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Abstract

Stochastic bilevel optimization generalizes the
classic stochastic optimization from the mini-
mization of a single objective to the minimiza-
tion of an objective function that depends
on the solution of another optimization prob-
lem. Recently, bilevel optimization is regain-
ing popularity in emerging machine learning
applications such as hyper-parameter opti-
mization and model-agnostic meta learning.
To solve this class of optimization problems,
existing methods require either double-loop
or two-timescale updates, which are some-
times less efficient. This paper develops a new
optimization method for a class of stochas-
tic bilevel problems that we term Single-
Timescale stochAstic BiLevEl optimization
(STABLE) method. STABLE runs in a sin-
gle loop fashion, and uses a single-timescale
update with a fixed batch size. To achieve an
e-stationary point of the bilevel problem, STA-
BLE requires O(e~2) samples in total; and to
achieve an e-optimal solution in the strongly
convex case, STABLE requires O(e~!) sam-
ples. To the best of our knowledge, when
STABLE was proposed, it is the first bilevel
optimization algorithm achieving the same
order of sample complexity as SGD for single-
level stochastic optimization.

1 Introduction

In this paper, we consider solving the stochastic opti-
mization problems of the following form
min

min  F(z) = Ee [f (2, 5" (2); €)]

st y"(r) € argmin Egg(z,y;¢)]
y€ERY

(upper) (1a)
(lower) (1b)
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where f and g are differentiable functions; £ and ¢ are
random variables; and X C R? is closed and convex set.
The problem (1) is often referred to as the stochastic
bilevel problem, where the upper-level optimization
problem depends on the solution of the lower-level
optimization over y € R%, denoted as y*(x), which
depends on the value of upper-level variable x € X.

Bilevel optimization can be viewed as a generaliza-
tion of the classic two-stage stochastic programming
(Shapiro et al., 2009), in which the upper-level objective
function depends on the optimal lower-level objective
value rather than the lower-level solution. Earlier works
have studied applications in portfolio management and
game theory (Stackelberg, 1952); see two recent surveys
(Dempe and Zemkoho, 2020; Liu et al., 2021). Recently,
bilevel optimization has gained growing popularity in
a number of machine learning applications such as
meta-learning (Rajeswaran et al., 2019), reinforcement
learning (Konda and Borkar, 1999; Hong et al., 2020),
hyper-parameter optimization (Franceschi et al., 2018),
continual learning (Borsos et al., 2020), and image pro-
cessing (Kunisch and Pock, 2013). In some of these
applications, when the lower-level problem admits a
closed-form solution, bilevel optimization also reduces
to the recently studied stochastic compositional opti-
mization (Wang et al., 2017a; Ghadimi et al., 2020;
Chen et al., 2020).

Unlike single-level stochastic problems, algorithms tai-
lored for solving bilevel stochastic problems are much
less explored. This is partially because solving this class
of problems via traditional optimization techniques
faces a number of challenges. A key difficulty due to
the nested structure is that (stochastic) gradient, a
basic element in continuous optimization machinery, is
prohibitively expensive or even impossible to compute.
As we will show later, since computing an unbiased
stochastic gradient of F(z) requires solving the lower-
level problem once, running stochastic gradient descent
(SGD) on the upper-level problem essentially results
in a double-loop algorithm which uses an iterative al-
gorithm to solve the lower-level problem thousands or
even millions of times.
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Table 1: Sample complexity of several state-of-the-art algorithms (BSA in (Ghadimi and Wang, 2018), TTSA in
(Hong et al., 2020), stocBiO in (Ji et al., 2020)) to achieve an e-stationary point of F'(x) in the nonconvex setting
and an e-optimal solution of F'(z) in the strongly convex setting; the notation O(-) hides logarithmic terms of ¢!

STABLE BSA TTSA stocBiO
batch size o(1) O(1) O(1) O(e™)
# of loops Single Double Single Double
# of samples O(e=%)in ¢ (2(6_2) in ¢ 0(6_2 ®)in & (2(6_2) in ¢
(nonconvex) OEe?)ing | O ®)ing | O(e 2% in¢ | O(e2)in ¢
# of samples O Hine [ Oe)ing [ O ) in f
(strongly convex) O(eVing | O(e2)ing | O(e5) in /
complexity of y update O(d3) O(d2) O(d3) O(d3)

1.1 Prior art

To put our work in context, we review prior art that
we group in the following two categories.

Bilevel optimization. Bilevel optimization has a
long history in operations research, where the lower
level problem is served as the constraint of the up-
per level problem (Bracken and McGill, 1973; Ye and
Zhu, 1995; Vicente and Calamai, 1994; Colson et al.,
2007). Many recent efforts have been made to solve the
bilevel optimization problems. One successful approach
is to reformulate the bilevel problem as a single-level
problem by replacing the lower-level problem by its op-
timality conditions (Colson et al., 2007; Kunapuli et al.,
2008). Recently, gradient-based first-order methods for
bilevel optimization have gained popularity, where the
idea is to iteratively approximate the (stochastic) gra-
dient of the upper-level problem either in forward or
backward manner (Sabach and Shtern, 2017; Franceschi
et al., 2018; Shaban et al., 2019; Grazzi et al., 2020).
While most of these works assume the unique solution
of the lower-level problem, cases where this assumption
does not hold have been tackled in the recent work (Liu
et al., 2020). All these algorithms have excellent empir-
ical performance, but many of them either provide no
theoretical guarantees or only focus on the asymptotic
performance analysis.

The non-asymptotic analysis of bilevel optimization al-
gorithms has been recently studied in some pioneering
works, e.g., (Ghadimi and Wang, 2018; Hong et al.,
2020; Ji et al., 2020), just to name a few. In both
(Ghadimi and Wang, 2018; Ji et al., 2020), bilevel
stochastic optimization algorithms have been devel-
oped that run in a double-loop manner. To achieve
an e-stationary point, they only need the sample com-
plexity O(e~?) that is comparable to the complexity of
SGD for the single-level case. Recently, a single-loop
two-timescale stochastic approximation algorithm has
been developed in (Hong et al., 2020) for the bilevel

problem (1). Due to the nature of two-timescale update,
it incurs the sub-optimal sample complexity O(e=29).
Therefore, the existing single-loop solvers for bilevel
problems are significantly slower than those for prob-
lems without bilevel compositions, but otherwise share
many structures and properties.

Concurrent work. After our STABLE was developed
and released, its rate of convergence was improved to
O(e~*®) by momentum accelerations in (Khanduri
et al., 2021; Guo and Yang, 2021; Yang et al., 2021).
The adaptive gradient variant has been studied in
(Huang and Huang, 2021). Besides, a tighter analysis
for alternating stochastic gradient descent (ALSET)
method was proposed in (Chen et al., 2021). The con-
tributions compared to ALSET are: (a) ALSET uses
SGD on the lower level but STABLE has a correc-
tion term, so STABLE has a reduced stochastic oracle
complexity; (b) STABLE can handle the constrained
upper-level problem using Moreau envelop.

Stochastic compositional optimization. When
the lower-level problem in (1b) admits a smooth closed-
form solution, the bilevel problem (1) reduces to
stochastic compositional optimization. Popular ap-
proaches tackling this class of problems use two se-
quences of variables being updated in two different
time scales (Wang et al., 2017a,b). However, the com-
plexity of (Wang et al., 2017a) and (Wang et al., 2017b)
is worse than O(e~2) of SGD for the non-compositional
case. Building upon recent variance-reduction tech-
niques, variance-reduced methods have been developed
to solve a special class of the stochastic compositional
problem with the finite-sum structure, e.g., (Lian et al.,
2017; Zhang and Xiao, 2019), but they usually operate
in a double-loop manner. Other related compositional
algorithms also include (Tran-Dinh et al., 2020; Hu
et al., 2020).

While most of existing algorithms rely on either two-
timescale or double-loop updates, the single-timescale
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single-loop approaches have been recently developed in
(Ghadimi et al., 2020; Chen et al., 2020), which achieve
the sample complexity O(e~2). These encouraging re-
cent results imply that solving stochastic compositional
optimization is nearly as easy as solving stochastic op-
timization.

Our work is also related to the stochastic min-max
optimization; see e.g., (Daskalakis and Panageas, 2018;
Luo et al., 2020; Rafique et al., 2021; Mokhtari et al.,
2020; Lin et al., 2020; Nouiched et al., 2019). How-
ever, whether the techniques used in compositional
and min-max optimization permeate to solving more
challenging bilevel problems remains unknown. This
paper is devoted to answering this question.

1.2 Owur contributions

To this end, this paper aims to develop a single-loop
single-timescale stochastic algorithm, which, for the
class of smooth bilevel problems, can match the sample
complexity of SGD for single-level stochastic optimiza-
tion problems. In the context of existing methods, our
contributions can be summarized as follows.

C1) We develop a new stochastic gradient estimator
tailored for a certain class of stochastic bilevel prob-
lems, which is motivated by an ODE analysis for the
corresponding continuous-time deterministic problems.
Our new stochastic bilevel gradient estimator is flexible
to combine with any existing stochastic optimization
algorithms for the single-level problems, and solve this
class of stochastic bilevel problems as sample-efficient
as single-level problems.

C2) When we combine this stochastic gradient estima-
tor with SGD for the upper-level update, we term it as
the Single-Timescale stochAstic BiLevEl optimization
(STABLE) method. In the nonconvex case, to achieve
e-stationary point of (1), STABLE only requires O(e~2)
samples in total. In the strongly convex case, to achieve
e-optimal solution of (1), STABLE only requires O(e™ 1)
samples. This is achieved by designing a new Lyapunov
function. To the best of our knowledge, when STABLE
was proposed, it is the first bilevel algorithm achieving
the order of sample complexity as SGD. See the sample
complexity of state-of-the-art algorithms in Table 1.

Trade-off and limitations. While our new bilevel
algorithm significantly improves the sample complexity
of existing algorithms, it pays the price of additional
computation per iteration. Specifically, in order to bet-
ter estimate the stochastic bilevel gradient, a matrix
inversion and an eigenvalue truncation are needed per
iteration, which cost O(d®) computation for a d x d
matrix. In contrast, some of recent works (Ghadimi
and Wang, 2018; Hong et al., 2020; Ji et al., 2020) re-

duce matrix inversion to more efficient computations of

matrix-vector products, which cost O(d?) computation
per iteration. Therefore, our algorithm is preferable
in the regime where the sampling is more costly than
computation or the dimension d is relatively small.

2 A Single-timescale Optimization
Method for Bilevel Problems

In this section, we will first provide background of
bilevel problems, and then present our stochastic bilevel
gradient method, followed by an ODE analysis to high-
light the intuition of our design.

2.1 Preliminaries

We use || - || to denote the ¢5 norm for vectors and
Frobenius norm for matrices. We use F* to de-
note the collection of random variables, i.e., F¥ :=
{° ..., 0F 1,0 ..., €571} We define the determin-
istic version of (1) without constraint on X" as

min F() = f (z,y"(2))

s.t. y*(z) € argmin g(x,y) (2)
yERY

where the functions are defined as g(z,y) :=
Eylg(z, y;9)] and f(z,y) == Ee[f(z,y; )]

We also define V2, g (x,y) as the Hessian matrix of g

with respect to y and define V2,9 (x,y) as

82

82
7059 (2,7) A

V2,9 (z,y) =
82

82
W‘q (z,y)

oza0 9 (z,y)

We make the following standard assumptions that are
commonly used in stochastic bilevel optimization lit-
erature (Ghadimi and Wang, 2018; Hong et al., 2020;
Ji et al., 2020; Khanduri et al., 2021; Guo and Yang,
2021).

Assumption 1 (Lipschitz continuity). For
any , vxf(x7 ')) vyf(x7 ')7 vyg($ay)7 vzyg(l‘7 3 (b);
Viyg(ff, @) are waLfy,Lg,ng,ng -Lipschitz con-
tinuous. For any fired y, V.f(-,y;§), Vyf(,y;€),
v?:yQ(? Y; ¢)7 viyg(a Y3 ¢) are sz ) Lfy ) ngy ) Lgyy -
Lipschitz continuous.

Assumption 2 (strong convexity of lower-level
objective). For any fizred x, g(x,y) is pg-strongly
convex in y, that is, Vf/yg(x,y) = pgl.

Assumptions 1 and 2 together ensure that the first-
and second-order derivations of f(z,y),g(x,y) as well
as the solution mapping y*(z) are well-behaved.
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Assumption 3 (stochastic derivatives). The

stochastic ~ deriwatives Vgf(x,y;&), Vyf(z,y:€),

Vyg(%yﬂﬁ), ngg(%ya(b), and viyg(xvyagb) are un-

biased estimators of V. f(z,y), Vyf(x,vy), Vyg(z,y),

Viyg(m,y), and Viyg(:r,y), 2respectively; agzd th;ir
o

variances are bounded by afw,aj%y, agy, FRRE

respectively. Moreover, their moments are bounded by

Ee[|Vaf(z,y:OIP) < CF, p=2,4
EBe[IVyf(z,y: OIP1 <CF, p=2,4  (3a)
EslIVZ,9(z,y;0)7) < C5
EyllIVy,9(z,y;0)I1%] < Cq

Jyy* (3b)
Assumption 3 is the counterpart of the unbiasedness
and bounded variance assumption in the single-level
stochastic optimization, which are standard also in
(Ghadimi and Wang, 2018; Hong et al., 2020). In
addition, the bounded moments in Assumption 3 ensure
the Lipschitz continuity of the upper-level gradient
VF(z).

We first highlight the inherent challenge of directly
applying the single-level SGD method (Robbins and
Monro, 1951) to the bilevel problem (1). To illustrate
this point, we derive the gradient of the upper-level
function F(z) in the next proposition by analyzing
the lower-level optimality condition; see the proof in
Appendix C.

Proposition 1 Under Assumption 2, we have the gra-
dients

Vay'(z) ==V, 9(x,y"(2)) [Vy,9(z,y"(2))] (42)

VF(z) = Vof(z,y" () + Vay* () Vy f2,y" (2)).
(4b)

-1

Note that the gradient VF(z) contains the second-
order information of the lower-level problem g(x,y)
since it depends on the sensitivity of the lower-level so-
lution y*(z). The sensitivity of the solution y*(x) for a
strongly-convex program has also been explored in the
time-varying convex optimization literature through
the lens of perturbation analysis; see e.g., (Simonetto
et al., 2016). Therefore, we hope that the sample com-
plexity results of bilevel optimization in this paper will
also stimulate future research in time-varying convex
optimization.

In addition, notice that obtaining an unbiased stochas-
tic estimate of VF(z) and applying SGD on z face
two main difficulties: (D1) the gradient VF(x) at
2 depends on the minimizer of the lower-level prob-
lem y*(z); (D2) even if y*(z) is known, it is hard to
apply the stochastic approximation to obtain an un-
biased estimate of VF(z) since VF(x) is nonlinear in

V2 ,9(x,y*(x)); see the discussion of (D2) in stochas-
tic compositional optimization literature, e.g., (Wang
et al., 2017a; Chen et al., 2020).

Similar to some existing algorithms for bilevel problems,
our method addresses (D1) by evaluating VF(z) on
a certain vector y in place of y*(z), but it differs in
how to recursively update y and how to address (D2).
Resembling the definition (4) with y*(z) replaced by
y, we introduce the notation

Vaof (z,y) =V f (z,y) — V2,9 (z,y) x
(V2,0 (@) Vyf (z,y).  (5)

As we will show in Lemma 5 of Appendix, Assump-
tions 1-3 ensure that VF(-), V. f(z,-), and y*(-) are
all Lipschitz continuous with constants Lg, L¢, Ly, re-
spectively.

2.2 A single-timescale bilevel method

Before we present our method, we first review a success-
ful recent effort. To overcome the difficulty of applying
plain-vanilla SGD, a two-timescale stochastic approxi-
mation (TTSA) algorithm has been recently developed
in (Hong et al., 2020). TTSA is a single-loop algorithm
and amenable to efficient implementation. It consists
of two sequences {z*} and {y*}: for a given z¥, y*
estimates the minimizer y*(z*); and, z* estimates the
minimizer z*. For notational brevity, we define

hh = Vyg(x® v 0%), by, () = Vi, g(a", " ¢),
hyy(9) == Vi,9(a",y"; ¢). (6)

With «aj and (i denoting two sequences of stepsizes,
the TTSA recursion is given by

y* =yt — Bl (7a)
" =Py (28 — ap (Vo f(, y¥; €F)
—hE (M) Yy f(2F 7 €R)))  (Th)

where Vy_yl is a mini-batch approximation of

V2, 9(z, y")] ~'. The timescale separation refers to
the different order of stepsizes used in updating multi-
ple variables. To ensure convergence, TTSA requires
y*® to be updated in a timescale faster than that of
z¥ so that zF is relatively static with respect to y*;
ie., limg oo ar/Br = 0 (Hong et al., 2020). This is
termed the two-timescale update. However, this pre-
vents TTSA from choosing the stepsize O(1/Vk) as

SGD, and also results in its suboptimal complexity.

We find that the key reason preventing TTSA from us-
ing a single-timescale update is its undesired stochastic
upper-level gradient estimator (7b) that uses an inac-
curate lower-level variable y* to approximate y*(x*).
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Algorithm 1 STABLE for stochastic bilevel problems
1: initialize: xo,yO,Hgy,Hgy, stepsizes {ag, Ok }-

2: for k=0,1,..., K—1do
3: compute h¥ ! (¢*) and A%, (¢%)

> randomly select datum ¢F
update HJ, via (9a)
compute h’;;l(gzﬁk) and h];y(¢k)
update HY, via (9b)
compute V, f (Jck,yk;fk), Vyf (xk,yk;fk)

> randomly select datum &*
10: update z¥ and y* via (8)
11: end for

With more insights given in Section 2.3, we propose a
new stochastic bilevel optimization method based on
a new stochastic bilevel gradient estimator, which we
term Single-Timescale stochAstic BiLevEl optimization
(STABLE) method. Its recursion is given by

" =Py (2F —ay (Vo f (25,95 €F)
— Hj,(Hy) 'V f(2*,y":6"))) (8a)
yk+1 = yk_ /Bkh]; - (Hg]jy)il(Hiy)T(xk+l -

where Py denotes the projection on set X. In (8), the
estimates of second-order derivatives are updated as
(with stepsize 7, > 0)

HE, =P (1= ) (HE =1 (69)) +E, (6)) (92)
Hy, =P (U= 7) (Hjy =Ry (69)) +hE, (69)) (9b)

where P is the projection to set {X : || X|| < Cy,,} and
P is the projection to set {X : X > pg I}

Compared with (7) and other existing algorithms,
the unique features of STABLE lie in: (F1) its y*-
update that will be shown to better “predict” the next
y*(z**1); and, (F2) a recursive update of HJ,, Hf,
that is motivated by the advanced variance reduction
techniques for single-level nonconvex optimization prob-
lems such as STORM (Cutkosky and Orabona, 2019),
Hybrid SGD(Tran-Dinh et al., 2021) and the recent
stochastic compositional optimization method (Chen
et al., 2020). The marriage of (F1)-(F2) enables STA-
BLE to have a better estimate of VF(2*), which is
responsible for its improved convergence. Note that
we use three stepsizes oy, O and 7 in (8), we call
our method a single-timescale algorithm because the
upper- and lower-level variables use the same order of
stepsizes that decrease at the same rate as that of SGD.
As we will show later, for a class of bilevel problems,
the single-timescale recursion (8) achieves the same
convergence rate as SGD for single-level problems. See
a summary of STABLE in Algorithm 1.

Remark. The projection in (9) is introduced for our
current analysis. However, projection in (9a) is not
uncommon in stochastic algorithms to ensure stabil-
ity, and the eigenvalue truncation in (9b) is a usual
subroutine in Newton-based methods, which is also re-
ferred to the positive definite truncation (Nocedal and
Wright, 2006; Paternain et al., 2019). One potential
way to avoid it is to replace (9) with a trust region
computation.

2.3 Continuous-time ODE analysis

Similar to the stochastic compositional optimization
(Chen et al., 2020), we provide some intuition of our
algorithm design via an ODE for the deterministic prob-
lem (2). To minimize F(x), we use an ODE analysis
to design a continuous dynamic

#(t) = —aT (x(t),y(x(1))) (10)

by choosing an operator 7. For single-level minimiza-
tion of a smooth function h(z(t)), one can use the gradi-
ent flow @(t) = —aVh(x(t)). For bilevel minimization
(2), however, we shall avoid T (z,y) = V, (f(z,y*(z))
and instead use y to approximate y*(z). Here note
that we have dropped (t) for conciseness. Hence, define
the operator as

T(l’, y) :vtf(x7 y) *Viyg(l', y)[viyg(xa y)]il X
V,f(@y) C Vot @) (11)

Here, the variable y follows another dynamic that we
specify below, which accompanies the z-dynamic (10).
We will also find a Lyapunov function V' such that

(C1) V <0;
(C2) V =0if and only if VF(z) =0 and y = y*(x).

If the & and y dynamics drive an appropriate Lyapunov
function V satisfying (C1) and (C2), then x converges
to a stationary point of the upper-level problem and y
converges to the solution of the lower-level problem.

We first state the results for the continuous-time dy-
namics below.

Theorem 1 (Continuous-time dynamics) If we
define the x- and y-dynamics as

&= —aVaf(z,y)— aVi,g(x,y)[Vy,9(z,9)] 'V f(2,y)

= —BV,9(z,y) — (V3,9 y)]  Vig(zy)i
(12)

and choose the constants a and B appropriately, then
there exists a Lyapunov function V of the x- and y-
dynamics that satisfies (C1) and (C2).
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Figure 1: A geometric illustration of the 3* update un-
der the state-of-the-art algorithms; black dot represents
y¥, red dots represent the lower-level solution y*(z*)
and y*(z**1), blue dots represent y**! under differ-
ent algorithms, and blue arrow denotes the inner loop
updates. STABLE updates y* by linearly combining
the stochastic gradient direction towards y*(2*) and
the moving direction from y*(2*) to y*(z**1). In con-
trast, BSA (Ghadimi and Wang, 2018) runs multiple
stochastic gradient steps; TTSA (Hong et al., 2020)
runs one stochastic gradient step with a smaller step-
size; stocBiO (Ji et al., 2020) runs multiple stochastic
gradient steps with an increasing batch size.

Proof: To highlight the intuition, we provide a
constructive proof of this theorem. We first try
Vo := flz,y*(x)). To clarify, we can use y*(x) in
a Lyapunov function but not in a dynamic to evolve a
quantity. In this case, we have

Vo = (Vaof(z,y" (@), ) + (Vy f (2,57 (7)), Vay* (2)d)
= (Vo f(2,y"(2)) + Voy* (2) Vo f (2, y"(2)), &).

Recall the definition in (4). Then we have
Vo = —a(T (2,5 («)), T(z.y))

C ol @)
FallTa i (2,y) — Vaf (g @)@y @)

Q Ty @)
+aLylly - v @IIT @y @)]

© « i al? .
< SIT@y @F+ -y -y @]* (13)

where (a) uses the Cauchy-Schwarz inequality, (b) fol-
lows from the L ;-Lipschitz continuity of V, f(z,-) es-
tablished in Lemma 5, and (c) is due to the Young’s
inequality.

To satisfy (C1), we have Vo < 0 only if L¢|ly—y*(z)| <
|7 (z,y*(z))||, thus, requiring the information of ||y —
y*(z)|| — not doable without knowing y*(x).

Let us try to mitigate the term |y(z) — y*(z)||* by
defining the following new Lyapunov function:

* 1 *
V= oy @) + Sl -y @) (14)
which implies that

V=—a(T(2,y"(2)), T(2,9)) +{y — y"(2),§ — Vay" (2))

13) o . al? .
< 57Ty @)II”+ =Ly — v @)

2
+(y—y" (), — Vo' (x)) (15)

< =SIT Gy @)° - <ﬁ - aﬁf) ly - @I

+ -y (@),9+ By -y (@) - Vay (2)d) (16)

where 8 > 0 is a fixed constant. The first two terms in
the RHS of (16) are non-positive given that o > 0 and
B> ozL? /2, but the last term can be either positive or
negative. To control the last term and thus ensure the
descent of V(t), we are motivated to use a y-dynamic
like

gy~ =By —y () + Vay' (z). (17)
To avoid using y* in a dynamic, we approximate y —
y*(z) by Vyg(z,y) and Vyy*(z) by (cf. (4a))

Voy(z) = — [V2,9(z,9)] V2,9 (xy). (18)

These choices lead to the y-dynamics:
J=—BVyg(z,y) + Vay(z). (19)

Although we approximate (17) by (19), we will plug
y-dynamics (19) into (16) and show that V' satisfies
(C1). Specifically, plugging (19) into (15) leads to

<y - y*(x)7 Y —Vay* .%‘):L‘>
= <y - y*(x)a 5vyg(xa )
= Vay(z)d + Voy* (2)d). (20)

As g(z,-) is pg-strongly convex by Assumption 2, we
have

(y =y (), Vyg(z,y) — Vyg(z,y" (2))) > pelly — y" ()|
(21)

where V,g(z,y*(z)) = 0 as y*(«) minimizes g(x,y).
Therefore, plugging (21) into (20), we have

(v —y"(2),9 — Vay*(2)1)
<—(y =y (@), (Voy* (2) = Vay(2))@) — Buglly — y* ()|

<lly =y @ Vay* () = Vay@)| 2] —Brglly — y* ()]

<aBLylly — y* (x)|I* —Buglly — y*()|1? (22)

where the second inequality uses the Cauchy-Schwarz
inequality, and the last inequality follows the bound
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B, of ||| and the Lipschitz constant L, of V,y(x),
both of which can be derived from Assumptions 1-3.

Now plugging (22) into (15), we have

V<= STy @)IP
al?
(ne-tti

Now let us check (C1) and (C2). To ensure V < 0 in

2
L%;+g7gBiLy' For (C2), we have

V = 0 if and only if y = y*(z) and T (z,y*(z)) =
VF(x)=0.

anLy> ly =y (@)II*. (23)

(C1), we can set o <

With the insights gained from the continuous-time
update (12), our stochastic update (8) essentially dis-
cretizes time t into iteration k, and replaces the first-
and second-order derivatives in & and g by their recur-
sive (variance-reduced) stochastic values in (9).

Remark. The key ingredient of our STABLE method
is the design of the lower-level update on %*, which
leads to a more accurate stochastic estimate of VF(z*).
See a comparison of the y-update with other algorithms
in Figure 1. In the update (8), we implement the SGD-
like update for the upper-level variable z*. With the
lower-level y* update unchanged, it is easy to apply
SGD-improvement techniques such as momentum and
variance reduction, to accelerate the convergence of
STABLE. This will help STABLE achieve state-of-the-
art performance for stochastic bilevel optimization.

3 Convergence Analysis

In this section, we establish the convergence rate of our
single-timescale STABLE algorithm. We will highlight
the key steps of the proof and leave the detailed analysis
in Appendix.

Moreau Envelop. Different from problem (2), (1)
tackles the constraint on a convex and closed set X.
To levarage the ODE analysis to the constraint case,
for fixed p > 0, we define the Moreau envelop and
proximal map as follows.

®1/p(2) = min { F(x) + (p/2) |z — z|*}
(2) o= argmin {F(2) + (/2o — 2} (20
TE
For any € > 0, we use the definition in (Davis and

Drusvyatskiy, 2018) that ¥ € X is an e-nearly station-
ary solution if z* satisfies the following condition

E [|[Z(2*) — 2*|*] < p?e. (25)

In Section 3.1, we will utilize the near-stationarity
condition (25) as a tool to quantify the convergence of
STABLE when F(x) is non-convex.

3.1 Main results

We first present the result of our algorithm when the
upper-level function F'(z) is nonconvex in z. We need
the following additional assumption.

Assumption 4 (weak convexity). Function F(x) is
pr-weakly convex in x, that is, V2, F(x) = prl. Note
that pp is not necessarily positive.

For simplicity of the convergence analysis, we define
the following Lyapunov function

VE =@y, (z%) + [|y* — y* (=)
+ || HE, — V2,9(z",y%)|? (26)

which mimics the continuous-time Lyapunov function
(14) for the deterministic problem. Similar to the ODE
analysis, we need to quantify the difference between two
Lyapunov functions V¥t — V¥ We will first analyze
the descent of the Moreau Envelop of the upper-level
objective in the next lemma.

Lemma 2 (Descent of the upper level) Under
Assumptions 1-4, the sequence of x* satisfies

E[®1/,(a"")] = E[®1,(2")]

< LD k) o 4 9pa (C?z * Cuc : >
BLIPOL
‘mmnﬂg — Vi,
AP s, — 3, (27)

+ - 7
(ur + p)p2

where Ly, Ly are defined in Lemma 5 of Appendiz, and
Cy.,, 1s the projection radius in (9a).

Lemma 2 implies that the descent of the Moreau En-
velop of the upper-level objective functions depends
on the error of the lower-level variable ¥*, and the
estimation errors of ny and Hi?y After bounding all
of them in Lemmas 3 and 4 in Appendix, we can get
the following convergence result.

Theorem 2 (Nonconvex) Under Assumptions 1-4
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and setting p > |ur|, if we choose the stepsizes as

Br < min { (28a)

L Hg/Lg

VK 32(pg + Lg)c

(c+4pC5,, CF, [ (ur + p)pg) ™"
VK ’

(c+4pCJ%y/(HF —&-p),u?)_l BoLgBr/ (g + Lg) }

VK " 2(c+2pL}/(pr + p))
(28b)

ar < min{ﬁk,

and T, = \/%, then the iterates {x*} and {y*} satisfy

K
F 2 [lme) -t =0 () e
E [l - @] =0 (=) (20)

where y* (x¥) is the minimizer of the problem (1b), and
c > 0 is a constant that is independent of the stepsizes

ag, B, Tk and the number of iterations K.

Theorem 2 implies that the convergence rate of STA-
BLE to the stationary point of (1) is O(K~2). Since
each iteration of STABLE only uses two samples (see
Algorithm 1), the sample complexity to achieve an
e-stationary point of (1) is O(e~2), which is on the
same order of SGD’s sample complexity for the single-
level nonconvex problems (Ghadimi and Lan, 2013),
and significantly improves the state-of-the-art single-
loop TTSA’s convergence rate O(¢~2-%) (Hong et al.,
2020). In addition, this convergence rate is not directly
comparable to other recently developed bilevel opti-
mization methods, e.g., (Ghadimi and Wang, 2018; Ji
et al., 2020) since STABLE does not need the increas-
ing batchsize nor double-loop. Regarding the sample
complexity, however, STABLE improves over (Ghadimi
and Wang, 2018; Ji et al., 2020) by at least the order
of O(log(e™1)).

We next present the result in the strongly convex case
for completeness, where the following additional as-
sumption is needed.

Assumption 5 (strong convexity). Function F(x)
is p-strongly convez in x, that is, V2, F(x) = pl.

Notice that Assumption 5 does not contradict with
Assumption 3 since for the constrained upper-level
problem (1), only in the constraint set X do the gra-
dients need to be bounded. Regarding applications,
hyperparameter optimization for linear regression or
SVM satisfies this assumption.

Theorem 3 (Strongly convex) Under — Assump-

tions 1-3, 5, if we choose the stepsizes as

fg/Lyg 1 }
, 30
32(1y + Ly) Ko + & (80a)

BkZTkSmin{

: trgLyg fihtgLg
a < min ’ )
{ c(pg + Lyg) QL? (kg + Lyg)

1 ppy g
’ 2 2 2
Ve’ 8CZ, C378CE

} Br  (30b)

where Ko > 0 is a sufficiently large constant and ¢ > 0
s an absolute constant that is independent of oy, Bk, Tk,
then the iterates {x*} and {y*} satisfy

=0 (i) and

E[[lv* -y @] = 0 (,ﬁ) (31)

E [+ - |

where the solution x* is defined as x* =

argmingcy F(z) and y*(z¥) is the minimizer of the
lower-level problem in (1b).

Theorem 3 implies that to achieve an e-optimal so-
lution for both the lower-level and upper-level prob-
lems, the sample complexity of STABLE is O(e™1).
This complexity is on the same order of SGD’s com-
plexity for the single-level strongly convex problems
(Ghadimi and Lan, 2013), and improves the state-of-
the-art single-loop TTSA’s sample complexity O(e~2)
for an e-optimal upper-level solution and O(e=1-%) for
an e-optimal lower-level solution (Hong et al., 2020).
Compared with double-loop bilevel algorithms in this
strong-convex case, STABLE also improves over the
BSA’s query complexity O(e~!) in terms of the stochas-
tic upper-level function and O(e~2) in terms of the
stochastic lower-level function (Ghadimi and Wang,
2018).

4 Numerical Tests

This section evaluates the empirical performance of our
STABLE. For all compared algorithms, we follow the
order of stepsizes suggested in the original papers, and
the stepsizes are chosen from {1,0.5,0.1,0.05,0.01},
e.g., the best one for each algorithm. In our numerical
experiments, we compared our method with several
state-of-the-art algorithms such as BSA in (Ghadimi
and Wang, 2018), and TTSA in (Hong et al., 2020).
We did not include other recent algorithms such as (Ji
et al., 2020; Guo and Yang, 2021; Khanduri et al., 2021)
which either require increasing the batch size or adding
the acceleration of xz-update. All the algorithms are
implemented using Python 3.6 and run on the same
laptop.
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Figure 2: The hyper-parameter optimization task on ijennl, covtype and australian datasets. The solid line shows
the results averaged over 50 independent trials with random initialization, and the shaded region denotes the

standard deviation of results over random trials.

We test all the algorithms in a hyper-parameter opti-
mization task which aims to find the optimal hyper-
parameter z € R? (e.g., regularization coefficient),
which is used in training a model y € R¢ on the training
set, such that the learned model achieves the low risk
on the validation set. Let £(y;£) denote the logistic
loss of the model y on datum &, and Dy, and Dy, de-
note, respectively, the training and validation datasets.
Specifically, we aim to solve

miI}l Eenp o [0(y" (2);€)]
z€eR

d
st y*(x) € argminEgp,,, [((y; 9)] + > iy (32)

yeR? i=1
In Figure 2, we compare the performance of three
algorithms on ijennl, covtype and australian datasets
(Chang and Lin, 2011) and report their objective errors
versus number of samples and the walk-clock time. In
all tested datasets, STABLE has sizeable gain in terms
of sample complexity compared with the double-loop
or two-timescale algorithms since it uses single-loop
and single-timescale update. In addition, although
TTSA has more efficient y-update, STABLE enjoys
the better overall wall-clock time in our simulated
setting. This suggests that our STABLE algorithm is
preferable in the regime where the sampling is more
costly than computation or the dimension d is relatively
small, for example in hyperparameter optimization in

quantitative trading.

5 Conclusions

This paper develops a new stochastic gradient estimator
for bilevel optimization problems. When running SGD

on top of this stochastic bilevel gradient, the resultant
STABLE algorithm runs in a single loop fashion, and
uses a single-timescale update. In both the noncon-
vex and strongly-convex cases, STABLE matches the
sample complexity of SGD for single-level stochastic
problems. One possible extension is to apply SGD-
improvement techniques to accelerate STABLE, which
helps STABLE achieve state-of-the-art performance
for bilevel problems. Another natural extension is to
apply our bilevel optimization method to the general
two-timescale stochastic approximation case, in a simi-
lar fashion to (Dalal et al., 2018; Kaledin et al., 2020).
Improving the sample complexity of such general case
can be of great interest to the reinforcement learning
community.

Acknowledgment

The work of T. Chen and Q. Xiao was partially sup-
ported by and the Rensselaer-IBM AI Research Col-
laboration (http://airc.rpi.edu), part of the IBM
AT Horizons Network (http://ibm.biz/AIHorizons)
and NSF 2134168.

References

Zalan Borsos, Mojmir Mutny, and Andreas Krause.
Coresets via bilevel optimization for continual learn-
ing and streaming. In Proc. Advances in Neural Info.
Process. Syst., Virtual, December 2020.

Jerome Bracken and James T McGill. Mathematical
programs with optimization problems in the con-
straints. Operations Research, 21(1):37-44, 1973.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A


http://airc.rpi.edu
http://ibm.biz/AIHorizons

A Single-Timescale Method for Stochastic Bilevel Optimization

library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology, 2:
27:1-27:27, 2011. Software available at http://www.
csie.ntu.edu.tw/~cjlin/libsvm.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. Solv-
ing stochastic compositional optimization is nearly
as easy as solving stochastic optimization. arXiv
preprint:2008.10847, August 2020.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. Closing
the gap: Tighter analysis of alternating stochastic
gradient methods for bilevel problems. Advances in
Neural Information Processing Systems, 34, 2021.

Benoit Colson, Patrice Marcotte, and Gilles Savard. An
overview of bilevel optimization. Annals of operations
research, 153(1):235-256, 2007.

Ashok Cutkosky and Francesco Orabona. Momentum-
based variance reduction in non-convex sgd. Proc.
Advances in Neural Info. Process. Syst., 32, Decem-
ber 2019.

Gal Dalal, Gugan Thoppe, Baldzs Szorényi, and Shie
Mannor. Finite sample analysis of two-timescale
stochastic approximation with applications to re-
inforcement learning. In Conference On Learning
Theory, pages 1199-1233, Graz, Austria, July 2018.

Constantinos Daskalakis and Ioannis Panageas. The
limit points of (optimistic) gradient descent in min-
max optimization. In Proc. Advances in Neural Info.
Process. Syst., pages 9256-9266, Montreal, Canada,
December 2018.

Damek Davis and Dmitriy Drusvyatskiy. Stochas-
tic subgradient method converges at the rate
O(k~1/4) on weakly convex functions. arXiv preprint
arXiv:1802.02988, 2018.

Stephan Dempe and Alain Zemkoho. Bilevel Optimiza-
tion. Springer, 2020.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Ric-
cardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and
meta-learning. In Proc. Intl. Conf. Machine Learn.,
pages 1568—-1577, Vienna, Austria, June 2018.

Saeed Ghadimi and Guanghui Lan. Stochastic first-
and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23
(4):2341-2368, 2013.

Saeed Ghadimi and Mengdi Wang. Approxima-
tion methods for bilevel programming. arXiv
preprint:1802.02246, 2018.

Saeed Ghadimi, Andrzej Ruszczynski, and Mengdi
Wang. A single timescale stochastic approximation
method for nested stochastic optimization. SIAM
Journal on Optimization, 30(1):960-979, March 2020.

Riccardo Grazzi, Luca Franceschi, Massimiliano Pon-
til, and Saverio Salzo. On the iteration complexity
of hypergradient computation. In Proc. Intl. Conf.
Machine Learn., pages 3748-3758, virtual, July 2020.

Zhishuai Guo and Tianbao Yang. Randomized stochas-
tic variance-reduced methods for stochastic bilevel
optimization. arXiv preprint arXiv:2105.02266, May
2021.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuo-
ran Yang. A two-timescale framework for bilevel
optimization: Complexity analysis and application
to actor-critic. arXiv preprint:2007.05170, 2020.

Yifan Hu, Siqi Zhang, Xin Chen, and Niao He. Biased
stochastic gradient descent for conditional stochastic
optimization. arXiv preprint:2002.10790, February
2020.

Feihu Huang and Heng Huang. Biadam: Fast adap-
tive bilevel optimization methods. arXiv preprint
arXw:2106.11396, 2021.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Provably
faster algorithms for bilevel optimization and appli-
cations to meta-learning. arXiv preprint:2010.07962,
2020.

Maxim Kaledin, Eric Moulines, Alexey Naumov,
Vladislav Tadic, and Hoi-To Wai. Finite time analy-
sis of linear two-timescale stochastic approximation
with markovian noise. In Conference on Learning
Theory, pages 2144-2203, Virtual, July 2020.

Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-
To Wai, Zhaoran Wang, and Zhuoran Yang. A
momentum-assisted single-timescale stochastic ap-
proximation algorithm for bilevel optimization. arXiv
preprintarXiv:2102.07367, February 2021.

Vijaymohan Konda and Vivek Borkar. Actor-critic-
type learning algorithms for markov decision pro-
cesses. SIAM Journal on Control and Optimization,
38(1):94-123, 1999.

Gautam Kunapuli, Kristin P Bennett, Jing Hu, and
Jong-Shi Pang. Classification model selection via
bilevel programming. Optimization Methods € Soft-
ware, 23(4):475-489, 2008.

Karl Kunisch and Thomas Pock. A bilevel optimiza-
tion approach for parameter learning in variational
models. STAM Journal on Imaging Sciences, 6(2):
938-983, 2013.

Xiangru Lian, Mengdi Wang, and Ji Liu. Finite-sum
composition optimization via variance reduced gra-
dient descent. In Proc. Intl. Conf. on Artif. Intell.
and Stat., Fort Lauderdale, FL, April 2017.

Tianyi Lin, Chi Jin, and Michael Jordan. On gradient
descent ascent for nonconvex-concave minimax prob-


http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Tianyi Chen*, Yuejiao Sun’, Quan Xiao*, Wotao Yin'

lems. In Proc. Intl. Conf. Machine Learn., pages
6083—-6093, Virtual, July 2020.

Risheng Liu, Pan Mu, Xiaoming Yuan, Shangzhi Zeng,
and Jin Zhang. A generic first-order algorithmic
framework for bi-level programming beyond lower-
level singleton. In Proc. Intl. Conf. Machine Learn.,
pages 6305-6315, Virtual, July 2020.

Risheng Liu, Jiaxin Gao, Jin Zhang, Deyu Meng, and
Zhouchen Lin. Investigating bi-level optimization
for learning and vision from a unified perspective: A
survey and beyond. IFEEFE Transactions on Pattern
Analysis and Machine Intelligence, 2021.

Luo Luo, Haishan Ye, Zhichao Huang, and Tong
Zhang. Stochastic recursive gradient descent ascent
for stochastic nonconvex-strongly-concave minimax
problems. In Proc. Advances in Neural Info. Process.
Syst., Virtual, December 2020.

Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pat-
tathil. A unified analysis of extra-gradient and opti-
mistic gradient methods for saddle point problems:
Proximal point approach. In Proc. Intl. Conf. on
Artif. Intell. and Stat., pages 1497-1507, Palermo,
Ttaly, August 2020.

Yurii Nesterov. Introductory Lectures on Convex Op-
timization: A basic course, volume 87. Springer,
Berlin, Germany, 2013.

Jorge Nocedal and Stephen Wright. Numerical Opti-
mization. Springer, Berlin, Germany, 2006.

Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Ja-
son D Lee, and Meisam Razaviyayn. Solving a class
of non-convex min-max games using iterative first or-
der methods. In Proc. Advances in Neural Info. Pro-
cess. Syst., pages 14934-14942, Vancouver, Canada,
December 2019.

Santiago Paternain, Aryan Mokhtari, and Alejandro
Ribeiro. A Newton-based method for nonconvex
optimization with fast evasion of saddle points. STAM
Journal on Optimization, 29(1):343-368, January
2019.

Hassan Rafique, Mingrui Liu, Qihang Lin, and Tianbao
Yang. Non-convex min-max optimization: Provable
algorithms and applications in machine learning. Op-
timization Methods and Software, March 2021.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade,
and Sergey Levine. Meta-learning with implicit gra-
dients. In Proc. Advances in Neural Info. Process.
Syst., pages 113-124, Vancouver, Canada, December
2019.

Herbert Robbins and Sutton Monro. A stochastic
approximation method. Annals of Mathematical
Statistics, 22(3):400-407, September 1951.

Shoham Sabach and Shimrit Shtern. A first order
method for solving convex bilevel optimization prob-
lems. SIAM Journal on Optimization, 27(2):640-660,
2017.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch,
and Byron Boots. Truncated back-propagation for
bilevel optimization. In Proc. Intl. Conf. on Artif.
Intell. and Stat., pages 1723-1732, Naha, Okinawa,
Japan, April 2019.

Alexander Shapiro, Darinka Dentcheva, and Andrzej
Ruszczynski. Lectures on Stochastic Programming:
Modeling and Theory. STAM, Philadelphia, PA, 2009.

Andrea Simonetto, Aryan Mokhtari, Alec Koppel,
Geert Leus, and Alejandro Ribeiro. A class of
prediction-correction methods for time-varying con-
vex optimization. IEEE Transactions on Signal Pro-
cessing, 64(17):4576-4591, May 2016.

Heinrich Von Stackelberg. The Theory of Market Econ-
omy. Oxford University Press, 1952.

Quoc Tran-Dinh, Nhan Pham, and Lam Nguyen.
Stochastic Gauss-Newton algorithms for nonconvex
compositional optimization. In Proc. Intl. Conf. Ma-
chine Learn., pages 9572-9582, Virtual, July 2020.

Quoc Tran-Dinh, Nhan H Pham, Dzung T Phan, and
Lam M Nguyen. A hybrid stochastic optimization
framework for composite nonconvex optimization.
Mathematical Programming, pages 1-67, 2021.

Luis N Vicente and Paul H Calamai. Bilevel and multi-
level programming: A bibliography review. Journal
of Global optimization, 5(3):291-306, 1994.

Mengdi Wang, Ethan X Fang, and Han Liu. Stochas-
tic compositional gradient descent: algorithms for
minimizing compositions of expected-value functions.
Mathematical Programming, 161(1-2):419-449, Jan-
uary 2017a.

Mengdi Wang, Ji Liu, and Ethan Fang. Accelerat-
ing stochastic composition optimization. Journal
Machine Learning Research, 18(1):3721-3743, 2017b.

Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably
faster algorithms for bilevel optimization. arXiv
preprint arXiw:2106.04692, June 2021.

JJ Ye and DL Zhu. Optimality conditions for bilevel
programming problems. Optimization, 33(1):9-27,
1995.

Junyu Zhang and Lin Xiao. A stochastic composite gra-
dient method with incremental variance reduction. In
Proc. Advances in Neural Info. Process. Syst., pages
9075-9085, Vancouver, Canada, December 2019.



A Single-Timescale Method for Stochastic Bilevel Optimization

Supplementary Material for
“A Single-Timescale Method for Stochastic Bilevel Optimization”

A Proof sketch
In this section, we highlight the key steps of the proof towards Theorem 2. The proof for the strongly convex
case in Theorem 3 will follow similar steps.
For simplicity of the convergence analysis, we define the following Lyapunov function
k k k k k k ok k k o,k

VE= @y, (a8) + g — @)+ D, — V2,008 R + HE, — V2,00t o) P (33)
which mimics the continuous-time Lyapunov function (14) for the deterministic problem.
Similar to the ODE analysis, we first quantify the difference between two Lyapunov functions as

VIR = WE =@y, (a871) = @y (") + Iy =y @I N1yt -y @)

Lemma 2 Lemma 3
+ [ Hy = V9@ y 1P = Iy, - Vgt b))
L 1
Lemma 4
+ [ Hy = Vi, g™y P — | Hy, = Vig(®, )2 (34)
L 1
Lemma 4

The difference in (34) consists of four difference terms: the first term quantifies the descent of the Moreau
Envelope of the upper-level objective functions; the second term characterizes the descent of the lower-level
optimization errors; and, the third and fourth terms measure the estimation error of the second-order quantities.
Since Lemma 2 stated in the main body bounded the Moreau Envelop of the upper level, we will bound the rest,
respectively, in the ensuing lemmas.

We will analyze the error of the lower-level variable, which is the key step to improving the existing results.

Lemma 3 (Error of lower level) Suppose that Assumptions 1-3 hold, and y**' is generated by running

iteration (8) given z*. If we choose B, < ﬁ, then y**1 satisfies
9 g

. , pgLgBF | coi . fig Ly ¥
E [[ly* (") = y* 21 F] < (1— SO R )yt =yt (@) + (14 =) Blog,

g+ Ly B tg + Lyg
2
C(X (X cx
+ 5 "+ E([|Hy, — Vgt ") |21 F] 5’“ +E[|Hy, - V2,9(", v F] 7: (35)

Roughly speaking, Lemma 3 implies that if the stepsizes az and ﬁ% and the estimation errors of ny and H fy are
decreasing fast enough, the error of 3*+! will also decrease.

Since the RHS of both Lemmas 2 and 3 critically depend on the quality of Hy k and HF

2y» We will next build upon
the results in (Chen et al., 2020, Lemma 2) to analyze the estimation errors

Lemma 4 (Estimation errors of Hglj and H’~c ) Suppose Assumptions 1-3 hold, and ny and H;jy are gen-
erated by running (9). The mean square error of zy satisfies

E||[HE, - V2,9(*, )2 | | < (1= n)2 HE Y = V2,90 yh )2 4+ 27202
+2(1- ><L2 L2 et = eF R 2010 = m)2 (L2, + L2 )~y P (36)

Jzy Gay
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where the constants Ly, ,Lg, Ly, ,Lg, 04,04, are defined in Assumptions 1 and 3. And likewise, the mean

square error of Hgy satisfies
E|lIH}, — V3,0(*, )2 | F*| < (= m2IHpy = V2,90t gt 2 + 2002
+2(1 =)Ly + Ly la® =P 200 = m)*(L],, + L3 )l =y % (37)

g Jyy

Intuitively, the update of z* is bounded and so is the update of y*, and thus ||z* — 2*71||2 = O(a?_,) and

-y = _1). Plugging them into the of Lemma 4, it suggests that if the stepsizes aj, i, 7 are
y* —yF~1|2 = O(B%_,). Plugging them into the RHS of L 4, it suggests that if the stepsi 2 B3 T?
decreasing, then the estimation errors of H, fy and Hgy also decrease.

Applying Lemmas 24 to (34) and rearranging terms, we will be able to get
E[VFH] —E[VF] < =i E[lly* — y*(«")|*] — c2E[||Z(2*) — 2" + ¢s (38)
where the constants are ¢; = O(By), ca = O(ax) and ¢35 = O(aj + 7 + 77). By choosing stepsizes ay, B, T as

(28) and telescoping both sides of (38), we obtain the main results in Theorem 2.

B Auxiliary Lemmas

In this section, we present some auxiliary lemmas that will be used frequently in the proof.

Lemma 5 ((Ghadimi and Wang, 2018, Lemma 2.2)) Under Assumptions 1 and 2, we have

IVef(z,y*(x)) = Vo f(z,y)ll < Llly* () -yl (39a)
IVE(x1) = VE(z2)|| < Lpz1 — 22| (39b)
ly" (1) = y* (@) | < Lyllz1 — 22| (39¢)
and the constants Ly, Ly, Ly are defined as
C, Ly C¢ Cy,. Lg., Cy..
Lf — LfT + Gy T fy + A <foy_|_ Gy gyy)7 Ly = Gy
Hg Hg Hg Hg
_ Cy,,(Ls, + L Cy, (- Cy. L
LF = sz + grq( fy f) _’_ﬁ (Lfgjy+ Jzy gyy)
Hg Hg Hg
where the constants are defined in Assumptions 1-3.
C Proof of Proposition 1
Proof: Define the Jacobian matrix
aoyi(@) o g(a)
Vay(x) =
32=ya, (¥) - 5=va,(2)

By the chain rule, it follows that

VF(z):= Vaf (2,y"(2)) + Vay* (@) "V, f (2,5 (2)). (40)
The minimizer y*(z) satisfies

Vyg(z,y"(2)) =0, thus V. (Vyg(z,y"(2))) = 0. (41)
By the chain rule again, it follows that

V2,9 (5" (2) + Vay* (2) V2,9 (z,y"(2)) = 0.

By Assumption 2, V3 g (x,y*(x)) is invertible, so

Vay™ (@) = =V2,0 (2,57 (@) [V3,0 (@, 5" (2)] - (42)
By substituting (42) into (40), we arrive at (4).
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D Proof of Lemma 2
Proof: Now we turn to analyze the update of . For convenience, we define the update in (8a) as
= Py (xk — akﬁ’fc) with hk =V, f (mk,yk; fk) — ny(ny)_lvyf (xk, ykggk) (43)

and let 2* and 7 denote Z(z*) and Z(x).

For Vx € X, using the weakly convexity of F', we know that
F(2) 2 F(z) + (VF(x),2 >+f|| — zf?

On the other hand, by the definition of Z, Vo € X, it holds that

b

p N Pya .
F($)+§||af—wll2—F(x)—gllx—x||2=F(x)—F(w) SlE —z[> > 0.

[\)

Adding above two inequalities, we get that

(VF()—2) < —LEEL )3 — a2
If we choose pp such that pup + p > 0 and using the definition of Moreau Envelop, we have that
<I>1/p(xk+1) = F(&"1) + g”xk+1 ~ERH2 < F(aR) g”karl — k|2
= F(@*) + S Jla* — 352+ ZJlat — b + plat — ¥, 2"+ — ah)
= q)l/p(xk) + g‘|xk+1 — 2P| 4 p(aP T — gk P Ry pllah — P2
< By (aF) + po (@F — 2%, BE) + pay (W, o — oM (44)

where the fourth inequality is due to (z* — akh’} — gkt gk — pF+1) < 0 using the definition of Py. Then taking
the conditional expectation of both sides in (44), we have that

E [®1),(z" )| F*] < @1),(2%) + payE [(Z" — 2*, B} ) | Fi] + aj pB[|| 1} || | F¥]

C, \? . _
< @y, (2") + 2p02 <O?z + < j) %) + payE [(3* — ¥, 1Y) | Fi] (45)
g

where the second inequality comes from (61). Then we bound the third term in (45) and get that

E [(z% — 2, b}) | Fe] <E[(@* — 2% b — Vo f(aF,4F) + Vo f(a*,0%) — VF(F) + VF (")) | 7]

< <Ak—xk E[ﬁku—k] Vo f(k, )>+E[< zh — 2k V. f(2F,y*) - VF(zF )>|.7:k]
+E[(3" — 2", VF(z >
(

Vi (- 1V, _ 2
< gk — o) + D [ s,) 1 1, = Hy 0,5 o 0 )P

~ I -
+ %”(Ek — xk||2 + %”me(xk’yk) _ VF(xk)||2 _ %ka _ (Ek”2

Vk |~k k(2 20122/ ng'ru k , ky\)2| Tk k k , ky\)2| Tk
< S lE° =2+ ——% E[||Hy, — Hyy (", y")|I°|F7] + E[| Hzy — Hay (2", y")|[7[F]
Vg | MG

L2
x HE+ P :
+ Lyt =y @))P - FE I e
Tk
where the third inequality uses Young’s inequality with parameter v, (61) in (Hong et al., 2020) and the fact that

Eex[1f|F*] = Vo f (2*,4*) — (Hy,) " Hy, Vi f (a5, 9%) (46)
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and the last inequality follows the same steps of (57) and Assumption 3. We choose v, = “%“7 then we get

2 2
. - Up+ P 4CfuC£y
E[(3 - o B 7] < - PEEL g b2 g R g (05 )2

(1F + p)Hg
4C? 2L2
fy k k . k\|(2| Tk f k w0 kY2
——E[|H,, — Hzy(z", Fol 4+ — —y*(x 47
Gt g Bl = o PP + 2 -y @ an

Plugging (47) into (45) and taking expectation over all the randomness lead to the lemma.

E Proof of Lemma 3

Proof: We start by decomposing the error of the lower level variable as

E “|yk+1 o y*(xk+1)||2|]:k]
=E [lly" - Behly — y* (2") + v (%) — y* (") - (Hy,) " (Hy,) T (2" = 2M) || F]
< (1+2)E[ly* - Brhly — y*(«")[I*| F*]

I
+ 1+ DEly" (") =y (") = (Hy,) 7N (Hy,) T @ = 2?17 (48)

I

The upper bound of I; can be derived as

I = ly* = y* (@M)IP = 2B:E[(y" — y” ("), hg) | F*] + BRE[|| g |*| F*]

" =y (@)1 — 26k (" — v (a"), Vyg(a®, ") + BRIV yg(®, ") |1? + Biog,

INE

< 1— 9g—g k k _ x(. .k 2_"_ ( _ ) v xk’ k 2_"_ 20_2
) LAt T g | R )

(c) 2uqL

< 1_# k k _ o %(..k 2+ 2 2 49
= ( uﬁLgﬁ ) ly" — o™ (@) + Bioy, (49)

where (a) comes from the fact that Var[X] = E[X?] — E[X]?, (b) follows from the pu,-strong convexity and
L, smoothness of g(x,y) (Nesterov, 2013, Theorem 2.1.11), and (c) follows from the choice of stepsize f <

hg/Lg 2 ;
32(ng+Lg) < tgtLyg m (28&)

The upper bound of I can be derived as

I=E [Hy*(xk) _ y*(mk+1) _ (Hsy)fl(ny)T(mkH _ xk)||2 |}'k]
<3 [[ly (@) =y (2") = Yoy (@)@ - b)Y
+ 3B [[[(Ta (%) = Hyy (2", ) " Hay (25, 55)7) (250 = 29)|* 7]

+ 3B ||| (Hyy (¥, y") ™ oy (2%, )T = (HE) 7 (HE)T) (25 = h)|* 174 (50)
I w) (Hzy)') I

We first bound the first approximation error in the RHS of (50) by

y (@) — g () — Vet () (2K — 2|

2

1
/ sz*(l‘k +t($k+1 _ xk))(a:kH _ Jik)dt _ vmy*(xk)(xk—i-l _ l‘k)
0

1 L2
. . 2

S/ HVIy (zF + t(zM — 2F)) — V,y (a:k)H 2Rt — ¥ %dt < 7y||a:k+1 —z*|* (51)
0
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where the first inequality follows from the Cauchy-Schwarz inequality, and the second inequality follows from the
L,-Lipschitz continuity of V,y*(z) in Lemma 5.

Next we bound the second term in the RHS of (50) as
E [[[(Tay* (%) — Hyy (o, 55) 7 Hoy (o, 09T (41— )| | 4]
<E [V (%) = Hyy(a, )~ (0,59 7| 241 = ¥ 1] (52)
and likewise, the third term of (50) as
B [[| (Hyy (2, %) g (e, 5% = ()~ (HE)T) (440 — )| | 7]

<E [ Hyy (%, 5") " Hay (2%, 5") T = (B 7 ()T || [0 = 2|7 174 (53)

We then bound the approximation error of Hy,(z*,y*) "1 Hy, (2%, y*)T in (52) by
. _ 2
[Vay* (2") = Hyy (", y*) " Hay (%, %) 7|
. -1 . T _ 2
[y (@ @) 7 Hay (27 @) = Hyy (0,55 (0,09

- * T — * T
|| Hyy (" @) Hay (255" @) T = Hyy (@) T ey (2 )

_ . T _ 2
+ Hyy (2", y") " Hyy (2%, 4" (%)) — Hyy (2, y") 1Hmy(as’“,y’“)TH
* -1 — 2 2 * 2
<2C2 || Hyy (5" @) = Hyy @ )|+ S| Hay (80 @)~ Hay (4| (54)

Hg
where the inequality follows from || Hy,(z,y)| < C

Gxy

and Hy, (z,y) = pgl.
Note that

1, @t @)™ = (a2

:HHyy (xk,y*(a:k)) ’

(Ho (" @) ~ (a9 Ho )|

§HHyy (xk>y*(xk))71 HQHHyy (xkvy*(xk))*Hyy(xkﬂk)HQHHyy(xkvyk)AHQ
<:§ Hy, (wk7y*(xk)) - Hyy(xkayk)‘f (55)
where the last inequality follows from H,,(z,y) = pgl.
Therefore, we have
Vo (%) = Hyn(a*, )~ Hay (0" T
2
—Qi?y Hy, (mk’y*(xk)) - Hyy(xkayk)HQ + 53 Hgy (“Tk’y*(xk)) - Hmy(xk»yk)HQ' (56)

Following the steps towards (56), we bound the error of (Hy,)~*(H%,)" in (53) by

() A CHE)T = Hyy (2%, 4F) ™ Hoy (2, )T

2
= ) e ) Ty () T ) Ty 0 ) T )T Hy () T H 2T

2

2
<2 () ()T = Hyy (0% ) 7 HE) T 42| Hyy 08 ) T () T =y (8 8 T Hay 2Ry |

2
203,
=T

2 9 2
H?fy - Hyy(mka yk)H + EHH& - ny(xk»yk)H (57)
g
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where the second inequality follows from ||[HE, || < Cy,, and H}, = pgl.
Plugging (51)-(57) back to (50), we have

312 602 .
I < PE[la™ = 2F | F + ﬁIIHyy(x’“,y (%)) = Hyy (%, y) B[] — «®)2| 7]
g
6 .
+ EIIHw(w’“, y*(2")) = Hay (2", y")IPE[|2* 1 — o|?|F*]

g
2

6C2,
+ #E[IIH@ = Hyy (a*, ") |||l — ¥ F7]
g

6
+ 2Bl = Hay (a*, ") Pl — 2® |2 F*). (58)
]
Using the Lipschitz continuity of Hy,(x,y) and Hy,(x,y) in Assumption 1, from (58), we have

3L2 6 CszLgyy *
I < 2Rt - o + (M ¥ Lo, ) I - o @R[ - o217

g g
Gngy k k k\2],.E+1 k12| -k
+7E[\|Hyy—Hyy($ V0] [t | ECAR A V]
g
6
T2 E[||Hy, — Hay(«®, y*) [l — 2®|2|F). (59)
g

For any p = 2,4, we next analyze quantity E[[|z*T1 — 2*||P|F*] in (59). Recall the simplified update (43).
Therefore, we have |28+ — 2| < ak||h’}|| and

RS = | Vo r (2%, ¥5€5) = () " HE, Y, f (%5556 |
<||Vaf (¥, y; 69| \+H Hy ) HE NV, f (2, 4" €F) H

(@) C
< [V f @ty e+ ==V flat. ot 0] (60)
g

where (a) follows from the upper and lower projections of ny and H;jy in (9).

Therefore, for p = 2,4, we have

E[|[R}|P1F*, Hy A

HY,) < 2 B[V f ot g € P17 B,

—1 ngy i k k
vt (Co ) B[, ot ) P ]
Hg
p—1 74 ngy v 4
—5 4 : cr (61)
g

where the last inequality from Assumption 3. And thus

C p
E |5t — o¥|P|F*, 1Y, HE)] < 2P~ (o§+<:> C,’?y)az. (62)
g
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Plugging (62) into (59), we have
Co, \ !
I <122 (C}‘:I + (:g) Cj:y) ap
12 (€5, Lg,, Cor\”
tom | T L, | (€L ( ) ¢3, | Iy =y @h)|2a?
:u‘g :ug :ug

12C? Cy \ 2
e (Ci+(j”) C3, | ElIH, = Hyy (", y") | F o

g9 g

12 Cos\”
oz (C,i +(So) cz) B, — Hay ) P10 (63

g9 g

Now let us define the constants as

c, \* 12 (C2 L, Cor\”
&1 = maxq 12} Cﬁﬁ(“’”) ot )= |+ L, Ci+<"“‘) i, |
Ng Y :ug :ug ,ug Y
1202 c, \? 12 C, \?
—= C’i+(g”) il C§T+<~“’”> cj
g ‘ Iy v ’ Ig v

2 thg + Ly
= +
pg + Lg tgLg

622 s c:=¢ 62.

e

Plugging the upper bounds of I; in (49) and I in (63) into (48) with € = #’ZfL"q B, we have

E [|ly*T — y* (2" )|]?|F*]

pgLly k) k w0 kN2 BoLlg i\ a2 2 ~ a%
< 1—=—8" )y -y (x +<1+5 Bro, +C1a—
(1 2t It =y (14 Lo ) o2, v
~ = 0‘% k N k k ,ky||2| Tk ai
+ 01027”3/ -y (.’L’ )H + 6K [”Hyy - Hyy(.%‘ Y )H |]: ] B
B B

a

+ 16 [Hny - sz($k7yk)”2|fk] By,

where we have used the fact that

<1+ prgLyg ﬁk) <1_ 2ugLg ﬁk> <1- gLy 5k
pg+ Lg g+ Lg g+ Lg

—1 ~

toly ok 1 2 tg + Ly C2
() )2 (2 )
( pg + Ly B pg + Ly pgLg Br

where the last inequality uses 8y < ugiiLg in (28a). The proof is complete by defining ¢ := ¢;¢s.

F Proof of Lemma 4

Proof: Recall that g(z,y) = Egl[g(z,y,¢)]. We only have access to the stochastic estimates of
v%yg (Jf, Z/) 7v12/yg (x7y), that is

hE () = V2 g (a", % 0),  hE(¢) = V2,9 (2" " 0). (65)
For notational brevity in the analysis, we define

Hyy(z,y) == V3,9 (z,y), Hyy(z,y) == Vo,g9(z,y). (66)
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and rewrite the update of (9) as

HY, = P{X:nxugcgmy}{ﬁﬁy} with  HE = (1 — ) (HE —hE 1 (69) +RE, (65)

HY, = Pixoxep,n { AL, | with B, = (1= n) (H; " = bl (68) + b, (6°).

To analyze the approximation error of ny,

we decompose it into

|HE, — Hyy(2*, y*) 2 FY| <E|[HE, — Hoy(a, )2 F*
E || | <Efia ]

= HE [ny - sz(x’“,yknfﬂ H +3 Var [(ﬁ;ﬂy . Hmy(xk,yk))i7j|]-'k]
%,J

(67a)

(67b)

(68)

where the inequality holds since the projection onto the convex set {X : X > p,I} is non-expansive, and the
equality comes from the bias-variance decomposition that Var[X] = E[X?] — E[X]? for any random variable X.

We first analyze the bias term in (68) by

[ 2 y) 7|

E[(1 -7 (H’“ B (68) — B (64) + b (68) — Hay (0,597

= ( - Tk) (H:I:y ! + Ha:y( ,yk) - sz(xk_layk_l)) + TkHa:y(xk»yk) - sz(xkvyk)
= (1—1g) (Hg]jy_1 — Hw(xk_l,yk_l)) .

e

The variance term in (68) follows

ZVar[(ﬁﬁy*ny(xk7y Zj|]-"] Zvar[ ”|]_—k}

(67a)zvar 1— 1) (h: (¢k) _h§;1(¢ ))i.j +Tk(hwy(<f)’f))i,j|.7:k]

s2(1—m 2 " Var [(hE (6") = 1 (67))i | FF] +2TkZVar ¢))i ;| F"]
i,J

(@)
<2(1 = ) ’E [|h5, (6°) — hiz, (6% I12|F*] + 272 ZVM "))

(b) _
<2(1-m)? (L2, + 12, ) (2" = "7 12 4 1y — %) + 2n202

where (a) uses Var[X] < E[X]? and (b) follows from Assumptions 1 and 3.
Therefore, plugging (69) and (70) into (68), we have

E[| HE, — oy (o*, y")|2IF*] < (1= m)? | HES Y = Hay (o571 " )| + 27202

Gay

+200-m)? (L2, + L2, ) (e = ¥ 12 4 g = o)),

Similarly, we can derive the approximation error of H, ij as

E[| Hy, — Hyy(a®, y")IP|F* < (1= m) (| Hy, ' = Hyy (2571 5 7|2 + 27807

Jyy

+2(1-n)? (L2, + L2, (le* fwk*n%ny — ).

Gyy

The proof is then complete.

(70)
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G Proof of Theorem 2

Proof: Using Lemmas 2-4, we, respectively, bound the four difference terms in (34) and obtain

o (pr A p)p sy L _ . a?  2L%poy .
B+ - B < U000 ey ey (Lale g 08 2RI00 ) gy oy

2 4pa,C? C?
.. ap PUC g, Y1y k k o, ky|2
— | Toy1 — G162 — —————2 | E|||H,}, — Hy, (2", y

2 4pay,C?
L Pkt iy, k ko k2
— | Thg1 — C1Co—2 — ————Y | E[||HY, — Hyy (2",
<k+1 12/6k (uF+p)u§> If Ty y( Y7

2
+2002 | 02 Cyay 2 1 tgLlg o1\ a2 2 <~ Oﬁ 472 o2
P fz + 1 fy + + 6 5k09y t+ i + Tk+1091/

9 tg + Ly Bre
C 2
401 T)?Es02 (0?1 + (M) 0%,) +2(1 = i) 2GS B[y — . (71)
9
where the constant is defined as ¢3 := ng + ng + ng + ng.

Note that using the y-update (8b), we also have

E[ly*+! — ¥ |2 = B[||Beht — (Hp,) " HE, (241 = )]
< 26RE[[E]1%] + 2B [l (Ff,) T IPIEE, [l — 2* ]

(@)
< 287E[[[Vyg(z*, y*) 7] + 28802, + 2B [||(Hy,) T2 HE, 2]l - 2*|]

(b) Cy. \2
< 2B7E[|[Vy9(z*,y*) %] + 28302 +2 (M) E[[Ja"+1 - 2*||*]
g

C 2
2, +2 (S0 ) et - ot (72)

(c)
< ABFLIE[|ly" — y*(«")|1%) + 28307,
g

where (a) follows from E[X?] = Var[X] + E[X]? and Assumption 3, (b) uses the upper and lower projections of

H* and HF in (9), and (c) is due to V,g(z", y*(z¥)) = 0 as well as Assumption 1.
Ty yy Y

Selecting parameter 7, = —=, using (62) to bound E[||z*T! — 2*||?] and using (71)-(72), we have
VK

(1p + p)pa Cony)’ Cos )
B[V — E[VH] < _fﬂf[”f(xk) = M)+ af | 20+ 485 + 885 ( :“’) Cr. + (f) ‘n,
9

L a2 2L%po .
_ (Huii B —0102?: a NFerP _80352L_«2; E[”yk -y (xk)HZ]
g g
1 R 4ng21yCJ2¢ ap & R
. (m B TE T e LRl
1 e 4pC3 o k ko kY2
= —ae%k - TR VRHE — H, (8
( O A ey ([ Hzy g (@977
L __at 4ol ~
w14 Lot ) 2o a4+ T 4 acaiad, (73)
g g
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Choosing the stepsize ay, as (28), it will lead to (cf. ¢ := ¢;¢a)

2 2 2 2
—1 - 5152&2 - 74[)69“’ ny ok (;) —1 — C1Ca0y, — 74/)09“/ ny Y (74a)
VK B (wr+pny — VK (kF+p)ug  —
1 2 4pCiar (© 1 4pC2% ay (@)
7_5152%_% > 7_51520%_% > (74b)
VK B (ur+pi ~ VK (kF +p)pg

where both (a) and (c) follow from aj, < B in (28b); and (b) and (d) follow from the second and the third terms
in (28b). In addition, choosing the stepsize S as (28) will lead to

2 2L%pa (e L 2L
PgLyg L O FP%% . 2272 Hgleyg . fP - p272
—2 =B — C1Cy—= — — 8¢3Bi L% > ——=—0B. — (¢1¢9 + oy — 8C38i L
/~Lg+LgI8k e T, 30k g_ug+Lgﬂk (€182 NF+P) k — 8¢3f Ly
(f) L (9) L
L _poloP —8eBPL2 > toZelk o (T4c)
2(Mg +Lg) 4(N9 +Lg)

where (e) follows from «y, < B in (28b), (f) is due to the last terms in (28b), and (g) uses (28a).
Using (74) to cancel terms in (73), we are able to get

B[V — BV < — R gy -y o)) - LSRG — ) 10 () 0

from which we can reach Theorem 2 after telescoping the both sides of (75).

H Proof of Theorem 3
Slightly different from the Lyapunov function (26), we define the following Lyapunov function
VE = [|a® — 2|2 4 " =yt @)+ [ Hy, — Vig(®,y")1° + | Hy, = Va,e(®, 6"))1>.

Lemma 6 Suppose Assumptions 1-8 hold and F(x) is u-strongly convexr. Then x* satisfies

212 _
E[f|z**" —2*|*] < (1 — pap)E[||z* — 2*|?] + TfakE[lly’“ =y (@)|?] + o E[|| RS 7]

Cgryc.l%y k ko, k\|2 401%5/ k k , k\|2
g g

where Ly, L are defined in Lemma 5, and Cg,  1is the projection radius of Hg];y in (9a).

Proof: We start with

(a) _
E[l|z* — 2*|*|F*] < E[|la"* — axhf — z*||*|F"]
= [|a¥ — 2*||* — 20k (¥ — 2*, E[RF| F*]) + o E[|| B ]|?| F*]
= ||a:k — x*Hz - 2ak<xk - x*,VF(ack»
+ 20y (a" — 2%, VF(2") — B[R} F*]) + o B[||h}||*| F*]

(b)
< 2% — 272 = 2ap(2® — 2%, VF(2*) — VF(z*))

+ 200 (z* — &%, VF(2¥) — E[R}|F*]) + o E[|| 15 |1*|F*] (77)

where (a) follows the fact that Py is non-expansive, and (b) follows the optimality condition that (VF(z*),x—a*) >
0 for any z € X.

Using the u-strong convexity of F(z), it follows that
k

— (zF — ¥ VF(a®) = VF(z*)) < —pl|z® — z*|)? (78)
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plugging which into (77) leads to

E [||ac’”'1 — :v*\|2|.7-'k} < (1 = 2pag)||z® — 2*||? + 204 (a® — 2%, VF () — E[B]}|fk]> + 2R [||7L’}||2|.7:k]

A
\_/

< (1 pag) | — a2 + HVF(JJ'“) — E[REFA| + oFE [IR5121F] (79)

where (c) uses the Young’s inequality.

The approximation error of h% can be bounded by

|V F(a*) - E[’kpfk]H?
< 2||VF(*) = V(" )| + 2B [T F (2%, 0*) — Eer [15]]121 7]

(a) _

< 203 |lyF -y (@) +21E[||Vf( y*) — Eex [}]]*|F*]

(b) B 9 5

< 2L Hy -y ( H +2H 1H§y _Hyy(xkvyk) 1H9:y(xk7yk)H Hvyf(mkayk)u

(©) . 4C2Iny AC3

< 203k — gt (@M))? + %E[nﬂjy — Hyy (2%, ") 1?1 F*] + T;E[HH@ — Hoy (%, y") 2| F* (80)
g )

where (a) follows from Lemma 5, (b) uses the fact that
Bee[f1 Y = Vo f (a*,y") = (Hy,) " HZ, Vo f (o, 0°) (81)

and (c) follows the same steps of (57) and Assumption 3. Plugging (80) into the above completes the proof.

Similar to (34), we first quantify the difference between consecutive Lyapunov functions as

L el Lt it e A ki L A M CAOL

Lemma 6 Lemma 3
+ [ Hyy !t = Vi, (™ yM Y 1P = Hy, — V59", ")
Lemma 4
+ || Hgy ' = Va9 g Y|P = Hy, — V3,9(", M) (82)
Lemma 4

+ 12 4+ L2 , we obtain

Gyy

Using Lemmas 3-4 and 6 and defining é5 := Lgm + ng

LB a2 2Lfcak
E[VFHY] — E[V*] < —paEfja* — o2 — | Be2e%k a6, % - 2R Y gilgk - gt (2F))12
[V = E[VY] < —pogE] 7] n+ L, %%, . [lly™ =y (") II7]

4C% C?
~ o~ Oé @ fy
- <7k+1 —C1C2 5: Z;Mak> E[Hny - Hyy(xk,yk)HQ]

g

2 402
S~ O Ty k RN
— | Tk+1 — C1C — ——ay | E|||Hg, — Hzy(z",
( k+1 1 2516 Nf,# k) [l y y( Y]
JFO%E[Hh 1] + <1+ Mgy 5k> 5k0 +0162 it +4Tk+102
pg + L, Br
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Plugging (72) and (61) into (83), we have
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C} ) C
) )
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We choose the stepsizes ay, Ok, 7r as (30) to guarantee that (cf. ¢ := ¢1é)
2402 (2 2 402
ey 924 Y 1y >57 b s TP ]
— 2 %k = 17 (b) 71 610261C Tﬁua =7
(85)
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R frg + Lyg B 9= Ay + Ly)

mﬂ—ﬂﬂﬁﬂﬂﬂm—y(Wﬂ
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Hyy (e 7] - B[,

Therefore, plugging (85) into (84), we have

E[V<+1] — E[V¥] < — sk |Jo
(86)

~Deg s,
< —&5BRE[V*] + Z6 57

where the first and second inequalities hold since we define
- .| pog tgLyg 1 }
C5 :=min{ —, ————— — % = (1
i {0t e .
Hglg ok 2 2 2
=(1+ +f+4a +8Lyo, +¢ =0O(1). 87
oo (14 L2t o, 4 £ L =o) (s7)

where K is a sufficiently large constant, then we have

If we choose ) = m,
K—1 K-1 k—1
E[VE] < H(l—c56k \ +6625k H (1—2¢58;)
k=0 k=0 j=k+1
< (Ko — 2)(Ko — 1) 0 éjlil 4 (k+ Ko = 1)(k + Ko)
T (Kot K -2)(Ko+ K -1) & & (k+Ko)? (K + Ko —2)(K + Ko — 1)
(Ko —1)* o dcs K
88
2V F (K + Ky —1)2 -

- (KO"’K*:[)

from which the proof is complete
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