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Abstract
We study the online balanced graph re-partitioning problem (OBGR) which was introduced by Avin,
Bienkowski, Loukas, Pacut, and Schmid [2] and has recently received significant attention [16, 12,
13, 10, 4] owing to potential applications in large-scale, data-intensive distributed computing. In
OBGR, we have a set of ¸ clusters, each with k vertices (representing processes or virtual machines),
and an online sequence of communication requests, each represented by a pair of vertices. Any
request (u, v) incurs unit communication cost if u and v are located in di�erent clusters (and zero
otherwise). Any vertex can be migrated from one cluster to another at a migration cost of – Ø 1. We
consider the objective of minimizing the total communication and migration cost in the competitive
analysis framework. The only known algorithms (which run in exponential time) include an O(k2

¸
2)

competitive [2] and an O(k¸2O(k)) competitive algorithm [4]. A lower bound of �(k¸) is known [16].
In an e�ort to bridge the gap, recent results have considered beyond worst case analyses including
resource augmentation (with augmented cluster capacity [2, 13, 12]) and restricted request sequences
(the learning model [13, 12, 16]).

In this paper, we give deterministic, polynomial-time algorithms for OBGR, which mildly exploit
resource augmentation (i.e. augmented cluster capacity of (1 + Á)k for arbitrary Á > 0). We improve
beyond O(k2

¸
2)-competitiveness (for general ¸, k) by first giving a simple algorithm with competitive

ratio O(k¸
2 log k). Our main result is an algorithm with a significantly improved competitive ratio

of O(k¸ log k). At a high level, we achieve this by employing i) an ILP framework to guide the
allocation of large components, ii) a simple “any fit” style assignment of small components and iii) a
charging argument which allows us to bound the cost of migrations. Like previous work on OBGR,
our algorithm and analysis are phase-based, where each phase solves an independent instance of
the learning model. Finally, we give an �(–k¸ log k) lower bound on the total cost incurred by any
algorithm for OBGR under the learning model, which quantifies the limitation of a phase-based
approach.
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1 Introduction

Modern data intensive applications which are distributed across data centers or clusters
generate a large amount of network tra�c [21, 18, 3]. To enable e�cient communication
among processes or virtual machines that may be dispersed in these clusters, many dis-
tributed systems are increasingly re-configurable and demand-aware [5]. Since inter-cluster
communication can incur significant cost due to physical distance and limited bandwidth,
clusters may strategically migrate processes to reduce the cost of communication, subject to
cluster capacity constraints. The online balanced graph re-partitioning (OBGR) problem,
introduced by Avin, Bienkowski, Loukas, Pacut, and Schmid [2], is an algorithmic investig-
ation of trade-o�s between migration and inter-cluster communication in an environment
where the sequence of communication requests is unknown or hard to predict.
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In OGBR, we are given ¸ clusters (representing servers or data centers), each holding
at most k vertices (representing processes or virtual machines), and an online sequence of
edges (representing communication requests). The algorithm maintains a partition of the
vertices among the ¸ clusters so that each set of the partition contains at most k vertices.
The communication cost of serving a request (u, v) is 0 if u and v are in the same cluster
and 1, otherwise. Prior to serving any request, an algorithm has the option of migrating any
vertex from one cluster to another for a migration cost of – œ Z+. Given an online sequence
‡ of requests, the cost incurred by an (online) algorithm A, denoted by c(A, ‡) is the sum of
the communication costs and migration costs over ‡. Let OPT (‡) denote the cost incurred
by an optimal o�ine algorithm, which knows ‡ in advance. We measure the performance of
the algorithm in terms of the (strict) competitive ratio which is the minimum value of fl > 0
such that for any input sequence ‡ and a fixed constant · > 0 (independent of the length of
‡) we have c(A, ‡) Æ fl · OPT (‡) + · . We usually refer to OPT (‡) as OPT when ‡ is clear
from context.

The static version of balanced graph partitioning and its variants are well studied [14,
20, 15, 1]. In this problem, given a weighted graph on a set V of n vertices and an integer
¸, the goal is to partition V into vertex sets V1, ...., V¸ such that the total weight of edges
of the form (u, v) where u œ Vi, v œ Vj , j ”= i is minimized. The problem is NP-hard and
even hard to approximate within a finite factor. Note that for k = 2, this corresponds to
maximum matching and for ¸ = 2, this reduces to the minimum bisection problem which is
already NP-hard [11]. Several approximation and bi-criteria approximation algorithms are
known [9, 8, 6, 7] (for a discussion of results, see [2]). Since balanced graph partitioning is
NP-hard in the static setting, exponential time competitive algorithms have been considered
in the online setting [2, 16, 13]. Note that a balanced partition of the graph induced by the
entire request sequence may not necessarily correspond to the optimal o�ine algorithm’s
strategy since this strategy overlooks the initial assignment of vertices in clusters (and thus,
the migration cost required to mimic a balanced partition), the length of the sequence and
its evolution over time. On the other hand, there is an approximation-preserving polynomial
time reduction from the static version of OBGR to the o�ine version of OBGR that repeats
the edges of the hard static instance su�ciently many times to derive a hard o�ine instance.
Since the o�ine problem is unlikely to admit any known polynomial time optimal algorithms,
beyond worst-case analysis has been employed to study competitiveness and running times
of OBGR. We briefly discuss two such settings in which OBGR has been studied.

Resource Augmentation

In the resource augmented setting, an (1 + Á)-augmented online algorithm is granted (1 + Á)k
capacity on each cluster for some constant Á > 0, and its performance is compared with the
optimal o�ine algorithm with capacity exactly k per cluster. This is similar in vein to the
o�ine bi-criteria versions of the o�ine balanced graph partitioning problem [6, 7] where the
algorithm is required to partition V into ¸ clusters that minimizes the weighted sum of cut
edges, such that the number of excess vertices assigned to any cluster is at most ”k for some
” > 0. The cost of an algorithm’s obtained partition is compared to the cost of an optimal
partition of V in which clusters are assigned exactly k vertices. We note that resource
augmentation has been studied extensively in online algorithms (e.g., see [17, 24, 25]), and
goes back as far as the earliest work on caching [22].
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Constrained Input

A special case of OBGR that has been recently considered is the so-called learning model,
introduced by Henzinger, Neumann, Räcke, and Schmid [12] and studied later in [4, 16]. In
this model, the online sequence satisfies the condition that there exists a feasible assignment of
vertices to clusters without any inter-cluster requests in the sequence. Thus, upon executing
such an assignment of vertices, any algorithm incurs zero cost. In other words, an online
algorithm in this model is required to learn an optimal partitioning of V into k clusters
with no inter-cluster edges. In contrast to the general model (i.e. with an arbitrary request
sequence), the learning model focuses only on migration costs.

1.1 Related work
OBGR without resource augmentation

In [2], an O(k2
¸

2) upper bound and an �(k) lower bound are established on the competitive
ratio of any deterministic algorithm for OBGR without resource augmentation. The lower
bound has been improved to �(k¸) in recent work by Pacut, Parham, and Schmid [16]. The
special cases of k = 2 (online re-matching problem) and k = 3 have also been studied [2, 16].
In very recent work, Bienkowski, Böhm, Kouteck ,̋ Rothvoß, Sgall, and Vesel˝ [4] give an
O(k¸2O(k))-competitive algorithm for OBGR, which is optimal for constant k.

OBGR with resource augmentation

The �(k) lower bound of [2] holds even when the algorithm is allowed an arbitrary amount
of resource augmentation as long as ¸ Ø 2 and all vertices do not fit into a single cluster. The
main result of [2] is an O(k log k)-competitive deterministic algorithm for OBGR with (2+Á)k
augmented cluster capacity for Á œ (0, 1). Very recently, Forner, Räcke, and Schmid [10] give
a polynomial time deterministic O(k log k)-competitive algorithm in the same setting.

The learning model

In [16], the authors present a tight �(k¸) bound for the best deterministic competitive ratio
in the learning model without resource augmentation. Moreover, they show that a lower
bound of �(¸) holds even in the (1 + Á)-augmented setting for Á < 1/3. Henzinger, Neumann
and Schmid [13] introduced the learning model of OBGR and give a O((¸ log ¸ log n)/Á)-
competitive algorithm and a lower bound of �(1/Á + log n) assuming (1 + Á)k augmented
capacity for Á œ (0, 1/2). In more recent work, [12] establishes tight bounds of �(log ¸ + log k)
and �(¸ log k) on the best competitive ratio of randomized and deterministic algorithms,
respectively, for the learning model with resource augmentation.

Summarizing, for deterministic competitive ratios, the best known upper bound for
OBGR is O(k2

¸
2) without resource augmentation and O(k log k) with (2 + Á)-augmentation,

while the best known lower bound is �(k¸) without resource augmentation and �(k + ¸ log k)
with (1 + Á)-augmentation for Á < 1/3.

1.2 Our results
In this paper, we give online deterministic (1 + Á)-augmented algorithms for OBGR in
the general model, for an arbitrary constant Á > 0. We first observe that a fl-competitive
algorithm for OBGR in the learning model can be used to get a flkl-competitive algorithm
in the general model. The proof is deferred to Appendix A.

ESA 2022
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I Observation 1. Any fl-competitive algorithm for OBGR in the learning model can be

transformed to a O(flk¸)-competitive algorithm for OBGR in the general model.

Using the (1 + Á)-augmented deterministic O(¸ log k)-competitive algorithm of [12] for
the learning model, Observation 1 immediately yields (1 + Á)-augmented deterministic
O(k¸

2 log k)-competitive and randomized O(k¸(log k + log ¸))-competitive algorithms for the
general model. The algorithm of [12] for the learning model is quite sophisticated and relies
on an intricate analysis. In Section 3, we give an alternative simpler algorithm for the general
model referred to as AS , which admits a direct analysis and attains the same competitive
ratio.

I Theorem 2. There exists a deterministic, polynomial time, (1+Á)-augmented O(k¸
2 log k)-

competitive algorithm for OBGR in the general model, for arbitrary constant Á > 0.

Our main result, given in Section 4, is a polynomial time deterministic (1 + Á)-augmented
O(k¸ log k)-competitive algorithm AG, for constant Á > 0; the competitive ratio nearly
matches the lower bound of �(k¸) without resource augmentation [16]. Under resource
augmentation, our algorithm is optimal for constant k while for constant ¸ it is within a
O(log k) factor of the optimal (following from the lower bound of �(k+¸ log k) in the resource
augmented setting). For many applications in which k is usually large (such as distributed
communication between nodes placed in cloud servers), our algorithms have near-linear
instead of an exponential [4] or quadratic [2] dependence on k in previous work.

I Theorem 3. There exists a deterministic, polynomial time (1 + Á)-augmented O(k¸ log k)-
competitive algorithm for OBGR in the general mode, for arbitrary constant Á > 0.

The algorithm of Theorem 3 is a “phase-based” algorithm in which each phase solves OBGR
in the learning model. The key component of our proof is an upper bound of O(–k¸ log k)
on the total cost of the algorithm in the learning model, starting from an arbitrary initial
assignment of vertices. It is natural to ask whether this bound can be improved since any
improvement would also yield an improved competitive ratio for OBGR in the general model.
The following lower bound, which can be derived from a lower bound instance of [12], rules
this out, thus presenting a limitation of a phase-based analysis approach.

I Theorem 4. For any online deterministic (resp., randomized) algorithm with (1 + Á)-
augmentation for the learning model where Á > 0 is an arbitrary constant, there exists a

sequence of requests for which the cost (resp., expected cost) is �(–k¸ log k).

1.3 Overview of techniques
We highlight the main techniques we use to get a significantly improved competitive ratio
for OBGR in the general model. Our algorithms partition the online sequence of requests
into contiguous phases, and keep track of the graph induced by the communication requests
within a phase. In particular, the algorithms ensure that during any phase all vertices in a
connected component of the graph associated with the phase are assigned to the same cluster.
On any request (u, v) where u is in component P1 and v in P2, P1 and P2 are merged into
Pm and subsequently co-located. Components are classified as small or large based on a
threshold size Dk where D = �(Á2).

For the algorithm AS , if Pm is large, we solve an ILP to guide the assignment of large
components. Small components may also need to be reassigned. If Pm is small, P1 is migrated
to P2’s cluster as long as there is enough space. If that is not possible, small components are
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reassigned. We ensure that the maximum assigned volume on any cluster is (1 + Á

4 )k after
the ILP is solved or small components are reassigned. By definition, large component merges
happen only O(1) times while at least Ák

4 total volume of small components is successfully
migrated between any two small component reassignments. Using a charging argument, we
show that every vertex can be charged at most O(¸ log k) before an optimal o�ine algorithm
incurs a cost of 1 during that phase, yielding Theorem 2.

The approach for algorithm AG is as follows. Each small component assigned to a cluster
is allocated a volume which is within a (1 + Á

4 ) factor of the component size. Once a large
component is created during a phase, successive assignments of large components created by
any merge are handled by ILP used in AS . We note that our ILP is similar to that of [12]
and we follow their approach to invoke a result on sensitivity analysis of ILPs [19], which
limits the change in assignments when a large component is created. This is not su�cient to
establish Theorem 3, however, since small components can be completely displaced leading
to high migration cost after every merge. Interestingly, we show that a simple “any fit”
strategy for small components coupled with a charging argument is su�cient to bound the
total migration cost by O(k¸ log k).

Finally, to establish the lower bound of Theorem 4, we show that for any competitive
algorithm A there exists a request sequence composed of �(log k) batches of requests and an
initial assignment which is �(k¸) far apart from A’s assignment such that A incurs cost at
least �(–k¸) on every batch.

2 Preliminaries

In this section, we present some definitions and high-level structure of our algorithms, which
will be useful throughout the paper. Let [n] denote the set of integers {1, 2, .., n}. Let V

denote the set of n = k¸ vertices. Let C denote the set of ¸ clusters. Each cluster C œ C
is initially assigned exactly k vertices. A request is an unordered pair of vertices (u, v). A
connected component Pi induced by a sequence of requests is the maximal set of vertices such
that for any u œ Pi there exists v œ Pi s.t. (u, v) was a request in the sequence. The volume
of any component Pi is its size |Pi|. Our algorithms maintain a set of connected components
P = {P1, P2, ..P|P|} where Pi ™ V for all i and

t
|P|

i=1 Pi = V . Initially, P = {{u}|u œ V } i.e.
the set of singleton vertices. We refer to a request (ut, vt) with ut œ P1 and vt œ P2 as an
inter-cluster request (between P1 and P2) if P1 and P2 are assigned to di�erent clusters at
the start of time t.

Large and small components

Both our algorithms organize components into classes based on their volumes. A component
P is in class i if |P | œ [(1 + Á

4 )i≠1
, (1 + Á

4 )i). A component is small if it belongs to a
class i where i Æ cs = Â 4

Á
ln( Á

2
k

32 ) ≠ 2Ê where cs denotes the number of small component
classes. Hence, a component is small if it has volume at most Dk where D <

Á
2

32 <
Á

4 and
large otherwise. Note that the number of large component classes, denoted by cl satisfies
cl Æ 4+Á

Á
ln( 1

D
) + 2 = O(1). A large component P is understood to be in (large) component

class i if it is in class i + cs. We assume Á Ø 4
k
. For any cluster C, we use V (C), VS(C),

and VL(C) to denote the total volume of all, small, and large components, assigned to C,
respectively.

ESA 2022
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Phase-based algorithms

Both our algorithms are phase-based: they divide the sequence of requests into phases, and
treat each phase as an independent sequence of requests.

I Definition 5 (Phase). A phase p of a sequence ‡ of requests is a maximal contiguous

subsequence of ‡ such that there exists a feasible assignment of the set of large components

induced by p to clusters in C satisfying the constraint that the total volume of large components

assigned to any cluster is at most (1 + Á

4 )k.

A request sequence can be naturally partitioned into consecutive phases. Our algorithms
begin a phase by setting P to the set of singletons and an assignment of vertices to clusters
such that every cluster C œ C is assigned exactly k vertices. For all phases p and all Pi œ P
where P is the set of components induced by p, vertices in Pi are assigned to the same cluster.
Note that OPT increases by 1 per phase. For the sake of exposition, we give our algorithms
for the case when – = 1. In Appendix B, we show that a simple refinement of our algorithms
handles the case when – > 1, without asymptotically a�ecting the competitive ratios.

Merge cases

After any request, (u, v) between components P1 and P2 (where w.l.o.g., |P1| Æ |P2|) which
are merged to form Pm, our algorithms consider two merge cases: small, when P1, P2 and
Pm are small, and large when Pm is large. A merge is viewed as a deletion of components
P1, P2 and an insertion of Pm.

3 An O(k¸
2

log k)-competitive algorithm

In this section, we present AS , an O(kl
2 log k)-competitive algorithm. The algorithmic and

analytic techniques developed play a key role in the improved algorithm AG of Section 4.
We describe how AS executes during any phase. Recall that for any inter-cluster

request, our algorithm considers two merge cases. For both the cases, AS calls subroutine
Balance-Small to migrate and re-assign small components. For the large merge case, AS

calls subroutine Reassign-Large to solve an integer linear program (ILP) and guide the
placement of large components. The ILP has a constant number of variables and constraints
and hence can be solved in constant time. To present the ILP, we first introduce the notion
of a signature, which encodes the number of large components of each class assigned to a
cluster.

I Definition 6 (Signature). A signature · = (·1, ·2, ..., ·cl) for a cluster C œ C is a non-

negative vector of dimension cl where ·i is the number of large components of class i that

can be assigned to C such that Dk
q

cl

i=1(1 + Á

4 )i≠1
·i Æ k.

I Lemma 7 (Upper bound on number of signatures). The number of possible signatures for

any cluster C is O(( 1
Á2 )cl).

Proof. Let · be a possible signature. Note that ·i Æ k

Dk
= O( 1

Á2 ) for all i œ [cl]. Therefore,
the total number of di�erent signatures is O(( 1

Á2 )cl). J

3.1 The ILP
We describe the ILP which is agnostic to the assignment of small components. Let T =
{T1, T2, . . . , } denote the set of all possible signatures where w.l.o.g., T1 is the all-zeroes
vector. Let Tij denote the j

th entry of signature Ti. From Lemma 7, |T | = O(1). For each
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signature, Ti let variable xi œ [0, ¸] denote the number of clusters assigned a signature Ti.
Furthermore, let Ÿj œ [0, Á ¸

D
Ë] denote the total number of class j large components. The ILP

is as follows.
|T |ÿ

i=1
Tijxi = Ÿj for all j

|T |ÿ

i=1
xi = ¸ xi œ [0, ¸] for all i (1)

In matrix form, the ILP has nr = O(ln(1/Á
2)) = O(1) rows and nc = O(|T |) = O(1) columns.

Thus, the ILP can be solved in polynomial time. The following lemma shows that the total
volume of large components assigned to any cluster never exceeds cluster capacities by more
than an Á

4 factor.

I Lemma 8 (Total volume of large components). Let · denote the assigned signature to

cluster C according to which large components are assigned to C. Then, VL(C) < (1 + Á

4 )k.

Proof. We note that VL(C) < (1 + Á

4 )Dk
q

cl

i=1(1 + Á

4 )i≠1
·i Æ (1 + Á

4 )k. J

Next, we give subroutines Balance-Small and Reassign-Large.

Algorithm Balance-Small.

1: for each cluster C œ C s.t. V (C) > (1 + Á

4 )k:
2: while V (C) > (1 + Á

4 )k:
3: Migrate a small component P from C to C1 where C1 Ω arg min

C2œC

V (C2).

Algorithm Reassign-Large.

1: Solve ILP (1) to obtain solution x.
2: if ILP is infeasible: return NULL.
3: Unmark all clusters C œ C and all large components in P.
4: for i œ [|T |]:
5: for r œ [xi]:
6: Assign signature Ti to an unmarked cluster C, and mark C.
7: for j œ [cl]:
8: Assign an unmarked large component P of class j to C and mark P .
9: Migrate P , if necessary.

If large components are assigned according to the subroutine Reassign-Large, then
VL(C) Æ (1 + Á

4 )k for all C œ C which follows from Lemma 8. On the other hand, if
VL(c) Æ (1 + Á

4 )k for all C œ C and Balance-Small is run, V (C) Æ (1 + Á

4 )k thereafter. The
latter follows since D <

Á

4 and there always exists a cluster C1 such that V (C1) Æ k.

3.2 The algorithm
For a request (ut, vt) where ut œ P1, vt œ P2, the algorithm AS proceeds as follows.

Proof Theorem 2. We bound the total migration cost incurred by the algorithm AS during
a phase. For the large merge case, the migration cost is bounded by k¸. To pay for this cost,
we charge each vertex in Pm a cost at most ¸

D
. Every vertex can be charged O(c¸) times in

this manner within any phase, since a component size is bounded by k. For all k¸ vertices,
this gives a total charge of O( k¸

2

D
) = O(k¸

2).

ESA 2022
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Algorithm AS .
Input: Distinct components P1 and P2 in clusters C1 and C2, respectively; |P1| Æ |P2|

1: Merge P1 and P2 into Pm and update P, PS and PL accordingly.
2: if C1 ”= C2 :
3: if Pm is small: Û Small merge case
4: Assign Pm to C2.
5: if V (C2) Æ (1 + Á

2 )k: Migrate all vertices of P1 from C1 to C2.
6: else: Run Balance-Small.
7: else: Û Large merge Case
8: Run Reassign-Large.
9: if Reassign-Large returns NULL: Start a new phase.

10: else: Run Balance-Small.

For the small merge case, there are two cases. If V (C2) Æ (1 + Á

2 )k, then each vertex
in P1 is charged unit cost. Any vertex can be charged at most O(log k) in this way since
|Pm| Ø 2|P1| yielding a total charge of O(k¸ log k). If V (C2) > (1 + Á

2 )k the migration cost
incurred due to Balance-Small is at most k¸. Let X denote the set of vertices that migrated
to C2 since the last invocation of Balance-Small. Then, |X| >

Ák

4 . Each vertex in X is
charged 4¸

Á
. Note that any vertex can be a vertex can be included in such a set X only

O(log k) times before it is part of a large component. For all k¸ vertices, this charge sums to
O(k¸

2 log k

Á
). Thus, the total amount charged to all vertices during a phase is O(k¸

2 log k),
completing the proof of the theorem. J

4 An O(k¸ log k)-competitive algorithm

In this section, we present algorithm AG. A major shortcoming of AS is that a cost of
�(k¸

2) can be incurred for both small and large merge cases. For a large merge case, AG

addresses this by ensuring that the total volume O(k) large components migrated is O(k)
by employing a sensitivity analysis. The O(k¸ log k)-competitiveness of AG crucially hinges
on bounding the migration cost of small components after a large merge case by O(k). To
this end, we give a simple “any-fit” assignment procedure for small components. E�ectively,
the algorithm guarantees that the the total migration cost for both merge cases is O(|Pm|),
which can be charged to Pm. This yields the desired competitive ratio.

The pseudo code of Algorithm AG is given below. The algorithm executes as follows.
At any given time, the algorithm maintains the property that the volume assigned to every
class i component is given by (1 + Á

4 )i. Thus, the total assigned volume for a cluster C

overestimates the total volume of components assigned to C by a (1 + Á

4 ) factor. For the
large merge case, an ILP is solved to handle assignment of large components similarly to AS .
The assignment of large components is completely independent of small components. Thus,
the reassignment of large components can displace small components. A displacement of
small component P is viewed as a deletion and successive (re)insertion of P . In the next
section, we give a procedure to handle the large merge case and show that the total volume
of large components migrated is O(k) if Pm is large.

4.1 Handling large components
To handle the large merge case, we use ILP (1). Additionally, we employ a well known bound
on the sensitivity of optimal ILP solutions.
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Algorithm AG.
Input: Components P1 and P2 in clusters C1, C2 of class i, j respectively; i Æ j.

1: Merge P1 and P2 into Pm and update P, PS and PL respectively.
2: if Pm is large Û Large merge case (see Section 4.1)
3: Solve ILP(1).
4: Run algorithm Assign Signatures and let CÕ ™ C be the set of clusters whose

signatures changed.
5: for all C œ CÕ

6: for all P œ PS assigned to C

7: if U(C) < Á|P |Ë(1+ Á
4 )

8: Assign and migrate P to C3 œ C where U(C3) Ø Á|P |Ë(1+ Á
4 ).

9: U(C3) Ω U(C3) ≠ Á|P |Ë(1+ Á
4 ).

10: else
11: U(C) Ω U(C) ≠ Á|P |Ë(1+ Á

4 ). Û The assignment of P remains unchanged
12: else Û Small merge case (see Section 4.2)
13: if (1 + Á

4 )j Ø |P1| + |P2|
14: Migrate vertices of P1 to C2.
15: else
16: if U(C2) Ø (1 + Á

4 )m ≠ (1 + Á

4 )j

17: Migrate vertices of P1 to C2.
18: U(C2) Ω U(C2) ≠ (1 + Á

4 )m + (1 + Á

4 )j .
19: else
20: Migrate vertices of Pm to C3 where U(C3) Ø (1 + Á

4 )m.
21: U(C3) Ω U(C3) ≠ (1 + Á

4 )m.

I Theorem 9 (reproduced verbatim from [19]). Let A be an integral nr ◊ nc matrix, such that

each subdeterminant of A is at most � in absolute value; let b
Õ

and b” be column nr-vectors,

and let c be a row nc-vector. Suppose max{cx|Ax Æ b
Õ : x integral} and max{cx|Ax Æ b” :

x integral} are finite. Then for each optimum solution z
Õ

of the first maximum there exists an

optimum solution z” of the second maximum such that Îz
Õ ≠ z”Î

Œ
Æ nc�(Îb

Õ ≠ b”Î
Œ

+ 2).

Following the merge, the RHS vector in our ILP changes by at most 1 in the infinity
norm. To bound the sub-determinant, we use the Hadamard inequality to derive that
� Æ n

nc/2
c A

nc/2
max , where Amax denotes the maximum entry (in absolute value) of the constraint

matrix A. Each entry in the constraint matrix of our ILP has value either 1 or Tij so that
Amax Æ k

Dk
= O(1/Á

2). As a result, � = O((|T |/Á
2)|T |). Thus, the optimal solution to the

ILP changes by O(|T |�) in the infinity norm. Since x has dimension |T | the number of
signatures which change between any two optimal solutions is O(|T |2�).

Assigning signatures to clusters

Let x = (x1, ..., x|T |) denote the optimal solution obtained after solving the ILP. The
procedure Assign Signatures greedily assigns signatures to clusters. Following greedy
assignment of signatures, large components are migrated between clusters whose assigned
signatures changed to reflect new component assignments. The pseudo code is given as
follows.

I Lemma 10. The number of clusters whose assigned signatures change whenever a large

component is created is O(|T |2�) = O(1).
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Algorithm Assign Signatures.

1: Unmark all clusters C œ C.
2: CÕ Ω ÿ
3: for i = 1 to |T |:
4: zi = xi.
5: while zi ”= 0:
6: if there is an unmarked cluster C which has assigned signature Ti

7: Mark C.
8: else
9: Pick an arbitrary unmarked cluster C, assign it signature Ti.

10: Mark C and set CÕ Ω CÕ fi {C}.
11: zi Ω zi ≠ 1.
12: PCÕ Ω {P | P œ PL and P is assigned to some C œ CÕ}.
13: for C œ CÕ

Û Migrate large components to reflect the change in signature.
14: · Ω assigned signature of C.
15: for i œ [cl]
16: for j œ [·i]
17: P Ω class i component in PCÕ .
18: Assign P to C and migrate if necessary.
19: PCÕ Ω PCÕ\{P}.

U(C) Ω (1 + Á)k ≠ AL(C).

Proof. The greedy procedure ensures that at most O(|T |�) clusters previously assigned
a signature Ti for i œ [|T |] are subsequently assigned a new signature. Thus, at most
O(|T |2�) = O(1) clusters change their assigned signatures. J

4.2 Handling small components

In this section, we give a simple procedure to assign small components. This procedure is
used for both small and large merge cases. In the latter case, small components may need to
be re-assigned due to displacements following a re-assignment of large components. Each
small component P of class i is allocated volume exactly (1 + ‘

4 )i on a cluster to which it
is assigned, i.e. the allocated volume of a component is equal to Á|P |Ë(1+ ‘

4 ) where ÁxË(1+ ‘
4 )

denotes the value x rounded up to the nearest multiple of (1+ ‘

4 ). We introduce some notation.
Let AL(C) and AS(C) denote volume allocated to large and small components respectively
on a cluster C œ C. Let PS(C), PL(C) ™ PS denote the set of small and large components
respectively assigned to a cluster C. Note that AL(C) = Dk

q
cl

i=1 ·i(1 + ‘

4 )i where · is the
signature assigned to C. If P does not have any large components, then AL(C) = 0 for all
C œ C. Moreover, AS(C) =

q
P œPS(C)Á|P |Ë1+ ‘

4
. We define the unallocated volume U(C) of

cluster C œ C as U(C) = (1 + ‘)k ≠ AL(C) ≠ AS(C).

A small component P of class i which is currently unassigned, is assigned to an arbitrary
cluster C whose unallocated volume U(C) is greater than (1 + ‘

4 )i. Note that such a cluster
C must always exist since otherwise this implies that the total volume of components exceeds
kl, a contradiction. Below, we outline the assignment of small components.
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Small merge case

Consider the small merge case in which components P1 and P2 of class i (resp. j) currently
assigned to C1 (resp. C2) are merged into Pm of class m. W.l.o.g., let i Æ j. If (1 + ‘

4 )j Ø
|P1| + |P2|, vertices of P1 are migrated to C2. In this case, m = j. On the other hand, if
m ”= j there are two cases to consider. If U(C2) Ø (1 + ‘

4 )m ≠ (1 + ‘

4 )j then vertices of P1 are
migrated to C2. Else, vertices in P1 fi P2 are migrated to cluster C3 where U(C3) Ø (1 + ‘

4 )m.
In all cases, Pm is allocated a volume of (1 + ‘

4 )m.

Handling displacements

Consider the large merge case in which re-assignment of large components may displace small
components. Each small component P assigned to a cluster C whose signature changes after
a large merge is assigned to a cluster C

Õ where U(C Õ) Ø (1 + ‘

4 )i. Since only O(1) clusters
change signatures, the total volume of small components displaced is bounded by O(k).

Proof of Theorem 3. The migration cost of large and small merge cases is analyzed sep-
arately. For the large merge case, it follows by Lemma 10 that the total volume of large
components migrated is O(k), since the assigned signatures change for only O(1) clusters.
Let CÕ ™ C denote the set of clusters whose signatures changed. The total volume of small
components assigned to CÕ is bounded by O(k). As a result, the total migration cost to
reassign both small and large components is O(k) which is charged uniformly to all vertices
in Pm. Since Pm is large, each vertex in Pm is charged O(1). Noting that the number of
large component classes, c¸ = O(1), the total amount charged to all vertices during the time
they are part of large components is bounded by O(k¸).

For the small merge case involving components P1 and P2 (assigned to C1 and C2
respectively), we consider two types of charges. If U(C2) is su�cient, vertices of the smaller
component P1 are migrated to C2, and the migration cost of |P1| is charged to vertices in P1.
Each vertex can be charged O(log k) many times in this manner before it is part of a large
component. For all vertices, this type of charge amounts to O(k¸ log k). On the other hand,
if U(C2) is insu�cient and vertices in P1 fi P2 are migrated, the migration cost of O(|Pm|) is
charged to all vertices in Pm. However, in this case m > j. Since cs = O(log k), the total
charge of this type for all vertices across the phase is O(k¸ log k).

As a result, the total migration cost during a phase for both small and large cases during
any phase is bounded by O(k¸ log k). J

5 Lower bound for the learning model with arbitrary assignment

In this section, we give a lower bound for any deterministic or randomized algorithm for the
learning problem in which the initial assignment of vertices by an o�ine-optimal algorithm
AOP T and an online algorithm can be arbitrary. Our argument follows an approach implicit
in an �(log k) lower bound established in [12] for randomized OBGR in the learning model.

Let �A = (V1, V2, ..., V¸) , where Vi ™ V and |Vi| = k for all i œ [¸] denote an initial
assignment of vertices to clusters that an algorithm A begins with. The initial assignment
of vertices that the algorithm AOP T begins with is analogously defined and denoted by
�Õ

OPT
= (V Õ

1 , V
Õ

2 , ..., V
Õ

¸
). Let fi : [¸] æ [¸] denote a permutation of integers in [¸] and �

denote the set of all such permutations. Define d(�A, �OP T ) = min
fiœ�

q
¸

i=1 |Vfi(i)\V
Õ

fi(i)| as
the initial distance between vertex assignments that A and AOP T begin with respectively.
Note that d(�A, �OP T ) Æ kl. In the learning problem with arbitrary assignments, the initial
distance can be arbitrary. We prove the following result.
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I Theorem 4. For any online deterministic (resp., randomized) algorithm with (1 + Á)-
augmentation for the learning model where Á > 0 is an arbitrary constant, there exists a

sequence of requests for which the cost (resp., expected cost) is �(–k¸ log k).

Proof. Let A denote an algorithm that begins with an initial assignment �A. We show that
there exists an assignment �OPT satisfying d(�A, �OP T ) = �(kl) such that A incurs at least
�(kl log k) while AOP T incurs no cost. The idea is to construct a sequence ‡ composed of
batches Bj of requests for j = �(log k) such that A incurs cost �(kl) on each batch. For the
sake of the proof, let k be a power of 2. We assume ‘ < ¸ ≠ 1 is a constant and l Ø 2.

We give some terminology which will be useful. Let Pi denote the set of components
induced by the set of requests fii

j=1Bj . Within any batch, we define a saturating sequence
of requests between components P1 and P2 as a sequence of requests of the form (u, v)
where u œ P1, v œ P2 for vertices u and v which are not currently co-located by A. By
definition a saturating sequence of requests terminates once P1 and P2 are co-located by A.
Let C0 = {{u}|u œ V denote the set of singletons before A services the first request.

For the first batch of requests B1, each singleton component {u} is paired with another
component {v} such that u and v are not co-located by A under the initial assignment �A.
For all such pairs {u}, {v}, B1 consists of the union of all saturating sequence of requests
between {u} and {v} until they are co-located. If at any point in time while the current batch
of requests is being served, A does not co-locate any pair of components P1, P2, a saturating
sequence of requests is issued between P1 and P2. Observe that for A to be competitive, A
must co-locate all request pairs. Moreover, P1 consists of k¸

2 components of size 2.
For any batch Bj for j > 1, we proceed similarly. Each component P of size k

2j≠1 is
paired with another component Q such that P and Q are not co-located by A before any
request in batch Bj is issued. Thereafter, for all pairs of components P and Q, a saturating
sequence of requests is issued. Once all pairs have been co-located, the next batch of requests
Bj+1 is served.

Note that since requests are issued between only two components of similar size with
size less than k at any given time, there exists an assignment �OPT = (V Õ

1 , V
Õ

2 , ...., V
Õ

k
) which

satisfies that for any u, v œ V
Õ

i
for all i œ [¸], no request of the form (u, v) was included in ‡.

Thus, AOP T incurs zero cost.
On the other hand, the migration cost incurred by A on any batch of requests Bj is

�(k¸). To this end, note that for all j œ [log k], Pj≠1 consists of exactly k¸

2j≠1 components,
each of size 2j≠1. At any point where batch Bj is issued, A utilizes at least k¸

(1+‘)k
= �(¸)

clusters to assign components. Thus, there exist �( k¸

2j≠1 ) pairs of components that are not
co-located by A and communication requests during batch Bj necessitate migration of at
�( k¸

2j≠1 ) components each of size 2j≠1. Thus, the total migration cost incurred by A to
service Bj is �(–k¸). For all �(log k) batches, this amounts to �(–k¸ log k).

A similar approach can be employed to construct a probability distribution over re-
quest sequences for which every deterministic algorithm incurs an expected cost of at least
�(–k¸ log k). From Yao’s minimax principle [23], this yields a lower bound on the expected
cost of any randomized algorithm. The distribution of requests is as follows. As above, the
sequence proceeds in batches. The probability distribution for a batch is dependent on the
components constructed in the preceding batch. For every batch Bj , two components P

and Q of size 2j≠1 are selected at random. Next, all possible requests are issued between
vertices in P (resp. Q) and repeated �(–) times. Then, requests of the form (u, v) where
u œ P, v œ Q are issued for all possible u, v and repeated �(–) times. This is repeated for
batch Bj until there are no components of size 2j≠1. It can be shown that for any batch
the expected total cost for any deterministic algorithm is �(–k¸). Since there are �(log k)
batches, this yields the desired �(–k¸ log k) lower bound, thus completing the proof. J
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A From learning to the general model

I Observation 1. Any fl-competitive algorithm for OBGR in the learning model can be

transformed to a O(flk¸)-competitive algorithm for OBGR in the general model.

Proof. We give an a flkl-competitive algorithm A for OBGR in the general model using the
fl-competitive algorithm AL as a subroutine. We say an assignment � : V æ C is perfect if
every cluster is assigned exactly k vertices. The algorithm partitions the request sequence into
phases, and treats each phase as an independent sequence of requests. Here, the definition of
a phase is slightly di�erent: phase p of ‡ is a maximal sub-sequence of requests such that
there exists a perfect assignment of vertices which satisfies the property that for all (u, v) œ p,
�(u) = �(v), i.e. u and v are assigned to the same cluster. Before a new phase begins, A sets
P to the set of singletons and migrates vertices so that every cluster has exactly k vertices.
During a phase p, A simply simulates AL; AL starts with the same assignment of vertices as
A at the beginning of p. Let AOP T denote an o�ine-optimal algorithm.

It is easy to observe that the cost incurred by AOP T increases by at least 1 in every
phase. We claim that A incurs a cost no more than flk¸. To this end, suppose A incurred a
cost more than flk¸. Consider an algorithm which an identical assignment of vertices as A at
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the beginning of phase p and immediately moves to a perfect assignment � of vertices such
that for any (u, v) œ p, �(u) = �(v) and incurs no cost thereafter throughout p. The cost of
this algorithm is at most k¸ which contradicts that AL is fl-competitive. J

B The case of general –

In this section, we show how to adapt our algorithms which were given for – = 1 to arbitrary
– without a degradation in the asymptotic competitive ratio.

I Theorem 11. Let A œ {AS , AG} denote a O(fl) competitive algorithm for OBGR for

– = 1, where fl = �(k¸ log k). Then, A can be modified to an O(fl) competitive algorithm

AM to handle the case of arbitrary –.

Proof. In the case of arbitrary –, merging of two components is beneficial only when su�cient
number of requests have been encountered between them. Let w(Pi, Pj) denote the number
of requests of the form (ut, vt) between components Pi and Pj where ut œ Pi, vt œ Pj during
a phase. AM initializes a phase by setting P to the set of singletons and w({u}, {v}) = 0
for all u, v œ V . For components Pi and Pj where w.l.o.g. |Pi| Æ |Pj |, AM merges them
into Pm when w(Pi, Pj) Ø –|Pi|. For every component Pr ”= Pi, Pj , w(Pm, Pr) is set to
w(Pi, Pr) + w(Pj , Pr). Due to this reason, it is possible Pr may become eligible to be merged
with Pm. A request (ut, vt) is special if it leads to one or more component merges.

During any phase, AM works as follows: on any request (ut, vt) between components Pi

and Pj it first increments w(Pi, Pj). Next, it determines whether the request is special. If it
is special, AM simulates A on this request. Note that if Pi ad Pj are in the same cluster,
then nothing needs to be done besides updating data structures and merging Pi and Pj into
Pm. However, if this makes a component Pr eligible to be merged with Pm, AM creates an
artificial request (uA

, v
A) where u

A œ Pm, v
A œ r and simulates the action of A on (uA

, v
A).

Recursive component merges are handled similarly. A phase of AM ends whenever a phase
of A ends. Note that requests to A only consist of special and artificial requests.

We bound the total communication and migration cost incurred by AM during a phase.
Since A incurs a cost of O(fl) per phase, the migration cost of AM is bounded by O(–fl). We
claim the communication cost per phase of AM is O(–k¸ log k). For this purpose, consider
charging any vertex in a small component Pi a cost of – whenever Pi is merged with Pj .
This is su�cient to bound the total communication cost, which is –|Pi| incurred due to
communication between vertices in Pi and Pj . Thus, every vertex is charged O(– log k) per
phase yielding a total communication cost of O(–k¸ log k).

To lower bound the cost of an optimal o�ine algorithm during the phase, note that either
it migrated a vertex or not. If a vertex was migrated during the phase, then OPT Ø –. On
the other hand, if no vertex was migrated, a communication cost of at least – must have
been incurred. To see why, note that at the termination of the phase, the ILP 1 solved by A
determines that no feasible solution exists. Each edge in the graph that A maintains during
the phase corresponds to at least – paid communication requests handled by AM . Thus, for
both cases OPT Ø – per phase.

This yields O(fl+k¸ log k) competitiveness. Since fl = �(k¸ log k), the theorem follows. J
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