IEEE TRANSACTIONS ON SMART GRID, VOL. 7. NO. 5, SEPTEMEER 216

2477

A Data-Driven Approach for Detection and
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Abstract—The number of photovoltaic (PV) systems in the elec-
tric grid is growing at an unprecedented speed. This is rapidly
transforming the ways in which the traditional distribution grid
is being planned and operated. A problem faced by utilities is
that, in many cases, the PY system installed does not correspond
to the size or type filed with the installation permit, or simply
the installation took place without a permit. In order to main-
tain grid reliability and safety, wtilities must be able to detect
and monitor all PV installations in their network. This paper
proposes a data-driven approach for the detection, verification,
and estimation of residential PV system installations. We use
a change-point detection algorithm to screen out abnormal energy
consumption behaviors including unauthorized PV installations,
Then the existence of the unauthorized PV installation is further
verified through a statistical inference known as permutation test
with Spearman’s rank coefficient., The proposed hypothesis test
takes the customer’s load profiles before and after the detected
change-point as inputs, which are estimated through Gaussian
kernel density method. Finally, the local cloud cover index is
integrated with smart meter measurements to estimate the size
of the PY system. The proposed method has been tested and
validated with actual smart meter measurements under several
seenarios.

Index Terms—Change-point  detection, Gaussian  kernel
smoothing, permutation test, parameter estimation, PV system,
Spearman’s rank coefficient.

I. INTRODUCTION

VARIETY of distributed energy resources (DER) such as
A photovoltaic (PV) systems, micro turbines, and electrical
vehicles (EV) are being connected to the grid [1]. According
to the Hawaiian Electric Company (HECO), in 2015 one in
eight of HECO's 450,000 customers has a residential PV sys-
lem. As the speed of residential PV adoption continues to
accelerate, in a high PV penetrative environment, utilities are
facing technical problems related to overvoltage, frequency
control, and back feeding flow [2], as well as issues such as
a rapid decrease in revenue. In order to manage these new
challenges, it is critical for utilities to gain visibility of all
plugged-in PV systems, especially at the residential level.

Unauthorized PV installations may create safety risks,
and lack of visibility may result in incorrect planning
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and operation, including over-voltages., back-feeding, and in
the worst case scenario, damaging system equipment such
as transformers, vollage regulators, as well as customer’s
appliances [3], [4]. In order to facilitate the adoption of resi-
dential PV systems and to minimize risks, utilities enforce reg-
ulations and permits for residential PV systems. In California,
Hawaii, and other states, it is required by law [5], [6] that
customers should obtain necessary permits from a permit
agency before any PV system installation. According 1o the
DOE’s report on smart grids 2014 [7], massive adoption of
PV systems will lower the utilities” revenue, which in return
increases the bill for non-solar customers. In Arizona, a fixed
charge for new customers who sign a contract with a solar
energy provider was recently implemented [8], which leads
to similar debate about solar interconnection fees in many
states.

There are various reasons for unauthorized or incorrectly
registered PV systems: a) Owner decided not to apply for
a permil (o avoid permil fees [9], b) Regulations were required
after the system was installed, c¢) Lack of awareness by
the owner of diverse permitting rules by country, state, city
and often zonal regulations, d) Different rules depending on
the size and type of PV installation can make the owners
believe they do not need a permit, e) Changes in property
ownership including transfers, f) Multiple systems installed
or future additions at the same premises, g) Incorrect third
party handling of the permit application, and h) Data entry
and data maintenance errors. In 2014 Hawaii, the system
with the highest penetration of PV in the US., recognized
a large number of unauthorized PV installations [3] and
prompted a specific program trying to reduce the number
of these systems. In North Belgium, the number of unau-
thorized PV systems has exceeded that of the PV system
installed under the local certificate due to the introduction
of the grid fee in 2013 [9]. This creates a serious prob-
lem for the operation and long-term planning of distribution
systems.

An effective and efficient PV system detection and esti-
mation algorithm can be proved (o be of significant services
to utilities for safety, reliability, and revenue reasons [10].
If not accurately modeled and managed, the fast adoption
of PV in the distribution system can pul the syslem secu-
rity and reliability at risk. Traditional distribution networks
are designed for one-directional power flow. High penetration
of PV can lead to reverse power flow along the distribution
feeders [11] and cause system protection failures. In addi-
tion, PV output is heavily influenced by sky cloud cover
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and can be highly variable, resulting in numerous energy
spikes, transient over-voltage [4] and increased transformer
tap-change operations,

Many researchers have studied the impacts and risks of
PV on distribution systems [12]-[17]. However, the detection
and monitoring of residential PV systems has not been the
focus of the studies and related research. This paper proposes
a data-driven approach to detect and monitor unauthorized and
misfiled PV systems by implementing advanced data mining
algorithms on smart meter data stream.

Thanks 10 the significant investment on smarl meters and
their related advanced metering infrastructures (AMI) in the
past few years, the database populated with smart meter mea-
surements is starting o play a very important role in utilities’
daily operations, such as enhanced load forecast [18], load
modeling, demand response, and load profiling [19], [20]. In
this paper, we show that the historical data collected by smart
meters can also help utilities detect unauthorized or misfiled
PV systems in order to enhance their customer models. Better
models and accurate databases result in significant operational
benefits 1o the utility. The proposed method consists of three
steps:

« Step I: Unauthorized PV system screening

» Step 2: PV system verification test

» Step 3: PV size estimation.

Due to computational efficiency, on the first step, we detect
energy consumption abnormalities among all customers using
a recenily developed change-point detection algorithm [21],
which returns the abnormalities as change-points in the energy
consumption time-series data. On the second step, we estimate
the typical load profiles (TLP) before and after the change-
point using Gaussian kernel density estimation, which filters
out noises that result from the customer’s random behaviors.
We construct a statistical inference using the permultation test
with Spearman’s rank coefficient to verify whether the change-
point is caused by an unauthorized PV installation. Once an
unauthorized PV installation has been confirmed by the statis-
tical inference, we further estimale the size (rated power) of the
detected PV system using the local cloud cover index (CCI).
CCT is a numerical measure of the fraction of the sky obscured
by clouds [22]. The proposed method has been validated
on realistic system data sets, where all load compo-
nents including PV outputs are recorded through separate
melers.

The rest of the paper is structured as follows: Section Il
formulates the mathematic model of the smart meter data as
well as the structure of the proposed 3-step method. Section 111
elaborates the adopted change-point detection algorithm based
on relative density-ratio estimation. Section IV shows how
to form the Gaussian-kernel-based TLP and construct sta-
tistical inference (o verify the existence of an unautho-
rized PV system. Section V discusses the strong correlation
between the PV output and local CCT and how to incorpo-
rate CCI for PV size estimation. Section VI shows a real
case study of the proposed method under three different
scenarios. Section VII concludes the paper and discusses
future research opportunitics on PV system detection and
estimation.
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II. PROBLEM FORMULATION

In this section, we discuss the organization of the smart
meter measurements used in this study and formulate the
residential PV delection problem as a combination of a
change-point detection problem, a statistical inference, and
a parameter estimation problem.

A. Smart Meter Time Series Dala

The data set used in this study corresponds to a set of
I 5-minutes-resolution smart meter readings from hundreds of
homeowners from a U.S. city, in 2013. Around 40 of these
homeowners have home solar systems installed, and the cor-
responding 15-minutes-resolution PV outputs for each house
are recorded through separate meters. The energy consump-
tion and PV output data from these 40 PV-equipped houses
are used in our study.

We model the smart meter historical readings as time series
streamed data, with the frequency of f readings per day (f =
96 in this study). Let v(fz ;) denote the ith reading for day d,
and let

D) = [¥(ta1) ¥(ta2) - ¥(tag) ] e (1)

denote the sequence of smart meter readings for day . We
batch the daily measurements into a data bundle Y(d) as in
equation (2), where the time window is k days. Then,

Y(d) = [D(d) D(d+1)---D(d+k—1)] e RE (2

corresponds to all the smart meter readings starting from day
d 1o day (d+k—1). The data bundle ¥ (d) is later used as input
for the change-point detection algorithm. This is illustrated in
Fig. 1, where the change-point detection algorithm compares
the differences between every two adjacent data bundles.

B. PV Detection Problem Formulation

The residential PV system installation detection can be for-
mulated as a change-point detection problem. Let us consider
a PV system installed at day (d+k). The PV energy output will
be reflected on the smart meter measurements of the customer.
As a result, the smart meter readings or the data bundles before
and after the PV installation date (e.g.. ¥ (d) and Y (d+k)) must
be dissimilar. We use Pearson divergence (PE divergence) to
measure the dissimilarity between two different data bundles
Y(d) and Y(d + k). see equation (3) [23]. The change-
point is detected based on the PE divergence score tested
on every adjacent pair of data bundles, as shown in Fig. 1.
Let us assume P and P’ to be the distribution of the data in
data bundles ¥ (d) and Y(d+k), then PE(P||FP') is the PE diver-
gence between distribution P and P, which can be computed

s 1
PE(P||P) = 5[;?’(?)(——

using (3).
2
¢ ) d}r‘\
pY)

where p(Y) and p'(Y) are the probability density functions of
the two distributions P and P'.

In order (o verily the existence of an unauthorized PV sys-
lem, we construct a hypothesis test based on the energy oulput

P o
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Fig. 1. Time series data formulation.

behaviors of a PV system. Finally, we determine the size of the
detected PV system by solving a parameter estimation problem
using the local weather information.

ITI. PV CHANGE-POINT DETECTION

A. Change-Point Detection

Change-point detection or change-poinl analysis is a pow-
erful tool used to detect abrupt changes in time series
data. This method has been widely applied in many
areas such as climate change [24]. image processing [25]
and financial economics [26]. Most change-point detection
methods can be categorized into two classes: real-time
detection and off-line detection. In this paper, we adopt
a recently developed off-line detection method that uses
relative density-ratio estimation to detect abnormalities in cus-
tomer energy consumption [21]. For a time series data set, the
change-point detection algorithm can detect various changes,
such as jumping mean, scaling variance, switching covariance,
or even varying frequency caused by PV installation.

B. Relative Density-Ratio Estimation

The change-point detection algorithm developed in [21] is
used in this paper due to its efficiency and non-parametric
nature. In equation (3), since the true p(¥) and p/(Y) are
unknown, the estimated densities p(¥) and jp'(¥) are used to
calculate the PE divergence. In the relative densily-ratio esti-
mation method, instead of estimating two distributions p(Y)
and j'(Y¥) respectively (a harder problem), we only estimate
one statistic, the density-ratio g(¥: #) = p(¥) ;‘f)’ (¥), through
Gaussian kernel model [27]

g(¥:0) = OK(Y.Y)),
=1

4

where # is an n dimensional parameter to be leamnt from
the data samples so that the PE divergence between p(Y)
and g(Y; 0)p'(Y) is minimized; and K(Y, ¥;) is the Gaussian
kernel function evaluated at ¥;.

After the density-ratio estimator g(Y) is compuled using
the estimated #, the PE divergence can be constructed as
equation (3) [15].

a2y Lyaryry L
PE = z’f;g(y}] + D R(Y)) -3 (5)

f=]
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I we consider the o-relative PE-divergence PE, for

0=« < 1, the symmetrized PE divergence is given as
PE,(PIF ) + PEL(P1P) (6)

where PEL(P||P') = PE(P||leP + (1 — @)P") and o is called
the “smoother™ as o gets larger [28].

According to Reference [21] the introduction of a rel-
alive density-ratio provides a solution for the unbounded
density-ratio for better estimation. The adopted density-ratio
estimation method is also known as relative unconstrained
least-squares importance fitting (RulSIF). Compared with
other change-point detection methods, RuLSIF has several
advantages for PV installation detection. First, RuLSIF is
parameter-free. We only need to control the time window
length k, as shown in equation (2). Second, RuLSIF esti-
mates one density-ratio instead of two density functions,
which is computational efficient and substantially easier [21].
Finally, RuLSIF is known for its optimal non-convergence
rate and robustness compared with other time-series-based
methods [21].

1V. PV DETECTION IDENTIFICATION

The change-point detection algorithm  discussed in
Section III can detect abnormalities in customer’s energy
consumption history caused by the PV installation. However,
other customer behaviors such as introducing a new EV or
a sudden drop of temperature will also cause abrupt energy
consumption abnormalities and thus be detected and marked
with a change-point. As a result, once an abnormality is
detected, a statistical inference must be constructed to further
verify whether the sudden change of customer behavior is
caused by the installation of a PV system.

A. Typical Load Profile

The typical load profile, which summarizes the customer’s
energy consumption pattern, plays a fundamental role in util-
ity’s daily operation. In this paper, we introduce a daily TLP to
compare a customer’s power consumption patterns before and
after the change-point. Let us assume the smart meter collects
[ readings per day. The daily TLP of a specific customer can
be represented by a vector Vrpr, € B, Given a time window
of n days, the TLP for the customer can be computed using
equation (7).

l n
Vip(D) = — ZD(f) c B, (7)
n =1

Due to the fact that most smart meters are installed at the
residential level, the random behaviors of homeowners may
cause spikes along their energy consumption history. These
spikes introduce significant noises to TLP estimation in equa-
tion (7). In order to filter out unnecessary noises, we use the
Gaussian kernel density method to estimate the TLP. Kernel
density estimation is a non-parametric algorithm originally
used for probability density function estimation. Since Ker-
nel density estimators asymplotically converge to any density
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Fig. 2. Gaussian kemel based TLP.

function with sufficient samples, it is a very general estima-
tion method [29] and is robust for a variety of TLP shapes.
Compared with simply taking the mean value in (7), Gaussian
kernel approach returns a much smoother TLP with less noise
and requires less space to store. In our study, the TLP curve is
ireated as a probability density function and Gaussian kernels
are used to estimate the TLP. The estimated density function
f(xy with m kernels can be computed by equation (8):

Foo =) wikx—x), (8)

i=1

where Kix —x;) = ?lzgexp(—%‘jﬁ] is the Gaussian prob-
ability density function with mean x; and variance o2, w; is
the weight of each Gaussian kernel that satisfies } " w; = 1.

Fig. 2 shows two TLPs of a customer before and after
a PV system was inslalled. The blue curves are TLPs com-
puted using equation (7). The red curves correspond to TLPs
smoothed by the Gaussian density estimation method. Tt is
clear that the Gaussian-shaped kemel serves o smooth out
the noises in TLE

B. Statistical Hypothesis Test With Spearman’s Rank

When an abnormal customer behavior is detected, it is cru-
cial for utilities to verify whether the abnormalily is caused
by a PV installation. Instead of issuing a field work order
and on-site inspection, we construct a TLP-based hypothesis
lest to verify the exisience of an unauthorized PV system.
Specifically, we construct the null hypothesis (Hp) as the
following statement: “There is no unauthorized PV system
installed by the customer” In other words, we generally
assume that there is no unauthorized PV installation unless
evidence strongly indicates otherwise.

Similar to a customer’s TLP, Vrp € B/, we define Vpy
B/ as a standard TLP of a local PV system. Vpy records the
standard daily energy output of the local PV systems with rated
power equals to 1 kW. Let AVyzp € R denote the difference
of TLPs before and afier the change-point. If the detected
change-point is caused by an unauthorized PV sysiem, we
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have AVyp = pVpy, where p is the size of the unauthorized
PV system. Otherwise, we will not be able to find a constant
p so that AVyp = pVpy is true.

Let us define
AV = X=(x1, X2, X3,....%f) )
Vey =Y = (y1, .33, ...7) (10)

Then, the original hypothesis test can be rephrased as:

Hp: X and ¥ are not positively correlated (an
Hy: X and Y are positively correlated

C. Spearman’s Rank and Permutation Test

Pearson product-moment correlation (Pearson’s r) and
Spearman’s rank correlation coefficient (Spearman’s rank) are
the most commonly used metrics (o quantify the correlation
between two variables X and Y [30]. However, the difference
between the two methods lies in that Pearson’s r assumes X
and ¥ are normally distributed, while Spearman’s rank does
not have any requirement on the distributions of X and Y.
In this paper, we adopt Spearman’s rank (r,) due to the fact
that the distribution of X and ¥ in (9) and (10) are not nor-
mal. The Spearman’s rank coeflicient between X and ¥ can
be computed using equation (12) [31].

6(3 d%)
n(n2—1)

ry—

(12)

where r; is the Spearman’s rank coefficient (—1 = ry; = 1).
When |ry| is close to 1, it indicates a strong linear relation-
ship between the two distributions, and 0 otherwise. n is the
number of (x;, ;) pairs in observation which, in our case,
n=f, and d; = x; — y;. Since r; quantifies the strength of the
correlation between X and ¥, an interpreting table developed
by Hinkle [31] is usually used for interpreting the physical
meaning of r; [32].

In our hypothesis test, since X and ¥ are not normally
distributed, we cannol use a f-lest (o acquire an accurale
p-value through the student distribution. Instead of using -
test, we adopt the permutation test. Permutation test (a.k.a.
randomization fest) is a very general approach (o lest a sta-
tistical hypothesis, where the distribution of the observations
under the null hypothesis need not be known to obtain the
p-value [33].

The existence of an unauthorized PV system will drive ry
close to 1. Hence, we can further rephrase the original null
hypothesis in (11) as Hyp:ry = 0. Next, we select a significance
level e and compule the p-value through the permultation test.
For f pairs of (x;,w) listed in (9-10), the total number of
permutation sets is 2 Let ry,i stand for the Spearman’s rank
coeflicient for permutation set m; and ryg for the observed
Spearman’s rank coefficient of permutation ;. Since we want
to test whether X and Y are positively correlated, the per-
mutation test is no longer a two-tailed test but an upper
tailed test. Therefore, the corresponding test procedure can
be decomposed using the following three steps:

Step | Generate all possible permutation sets [34]:

My, MRy e MMyf.
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Fig. 3.

PV output and corresponding CCls for 91 days.

Step 2 Compute the Spearman’s rank for all sets:

rx,l r!,z’ LR rs,ﬂ'

Step 3 Construct an empirical cumulative distribution [33]:

Y

2nzl(ral—r70}
i=1

(13)

Plrs =ren)

where p is the cumulative density function of the estimated
Spearman’s rank coefficient. 1(s) is an indicator function
which takes value 1 if statement s is true and 0 otherwise. In
practice, when the number of (x;, ;) pairs is generally large
(in our case f = 96), it is difficult to generate all possible 2/
permutations, As a result, bootstrap sampling must be imple-
mented. For the significance level of @ = 0.05, according to
Reference [33], 10,000 bootstrap samples are recommended.

Given a preset significance level @, we reject the null
hypothesis, if p = «. In other words, p = « indicates that
there is a very good chance the detected customer has an
unauthorized PV system installed.

V. PV BEHAVIOR ANALYSIS AND SIZE ESTIMATION

Among all PV parameters, the size or the rated power of the
PV system p, is the most important. However, as a parameter
estimation problem, a good estimation of p is difficult when
only smart meter measurements are available. This is because
the PV output is strongly affected by the weather condition
such as local solar irradiance and cloud cover. CCT obtained
from satellite images contains information on cloud amount
and their optical thickness [35]. To be more specific, CCI is
defined as an integer ranges from 0 to 8, where 0 stands for
clear-sky day and 8 stands for heavily clouded day.

In this section, we select a residential PV system and record
its output for 91 consecutive days, as shown in Fig. 3-1. The
local CCTs for the corresponding days are shown in Fig. 3-2.
We can see that on high CCI days, the PV output is generally
small, and vice versa. The correlation between the PV daily
output and the CCT is -0.8554, which indicates high linear
correlation between the two. This meets our expeclation that
more cloud in the sky leads to lower PV output.

2431

Boxplot of PV daily output for different CCI
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Fig. 4. Boxplot of PV daily output vs. local CCIL.

In order to visualize the correlation between CCI and PV
output, the boxplot (a.k.a. box and whisker diagram) of PV
daily output condition on the CCls is shown in Fig. 4 using
the previous data. According (o the boxplot definition [36], the
central red mark is the median, the edges of the box are the first
and third quartiles, and the red-cross stands for outliers, From
Fig. 4, we can see that the PV oulpul variance increases as
the CCl increases from 0 and decreases when CCl approaches
to 8. This phenomenon can be explained by the fact that when
CCI is in the middle range, the sky is partially covered by
cloud, and the passing of clouds above the solar panel may
lead to huge variance on PV output. In order to obtain an
accurate PV size estimation, only days with low CCT can be
used, where the PV output has small variance and is near (o
its rated output.

Let Dy and I; stand for the smart meter re_admgs before and
after the PV installation respectively. Let D, be an adjusted
D3 according to local CCls and radiance. For a specific day &,
D3(k) can be computed using (14).

Da(k) = Da(ky—pxpeer(k)x Vpy, (14)

where p is the size of the PV system, pocy(k) is the adjust-
ment coefficients related to the local CCI and radiance on
day k, which increases as CCl increases. In practice, pocy can
be estimated based on empirical distribution of PV output con-
dition on the local CCI. Then, the PV size estimation problem
becomes choosing the best constant p that minimizes (15).

min: |VizpD)—VpDy)| (15)
where Vyp(Dy) and Vn_p(f)gl__stand for the typical load
profiles computed using I}y and D;.

VI. REAL CASE ANALYSIS RESULTS

In this section, we investigate the performance of our
method on real data sets. The data contain a rich source of
disaggregated customer energy consumption. In order to show
the robusiness of the proposed method, a representalive subset
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Fig. 5. Change-point detection screening for an unauthorized PV installation.

of the data described in Section IT is used which includes three
distinet scenarios:
« Scenario 1: Customer A has installed an unauthorized PV
system;
» Scenario 2: Customer B has bought a new EV and
experienced a major weather change;
» Scenario 3: Customer C has no abnormal behavior.
We expect that our proposed algorithm will only identify the
customer A in scenario 1, where an unauthorized PV system
exists.

A. Change-Point Detection Screening

The proposed change-point detection algorithm will pick
up energy abnormality efficiently when historical smart meter
data are available. The real case study shows that only cus-
tomer C in scenario 3, who does not have any abnormal energy
consumption behaviors, can pass our change-point detection
screening.

« Scenario I: An unauthorized PV system is installed

In scenario 1, a smart meter monitored the aggregated power
consumption of customer A for Y1 consecutive days with
8736 measurements, as shown in Fig. 5-1. The negative values
in Fig. 5-1 stand for the PV system back [eeding to the grid.
The unauthorized PV system was installed on the 41th day
and the PV output is recorded by a separate meter as shown
in Fig. 5-2. The reading of this meler is invisible (o the local
utility.
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Change-point detection screening for a new EV and temparture

Given the parameter-free nature of RuLSIF, analysts only
need to determine the estimation window length & as in
equation (2). The performance of the change-point detection
algorithm relies on a proper choice of k. The algorithm takes
the aggregated data in Fig. 5-1 as inputs, and returns the PE
divergence scores in Fig. 5-3, Fig. 5-4 and Fig. 5-5, each with
a different time window length (2 days, 7 days and 14 days).
Due to the smart meter data structure formulated in equa-
tion (1) and (2), the algorithm will leave two blind detection
periods located at the beginning and the end of the time series
stream as shown in Fig. 54 and Fig. 5-5. The undetectable
period length equals to the length of the estimation window k.
In other words, the algorithm cannot detect newly installed PV
system uatil k days after the initial installation. From Fig. 5-3,
Fig. 5-4, and Fig. 5-5, we see that shorter estimation window
will enable the detection of some short term changes in the
customer behavior and also minimize the undetectable period
at the expense of lower index stability. However, the installa-
tion of a PV system is not likely to be a shorl-term activity,
a longer estimation window can increase the robusiness of
the algorithm. Compared with Fig. 5-4 and Fig. 5-5, Fig. 5-3
is generated with a much shorter time window and its PE
divergence score is less stable. Therefore, a balance must be
maintained when choosing a proper time window. In our study,
we set an appropriate estimation window length as 7 days.

« Scenario 2: A new EV and load fluctuations caused by

weather changes

In Scenario 2, no unauthorized PV is presented during the
91-day study period. However, a new EV was introduced at
the 51th day and the customer also experienced a sudden tem-
perature change at the 82th day. From Fig. 6, the change-point
detection algorithm picks up two change-points when the EV
was introduced and when the temperature fluctuated.

« Scenario 3: Customer without abnormal behaviors

In Scenario 3, there is no PV, EV introduction or huge tem-
perature fluctuations, as shown in Fig. 7. The change-point
detection algorithm does not pick up any significant change-
point and the PE divergence scores are consistently below 2.5.
As a result, the customer in scenario 3 passes our change-point
screening lest (no abnormality has been detected).

B. PV System Verification

On the previous siep, the only customer in scenario 3
passes the change-point screening test, which leaves us with
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Fig. 8 Gaussian kernel based typical load profiles.

customers A and B of scenarios 1 and 2. On the second step,
we use the statistical inference constructed in Section TV to
identify customers without unauthorized PV system, but fail
the screening test as in scenario 2. We first create the Gaussian
kernel based TLPs before and after each detected change-
point and compute their differences. Next, we conduct the
permutation test with Spearman’s rank coefficient to verify
the existence of an unauthorized PV system,

In this study, the standard local PV system output profile
Vpy is approximately estimated by taking the normalized out-
put of 40 local PV systems on a cloud free day, as shown in
Fig. 8-1. The AVyp for three change-points in scenario | and
scenario 2, as shown in Fig. 8-2, Fig. 8-3 and Fig. 84, are
computed using equation (7) and (8). In this study, we choose
10 days as the time window to create the TLPs. All the TLPs
shown in Fig. 8 are normalized and smoothed by Gaussian
kernel method.

Based on Fig. 8, we perform correlation strength analysis
between the standard PV output Vpy (Fig. 8-1) and AVyrpe of
each detected change-point (Fig. 8-2, Fig. 8-3, and Fig. 8-4).

SENSITIVITY ANALYSIS

Scaling Change-Point Detection | Permutation Test a = 0.05

Factor r |  Detection Goodness s pvalue
100% yes 0.3114 0.8351 3.9414e-26
90% yes 0.3186 0.8268 3.1698e-25
80% yes 0.3334 0.8169 3.4432e-24
T0% yes 0.3540 0.7985 1.9597e-22
60% yes 0.3833 0.7686 6.1399e-20
50% yes 0.4135 0.7197 1.4309e-16
A40% yes 0.4593 0.6297 6.2748e-12
0% yes 0.5568 0.4779 B8.4663e-07
20% yes 0.8000 0.2481 0.0148
10% no 1.5076 -0.0358 0.7291

TABLE I. lists the Pearson’s r and the Spearman’s rank coef-
ficient for each change-point. In TABLE I, only the customer
in scenario 1 returns high Pearson’s r and Spearman’s rank
coefficient which strongly indicates the existence of an unau-
thorized PV system. Moreover, with a choice of significance
level @ = 0.05, we only reject the null hypothesis in sce-
nario | where the p-value is much less than «. In scenario 2,
both the p-values for the EV case and lemperalure case are
much greater than «, which means we cannot reject our null
hypothesis: there is no unauthorized PV system installation
for customer B in scenario 2. After the verification siep, we
only accept the alternative hypothesis in scenario 1, where an
unauthorized PV system truly exists.

C. Algorithm Sensitivity Analysis

In order to test the robusiness of the proposed algorithm, we
perform a sensitivity study for both the change-point detection
algorithm and the statistical inference against the PV sys-
tem size. To achieve this, we need (o block all other factors
which may influence our result except the PV system size.
As a result, we pick the same customer with the fixed energy
consumption but manually scale the output of the PV system
from 100% to 10% of its original output. Let C be the energy
consumption of a house and 5 be the PV output from the home
solar system. V = C — r§ is the energy measurement visible
to us, where r is the PV size scaling factor ranges from 100%
to 10%, as shown in TABLE II. The goodness of the change-
point detection in TABLE 1T is a measurement used to quantify
how confident we are about the detection [21]. The smaller
the goodness value, the more reliable the detection result. No
change-point is detected if the goodness of the detection is
above 1. If we consider a significance level @ = 0.05, both
the detection algorithm and the statistical inference show great
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sensitivity. Both of them fail only in the case where we main-
tain the energy consumption of the customer and scale down
the PV system to 10% of its original size.

D. PV Size Estimation

The third step is estimaling the unauthorized PV sysiem
size. In Section V, we show that the PV output is strongly
correlated with the local CCI. For simplicity, we only choose
the PV output data when the local CCI is zero (clear sky days)
using equation (8) and (9). For a 5kW PV system, we get the
estimated PV size of 4.7912kW using the CCI information
(pccr is set as 1.07 according 1o the empirical PV output dis-
tribution condition on local CCI and irradiance). Without CCl
information, data with high CCT are also used, which leads to
a PV size estimation of 2.7771kW. In fact, due 1o the strong
correlation between PV output and CCI, it is almost impossible
to get an accurate PV size estimation without the local CCIL.

VII. CoNCLUSION

In this paper, we propose a dala-driven approach for resi-
dential PV detection, verification and estimation. The proposed
method consists of three steps. On the first step, the unau-
thorized PV installation events and other abnormal customer
behaviors are detected through change-point detection. On the
second step, permutation test based on Spearman’s rank coef-
ficient is constructed to verify the existence of an unauthorized
PV system. On the last step, the PV size is estimated with the
help of the local weather information. A study using realistic
data demonstrates the effectiveness and robustness of the pro-
posed method. In the future, we would like to expand our
detection and estimation to other critical load components,
such as EV and temperature related loads. The disaggrega-
tion and detection of these critical load components can be
proven to be beneficial for utilities to ensure safe and reliable
operations.
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