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Abstract— Smart meters and other the modern distribution
measurement devices provide new and more data, but usually
they are subject to longer delays and lower reliability than
transmission system SCADA. Accurate and robust use of the
modern distribution system measurements will be a cornerstone
of the future advanced distribution management systems. This
paper presents a novel and computationally efficient data
processing method for imputing bad and missing load power
measurements to create full power consumption data sets. The
imputed data periods have a continuous profile with respect to
the adjacent available measurements, which is a highly desirable
feature for time-series (power flow) analyses. The method is
shown to be superior in accuracy to a utility best practice
approach. Our simulations use actual AMI data collected from
128 smart meters on the Georgia Tech campus.

Index Terms— Data Handling, Data Preprocessing, Load
Modeling, Power System Measurements, Smart Grids

I.  INTRODUCTION

In order to operate distribution systems under pervasive
distributed energy resources (DERs), faster and more accurate
monitoring, coordination and control are imperative [1]. The
increasing DER installments are leading to the deployment of
advanced distribution management systems (ADMS) [1], [2]
to provide functions such as conservation voltage reduction
(CVR), Volt/VAr optimization (VVO), and distribution state
estimation [1]-[3]. The emerging data from smart meters and
other sensors has the potential to provide information for the
new operational needs [1], [4], [5]. However, compared to
supervisory control and data acquisition (SCADA)
measurements, modern distribution system measurements
typically have lower reliability and longer delays. Accurate
and robust use of all available measurements will be essential
to manage ADMS functions with ubiquitous DERs [6].

Before storing the incoming measurement data to a
database, the data must be preprocessed. Typically, the
incoming (smart meter) measurement data preprocessing
consists of data validation and data imputation [1]. The goal of
the data validation process is to identify whether the data
correctly represents the measured situation. Following the data
validation, the data imputation process estimates values for the
identified bad and missing measurements. This paper proposes
a novel computationally efficient method for imputing missing
and bad measurements in load power measurement data.

This paper has the following structure. Section II briefly
introduces typical statistical data imputation methods and
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methods for estimating smart meter measurements. In section
II1, the proposed data imputation method is presented. Section
IV demonstrates the proposed method with the Georgia Tech
AMI data. Section V concludes the paper.

II. LoAD POWER DATA IMPUTATION

A. Statistical Perspective on Data Imputation

Methods for handling missing data is a well-established
area in statistics [7], [8]. The most common approach to
handle missing data entries is to ignore them completely. The
“ignoring methods”, including list-wise deletion and pairwise
deletion, are very easy to implement, but they reduce the
amount of usable data and may lead to biased estimates in
statistical analyses such as linear regression [7].

Full data sets can be generated by filling in the missing
data periods with imputed data [8]. Common data imputation
methods are categorized as single imputation (SI), multiple
imputation (MI), and maximum likelihood estimation (MLE)
[71, [8]. SI methods are the most commonly used approaches
to fill in missing values. They fill in precisely one value for
each missing one, as opposed to MI methods that generate
multiple values for each missing entry to better reflect the
uncertainty of the missing data. SI methods, such as replacing
the missing values by the mean of available values or using
linear regression to estimate the values, are simple to
implement, but can lead to biased estimates of certain
parameters in statistical modeling such as linear regression [7],
[8]. Compared to SI methods, MI and MLE methods have
better statistical properties, but require much more
computational resources and data and thus, are not practical
for imputing the bad and missing measurements in the Big
Data provided by smart meters and DER sensors.

B. Load Power Data Imputation

A power industry best practice to impute bad/missing
smart meter data is presented in [9]. Intervals shorter than two
hours are typically imputed by applying linear interpolation to
the surrounding data. For periods longer than two hours, the
typical approach is to construct daily load profiles based on
previously validated historical data of “like weekdays” and
“like days”. Holidays and other special cases are typically
considered separately.

Load power data imputation is related to (very) short-term
load forecasting (STLF) that has been extensively studied in
the literature [10]. However, STLF research typically focuses
on forecasting the total system load, which is a fairly different
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problem compared to imputing missing/bad data of individual
smart meters or other sensors that can have highly variable
measurement profiles. Many STLF approaches also require
additional data such as temperature, etc. Smart meter
measurements can be used for constructing advanced
customer type specific load profiles [11], [12] that can be
efficiently applied for imputing bad/missing measurements.
However, utilizing an average load profile for each customer
segment clearly ignores any customer specific load behaviors
and does not account for spatial load characteristics, such as a
load that tends to be higher in certain distribution system area.
These approaches also do not leverage the adjacent available
measurements in data imputation. Although more
sophisticated approaches for smart meter data imputation,
such as [13], have been proposed, the methods tend to make
unrealistic assumptions on the load data characteristics or be
impractical to implement. In the future similarly to
transmission system state estimation, bad data detection and
estimation may be integrated into distribution system state
estimation (DSSE). Utilizing AMI data for DSSE has been
studied in, e.g., [14], [15]. However, since most utilities have
no DSSE today, data imputation remains as a separate process.

III. OPTIMALLY WEIGHTED AVERAGE DATA IMPUTATION
METHOD

This section presents a computationally and data efficient
optimally weighted average (OWA) load power data
imputation method that is practical for offline and online
applications. The method only requires the historical load
power measurements from the smart meter (or other sensor).
In particular, the method does not require measurement (e.g.
customer) specific information or other explanatory variables
such as weather. The proposed load data imputation scheme
leverages two typical load data characteristics. First, the data
tends to be rather continuous over a short time interval,
meaning that short time intervals of missing/bad measurement
samples have likely similar characteristics as the adjacent
available data. Second, since the load data is strongly driven
by human consumption patterns, the data tends to have similar
characteristics over time periods with similar human activity.
For example, the data characteristics of weekdays tend to be
different to weekend days, mornings different to evenings, etc.

A. Linear Interpolation Imputation

There are several ways to estimate short intervals of
missing samples from the adjacent available samples. Nearest-
neighbor and interpolation are particularly commonly used
approaches. In the nearest-neighbor approach, the missing
samples are simply set equal to the closest available sample or
an average of them. For slightly longer missing data periods,
interpolation is preferred since it results in estimates that are
continuous with the adjacent available measurements. The
data imputation method proposed in section III.C. uses linear
interpolation since it tends to have more consistent behavior
for missing data with different characteristics compared to
cubic or other more complicated interpolation methods [16].

Linear interpolation (LI) imputation estimates a missing
value y; from the closest preceding and succeeding available
values yy and y; with
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LI imputation is simple, fast, and requires only two
available samples to impute each missing data period. On the
other hand, the accuracy of LI imputation typically decreases
as the length of the missing data period increases.

B. Historical Average Imputation

LI imputation tends to perform poorly on long periods of
missing data, and better estimates can be derived from
representative periods of historical data. The simplest
approach to impute missing values with historical data is to
use the sample from the previous hour, day, or month. Using a
single sample however, can result in highly variable estimates
whose accuracy may strongly depend on the missing sample
times. The data imputation method proposed in section III.C.
utilizes historical average (HA) imputation method that
estimates each missing sample y; as an average of Ny
representative historical samples y;, j € H, |} = Ny

SHA _ 1

Vi Ny jer YJ . (2)
To characterize the set ', we define “weeknum” (WN)

MM
24x60°

3)

as a function of the weekday WD €{1,...,7} (1=Monday, ...,
7=Sunday), hour of the day HH € {1, ...,24}, and minute of
the hour MM € {1, ...,60}. Now, the set H is defined to
consist of historical samples whose day of the year (DOY) and
WN are within selected spans of the missing sample. In this
paper, the DOY span of +8 days and the WN span of +1/
24 +1/(24 x 60) (1 hour and 1 minute) were used. The
DOY assures that the historical mean is calculated over
samples with similar seasonal characteristics. The WN
guarantees that the historical mean is calculated over samples
with similar days of the week and times of the day. Holidays
and other special days are handled separately or if sufficient
data is not available for them, they are categorized as Sundays.
This definition of H results in smooth historical average
profiles for sequential missing samples. If “hard” time
selection criteria, such as equal season, equal WD, and equal
HH was used, the sequential imputed samples would have
jumps when the season, weekday, hour, etc. change.

WN=wD + 2 4
24

The accuracy of the HA imputation depends on the
characteristics of the data and requires clear historically
repeating patterns. With these assumptions, on long missing
data periods, HA imputation is expected to have a better
average performance compared to LI imputation.

C. Optimally Weighted Average Imputation

Next, an optimally weighted average (OWA) imputation
method is presented with the objective of leveraging the LI
imputation accuracy for short missing data periods and the HA
imputation accuracy for longer missing data periods. The
OWA imputation estimates a missing data sample y; as the
weighted average of the LI imputed values /' and the HA

imputed values 4
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The weight parameter w; is set to exponentially decay with
respect to d; > 0, the (positive) distance (in samples) to the
closest (preceding or succeeding) available sample

w; = e %4, )

where a is a (positive) weight parameter. For small d; (i.e.

; ~ 1), the OWA imputed value $°%4 mainly depends on
the LI imputed value 9. For large d; (i.e. w; = 0), the OWA
imputed value yLOWA depends mainly on the HA imputed
value $F4. Figure 1 illustrates the weight function w;
dependence on o and d;. For a > 2, the HA imputed values
are almost exclusively used for all but the first missing
sample. Thus, it is reasonable to restrict a € [0,2]. The
optimal value of a depends on the measurement data
characteristics including the variability and the historical
patterns of the data. The question remains about what value of
a to select, so next, a method to optimize « is presented.
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Figure 1. Optimally weighted average imputation weight function shape for
different weight parameters and distance to the closest available sample

D. Optimal Weight Parameter for A Training Data Period

The optimal weight parameter (for a training data period)
@,pe Minimizes the error F(a) between the imputed samples
and the training data samples

@ope = argmin F(a) = argmin, YiL, F;(a). (6)
a

With squared error, F;(@) is given by

F. (a) — '\OWA ytrue

where §MH = 371“ 4 and §H4 = pHA — yFrue A necessary
condition for an optimal solution a,,, is that the derivative
vanishes F'(a) = 0. Such so-called critical points can be
found, e.g., with the Newton’s method starting at initial value
a = a, and iterating with

= (et + 5142 (7)

Fr(ag)
Fri(ag)

= — (®)
until a selected convergence criteria is satisfied. The error
function F(«) is nonconvex for any set of training samples
yf'“¢ and imputed samples $- and 94 that result in
F"(a) > 0. As a result, Newton’s method may diverge for a
poorly chosen ;. In practice, good convergence is obtained

by selecting a small (but positive) a; (e.g., &y = 0.001).

Ok+1

Figure 2 shows an example of a training data period of 50
samples with the true known values and the values estimated
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with HA, LI, WA (a = 0.10), and OWA imputation. Clearly,
for such a long time period, the LI imputation accuracy
suffers. Better imputation accuracy is achieved with a linear
combination of LI and HA imputation (WA) and best
accuracy is obtained with the optimal weight parameter
(OWA).

True and Imputed Values for a Missing Data Period

120

100

=

80

60 . . .
0 10 20 30 40 50

Sample

Figure 2. An example of a training data period with the true known values
and the HA, LI, WA (a = 0.10), OWA (a,,; = 0.040) imputed values

E. Globally Optimal Weight Parameter

The optimal weight parameter a,,; depends on the
characteristics and the length of the missing period. Thus,
different a,,; values are obtained using different training data
period characteristics and lengths. The distribution of @, can
be estimated by optimizing @ over a set of training data
periods with randomly selected lengths and locations. The
missing data period lengths can be sampled from known
distribution of missing data period lengths (if available). The
globally optimal a can be estimated from the mean (or
median) of the obtained @, sample distribution.

Algorithm 1 lists the process of estimating the weight
parameter d,y,; for a meter. The optimal weight parameter
Qopy Of a meter is optimized only once and is stored in the
MDMS. Afterwards, missing data is estimated with (4) using
the optimized @,,;. The results shown in section IV indicate
that good estimate of @,y distribution can be obtained with
Nperiog = 100 for typical missing data period lengths. If
dealing with a large number of meters, Algorithm 1 can be
executed for a subset of the meters and the mean (or median)
of the resulting @, distribution can be utilized for all meters.

Algorithm 1: OWA Weight Parameter Optimization

1. Randomly choose the first samples of the training data
periods for Npeoq training data periods and Nigpgeps
training data period lengths.

2. Construct an array of timestamps of all the samples needed
for imputing the training data samples with HA and LI
imputation.

3. Fetch the samples with the timestamps from the MDMS.

4. Repeat 1. — 3. for periods with (true) bad/missing samples.

FOR Niepg:ns training data period lengths

5. For each sample of each training data period, impute the
values §/4 and 97" and calculate 5/, 5§14, and d;.

6. Use (6)-(8) to find @y, that minimizes F(a) over all
missing data periods. Store &

ENDFOR

7. Choose the globally optimal «, e.g., as the mean (or
median) of the distribution of a,,, values.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 03,2022 at 22:00:31 UTC from IEEE Xplore. Restrictions apply.



IV. IMPUTATION ON GEORGIA TECH AMI DATA

Georgia Tech owns and maintains its electricity
distribution system serving more than 200 campus buildings.
The measurements from the approximately 400 revenue-grade
smart meters in the buildings are recorded and aggregated into
a database every 15 minutes [17]. Next, the OWA data
imputation method is shown for smart meter measurements
from the Georgia Tech distribution system.

A. Detailed Analysis for A Georgia Tech Smart Meter

The OWA data imputation was first analyzed with the
active power measurements of one of the Georgia Tech smart
meters. The analyzed smart meter is located in a building that
is mainly dedicated for classroom and office purposes. As a
result, the building energy consumption has a clear historical
pattern driven by the classroom and office activity as
illustrated for a two-week period in 2013 in Figure 3.
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Figure 3. The 15-min average active power measurements for the analyzed
Georgia Tech building from January 28, 2013 through February 11, 2013

First, a,p; of the meter was searched with Algorithm 1
using Njgngen = 29 training data period lengths varying from
3 (45 minutes) to 100 (25 hours) each with Npepi0q = 100
randomly chosen period locations. For each period length,
®op: Was solved to minimize the imputation error over the
period locations. This resulted in 29 a,,; values. To get a
better estimate of the a,y,; distribution, this process was
repeated 100 times resulting in a 100 X 29 array of gy,
values. The overall average a,p,; was 0.1387. The distribution
of the 100 @,p,; values for each of the 29 training period
lengths is visualized in Figure 4. For missing data period
lengths above 8 (2 hours), the majority of the @,,, values are
between 0 and 0.4. For short missing data period lengths,
smaller a,y,; is preferred effectively putting more emphasis on
the linear interpolation.

c-ggiir %J{Zf $%$$i¥,,
hiassespissiebtiatiisaiinl)
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Length of Missing Data Period [# Samples]

Figure 4. The boxplots of 100 a,,; values for each of the 29 different
missing data period lengths for the analyzed Georgia Tech smart meter

Next, the sample mean a,,; = 0.1387 was utilized to
compare the performance of the OWA imputation to HA, LI,
and industry best practice (BP) imputations. As discussed in
Section II, BP imputation uses LI imputed values for missing
data periods shorter than 2 hours and an average of three

978-1-5090-5167-0/16/$31.00 ©2016 IEEE

previous days for missing data periods above 2 hours [9]. The
validation was done for Nygngen = 29 missing data period
lengths (same as used for a,p,; training) each with 50
randomly chosen period locations. The period locations were
chosen independent of the period locations used for @y,
training. For each period length, a mean absolute percentage

1N N
error (MAPE =—Zi=5‘11mple| imputed _ ) was calculated

over the Nygmpie samples of the 50 nnssmg data periods. This
resulted in 29 MAPE values. To obtain a more stable estimate
of the MAPE distribution, the process was repeated 100 times
resulting in a 100 X 29 array of MAPE values. Figure 5
illustrates the distribution of the 100 MAPE values for each 29
validation data period lengths. On average, OWA outperforms
HA, LI, and BP imputations for all missing data period
lengths. Compared to HA and LI imputation, the advantage of
OWA imputation is greater for short and long periods,
respectively. For periods under 2 hours, OWA operates fairly
similarly to BP but for periods over 2 hours, OWA
outperforms BP imputation. Only average MAPE reduction
can be expected since no imputation method is guaranteed to
be effective for all missing data period lengths and
characteristics.

true
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Figure 5. The boxplots of 100 MAPE differences between OWA imputation
method and HA, LI, and BP imputation methods for each of the 29 different
missing data period lengths for the analyzed Georgia Tech smart meter

B. Results for 128 Georgia Tech Smart Meters

Next, Algorithm 1 was used to search the a,,, for 128
Georgia Tech smart meters. For each meter, Algorithm 1 was
executed with Nigp g4 = 29 training data period lengths (same
as in Section IV.B.) and Nperioq = 100 randomly chosen
missing data periods. This resulted in a 128 X 29 array of
Qop; Values. The average @,y (over all meters and all training
data period lengths) was 0.1081. Figure 6 visualizes the
distribution of @,,; values for different training data period
lengths and meters. As shown in the top plot of Figure 6,
median @,,; seems to be relatively independent of the training
data period lengths except for very short period lengths less
than 8 (2 hours) for which a,,; seems to be slightly higher.
The bottom plot of Figure 6 indicates that @,,, takes similar
values for most meters but that there are also meters for which
Qopr = 0 or @,y = 2 for many training data period lengths.
For these meters, better imputation accuracy can be achieved
by solely using LI imputation or HA imputation, respectively.

Next, the overall average a,,; = 0.1081 was utilized to
compare the performance of the OWA imputation to the HA,
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LI, and industry best practice (BP) imputations. The validation
was done for the same Nigpgen = 29 missing data period
lengths each with 100 period locations that were chosen
randomly and independent of the period locations used for
®ope training. The distribution of MAPE differences between
the OWA and the HA, LI, and BP imputations are illustrated
in Figure 7. Ignoring outliers (= 10% and < —10%), the
average (over all missing data period lengths and meters)
MAPE reductions and the respective 95% confidence intervals
of the OWA approach compared to the HA, LI, and BP
imputation methods were (-0.8070+0.0189)%, -
(0.9831+0.0381)%, and, (-1.8592+0.0520)%, respectively.

Optimal o Values Mean
0.5 . — 10th %-ile
= — — — - 50th %-ile
o. 90th %-ile
d —
0 PN = g ———
345678 10 14 20 30 40 50 60 70 80 90 100
Length of Missing Data Period [# Samples] Mean
Optimal a Values 10th %-ile
0.5 ‘ : | — — — - 50th %-ile
~ 90th %-ile
=)
3
0 *
20 40 60 80 100 120
Meter

Figure 6. The percentiles of @y, distribution for different training data
period lengths (top) and for the analyzed 128 Georgia Tech smart meters

(bottom)
MAPEOWA-MAPEHA MAPE -MAPE MAPE -MAPE
200 200
100 100 ‘ { } ‘
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4 0 2 -4

Figure 7. The histograms of MAPE differences between OWA imputation
method and HA, LI, and BP imputation methods

The level of MAPE reduction varies among meters but
compared to HA, LI, and BP, OWA reduces the average (over
the 29 missing data period lengths) MAPE values for 93.0%,
79.0%, and 93.0% of all the meters, respectively. Figure 8
visualizes the MAPE reductions for different missing data
period lengths. Compared to HA, LI, and BP, OWA achieves
smaller average MAPE values for medium, long, and long
period lengths, respectively.

— — — - 10th %-ile
Median
— — — - 90th %-ile
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Figure 8. The percentiles of MAPE differences between OWA imputation
method and HA, LI, and BP imputation methods for different missing data
period lengths for the 128 analyzed Georgia Tech smart meters
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V. CONCLUSIONS

While modern distribution system measurement sources
such as AMI and DER sensors provide more data, they are
typically subject to longer delays and have lower reliability
than transmission system SCADA. This paper presents a novel
load power data imputation method, which could be beneficial
to support advanced DMS functions. The imputed data periods
have a continuous profile with respect to the adjacent available
measurements, which is a highly desirable feature for time-
series (power flow) analyses. The method outperforms
conventional linear interpolation, historical average, and an
industry best practice imputation approaches in imputing
Georgia Tech AMI measurements. The weight parameter of
the developed imputation method is trained offline after which
the method is computationally and data efficient making the
method suitable for both online and offline settings.
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