
c(w

s∗
φ ,wst∗

c ) +
1

n
J t
c,φ(w

s∗
φ ,wst∗

c )Js
φ(w

s∗
φ )−1Is

φ(w
s∗
φ )Js

φ(w
s∗
φ )−1J t

c,φ(w
s∗
φ ,wst∗

c )
)

(143)

when m,n → ∞.

Thus, we obtain

(
Ŵ t

c (Ŵφ, Dt)−wst∗
c

)
→ N

(
0, J t

c(w
s∗
φ ,wst∗

c )−1 (144)

( 1

m
It
c(w

s∗
φ ,wst∗

c ) +
1

n
J t
c,φ(w

s∗
φ ,wst∗

c )Js
φ(w

s∗
φ )−1Is

φ(w
s∗
φ )Js

φ(w
s∗
φ )−1J t

c,φ(w
s∗
φ ,wst∗

c )
)
J t
c(w

s∗
φ ,wst∗

c )−1
)
.

Note that Cov(Ŵφ(Ds)) can be characterized by the asymptotic normality of maximum likelihood estimate.
Thus, the variance term in the excess risk can be computed as:

tr
(
Jt(w

t∗
φ ,wt∗

c )Cov(Ŵφ(Ds), Ŵ
t
c (Dt, Ŵφ))

)
= O(

dc
m

+
d

n
). (145)
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