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Irregularity Detection in Output Power of
Distributed Energy Resources Using
PMU Data Analytics in Smart Grids

Younes Seyedi ¥, Houshang Karimi

Abstract—The output power of distributed energy re-
sources (DERs) may experience irregular fluctuations due
to variations of renewable sources, which need to be mon-
itored in order to reliably control the grid. This paper
proposes a novel approach for centralized detection of
such irregularities based on the time-series analysis of
the data reported by phasor measurement units (PMUs).
In this approach, a network controller constructs datasets
of time-aligned real/reactive powers for different zones. The
datasets are transformed into sequences of short-time local
outlier probability (ST-LOP) that are analyzed to identify the
DER events. The network controller estimates features such
as the average duration and the similarity degree that is a
measure of spatio-temporal correlation between the DER
events. As a use case, event-triggered control of solar pho-
tovoltaic (PV) systems with energy storage devices is inves-
tigated. The simulation results for the IEEE 123-bus network
corroborate the effectiveness of the developed analytics for
detection and mitigation of ramp-rate solar power fluctu-
ations. Smart microgrids and active distribution networks
can employ the developed analytics to improve a range of
diagnostic and control functionalities.

Index Terms—Energy storage, microgrids, photovoltaic
(PV) systems, power control, renewable energy sources,
smart grids.

|. INTRODUCTION

HE utilization of distributed energy resources (DERs) in

distribution grids and microgrids has been steadily increas-
ing [1]. DERs may include demand-response, energy storage,
and renewable sources such as solar photovoltaic (PV) and wind
energy [2]. As the penetration of DERS increases, the various
electric quantities in the grid experience new behavior at new
temporal and spatial scales. In particular, changes in energy
production must be followed more carefully by grid control
and coordination modules, in order to maintain a reliable sys-
tem [3]. Advanced sensors such as smart meters [4] and phasor
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measurement units (PMUs) [5] significantly contribute to the
development of modern grids. These specialized sensors rely
on communication’s infrastructure to deliver accurate and high-
resolution data to control and monitoring systems [6], [7].

It is known that the output power of DERs may experience
rapid and irregular fluctuations due to the variability of renew-
able sources. Hereinafter, these irregularities in the power gen-
eration are called DER events. The DER events are of particular
importance since, if not properly handled, they may jeopardize
the power quality and stability [8]. Moreover, they may lead to
significant voltage distortions [9], which in turn result in disrup-
tions and potentially outages. Hierarchical control applications
in smart microgrids may also require knowledge about such
DER events. Power fluctuations of DER systems in a microgrid
that operates in the islanded mode may result in loss of volt-
age/frequency stability. It is also known that DER events have
impacts on coordination of protective devices [10] and can af-
fect the performance of protection schemes [11]. In almost all
cases, the aforementioned DER events should be detected with
low latency.

DER event detection in smart grids has been investigated by
several researchers [12]-[17]. A data-driven method for moni-
toring of PV systems is proposed in [12], which verifies connec-
tion to grid of PV systems based on a change-point detection
approach. Ge et al. [13] address online identification of real
power events based on principal component analysis (PCA) of
synchrophasor data. Rafferty ef al. [14] propose a moving win-
dow PCA method under time-varying behavior of the power
system. Detection of real/reactive power events based on the
wavelet analysis of voltage and frequency data is studied in [15].
Negi et al. [16] propose an event detection method based on the
total energy content of the wavelet coefficients of the PMU data.
The wavelet-based methods can identify events such as gener-
ator trips that result in abrupt voltage/frequency transients. In
[17], the authors study time-series data analysis methods for
model-less event detection in distribution networks.

The previously discussed methods have the following lim-
itations. First, they aim at identifying critical events that can
create abrupt disturbances in voltage or frequency. They do not
consider moderate events such as power irregularities. Second,
the existing methods do not estimate the duration of the DER
events. Third, they do not provide a measure of the spatio-
temporal correlation between concurrent events that emanates
from renewable resource variability.
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This paper presents a novel approach for centralized detection
of DER events that overcomes the mentioned limitations. The
network is divided into different detection zones, where each
detection zone is associated with a DER system. The network
controller employs a set of PMUSs to construct local datasets
of real/reactive powers for a relatively short interval. The data
samples that are most likely affected by the events exhibit a
higher degree of outlierness with respect to their local datasets.
Based on this premise, the network controller identifies the DER
events by analyzing the sequences of short-time local outlier
probability (ST-LOP).

The main contributions of this paper are as follows.

1) By adopting the proposed approach, the DER events can
be detected irrespective of the detailed network model,
and the prior knowledge about the loads is not required.

2) Upon event detection, the signature sequences are ana-
lyzed to estimate the duration of events.

3) A meaningful parameter, namely, the interzone similar-
ity degree, is introduced with the aim of measuring the
spatio-temporal correlations between concurrent DER
events.

4) The proposed detection approach is combined with an
event-triggered control scheme to smooth out the PV
power events due to ramp-rate solar irradiance variations.

II. DATA ANALYTICS FOR EVENT DETECTION

Basically, data-driven methods rely on the analysis of a set of
measurements provided by sensors. Therefore, it is important to
have a proper mechanism for PMU data collection.

A. Data Collection

In general, the network can have several DER systems, and
it is necessary to avoid ambiguity in the event localization with
a limited number of PMUs. To this aim, the network is di-
vided into different detection zones such that each zone includes
only one DER. However, several dispersed loads may exist in
the zones and the PMUs are not necessarily installed at the
point of common coupling of the DERs. Suppose that the net-
work is divided into /N, detection zones. The detection zones
are denoted by z,, where the subscript n shows the index of
the zone

ne{l,2,... N.}.

As illustrated in Fig. 1, P, (t) and @, (¢) denote the total
instantaneous real and reactive powers that enter the nth zone
at the time instant ¢, respectively. P, (¢) and Q,, (¢) are basically
the algebraic sum of real and reactive powers generated by the
DER system and consumed by the dispersed loads in the zone
z, . These quantities are measured based on the synchrophasors
of voltage and current signals, as follows:

Pu(t) = Va (Lo () cos (av (t) —ér(®) (D
Qu(t) = Va®L®)sin (v () —er(1) @

Utility
g% grid
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Fig. 1. Generic illustration of the detection zones.

where V,,(t) and I, (t) are the instantaneous phasor magni-
tude of the voltage and current signals, respectively. ¢y (t)
and ¢;(t) are the instantaneous phase-angles (measured at
the fundamental frequency) of the voltage and current signals,
respectively.

The PMUs usually transmit the synchrophasors of volt-
age/current signals at a high rate (e.g., 30 samples/s) in order
to support multiple applications at the same time [7], [18]. It is
therefore plausible to utilize the high-rate PMU data for event
detection applications. Applications that are pertinent to faults,
e.g., networked protection schemes, are highly time-critical in
the sense that they require very fast data sampling [19]. Ap-
plications such as centralized DER monitoring are deemed less
stringent in terms of the sampling rate [3], [20]. Moreover, the
fluctuations in the output power of the DER systems can be
tolerated over relatively longer time. This observation implies
that the DER events can be detected at lower data rates without
compromising the network performance. To this aim, the pha-
sor data concentrator (PDC) uses a decimator to downsample
the received synchrophasors to a lower rate and then reports the
real/reactive power measurements.

The overall procedure for event detection and centralized
control of DERs is depicted in Fig. 2. The network controller
receives the decimated data from the PDC, and a triggering sig-
nal is issued upon detection of a DER event. The issued signal
triggers a centralized control application to improve the per-
formance of the entire network. The control application makes
decision about the proper commands that are sent to the DERs
via communication links. The control commands can be switch-
ing actions, change of DER parameters, real/reactive power set-
points, etc. The communications aspects for centralized control
applications in smart grids are well addressed in the literature,
e.g., [21].

In real-life networks, the PMUs may send low-quality or bad
synchrophasor data due to timing errors or loss of synchro-
nization. Recently, elaborate methods have been developed for

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 03,2022 at 21:52:59 UTC from IEEE Xplore. Restrictions apply.



2224

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 15, NO. 4, APRIL 2019

Network controller

PDC g
PMU 1 @ R &

1
Data | Ever}t Event :
2| collection I | Construction Peak analysis detection triggered

PMU 2 @ & s of local of ST-LOP control |1~ DER 2

) Decimation ' datasets sequence Ff':atur.e application | ! )

. — ' estimation > .

1 ;

PMU N, @ e : [3]pER N,

Fig. 2.

smart grids, which are capable of screening PMU data in real-
time with negligible processing delay [22]. Such methods can
be employed to build a preprocessing subsystem that can be
augmented to the overall system shown in Fig. 2. This new sub-
system can be placed before the PDC to detect and compensate
for bad PMU data. This increases the robustness of the network
controller and improves the reliability of event detection in the
presence of bad PMU data.

B. Short-Time Local Outlier Probabilities

Suppose that 7). denotes the reporting time (after the down-
sampling) of the power measurements. The power data reported
from the nth zone can be represented as discrete-time vectors

enq (KT7) ©

En, kTr
. l PG4T

where k shows the discrete-time index
ke{0,1,2,3,...}.

In (3), P, (kT,) and Q, (kT,) are the samples of P, (¢) and
Q.. (t), which are obtained at the time instant ¢ = k7., respec-
tively. €, p(.) and €, ¢ (.) denote the additive noise in the real
and reactive power data, respectively.

Equations (1) and (2) reveal that data noises &, p(.) and
en,(.) are essentially correlated with each other. Therefore,
en,p(.)and g, ¢(.) can be modeled as jointly Gaussian random
variables with zero mean and covariance matrix X5,

lsn,p(.)

~N(0,%,).

En,Q () ]

The covariance matrix of the data noise depends on the variance
of noise in measuring the synchrophasors of voltage and current
signals.

The local datasets are analyzed by the network controller
every 7p second, where 7p is the length of the detection inter-
val. Without loss of generality, it is assumed that the detection
interval is an integer multiple of the data reporting time, i.e.,

D :.N'DTT7 ND > 1. (4)

Overview of the proposed approach for event detection and centralized control of DER systems.

Hence, the th local dataset for the nth zone contains Np data
samples and is constructed as

Dn(i) = {Vn (ZND - ND)avn (ZND - Np + 1)7 -5 Vi
x (iNp — 1) }. )

The length of the detection interval affects the amount of
information that the network controller can extract from the local
datasets. A short detection interval can degrade the statistical
inference in each time window. Basically, the value of 7p should
be greater than the average duration of the DER events. The
reporting time controls the sampling resolution of the events
and should be determined based on the ramp-rate of the power
fluctuations. A typical value of 7, can be equal to the time
interval during which the output power varies by at least 10%
of the DERs’ capacity. The ramp-rate of the power fluctuations
is governed by the variation rate of the energy resources and the
inertia of the DER systems [23].

If a DER event occurs within the detection interval, then
some data samples exhibit a higher degree of outlierness with
respect to the local datasets. Therefore, once the local datasets
are determined, the network controller evaluates the degree
of outlierness for every data sample in the local datasets.
Algorithm 1 explains the procedure of finding the sequences of
ST-LOP, where (.)T denotes the transpose operator.

It should be noted that the network controller is capable of
receiving information from other monitoring systems based on
the IEC 61850 protocols [24]. For instance, supervisory control
and data acquisition, protective relays, and intelligent electronic
devices can share information with the network controller. These
systems send alarm messages when an abnormal condition is
observed in the network, e.g., fault, outage, overloading, etc. By
processing the messages sent from such systems, the network
controller can discriminate between outliers due to DER events
and outliers that stem from malfunctioning of other elements.

In step 1, the network controller constructs the context sets for
the data samples. In step 2, the standard distance is found as the
square root of the mean squared distance. The standard distance
of a data sample shows the density around that point based on its
context set. According to (9) in step 3, the estimated densities
are centered and normalized by the average of the densities
around all data samples that belong to the context set of a data
sample. Step 4 calculates the standard probabilistic outlier factor
by normalizing the short-term probabilistic local outlier factors.
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Algorithm 1: Outlier Analysis of Local Datasets.

Algorithm 2: Peak Analysis of the ST-LOP Sequence.

Forl1<n<N,,i>1,andiNp — Np <k <iNp —1:
1) Construct the context set for every data sample in the
local dataset D,, (4):

Co(i k") = {vn(k’) |vo (K) € Dy (), k' # K
iNp — Np <K, k' <iNp — 1}
(6)

2) Calculate the standard distance for every data sample in

the local dataset D, (7):
(i k) = [ (2 (k) | v () € i )
) ND — 1 — n 9 )

@)

where the distance between two data samples that belong
to the same local dataset is given by

4, (K, k") £ J (v (1) = v (1) (v (87) = v (k7))
@®)

3) Find the short-term probabilistic local outlier factor for
every data sample in D,, (4):

(Np — 1)d, (i, k")
S (d (i, k) | v (k') € Co (i, k”))

Yo (i, K'Y = —1

€))

4) Calculate the standard probabilistic local outlier factor:

iNp—1
1
) — _ 2 (L1 1" ;
wi) =\ 5= > (RE)va(k) € D))
k"=iNp —Np
(10)
5) Find the ST-LOPs for the data samples:
: Vu (i, k)
o (1, k) = max § 0, erf( ————— 11
ik =mox {o.er( 2 0T)) - an

In the last step, (11) yields the ST-LOPs, where erf(.) de-
notes the error function. The error function can be numerically
calculated based on the following expression:

2 €T 2

erf(x) ﬁ/o exp (—y°)dy. (12)

The parameter A in (11) represents the significance level in
the estimation of the degree of outlierness [25]. It should be
noted that the value of A does not affect ranking of DER events
for a given local dataset. Equation (11) maps the estimated
probabilistic local outlier factor into a number that lies in the
interval [0, 1]. Therefore, the degree of outlierness can also be
interpreted as the likelihood of being an outlier. If the value of
ST-LOP of a data sample is close to 0, then that data sample
belongs to a dense local dataset. An advantage of Algorithm 1

Given 1 <n < N., and 7 > 1: Initialize with
M’/!L (i) = M, (Z) =10
1) Update the index set M, (i) as

M, (i) = {k| 8. (i, k) > Bun,iNp — Np < k <iNp — 1}
(13)

2) If M, (i)| = 0, then terminate the algorithm.
Otherwise, find the index in M/, (¢) that yields the largest
ST-LOP:

knax = arg max. Bn (7;7 k) (14)

keM, (i)
3) Append k.« to the index set M, ().
4) Update M/, (i) by removing all indices that are within
7, s of the time instant k.. 7}, i.e., eliminate all indices
that satisfy the following inequality:

k= kmax|Th <76, k€ M. (3)

5) Go to step 2 and repeat the procedure for the largest
remaining ST-LOP and iterate until M/, (¢) runs out of
indices.

15)

is that it decreases the impact of the data noise on the detection
mechanism.

C. Event Detection: Analysis of the ST-LOP Sequence

Algorithm 1 maps the reported data vectors to a time-series
of scalar ST-LOPs. In realistic scenarios, however, the ST-
LOP sequences become random processes. The randomness
of ST-LOPs emanates from variations of the energy resource,
load changes, and the measurement noise. Hence, the ST-LOP
sequences should be further analyzed to distinguish between
irregular power fluctuations and other random phenomena.
Algorithm 2 explains event detection based on the peak analysis
of the ST-LOP sequences.

The presence of an irregularity in the output power of a DER
system adds a higher degree of outlierness to the data samples.
Based on this premise, it is concluded that larger peaks that
appear in the ST-LOP sequence are most likely produced by
the DER events. Moreover, the powers consumed by the loads
follow aregular trend or vary in a predictable manner over a short
time window [26], [27]. Therefore, lower scores are assigned
to the load changes within the detection interval, and the peak
analysis of the ST-LOP sequence distinguishes the DER events.
Robustness against the measurement noise is another advantage
of this method such that the events can be reliably detected when
the synchrophasor data are polluted by noise.

The core of Algorithm 2 is an iterative method that ensures
that legitimate events stand out due to their higher significance
relative to other points in the sequence of ST-LOP. In step 1,
the instantaneous values of the ST-LOP are compared with the
detection threshold, denoted by (Gy,. If the PMUs are installed in
a noisy place, then the data noise can rapidly change within the
detection interval. As a result, some of the local maxima in the
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Algorithm 3: Event Signature.

Given 1 <n < N, and ¢ > 1: Initialize the signature
function as S, (i, k) = 0, where the time index & maintains
iNp — Np <k <iNp — 1. Moreover, let H = M,, (4).
1) If |H| > 0, then go to step 2. Otherwise, terminate the

algorithm.
2) Choose k.« € H.
3) Find the smallest integer number u such that

ﬁn (ia kmax +m — 1) > ﬁn, (Za kmax + m)

holds for all m € {1,2,...,u}.
4) Find the smallest integer number [ such that

ﬁn (Za kmax —m + ]) > ﬁn (Z7 kmax - m)

holds for all m € {1,2,...,1}.
5) Update the signature function as:

S, (i, k) = max {5n (i, unax ), S (i, k)},

kmax -1 < k < kmax +u

(16)

7)

(13)

6) Remove £y, from H and go to step 1.

ST-LOP sequence may be very close to each other. In step 4,
the minimum separation time, denoted by 75, is used to filter
out spurious peaks, which are likely to be result of noise. If the
minimum separation time is very small, then false events may be
observed in the vicinity of a legitimate event that has the highest
degree of outlierness. The output of Algorithm 2 is the index
set M,, (2). This set consists of the time indices that are most
likely associated with legitimate DER events. Therefore, its car-
dinality, |M,, (i), gives the estimated number of DER events
within the th detection interval for the nth zone.

D. Estimation of Event Features

The network controller can obtain more information about
spatial and temporal features of the DER events by processing
of the ST-LOP sequences. From a network perspective, it is also
important to obtain knowledge about any correlations between
the DER events. To this end, a signature sequence, denoted by
S, is derived for the detection intervals. Algorithm 3 describes
the procedure of obtaining the signature sequence by means of
the index set M,,. If no event is detected during the detection
interval, then the signature sequence is an all-zero sequence
within that interval. The signature sequence becomes a piece-
wise constant sequence when at least one event is detected, i.e.,
when |M,,| > 0.

Suppose that at least one DER event is observed within the
ith detection interval. In Algorithm 3, ky, ., shows a time index,
which is selected from the set M,, (i). Basically, the ST-LOP
sequence has a local maxima at k = kyax.

In step 3, the network controller finds the time index at which
the DER event ends. The end of an event is equivalent to con-
secutive decrements of the ST-LOPs after k.. In step 4, the
network controller finds the time index at which the DER event
begins. The beginning of an event is equivalent to consecutive

increments of the ST-LOPs before k,,, . Accordingly, the esti-
mated time interval, which is probabilistically associated with
the event, is [(kmax — )t, (kmax + ©)t], where v and [ are found
in steps 3 and 4, respectively. The signature sequence is updated
in step 5. The value of the signature sequence is equal to the ST-
LOP at the time index k = k... If the intervals of two events
overlap, then the largest ST-LOP is used to update the signature
sequence at the common indices. This procedure is repeated
until all of the time indices in M,, (i) are processed.

In some cases, there may be multiple events within a detec-
tion interval. Under such circumstances, the average duration of
events, denoted by 7, (), is estimated by the normalized sum
of durations of the subintervals in which the event signature is
nonzero, i.e.,

iNp—Np
T .
T (1) = M, @ k:%,l sgn(Sn (z,k)) (19)

where sgn(.) stands for the sign function. The value of 7,, helps
the network controller with estimating the amount of energy
fluctuations. If the DER systems are driven by renewable re-
sources, then monitoring and analysis of 7, can facilitate design
of energy storage devices for counteracting resource fluctua-
tions.

Utilization of renewable energy resources results in a ran-
dom degree of spatio-temporal correlation between DER sys-
tems [28]. Under such circumstances, DER events with similar
features can be observed in two or more zones. The interzone
similarity degree is a qualified metric that measures the similar-
ity between the DER events that occur in different zones. The
similarity degree for the zones z,, and z,, can be described by
the following parameter:

25N N S, (6, k) S (i, )

Fn m i) = T = .
0 Loy 82 (i k) + 82, (i, k) 0

The similarity degree lies in the interval [0, 1]. A small similarity
degree implies low spatio-temporal correlation between DER
events.

According to (20), the similarity degree becomes zero in ei-
ther of the following cases. First, at least one zone does not indi-
cate any event during the detection interval, i.e., when the event
signature of the zone is all-zero sequence. Second, the zones
indicate events that are temporally independent, i.e., when the
event signatures do not overlap. The similarity degree becomes
unity when the two zones indicate DER events with identical
signature sequences. An advantage of the signature sequences
is that they filter out fluctuations due to load changes and mea-
surement noise. Hence, I, ,,, can be interpreted as a meaningful
measure of the spatio-temporal correlation between DER events
that occur in the zones z,, and z,,.

I1l. USE CASE: EVENT-TRIGGERED CONTROL
OF PV-BASED DERSs

The event detection approach proposed in Section II provides
a basis for event-triggered and centralized control of DERs in
smart distribution grids. An example of event-triggered control
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Fig. 3. Conceptual diagram of event-triggered control of DER systems

that utilize solar PV sources and storage devices.

of PV-based DER systems is illustrated in Fig. 3. The DER sys-
tems are equipped with energy storage devices that compensate
for shortage/surplus of energy during unexpected solar power
events. In this control mechanism, the network controller com-
municates with the DER systems whenever an event is detected.
The advantage of this event-triggered control scheme is that the
network controller can effectively mitigate voltage fluctuations
with minimal communications cost.

As shown in Fig. 3, the output power of the DER system in
the zone z,, is given by [23]

P, per(k) = ny, (Pn,PV(k) + Pn,Es(k)>

where 7, shows the efficiency of the inverter, and P, py is
the power generated by the solar PV panel. P, gs denotes the
compensation power that is injected by the energy storage device
in the DER system. In order to mitigate the ramp-rate of the
solar PV power, the compensation power can be determined by
a moving average filtering method [29], [30].

Let W, (i) denote the size of the moving average window
for the ¢th detection interval. The instantaneous compensation
power is thus given by

21

W, (i)—1

_Pn,,PV(k) + Z

Jj=0

where iNp — Np < k <iNp — 1. The window size W), (i)
controls the smoothing effect in the ith detection interval.
Equation (22) points out that the network controller can de-
crease the power fluctuations by sending the proper values of
W, (i) to the DER systems. Algorithm 4 explains the proce-
dure for updating the parameters W,, based on the estimated
features of DER events, knowing that [a] shows the nearest
integer number greater than or equal to a.

The control mechanism begins with the initial window size
W, (1) and the fixed step size AW. If no event is detected,
then the network controller does not change the window size
for the next detection interval. Once at lease one DER event
is detected within the current detection interval, the network
controller increases the window size for the next interval to
further smooth the PV power fluctuations.

When a given zone indicates events, the increase in the win-
dow size is proportional to the number of events within the
current detection interval, according to (24). If the given zone
does not indicate any event but the other zones indicate events,
then the history of spatio-temporal correlations between DER

P, pv(k —j)

PVL,ES(k) = Wn (Z)

(22)

Algorithm 4: Procedure of Updating Moving Average
Window.

Given W, (1), step size AW, and ¢ > 1:
1) Find the set of zones that have indicated at least one
event:

NGy = {nl 1M, )| > 0}
2) If IN(4)| = 0, then set

(23)

W, (i+1) =W, (i), for1 <n < N.. Otherwise, go to
step 3.
3) For every m € N (i) set

Wi, (7' + 1) =W (Z) + ‘Mm ('L)|AVV7 (24)
and for every m’ ¢ N (i) set the parameters
Wm’(l+ 1) ’V Z Zrm m' —‘AW

meN (i) j
(25)

HIf W, (i + 1) # W, (i), then send W, (i + 1) to the
DER system in zone z,.

Zone 23."'»._ >

Zone z;

Utility MU
grid 1 + o ) 6 e
;
Fig. 4. |EEE 123-bus distribution network with three PV-based DER

systems and PMUs.

events is used for updating the window size. In such cases, the
increase in the window size is determined based on the sum of
the similarity degrees over the past detection intervals, as given
by (25). An advantage of using (25) is that the network controller
accounts for the DER events that are not directly observed, and
therefore, more resource fluctuations can be suppressed in the
zone of interest.

IV. SIMULATION RESULTS

Identification of DER events is investigated in the IEEE
123-bus distribution network with single-line diagram depicted
in Fig. 4. As shown in Fig. 4, the network is divided into three
zones, i.e., N, = 3 and each zone includes a PV-based DER
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system. Unless otherwise stated, the following simulation pa-
rameters are used: data reporting time 7, = 1 s, the length of the
detection interval 7p = 300 s, the event threshold 3y, = 0.9, the
minimum separation time 7, = 10 s, and the significance level
X = 2. Itis assumed that the PMUs have identical noise covari-
ances as

0.1 0.02
0.02 0.1

n

, n=1,2,3.

It should be noted that the variances of ¢, p(.) and &, ¢ (.) are
given in kW? and kVAr?, respectively.

A. Implementation of the Proposed Approach

The electrical components of the network including the lines,
loads, PMUs, and DERs are implemented in EMTP-RV [31].
EMTP-RYV simulates realistic behavior of the network with time-
varying loads and solar power generation. The PDC and the
network controller are implemented in MATLAB modules that
carry out data gathering, event detection, and centralized con-
trol functionalities. The MATLAB modules are interfaced with
EMTP-RV for bidirectional transfer of data and control com-
mands in real-time.

B. PV-Based DER Systems

The inverters in DER systems operate under unity power fac-
tor at the full efficiency and are locally controlled based on
realistic solar irradiance profiles, which are measured during
a day in Varennes, Quebec [32]. The subsecond resolution of
the solar irradiance allows for realistic simulation of ramp-rate
DER events due to moving clouds and shadowing of objects.
This methodology ensures that the spatial and temporal char-
acteristics of energy resources are taken into account and thus
event identification is assessed under realistic conditions.

Two solar irradiance profiles are adopted in
simulations [32].

1) Variable profile: The solar irradiance is measured on a
winter day in February. In this case, the energy resource
incurs remarkable fluctuations due to shadowing of inter-
mittent clouds in the sky.

2) Highly variable profile: The solar irradiance is measured
on a summer day in July and incurs significant and rapid
fluctuations over the time. Fig. 5(a) and (b) shows the
time-series of the generated power by solar PV resources
in each daily scenario.

the

C. Simulation of Loads

The simulation parameters that describe the loads are given
in Table I. The loads are modeled by determining the mean
value and the range of variations of the consumed power within
an interval of length 7p. In order to simulate loads in a real-
istic manner, the simulator varies real/reactive powers of the
loads using random walk processes [26]. The mean values of
real/reactive powers are determined based on static power flow
simulation of IEEE 123-bus network. The range of powers are
chosen such that the loads exhibit different temporal properties
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Fig. 5. Daily solar power profiles. (a) Variable solar power. (b) Highly

variable solar power.

TABLE |
PARAMETERS OF THE LOADS IN THE TEST NETWORK

[ | Zone z1 [ Zone zo | Zone z3 |

Number of loads within the zone 18 10 8
Mean of the real power (kW) 760 323 282
Mean of the reactive power (kVAr) -365 162 141
Range of the real power (kW) 20 10 5
Range of the reactive power (kVAr) 10 4 1

within the detection interval. The largest load change is assigned
to the zone z; as this zone has the highest range of consumed
power.

D. Numerical Results and Discussions

The results shown in Fig. 6 demonstrate the impact of the
reporting time after downsampling of the synchrophasors by
the PDC. Fig. 6(a) shows the output power of the DER system
of the zone z, with the variable PV profile. The irregularity
begins at the time ¢ = 483 min and ends at ¢ = 483.3 min.
Fig. 6(b) and (c) shows the event signatures with 7, = 1 s and
T, = 0.5 s, respectively. It is evident that, 7, =1 s gives a
very good estimate of the event duration, whereas 7, = 0.5 s
misrepresents the event and the estimate is 13 s less than the
actual event duration. In this test, the magnitude of the power
does not change significantly during 0.5 s intervals. With T}, =
0.5 s, the DER event is partially masked by the severe noise
and consequently the estimated duration becomes less than the
actual event duration.

Fig. 7 shows the impact of the minimum separation time
on the event identification with the highly variable PV profile.
As shown in Fig. 7(a), DER 1 incurs two adjacent power fluc-
tuations in the detection interval [295,300] min. In this test,
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with 7, = 10 s, one event is detected with the signature shown
in Fig. 7(b). By decreasing the minimum separation time to
Ts = 5 s, two events are detected and the signature sequence
becomes broader, as shown in Fig. 7(c). The average duration
of events is estimated as 10 and 9 s for 7, = 10 and 74, =5 s,
respectively. The signature in Fig. 7(c) indicates that the events
in that occur within the interval [295,300] min are very similar
in terms of their features, i.e., magnitude and duration of the
power fluctuation.

synchrophasor.
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Fig.9. Detection of the power irregularity in the zone z3. (a) Sum of the

wavelet coefficients. (b) ST-LOP sequence and the corresponding event
signature give by Algorithm 3.

Fig. 8 demonstrates a DER event and the resulting syn-
chrophasors of the voltage signal for the zone z3. Fig. 9 compares
the detection results with respect to the DER event demonstrated
in Fig. 8. In this test, the PMU sends the synchrophasors to the
PDC at the rate 60 frames/s. The small-scale phase angle vari-
ations stem from the noise, the load changes in the zone z3,
as well as power generation/consumption in the other zones.
Moreover, the phase angle does not exhibit any transients dur-
ing the detection interval. The performance of the wavelet-based
methods (see [15] and [16]) is shown in Fig. 9(a). The vertical

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 03,2022 at 21:52:59 UTC from IEEE Xplore. Restrictions apply.



2230

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 15, NO. 4, APRIL 2019

120
1ot
100F

PV Power (kW)

(2)

RS
y ,»'-:#\’L%;,'“_'-v.i_\ P,
i e

PMU data (kW)
=)
(«)

U 'vh: 7 \‘\'.;%
_12(1) ‘ © ‘
: — zone z,
(15 05 L E - = . Z0ne Z2 |
o e zone Z3
1
1
0 al L dee e
240 241 242 © 243 244 245
C
Time (min)

Fig. 10.  Spatio-temporal correlation between DER events. (a) PV pow-
ers. (b) Real power data reported by PMUs after centering. (c) Signature
sequences.

axis in Fig. 9(a) represents the sum of the wavelet coefficients
for the phase angle data shown in Fig. 8(c). It is observed that
the energy of the wavelet coefficients remains trivial when the
event occurs. The ST-LOP sequence and the signature sequence
are depicted in Fig. 9(b). It is seen that the ST-LOP sequence
has a dominant peak, and thus, the power fluctuation is detected
with estimated duration of 31 s. The wavelet-based methods fail
to detect the event since abrupt transients do not exist in the
synchrophasors. These results validate the effectiveness of the
proposed approach and indicate its superiority over the previous
methods discussed in Section L.

Estimation of event features with the variable PV profile
is demonstrated in Fig. 10. Fig. 10(a) shows that the DER
systems incur a steep power drop around the time instant ¢ =
240.8 min. Fig. 10(b) shows the centered real power mea-
surements reported by the PMUs. As shown in Fig. 10(c),
the signature sequences for the three zones overlap and
spatial correlation exists. The similarity degrees are found as
I'»=0.52,T3=0.69, and I'; 3 = 0.86. The large values of
the similarity degrees reveal that the DER systems incur power
dips with remarkable temporal correlation. In this test, the
average duration of events are estimated as: 7 =7 s, 7, = 10
s, and 73 = 11 s. The smallest magnitude of event signature
belongs to the zone z;, which is justified by the fact that the
loads in the zone z; vary in a large range. This result confirms
that the proposed method can properly identify DER events
even when the resource fluctuation is moderate.

Fig. 11(a)—(c) demonstrate the estimated number of DER
events over the time. In this simulation, the highly variable PV
profile is used and no energy storage device is employed by the
DER systems. As expected, multitude of ramp-rate events are
detected within the detection intervals during this cloudy day.
The highest number of DER events is observed in the zone z;,
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Fig. 11. Estimated number of DER events with the highly variable PV

profile. (a) Zone z;. (b) Zone 2z;. (c) Zone z3.
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Fig. 12.  Event-triggered control of the DER system in the zone z3 with

the variable PV profile. (a) Estimated number of events. (b) Size of the
moving average window.

where 98 events are detected with total average duration of 445 s.
The zones z; and z3 indicate 76 and 75 events, respectively.
However, the total average duration of events in the zones z;
and z3 are 423 and 452 s, respectively. It turns out that the
DER system in the zone z3 incurs longer events on average.
Specifically, the average duration of events in the zone z3 is
around 6 s. The results point out that some of the ramp-rate
solar power fluctuations may last up to several seconds.

The event-triggered control of the DER system in the zone
z3 1s investigated in Fig. 12. In this test, Algorithm 4 uses an
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initial window size of W3(1) = 1 and the step size AW = 60.
Fig. 12(a) and (b) shows that the network controller updates
the window size upon detection of solar power fluctuations.
Two events are detected in the zone z3; within the detection
interval [275,280] min. Hence, the window size jumps from
61 to 181 and the smoothing effect doubles. It is worth noting
that the window size increases at time instants 285, 305, and
360 min when the zone 23 does not indicate any event. The
rise in the window size in such cases stems from the nonzero
similarity degrees, which are estimated in the interval [275, 280)
min. This observation reveals that the network controller can
take advantage of the spatio-temporal correlations between DER
events in order to enhance centralized control applications.

Fig. 13 demonstrates the exchange of the real power between
the zone z3 and the rest of the network within the time interval
[200,400] min. Fig. 13(a) shows the real power measurements
when the window size is controlled by Algorithm 4, i.e., when
Wj is updated according to Fig. 12(b). As a result of controlling
the window size, the DER system in the zone z3 counteracts
ramp-rate events and thus the power exchange incurs less fluc-
tuations. The real power measurements when the DER system
lacks the compensation mechanism are shown in Fig. 13(b). The
comparison between Fig. 13(a) and (b) reveals that the network
controller can diminish the power fluctuations in terms of num-
ber and magnitude. This result corroborates the effectiveness of
the developed analytics for centralized control applications in
smart grids that incorporate renewable energy resources.

V. CONCLUSION

This paper presents a data analytics approach to centralized
detection of irregular resource fluctuations in smart distribution
networks and microgrids. The network is divided into different

detection zones, and each zone is associated with a PMU that
provides real and reactive power measurements. The power fluc-
tuations are detected and analyzed by processing the ST-LOP
sequences. Multiple DER events may occur in the network and
they can overlap each other. It is shown that the event signa-
tures can be used to estimate the average duration of events and
measure the spatio-temporal correlations between the events.
The proposed detection method can be combined with a control
strategy to smooth out ramp-rate power fluctuations and im-
prove power quality in the network. Simulations are carried out
for the IEEE 123-bus network that validate the effectiveness of
the proposed approach in event-triggered control of PV systems
with energy storage devices.
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