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Abstract

We design an algorithm which finds an ε-approximate stationary point (with ‖∇F (x)‖ ≤ ε) using

O(ε−3) stochastic gradient and Hessian-vector products, matching guarantees that were previously

available only under a stronger assumption of access to multiple queries with the same random

seed. We prove a lower bound which establishes that this rate is optimal and—surprisingly—that

it cannot be improved using stochastic pth order methods for any p ≥ 2, even when the first p
derivatives of the objective are Lipschitz. Together, these results characterize the complexity of

non-convex stochastic optimization with second-order methods and beyond. Expanding our scope

to the oracle complexity of finding (ε, γ)-approximate second-order stationary points, we establish

nearly matching upper and lower bounds for stochastic second-order methods. Our lower bounds

here are novel even in the noiseless case.

Keywords: Stochastic optimization, non-convex optimization, second-order methods, variance

reduction, Hessian-vector products.

1. Introduction

Let F : Rd → R have Lipschitz continuous gradient and Hessian, and consider the task of finding an

(ε, γ)-second-order stationary point (SOSP), that is, x ∈ Rd such that

‖∇F (x)‖ ≤ ε and ∇2F (x) � −γI. (1)

This task plays a central role in the study of non-convex optimization: for functions satisfying a

weak strict saddle condition [20], exact SOSPs (with ε = γ = 0) are local minima, and therefore

the condition (1) serves as a proxy for approximate local optimality.1 Moreover, for a growing

set of non-convex optimization problems arising in machine learning, SOSPs are in fact global

minima [20, 21, 35, 25]. Consequently, there has been intense recent interest in the design of efficient

algorithms for finding approximate SOSPs [23, 2, 11, 17, 36, 38, 18].

1. However, it is NP-Hard to decide whether a SOSP is a local minimum or a high-order saddle point [28].
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Figure 1: The “elbow effect:” for stochastic oracles, op-

timal complexity sharply improves from ε−4 for p = 1
to ε−3 for p = 2, but has no further improvement for

p > 2. Noiseless complexity begins at ε−2 for p = 1 and

smoothly approaches ε−1 as the derivative order p → ∞.

Method Requires

∇̂2F ?

Complexity

bound

Additional

assumptions

SGD [22] No O(ε−4)

Restarted SGD [18] No O(ε−3.5) ∇̂F Lipschitz

almost surely

Subsampled regularized

Newton [36]

Yes O(ε−3.5)

Recursive variance

reduction [e.g., 17]

No O(ε−3) Mean-squared

smoothness,

Sim. queries

(see Appendix C)

Hessian-vector recursive

VR (Algorithm 2)

Yes O(ε−3) None

Subsampled Newton

with VR (Algorithm 3)

Yes O(ε−3) None

Table 1: Comparison of guarantees for finding ε-stationary points

(i.e., E‖∇F (x)‖ ≤ ε) for a function F with Lipschitz gradient and

Hessian. See Table 2 for detailed comparison.

In stochastic approximation tasks—particularly those motivated by machine learning—access to

the objective function is often restricted to stochastic estimates of its gradient; for each query point

x ∈ Rd we observe ∇̂F (x, z), where z ∼ Pz is a random variable such that

E
[
∇̂F (x, z)

]
= ∇F (x) and E ‖∇̂F (x, z)−∇F (x)‖2 ≤ σ21. (2)

This restriction typically arises due to computational considerations (when ∇̂F (·, z) is much cheaper

to compute than ∇F (·), as in empirical risk minimization or Monte Carlo simulation), or due to

fundamental online nature of the problem at hand (e.g., when x represents a routing scheme and

z represents traffic on a given day). However, for many problems with additional structure, we

have access to extra information. For example, we often have access to stochastic second-order

information in the form of a Hessian estimator ∇̂2F (x, z) satisfying

E
[
∇̂2F (x, z)

]
= ∇2F (x) and E ‖∇̂2F (x, z)−∇2F (x)‖2op ≤ σ22. (3)

In this paper, we characterize the extent to which the stochastic Hessian information (3), as well

as higher-order information, contributes to the efficiency of finding first- and second-order stationary

points. We approach this question from the perspective of oracle complexity [29], which measures

efficiency by the number of queries to estimators of the form (2)—and possibly (3)—required to

satisfy the condition (1).

1.1. Our Contributions

We provide new upper and lower bounds on the stochastic oracle complexity of finding ε-stationary

points and (ε, γ)-SOSPs. In brief, our main results are as follows.

• Finding ε-stationary points: The elbow effect. We propose a new algorithm that finds an

ε-stationary point (γ = ∞) with O(ε−3) stochastic gradients and stochastic Hessian-vector
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products. We furthermore show that this guarantee is not improvable via a complementary

Ω(ε−3) lower bound. All previous algorithms achieving O(ε−3) complexity require “multi-point”

queries, in which the algorithm can query stochastic gradients at multiple points for the same

random seed. Moreover, we show that Ω(ε−3) remains a lower bound for stochastic pth-order

methods for all p ≥ 2 and hence—in contrast to the deterministic setting—the optimal rates for

higher-order methods exhibit an “elbow effect”; see Figure 1.

• (ε, γ)-stationary points: Improved algorithm and nearly matching lower bound. We extend

our algorithm to find (ε, γ)-stationary points using O(ε−3 + ε−2γ−2 + γ−5) stochastic gradient

and Hessian-vector products, and prove a nearly matching Ω(ε−3 + γ−5) lower bound.

In the remainder of this section we overview our results in greater detail. Unless otherwise

stated, we assume F has both Lipschitz gradient and Hessian. To simplify the overview, we focus

on dependence on ε−1 and γ−1 while keeping the other parameters—namely the initial optimality

gap F (x(0)) − infx∈Rd F (x), the Lipschitz constants of ∇F and ∇2F , and the variances of their

estimators—held fixed. Our main theorems give explicit dependence on these parameters.

1.1.1. FIRST-ORDER STATIONARY POINTS (γ =∞)

We first describe our developments for the task of finding ε-approximate first-order stationary points

(satisfying (1) with γ =∞), and subsequently extend our results to general γ. The reader may also

refer to Table 1 for a succinct comparison of upper bounds.

Variance reduction via Hessian-vector products: A new gradient estimator. Using stochastic

gradients and stochastic Hessian-vector products as primitives, we design a new variance-reduced

gradient estimator. Plugging it into standard stochastic gradient descent (SGD), we obtain an

algorithm that returns a point x̂ satisfying E ‖∇F (x̂)‖ ≤ ε and requires O(ε−3) stochastic gradient

and HVP queries in expectation. In comparison, vanilla SGD requires O(ε−4) queries [22], and the

previously best known rate under our assumptions was O(ε−3.5), by both cubic-regularized Newton’s

method and a restarted variant of SGD [36, 18].

Our approach builds on a line of work by Fang et al. [17], Zhou et al. [39], Wang et al. [37],

Cutkosky and Orabona [16] that also develop algorithms with complexity O(ε−3), but require a

“multi-point” oracle in which algorithm can query the stochastic gradient at multiple points for the

same random seed. Specifically, in the n-point variant of this model, the algorithm can query at the

set of points (x1, . . . , xn) and receive

∇̂F (x1, z), . . . , ∇̂F (xn, z), where z
i.i.d.∼ Pz, (4)

and where the estimator ∇̂F (x, z) is unbiased and has bounded variance in the sense of (2). The

aforementioned works achieve O(ε−3) complexity using n = 2 simultaneous queries, while our

new algorithm achieves the same rate using n = 1 (i.e., z is drawn afresh at each query), but

using stochastic Hessian-vector products in addition to stochastic gradients. However, we show in

Appendix C that under the statistical assumptions made in these works, the two-point stochastic

gradient oracle model is strictly stronger than the single-point stochastic gradient/Hessian-vector

product oracle we consider here. On the other hand, unlike our algorithm, these works do not require

Lipschitz Hessian.

The algorithms that achieve complexity O(ε−3) using two-point queries work by estimating

gradient differences of the form ∇F (x) − ∇F (x′) using ∇̂F (x, z) − ∇̂F (x′, z) and applying
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recursive variance reduction [31]. Our primary algorithmic contribution is a second-order stochastic

estimator for ∇F (x)−∇F (x′) which avoids simultaneous queries while maintaining comparable

error guarantees. To derive our estimator, we note that ∇F (x)−∇F (x′) =
∫ 1
0 ∇2F (xt+ x′(1−

t))(x− x′)dt, and use K queries to the stochastic Hessian estimator (3) to numerically approximate

this integral.2 Specifically, our estimator takes the form

1

K

K−1∑

k=0

∇̂2F
(
x · (1− k

K ) + x′ · k
K , z

(i)
)
(x− x′), (5)

where z(i)
i.i.d.∼ Pz . Unlike the usual estimator ∇̂F (x, z) − ∇̂F (x′, z), the estimator (5) is biased.

Nevertheless, we show that choosing K dynamically according to K ∝ ‖x− x′‖2 provides adequate

control over both bias and variance while maintaining the desired query complexity. Combining the

integral estimator (5) with recursive variance reduction, we attain O(ε−3) complexity.

Demonstrating the power of second-order information. For functions with Lipschitz gradient

and Hessian, we prove an Ω(ε−3.5) lower bound on the minimax oracle complexity of algorithms

for finding stationary points using only stochastic gradients (2).3 This lower bound is an extension

of the results of Arjevani et al. [8], who showed that for functions with Lipschitz gradient but not

Lipschitz Hessian, the optimal rate is Θ(ε−4) using only stochastic gradients (2). Together with our

new O(ε−3) upper bound, this lower bound reveals that stochastic Hessian-vector products offer

an Ω(ε−0.5) improvement in the oracle complexity for finding stationary points in the single-point

query model. This contrasts the noiseless optimization setting, where finite gradient differences can

approximate Hessian-vector products arbitrarily well, meaning these oracle models are equivalent.

Demonstrating the limitations of higher-order information (p > 2). For algorithms that can

query both stochastic gradients and stochastic Hessians, we prove a lower bound of Ω(ε−3) on the

oracle complexity of finding an expected ε-stationary point. This proves that ourO(ε−3) upper bound

is optimal in the leading order term in ε, despite using only stochastic Hessian-vector products rather

than full stochastic Hessian queries.

Notably, our Ω(ε−3) lower bound extends to settings where stochastic higher-order oracles are

available, i.e, when the first p derivatives are Lipschitz and we have bounded-variance estimators

{∇̂qF (·, ·)}q≤p. The lower bound holds for any finite p, and thus, as a function of the oracle order p,

the minimax complexity has an elbow (Figure 1): for p = 1 the complexity is Θ(ε−4) [8] while for all

p ≥ 2 it is Θ(ε−3). This means that smoothness and stochastic derivatives beyond the second-order

cannot improve the leading term in rates of convergence to stationarity, establishing a fundamental

limitation of stochastic high-order information. This highlights another contrast with the noiseless

setting, where pth order methods enjoy improved complexity for every p [12].

As we discuss in Appendix C, for multi-point stochastic oracles (4), the rate O(ε−3) is attainable

even without stochastic Hessian access. Moreover, our Ω(ε−3) lower bound for stochastic pth order

oracles holds even when multi-point queries are allowed. Consequently, when viewed through the

lens of worst-case oracle complexity, our lower bounds show that even stochastic Hessian information

is not helpful in the multi-point setting.

2. More precisely, our estimator (5) only requires stochastic Hessian-vector products, whose computation is often roughly

as expensive as that of a stochastic gradient [33].

3. We formally prove our results for the structured class of zero-respecting algorithms [12]; the lower bounds extend to

general randomized algorithms via similar arguments to Arjevani et al. [8].
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1.1.2. SECOND-ORDER STATIONARY POINTS

Upper bounds for general γ. We incorporate our recursive variance-reduced Hessian-vector

product-based gradient estimator into an algorithm that combines SGD with negative curvature

search. Under the slightly stronger (relative to (3)) assumption that the stochastic Hessians have

almost surely bounded error, we prove that—with constant probability—the algorithm returns an

(ε, γ)-SOSP after performingO(ε−3+ε−2γ−2+γ−5) stochastic gradient and Hessian-vector product

queries.

A lower bound for finding second-order stationary points. We prove a minimax lower bound

which establishes that the stochastic second-order oracle complexity of finding (ε, γ)-SOSPs is

Ω(ε−3 + γ−5). Consequently, the algorithms we develop have optimal worst-case complexity in

the regimes γ = O(ε2/3) and γ = Ω(ε0.5). Compared to our lower bounds for finding ε-stationary

points, proving the Ω(γ−5) lower bound requires a more substantial modification of the constructions

of [12] and [8]. In fact, our lower bound is new even in the noiseless regime (i.e., σ1 = σ2 = 0),

where it becomes Ω(ε−1.5 + γ−3); this matches the guarantee of the cubic-regularized Newton’s

method [30] and consequently characterizes the optimal rate for finding approximate SOSPs using

noiseless second-order methods.

1.2. Further related work

We briefly survey additional upper and lower complexity bounds related to our work and place our

results within their context. The works of Monteiro and Svaiter [27], Arjevani et al. [9], Agarwal

and Hazan [1] delineate the second-order oracle complexity of convex optimization in the noiseless

setting; [7] treat the finite-sum setting.

For functions with Lipschitz gradient and Hessian, oracle access to the Hessian significantly

accelerates convergence to ε-approximate global minima, reducing the complexity from Θ(ε−0.5) to

Θ(ε−2/7). However, since the hard instances for first-order convex optimization are quadratic [29, 6,

34], assuming Lipschitz continuity of the Hessian does not improve the complexity if one only has

access to a first-order oracle. This contrasts the case for finding ε-approximate stationary points of

non-convex functions with noiseless oracles. There, Lipschitz continuity of the Hessian improves

the first-order oracle complexity from Θ(ε−2) to O(ε−1.75), with a lower bound of Ω(ε−12/7) for

deterministic algorithms [10, 13]. Additional access to full Hessian further improves this complexity

to Θ(ε−1.5), and for pth-order oracles with Lipschitz pth derivative, the complexity further improves

to Θ(ε
−(1+ 1

p
)
) [12]; see Figure 1.

1.3. Paper organization

We formally introduce our notation and oracle model in Section 2. Section 3 contains our results

concerning the complexity of finding ε-first-order stationary points: algorithmic upper bounds

(Section 3.1) and algorithm-independent lower bounds (Section 3.2). Following a similar outline,

Section 4 describes our upper and lower bounds for finding (ε, γ)-SOSPs. In Appendix A, we

discussion directions for future research. Additional technical comparison with related work is given

in Appendix B and C, and proofs are given in Appendix D through Appendix H.

Notation. We let Cp denote the class of p-times differentiable real-valued functions, and let

∇qF denote the qth derivative of a given function F ∈ Cp for q ∈ {1, . . . , p}. Given a function

5
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F ∈ C1, we let∇iF (x) := [∇F (x)]i = ∂
∂xi
F (x). When F ∈ C2 is twice differentiable, we define,

∇2
ijf(x) :=

[
∇2f(x)

]
ij

= ∂2

∂xi∂xj
f(x), and similarly define [∇pf(x)]i1,i2,...,ip = ∂p

∂xi1
···∂xip

f(x)

for pth-order derivatives. For a vector x ∈ Rd, ‖x‖ denotes the Euclidean norm and ‖x‖∞ denotes

the `∞ norm. For matrices A ∈ Rd×d, ‖A‖op denotes the operator norm. More generally, for

symmetric pth order tensors T , we define the operator norm via ‖T‖op = sup‖v‖=1|〈T, v⊗p〉|, and

we let T [v(1), . . . , v(p)] =
〈
T, v(1) ⊗ · · · ⊗ v(p)

〉
. Note that for a vector x ∈ Rd the operator norm

‖x‖op coincides with the Euclidean norm ‖x‖. We let Sd denote the space of symmetric matrices in

Rd×d. We let Br(x) denote the Euclidean ball of radius r centered at x ∈ Rd (with dimension clear

from context). We adopt non-asymptotic big-O notation, where f = O(g) for f, g : X → R+ if

f(x) ≤ Cg(x) for some constant C > 0.

2. Setup

We study the problem of finding ε-stationary and (ε, γ)-second order stationary points in the standard

oracle complexity framework [29], which we briefly review here.

Function classes. We consider p-times differentiable functions satisfying standard regularity con-

ditions, and define

Fp(∆, L1:p) =

{
F : Rd → R

∣∣∣∣
F ∈ Cp, F (0)− infx F (x) ≤ ∆,
‖∇qF (x)−∇qF (y)‖op ≤ Lq‖x− y‖ for all x, y ∈ Rd, q ∈ [p]

}
,

so that L1:p := (L1, . . . , Lp) specifies the Lipschitz constants of the qth order derivatives∇qF with

respect to the operator norm. We make no restriction on the ambient dimension d.

Oracles. For a given function F ∈ Fp(∆, L1:p), we consider a class of stochastic pth order oracles

defined by a distribution Pz over a measurable set Z and an estimator

O
p
F (x, z) :=

(
F̂ (x, z), ∇̂F (x, z), ∇̂2F (x, z), . . . , ∇̂pF (x, z)

)
, (6)

where {∇̂qF (·, z)}pq=0 are unbiased estimators of the respective derivatives. That is, for all x,

Ez∼Pz [F̂ (x, z)] = F (x) and Ez∼Pz [∇̂qF (x, z)] = ∇qF (x) for all q ∈ [p].4

Given variance parameters σ1:p = (σ1, . . . , σp), we define the oracle class Op(F, σ1:p) to be the

set of all stochastic pth-order oracles for which the variance of the derivative estimators satisfies

Ez∼Pz

∥∥∥∇̂qF (x, z)−∇qF (x)
∥∥∥
2

op
≤ σ2q , q ∈ [p]. (7)

The upper bounds in this paper hold even when σ20 := maxx∈Rd Var(F̂ (x, z)) is infinite, while our

lower bounds hold when σ0 = 0, so to reduce notation, we leave dependence on this parameter tacit.

Optimization protocol. We consider stochastic pth-order optimization algorithms that access an

unknown function F ∈ Fp(∆, L1:p) through multiple rounds of queries to a stochastic pth-order

oracle (Op
F , Pz) ∈ Op(F, σ1:p). When queried at x(t) in round t, the oracle performs an independent

draw of z(t) ∼ Pz and answers with O
p
F (x

(t), z(t)). Algorithm queries depend on F only through

the oracle answers; see e.g. Arjevani et al. [8, Section 2] for a more formal treatment.

4. For p ≥ 2 we assume without loss of generality that ∇̂pF (x, z) is a symmetric tensor.

6
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3. Complexity of finding first-order stationary points

In this section we focus on the task of finding ε-approximate stationary points (satisfying ‖∇F (x)‖ ≤
ε). As prior work observes [cf. 10, 2], stationary point search is a useful primitive for achieving the

end goal of finding second-order stationary points (1). We begin with describing algorithmic upper

bounds on the complexity of finding stationary points with stochastic second-order oracles, and then

proceed to match their leading terms with general pth order lower bounds.

3.1. Upper bounds

Our algorithms rely on recursive variance reduction [31]: we sequentially estimate the gradient

at the points {x(t)}t≥0 by accumulating cheap estimators of ∇F (x(τ)) − ∇F (x(τ−1)) for τ =
t0 + 1, . . . , t, where at iteration t0 we reset the gradient estimator by computing a high-accuracy

approximation of∇F (x(t0)) with many oracle queries. Our implementation of recursive variance

reduction, Algorithm 1, differs from previous approaches [17, 39, 37] in three aspects.

First, in Line 8 we estimate differences of the form ∇F (x(τ)) − ∇F (x(τ−1)) by averaging

stochastic Hessian-vector products. This allows us to do away with multi-point queries and operate

under weaker assumptions than prior work (see Appendix C), but it also introduces bias to our

estimator, which makes its analysis more involved. This is the key novelty in our algorithm. Second,

rather than resetting the gradient estimator every fixed number of steps, we reset with a user-defined

probability b (Line 4); this makes the estimator stateless and greatly simplifies its analysis, especially

in our algorithms for finding SOSPs, where we use a varying value of b. Finally, we dynamically

select the batch size K for estimating gradient differences based on the distance between iterates

(Line 2), while prior work uses a constant batch size. Our dynamic batch size scheme is crucial for

controlling the bias in our estimator, while still allowing for large step sizes as in Wang et al. [37].

The core of our analysis is the following lemma, which bounds the gradient estimation error

and expected oracle complexity. To state the lemma, we let {x(t)}t≥0 be sequence of queries to

Algorithm 1, and let g(t) = HVP-RVR-Gradient-Estimatorε,b(x
(t), x(t−1), g(t−1)) be the sequence of

estimates it returns.

Lemma 1 For any oracle in O2(F, σ1:2) and F ∈ F2(∆, L1:2), Algorithm 1 guarantees that

E ‖g(t) −∇F (x(t))‖2 ≤ ε2

for all t ≥ 1. Furthermore, conditional on x(t−1), x(t) and g(t−1), the tth execution of Algorithm 1

with reset probability b uses at most

O
(
1 + b

σ21
ε2

+
∥∥x(t) − x(t−1)

∥∥2 · σ
2
2 + εL2

bε2

)

stochastic gradient and Hessian-vector product queries in expectation.

We prove the lemma in Appendix D by bounding the per-step variance using the HVP oracle’s

variance bound (7), and by bounding the per-step bias relative to ∇F (x(t))−∇F (x(t−1)) using the

Lipschitz continuity of the Hessian.

Our first algorithm for finding ε-stationary points, Algorithm 2, is simply stochastic gradient

descent using the HVP-RVR gradient estimator (Algorithm 1); we bound its complexity by O(ε−3).
Before stating the result formally, we briefly sketch the analysis here (see Appendix F.1 for details).

7
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Algorithm 1 Recursive variance reduction with stochastic Hessian-vector products (HVP-RVR)

// Gradient estimator for F ∈ F2(∆, L1:2) given stochastic oracle in O2(F, σ1:2).

1: function HVP-RVR-GRADIENT-ESTIMATORε,b(x, xprev, gprev):

2: Set K =

⌈
5(σ2

2+L2ε)
bε2

· ‖x− xprev‖2
⌉

and n =
⌈
5σ2

1
ε2

⌉
.

3: Sample C ∼ Bernoulli(b).
4: if C is 1 or gprev is ⊥ then

5: Query the oracle n times at x and set g ← 1
n

∑n
j=1 ∇̂F (x, z(j)), where z(j)

i.i.d.∼ Pz.
6: else

7: Define x(k) := k
Kx+

(
1− k

K

)
xprev for k ∈ {0, . . . ,K}.

8: Query the oracle at the set of points
(
x(k)

)K−1

k=0
to compute

g ← gprev +
∑K

k=1 ∇̂2F (x(k−1), z(k))
(
x(k) − x(k−1)

)
, where z(k)

i.i.d.∼ Pz.

9: return g.

Algorithm 2 Stochastic gradient descent with HVP-RVR

Input: Oracle (O 2
F , Pz) ∈ O2(F, σ1:2) for F ∈ F2(∆, L1, L2). Precision parameter ε.

1: Set η = 1

2
√

L2
1+σ2

2+εL2
, T =

⌈
2∆
ηε2

⌉
, n =

⌈
4σ2

1
ε2

⌉
, b = min

{
1,

ηε
√

σ2
2+εL2

σ1

}
.

2: Initialize x(0), x(1) ← 0, g(0) ← ⊥.

3: for t = 1 to T do

4: g(t) ← HVP-RVR-Gradient-Estimatorε,b(x
(t), x(t−1), g(t−1)).

5: x(t+1) ← x(t) − ηg(t).
6: return x̂ chosen uniformly at random from

{
x(t)
}T
t=1

.

Standard analysis of SGD with step size η ≤ 1
2L1

shows that its iterates satisfy E‖∇F (x(t))‖2 ≤
1
ηE[F (x

(t+1))−F (x(t))] +O(1) ·E ‖g(t)−∇F (x(t))‖2. Telescoping over T steps, using Lemma 1

and substituting in the initial suboptimality bound ∆, this implies that

1

T

T−1∑

t=0

E ‖∇F (x(t))‖2 ≤ ∆

ηT
+O(ε2). (8)

Taking T = Ω( ∆
ηε2

), we are guaranteed that a uniformly selected iterate has expected norm O(ε).
To account for oracle complexity, we observe from Lemma 1 that T calls to Algorithm 1 require

at most T (
σ2
1b
ε2

+ 1) +
∑T

t=1 E ‖x(t) − x(t−1)‖2 ·
(σ2

2+L2ε
bε2

)
oracle queries in expectation. Using

x(t) − x(t−1) = ηg(t−1), Lemma 1 and (8) imply that
∑T

t=1 E ‖x(t) − x(t−1)‖2 ≤ O(Tε2). We then

choose b to out the terms T
(σ2

1b
ε2

)
and T

(σ2
2+L2ε
b

)
. This gives the following guarantee.

Theorem 2 For any function F ∈ F2(∆, L1, L2), stochastic second-order oracle in O2(F, σ1, σ2),
and ε < min

{
σ1,
√
∆L1

}
, with probability at least 3

4 , Algorithm 2 returns a point x̂ such that

‖∇F (x̂)‖ ≤ ε and performs at most

O
(∆σ1σ2

ε3
+

∆L0.5
2 σ1
ε2.5

+
∆L1

ε2

)

stochastic gradient and Hessian-vector product queries.

8
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The oracle complexity of Algorithm 2 depends on the Lipschitz parameters of F only through

lower-order terms in ε, with the leading term scaling only with the variance of the gradient and

Hessian estimators. In the low noise regime where σ1 < ε and σ2 < max{L1,
√
L2ε}, the complexity

becomes O(∆L1ε
−2 + ∆L0.5

2 ε−1.5) which is simply the maximum of the noiseless guarantees

for gradient descent and Newton’s method. We remark, however, that in the noiseless regime

σ1 = σ2 = 0, a slightly better guarantee O(∆L0.5
1 L0.25

2 ε−1.75 +∆L0.5
2 ε−1.5) is achievable [10].

In the noiseless setting, any algorithm that uses only first-order and Hessian-vector product

queries must have complexity scaling with L1, but full Hessian access can remove this dependence

[13]. We show that the same holds true in the stochastic setting: Algorithm 3, a subsampled cubic

regularized trust-region method using Algorithm 1 for gradient estimation, enjoys a complexity

bound independent of L1. We defer the full description and analysis to Appendix F.2 and state the

guarantee here.

Theorem 3 For any function F ∈ F2(∆,∞, L2), stochastic second order oracle in O2(F, σ1, σ2),
and ε < σ1, with probability at least 3

4 , Algorithm 3 returns a point x̂ such that ‖∇F (x̂)‖ ≤ ε and

performs at most

O
(∆σ1σ2

ε3
· log0.5 d+ ∆L0.5

2 σ1
ε2.5

)

stochastic gradient and Hessian queries.

The guarantee of Theorem 3 constitutes an improvement in query complexity over Theorem 2

in the regime L1 & (1 + σ1
ε )(σ2 +

√
L2ε). However, depending on the problem, full stochastic

Hessians can be up to d times more expensive to compute than stochastic Hessian-vector products.

3.2. Lower bounds

Having presented stochastic second-order methods with O(ε−3)-complexity bound for finding ε-
stationary points, our we next show that this rates cannot be improved. In fact, we show that this

rate is optimal even when one is given access to stochastic higher derivatives of any order. We

prove our lower bounds for the class of zero-respecting algorithms, which subsumes the majority of

existing optimization methods; see Appendix H.1 for a formal definition. We believe that existing

techniques [12, 8] can strengthen our lower bounds to apply to general randomized algorithms; for

brevity, we do not pursue it here.

The lower bounds in this section closely follow a recent construction by Arjevani et al. [8, Section

3], who prove lower bounds for stochastic first-order methods. To establish complexity bounds for

pth-order methods, we extend the ‘probabilistic zero-chain’ gradient estimator introduced in Arjevani

et al. [8] to high-order derivative estimators. The most technically demanding part of our proof is a

careful scaling of the basic construction to simultaneously meet multiple Lipschitz continuity and

variance constraints. Deferring the proof details to Appendix H.1, our lower bound is as follows.

Theorem 4 For all p ∈ N, ∆, L1:p, σ1:p > 0 and ε ≤ O(σ1), there exists F ∈ Fp(∆, L1:p) and

(O p
F , Pz) ∈ Op(F, σ1:p), such that for any pth-order zero-respecting algorithm, the number of queries

required to obtain an ε-stationary point with constant probability is bounded from below by

Ω(1) · ∆σ
2
1

ε3
min

{
min

q∈{2,...,p}

(
σq
σ1

) 1
q−1

, min
q′∈{1,...,p}

(
Lq′

ε

)1/q′
}
. (9)

9
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A construction of dimension Θ
(
∆
ε min

{
minq∈{2,...,p}

(
σq

σ1

) 1
q−1

,minq′∈{1,...,p}
(
Lq′

ε

)1/q′})
realizes

this lower bound.

For second-order methods (p = 2), Theorem 4 specializes to the complexity lower bound

Ω(1) ·min

{
∆σ1σ2
ε3

,
∆L0.5

2 σ1
ε3.5

,
∆L1σ

2
1

ε4

}
, (10)

which is tight in that it matches (up to numerical constants) the convergence rate of Algorithm 2

in the regime where ∆σ1σ2ε
−3 dominates both the upper bound in Theorem 2 and expression (10).

The lower bound (10) is also tight when the second-order information is not available or reliable

(σ2 is infinite or very large, respectively): Standard SGD matches the ε−4 term [22], while more

sophisticated variants based on restarting [18] and normalized updates with momentum [15] match

the ε−3.5 term (the former up to logarithmic factors)—neither of these algorithms requires stochastic

second derivative estimation.

Theorem 4 implies that while higher-order methods (with p > 2) might achieve better dependence

on the variance parameters than the upper bounds for Algorithm 2 or Algorithm 3, they cannot

improve the ε−3 scaling. This highlights a fundamental limitation for higher-order methods in

stochastic non-convex optimization which does not exist in the noiseless case. Indeed, without noise

the optimal rate for finding ε-stationary point with a pth order method is Θ(ε
−1+ 1

p ) [12]; we illustrate

this contrast in Figure 1.

Altogether, the results presented in this section fully characterize (with respect to dependence on

ε) the complexity of finding ε-stationary points with stochastic second-order methods and beyond

in the single-point query model. We briefly remark that lower bound in (9) immediately extends to

multi-point queries, which shows that even second-order methods offer little benefit once two or

more simultaneous queries are allowed.

4. Complexity of finding second-order stationary points

Having established rates of convergence for finding ε-stationary points, we now turn our attention to

(ε, γ)-second order stationary points, which have the additional requirement that λmin(∇2F (x)) ≥
−γ, i.e. that F is γ-weakly convex around x. This section follows the general organization of the

prequel: we first design and analyze an algorithm with improved upper bounds, and then develop

nearly-matching lower bounds that apply to a broad class of algorithms.

4.1. Upper bounds

Our first contribution for this section is an algorithm that enjoys improved complexity for finding

(ε, γ)-second-order stationary points, and that achieves this using only stochastic gradient and

Hessian-vector product queries. To guarantee second-order stationarity, we follow the established

technique of interleaving an algorithm for finding a first-order stationary point with negative curvature

descent [10, 5]. However, we employ a randomized variant of this approach. Specifically, at every

iteration we flip a biased coin to determine whether to perform a stochastic gradient step or a

stochastic negative curvature descent step.

Our algorithm estimates stochastic gradients using the HVP-RVR scheme (Algorithm 1), where

the value of the restart probability b depends on the type of the previous step (gradient or negative

10
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curvature). To implement negative curvature descent, we apply Oja’s method [32, 4] which detects

directions of negative curvature using only stochastic Hessian-vector product queries. For technical

reasons pertaining to the analysis of Oja’s method, we require the stochastic Hessians to be bounded

almost surely, i.e., ‖∇̂2F (x, z) − ∇2F (x)‖op ≤ σ̄2 a.s.; we let O2(F, σ1, σ̄2) denote the class of

such bounded noise oracles. Under this assumption, Algorithm 4—whose description is deferred to

the Appendix G—enjoys the following convergence guarantee.5

Theorem 5 For any function F ∈ F2(∆, L1, L2), stochastic Hessian-vector product oracle in

O2(F, σ1, σ̄2), ε ≤ min
{
σ1,
√
∆L1

}
, and γ ≤ min

{
σ̄2, L1,

√
εL2

}
, with probability at least 5

8
Algorithm 4 returns a point x̂ such that

‖∇F (x̂)‖ ≤ ε and λmin

(
∇2F (x̂)

)
≥ −γ,

and performs at most

Õ

(
∆σ1σ̄2
ε3

+
∆L2σ1σ̄2
γ2ε2

+
∆L2

2(σ̄2 + L1)
2

γ5
+

∆L1

ε2

)

stochastic gradient and Hessian-vector product queries.

Similar to the case for finding ε-stationary points (see discussion preceding Theorem 3), using

full stochastic Hessian information allows us to design an algorithm (Algorithm 5) which removes the

dependence on L1 from the theorem above. Moreover, estimating negative curvature directly from

empirical Hessian estimates saves us the need to use Oja’s method, which means that we do not need

the additional boundedness assumption on the stochastic Hessian used by Algorithm 4. We defer the

complete description, complexity guarantee, and for analysis for Algorithm 5 to Appendix G.1.

4.2. Lower bounds

We now develop lower complexity bounds for the task of finding (ε, γ)-stationary points. To do so,

we prove new lower bounds for the simpler sub-problem of finding a γ-weakly convex point, i.e., a

point x such that λmin(∇2F (x)) ≥ −γ (with no restriction on ‖∇F (x)‖). Lower bounds for finding

(ε, γ)-SOSPs follow as the maximum (or, equivalently, the sum) of lower bounds we develop here

and the lower bounds for finding ε-stationary points given in Theorem 6. To see why this is so, let

Fε and Fγ be hard instances for finding ε-stationary and γ-weakly-convex points respectively, and

consider the “direct sum” Fε,γ(x) :=
1
2Fε(x1, . . . , xd)+

1
2Fγ(xd+1, . . . , x2d); this is a hard instance

for finding (ε, γ)-SOSPs that inherits all the regularity properties of its constituent functions.

The basic construction we use here is a modification of the zero-chain introduced in Carmon

et al. [12] (see (74) in Appendix H) in which large λmin(∇2F (x)) is possible only when essentially

none of the entries of x is zero. Given T > 0, we define the hard function

GT (x) := Ψ(1)Λ(x1) +

T∑

i=2

[Ψ(−xi−1)Λ(−xi) + Ψ(xi−1)Λ(xi))], (11)

5. The notation Õ(·) hides lower-order terms and logarithmic dependence on the dimension d. See the proof in

Appendix G for the complete description of the algorithm and the full complexity bound, including lower order terms.

11
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where Ψ(x) := exp(1− 1
(2x−1)2

)1
{
x > 1

2

}
(as in Carmon et al. [12]) and Λ(x) := 8(e

−x2

2 − 1).
Our design for the function Λ guarantees that any query whose last coordinate is zero has

significant negative curvature, while maintaining the original chain structure which guarantees

that zero-respecting algorithms require many queries before “discovering” the last coordinate. We

complete the construction by specifying a collection of stochastic derivative estimators similar to

those in Section 4.2, except for that we choose the stochastic gradient estimator ∇̂GT to be exactly

equal to∇GT , so that the lower bound holds even for σ1 = 0; Appropriately scaling GT allows us to

tune the Lipschitz constants of its derivatives and the variance of the estimators, thereby establishing

the following complexity bounds (see Appendix H.2 for a full derivation).

Theorem 6 Let p ≥ 2 and ∆, L1:p, σ1:p > 0 be fixed. If γ ≤ O(min{σ2, L1}), then there exists

F ∈ Fp(∆, L1:p) and (O p
F , Pz) ∈ Op(F, σ1:p) such that for any stochastic pth-order zero-respecting

algorithm, the number of queries to O
p
F required to obtain a γ-weakly convex point with constant

probability is at least

Ω(1) ·





∆σ2
2L

2
2

γ5 , p = 2,

∆σ2
2

γ3 min

{
minq∈{3,...,p}

(
σq

σ2

) 2
q−2

,minq′∈{2,...,p}
(
Lq′

γ

) 2
q′−1

}
, p > 2.

(12)

Theorem 6 is new even in the noiseless case (in which σ1 = · · · = σp = 0), where it specializes to

∆
γ minq∈{2,...,p}

(
Lq

γ

) 2
q−1

. For the class Fp(∆, Lp), this further simplifies to ∆L
2

p−1
p γ

− p+1
p−1 , which

is attained by the pth-order regularization method given in Cartis et al. [14, Theorem 3.6].

Together, these results characterize the deterministic complexity of finding γ-weakly convex

points with noiseless pth-order methods.

Returning to the stochastic setting, the bound in Theorem 6, when combined with Theorem 4,

implies the following oracle complexity lower bound bound for finding (ε, γ)-SOSPs with zero-

respecting stochastic second-order methods (p = 2):

Ω(1) ·
(
min

{
∆σ1σ2
ε3

,
∆L0.5

2 σ1
ε3.5

,
∆L1σ

2
1

ε4

}
+

∆σ22L
2
2

γ5

)
. (13)

Our lower bound matches the ε−3 + γ−5 terms in the upper bound given by Theorem 5, but does not

match the mixed term ε−2γ−2 appearing in the upper bound.6 Overall, the rates match whenever

γ = Ω(ε0.5) or γ = O(ε2/3).
Theorem 6 is suggestive of another “elbow” phenomenon: In the stochastic regime, the rate does

not improve beyond γ−3 for p ≥ 3, while the optimal rate in the noiseless regime, γ
− p+1

p−1 , continues

improving for all p.7 However, we are not yet aware of an algorithm using stochastic third-order

information or higher that can achieve the γ−3 complexity bound.

Discussion

Due to space constraints, we defer conclusions and discussion to Appendix A.

6. Young’s inequality only gives ε−3 + γ−5 ≥ Ω(ε−9/5γ−2).

7. Indeed, when high-order noise moments are assumed finite, the term minq∈{3,...,p}(σq/σ2)
2

q−2 can longer be

disregarded. This, in turn, implies that for sufficiently small γ, one cannot improve over γ−3-scaling, as seen by (12).

12
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Appendix A. Further discussion

This paper provides a fairly complete picture of the worst-case oracle complexity of finding stationary

points with a stochastic second-order oracle: for ε-stationary points we characterize the leading term

in ε−1 exactly and for (ε, γ)-SOSPs we characterize the leading term in γ−1 for a wide range of

parameters. Nevertheless, our results point to a number of open questions.

Benefits of higher-order information for γ-weakly convex points. Our upper and lower bounds

(in Theorem 20 and Theorem 6) resolve the optimal rate to find an (ε, γ)-stationary point for p = 2,

i.e., when F is second-order smooth and the algorithm can query stochastic gradient and Hessian

information. Furthermore, Theorem 4 shows that higher order information (p ≥ 3) cannot improve

the dependence of the rate on the first-order stationarity parameter ε. However, our lower bound for

dependence on γ scales as γ−5 for p = 2, but scales as γ−3 for p ≥ 3. The weaker lower bound for

p ≥ 3 leaves open the possibility of a stronger upper bound using third-order information or higher.

Global methods. For statistical learning and sample average approximation problems, it is natural

to consider problem instances of the form F (x) = E
[
F̂ (x, z)

]
. For this setting, a more powerful

oracle model is the global oracle, in which samples z(1), . . . , z(n) are drawn i.i.d. and the learner

observes the entire function F̂ (·, z(t)) for each t ∈ [n]. Global oracles are more powerful than

stochastic pth order oracles for every p, and lead to improved rates in the convex setting [19]. Is it

possible to beat the ε−3 elbow for such oracles, or do our lower bounds extend to this setting?

Adaptivity and instance-dependent complexity. Our lower bounds show that stochastic higher-

order methods cannot improve the ε−3 oracle complexity attained with stochastic gradients and

Hessian-vector products. Furthermore, in the multi-point query model, stochastic second-order

information does not even lead to improved rates over stochastic first-order information. However,

these conclusions could be artifacts of our worst-case point of view—are there natural families

of problem instances for which higher-order methods can adapt to additional problem structure

and obtain stronger instance-dependent convergence guarantees? Developing a theory of instance-

dependent complexity that can distinguish adaptive algorithms stands out as an exciting research

prospect.

Appendix B. Detailed comparison with existing rates

Table 2 provides a detailed comparison between our upper bounds on the complexity of finding

ε-stationary points and those of prior work.

Appendix C. Comparison: multi-point queries and mean-squared smoothness

Stochastic first-order methods that utilize variance reduction [24, 17, 39] employ the following

mean-squared smoothness (MSS) assumption on the stochastic gradient estimator:

E ‖∇̂F (x, z)− ∇̂F (y, z)‖2 ≤ L̄2‖x− y‖2 for all x, y ∈ Rd.

Since E[∇̂F (x, z)] = ∇F (x), this is equivalent to assuming

E ‖∇̂F (x, z)− ∇̂F (y, z)− (∇F (x)−∇F (y))‖2 ≤ σ2mss‖x− y‖2 for all x, y ∈ Rd, (14)
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Method
Uses

∇̂2F ?
Complexity bound

Additional

assumptions

SGD [22] No O(∆L1σ
2
1ε

−4)

Restarted SGD [18] No O(∆L0.5
2 σ21ε

−3.5)† ∇̂F Lipschitz

almost surely

Normalized SGD [15] No O(∆L0.5
2 σ21ε

−3.5)†

Subsampled regularized

Newton [36]

Yes∗ O(∆L0.5
2 σ21ε

−3.5)†

Recursive variance

reduction [e.g., 17]

No O(∆σ1σmssε
−3 +∆L1ε

−2) Mean-squared

smoothness σmss ≤ σ2,

simultaneous queries

(Appendix C)

SGD with HVP-RVR

(Algorithm 2)

Yes∗ O(∆σ1σ2ε
−3 +∆L0.5

2 σ1ε
−2.5 +∆L1ε

−2)

Subsampled Newton with

HVP-RVR (Algorithm 3)

Yes O(∆σ1σ2ε
−3 +∆L0.5

2 σ1ε
−2.5 +∆σ2ε

−2)

Table 2: Detailed comparison of guarantees for finding ε-stationary points (satisfying E‖∇F (x)‖ ≤
ε) for a function F with L1-Lipschitz gradients and L2-Lipschitz Hessian. Here ∆ is the initial

optimality gap, and σp is the variance of ∇̂pF . Algorithms marked with ∗ require only stochastic

Hessian-vector products. Complexity bounds marked with † only show leading order term in ε.

for some σmss < L̄. In fact, while it always holds that L̄2 ≤ L2
1 + σ2mss, inspection of the results

of Fang et al. [17], Wang et al. [37] shows one can replace L̄ with σmss in the leading terms of their

complexity bounds without any change to the algorithms.

Algorithms that take advantage of the MSS structure rely on the following additional simultaneous

query assumption (which is a special case of (4) for n = 2):

We may query x, y ∈ Rd and observe O 1
F (x, z) and O 1

F (y, z) for the same draw of z ∼ Pz . (15)

In empirical risk minimization problems, z represents the datapoint index and possibly data augmen-

tation parameters, and the value of z is typically part of the query, which means that assumption (15)

indeed holds. In certain online learning settings, however, the assumption can fail. For example, the

variable z could represent the instantaneous power demands in an electric grid, and testing two grid

configurations for the same grid state might be impractical.

We observe that assuming access to both an MSS gradient estimator and simultaneous two-point

queries is stronger than assuming a bounded variance stochastic Hessian-vector product estimator.

This holds because the former allows us to simulate the latter with finite differencing. Formally, we

have the following.
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Observation 1 Let F have L2-Lipschitz Hessian, let ∇̂F satisfy (14), and assume we have access

to a two-point query oracle as in (15). Then, for any δ > 0 and every unit-norm vector u, the

Hessian-vector product estimator

∇̂2F δ(x, z)u :=
1

δ

[
∇̂F (x+ δ · u, z)− ∇̂F (x, z)

]
(16)

satisfies

∥∥∥E[∇̂2F δ(x, z)u]−∇2F (x)u
∥∥∥ ≤ L2δ

2
and E

∥∥∥∇̂2F δ(x, z)u−∇2F (x)u
∥∥∥
2
≤ σ2mss +

L2
2δ

2

4
.

Proof. We have E[∇̂2F δ(x, z)u] =
1
δ [∇F (x + δ · u) − ∇F (x)], and by Lipschitz continuity of

∇2F ,

‖∇F (x+ δ · u)−∇F (x)−∇2F (x)[δu]‖ ≤ L2

2
δ2‖u‖2 = L2

2
δ2,

which implies the bound on the bias. To bound the variance, we note that

E

∥∥∥∇̂2F δ(x, z)u− E[∇̂2F δ(x, z)u]
∥∥∥
2

≤ 1

δ2
E

∥∥∥∇̂F (x+ δu, z)− ∇̂F (x, z)− [∇F (x+ δu)−∇F (x)]
∥∥∥
2
≤ 1

δ2
· σ22‖δu‖2 = σ2mss,

by the MSS property (14).

We conclude from Observation 1 that Algorithm 2, which only requires stochastic Hessian-vector

products, attains O(ε−3) complexity under assumptions no stronger than previous algorithms. In

fact, we show now that our assumptions are in fact strictly weaker than prior work. That is, while an

MSS gradient estimator implies a bounded variance Hessian estimator, the opposite is not true in

general. This is simply due to the fact that in our oracle model, ∇̂F and ∇̂2F can be completely

unrelated. Consider for example the case where Pz is uniform on {−1, 1} and

∇̂F (x, z) =
{
∇F (x) + x

‖x‖z x 6= 0

∇F (x) x = 0,
while ∇̂2F (x, z) = ∇2F (x).

Clearly ∇̂F is not MSS, even though ∇̂2F has zero variance.

There is, however, an important setting where bounded variance for ∇̂2F does imply that ∇̂F is

MSS. Suppose that the derivative of ∇̂F (x, z) exists, and has the form

∇[∇̂F (x, z)] = ∇̂2F (x, z). (17)

That is, the Hessian estimator is the Jacobian of the gradient estimator. In this case, bounded variance

for the Hessian estimator implies mean-squared smoothness.

Observation 2 Let F have gradient and Hessian estimators ∇̂F and ∇̂2F satisfying (3) and (17).

Then ∇̂F has the MSS property (14) with σmss ≤ σ2.
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Proof. Under the property (17), we have

∇̂F (x, z)− ∇̂F (y, z)− [∇F (x)−∇F (y)]

=

∫ 1

0

(
∇̂2F (xt+ y(1− t), z)−∇2F (xt+ y(1− t))

)
(x− y)dt.

Taking the squared norm, applying Jensen’s inequality, and substituting the variance bound (3) gives

the MSS property (14).

The property (17) holds for empirical risk minimization, where we have the more general relation

∇̂pF (x, z) = ∇pF̂ (x, z) for any p; That is, all the stochastic derivative estimators are themselves

the derivatives of a single stochastic function. Therefore, by Observation 1 and Observation 2, in

empirical risk minimization settings, mean-square smoothness is essentially equivalent to bounded

variance of the stochastic Hessian estimator.

Appendix D. Variance-reduced gradient estimator (HVP-RVR)

In this section we prove Lemma 1. First, we formally describe the protocol in which our optimization

algorithms query the gradient estimator HVP-RVR-Gradient-Estimator described in Algorithm 1, and

define some additional notation.

Given a function F ∈ F2(∆, L1, L2) and a stochastic second-order oracle in O2(F, σ1:2), the

optimization algorithm interacts with HVP-RVR-Gradient-Estimator by sequentially querying points{
x(t)
}∞
t=1

with reset probabilities
{
b(t)
}∞
t=1

, to obtain estimates g(t) for ∇F (x(t)) for each time t;
that is,

x(t) = A(t)(g(0), g(1), . . . , g(t−1); r(t−1)), b(t) = B(t)(r(t−1)), and

g(t) = HVP-RVR-Gradient-Estimatorε,b(t)(x
(t), x(t−1), g(t−1)), (18)

where A(t),B(t) are measurable mappings modeling the optimization algorithm and {r(t)} is an

independent sequence of random seeds.8 That is, Lemma 1 holds for any sequence of queries where

x(t), b(t) are adapted to the filtration

G(t) = σ
(
{g(j), r(j)}j<t

)
.

but b(t) is independent of G(t−1) and g(t−1).

Lemma 1 is an immediate consequence of Lemma 7 and Lemma 8, proven below, which

respectively establish the estimator’s error and complexity bounds.

Lemma 7 Given a function F ∈ F2(∆,∞, L2), a stochastic oracle in O2(F, σ1:2), and initial

points x(0) and g(0) = ⊥, let {g(t)}t≥0 denote the sequence of gradient estimates at {x(t)}t≥0

respectively, returned by HVP-RVR-Gradient-Estimator under the protocol (18). Then, for all t ≥ 1,

E
∥∥g(t) −∇F (x(t))

∥∥2 ≤ ε2.
8. This level of formalism is not used within the proof, but we include it here for clarity.
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Proof. We prove that

E
∥∥g(t) −∇F (x(t))

∥∥2 ≤
(
1− E[b(t)]

2

)
E
∥∥g(t−1) −∇F (x(t−1))

∥∥2 + E[b(t)]

2
ε2,

whence the result follows by a simple induction whose basis is

E
∥∥g(1) −∇F (x(1))

∥∥2 ≤ σ21
n
≤ ε2.

Let C(t) denote the value of the coin toss in the tth call to Algorithm 1 (Line 3), recalling that

C(t) ∼ Bernoulli(b(t)). Writing e
(t) = g(t) −∇F (x(t)) for brevity, we have

E

[∥∥
e
(t)
∥∥2
∣∣∣ b(t)

]
= b(t) E

[∥∥
e
(t)
∥∥2
∣∣∣ C(t) = 1

]
+ (1− b(t))E

[∥∥
e
(t)
∥∥2
∣∣∣ C(t) = 0

]
. (19)

Clearly,

E

[∥∥
e
(t)
∥∥2
∣∣∣ C(t) = 1

]
≤ σ21

n
=
ε2

5
. (20)

Moreover, conditional on C(t) = 0, we have from the definition of the gradient estimator that

e
(t) = e

(t−1) + ψ(t),

where

ψ(t) :=
K(t)∑

k=1

∇̂2F (x(t,k−1), z(t,k))
(
x(t,k) − x(t,k−1)

)
−∇F (x(t)) +∇F (x(t−1)),

and

K(t) =

⌈
5
(
σ22 + L2ε

)

b(t)ε2
· ‖x(t) − x(t−1)‖2

⌉
, (21)

where x(t,k) and x(t,k) respectively denote the values of x(k) and z(k) (defined on Line 8) during the

tth call to Algorithm 1.

We may therefore decompose the error conditional on C(t) = 0 as

E

[∥∥
e
(t)
∥∥2
∣∣∣ C(t) = 0

]
(i)
= E

∥∥
e
(t−1) + E

[
ψ(t)

∣∣ G(t)
]∥∥2 + E

∥∥ψ(t) − E
[
ψ(t)

∣∣ G(t)
]∥∥2

(ii)

≤ E

[(
1 +

b(t)

2

)∥∥
e
(t−1)

∥∥2
]
+ E

[(
1 +

2

b(t)

)∥∥E
[
ψ(t)

∣∣ G(t)
]∥∥2
]
+ E

∥∥ψ(t) − E
[
ψ(t)

∣∣ G(t)
]∥∥2,

(22)

where (i) is due to e
(t−1) ∈ G(t) and (ii) is due to Young’s inequality.

The facts that z(t,k) is independent from G(t), that ∇F (x(t)) − ∇F (x(t−1)) ∈ G(t), and that

∇̂2F (·) is unbiased give

E

[
ψ(t)

∣∣∣ G(t)
]
=

K(t)∑

k=1

∇2F (x(t,k−1))
(
x(t,k) − x(t,k−1)

)
−∇F (x(t)) +∇F (x(t−1))
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for every t. Consequently, the scaling (21) and Hessian estimator variance bound imply

E

[∥∥∥ψ(t) − E

[
ψ(t)

∣∣ G(t)
]∥∥∥

2 ∣∣∣ G(t)
]

(?)
=

1

(K(t))2

K(t)∑

k=1

E

[∥∥∥(∇̂2F (x(t,k−1), z(t,k))−∇2F (x(t,k−1)))(x(t) − x(t−1))
∥∥∥
2 ∣∣∣ G(t)

]

≤ 1

(K(t))2

K(t)∑

k=1

E

[∥∥∥∇̂2F (x(t,k−1), z(t,k))−∇2F (x(t,k−1))
∥∥∥
2

op

∣∣∣ G(t)
]∥∥x(t) − x(t−1)

∥∥2

≤ σ22 ·
‖x(t) − x(t−1)‖2

K(t)
≤ b(t) · ε

2

5
, (23)

where the equality (?) above is due to the fact that z(t,1), . . . , z(t,K
(t)) are i.i.d., as well as x(t,k) −

x(t,k−1) = 1
K(t) (x

(t) − x(t−1)).
Next, we observe that Taylor’s theorem and fact that F has L2-Lipschitz Hessian implies that

‖∇F (x′)−∇F (x)−∇2(x)F (x′ − x)‖ ≤ L2
2 ‖x′ − x‖2 for all x, x′ ∈ Rd. Therefore,

∥∥∥E
[
ψ(t)

∣∣∣ G(t)
]∥∥∥ =

∥∥∥∥∥
K(t)∑

k=1

∇F (x(t,k))−∇F (x(t,k−1))−∇2F (x(t,k−1))
(
x(t,k) − x(t,k−1)

)∥∥∥∥∥

≤
K(t)∑

k=1

∥∥∥∇F (x(t,k))−∇F (x(t,k−1))−∇2F (x(t,k−1))
(
x(t,k) − x(t,k−1)

)∥∥∥

≤ K(t) · L2

2
·
(
‖x(t) − x(t−1)‖

K(t)

)2

≤ b(t) · ε
50
, (24)

where we used (21) again.

Substituting back through equations (24), (23), (22), (20) and (19), we have

E
∥∥
e
(t)
∥∥2 ≤ E

[
b(t) · ε25 + (1− b(t))

(
(1 + b(t)

2 )
∥∥
e
(t−1)

∥∥2 + (1 + 2
b(t)

)( b
(t)ε
50 )2 + b(t) · ε25

)]

≤
(
1− E[b(t)]

2

)
E
∥∥g(t−1) −∇F (x(t−1))

∥∥2 + E[b(t)]
2 ε2 ≤ ε2,

as required; the second inequality follows from algebraic manipulation and the fact that e(t−1) is

independent of b(t) by assumption.

The following lemma bounds the number of oracle queries made per call to the gradient estimator.

Lemma 8 The expected number of stochastic oracle queries made by HVP-RVR-Gradient-Estimator

when called a single time with arguments (x, xprev, gprev) and parameters (ε, b) is at most

6

(
1 +

bσ21
ε2

+
(σ22 + L2ε) · ‖x− xprev‖2

bε2

)
.
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Proof. Let m denote the number of oracle calls made by the gradient estimator when invoked with

arguments (x, xprev, gprev). For any call to the estimator, there are two cases, either (a) C = 1, or

(b) C = 0. In the first case, the gradient estimator queries the oracle n times at the point x and

returns the empirical average of the returned stochastic estimates (see Line 5 in Algorithm 1). Thus,

m = n for this case. In the second case, the estimator queries the oracle once for each point in the

set
(
x(k−1)

)K
k=1

, and updates the gradient using a stochastic path integral as in Line 8. Thus, m = K
for this case.

Combining the two cases, using C ∼ Bernoulli(b) and substituting in the values of n and K, we

get

E[m] = Pr(C = 1)E[m | C = 1] + Pr(C = 0)E[m | C = 0]

= E[b · n+ (1− b) ·K]

=

⌈
5bσ21
ε2

⌉
+

⌈
5(σ22 + L2ε) · ‖x− xprev‖2

bε2

⌉

≤ 6

(
bσ21
ε2

+
(σ22 + L2ε) · ‖x− xprev‖2

bε2
+ 1

)
,

where the final inequality follows from dxe ≤ x+ 1.

Appendix E. Supporting technical results

E.1. Error bound for empirical Hessian

In order to find the negative curvature direction at a given point or to build a cubic regularized

sub-model, Algorithm 3 estimates the Hessian by computing an empirical average of the stochastic

Hessian queries to the oracle. The following lemma is a standard result which bounds the expected

error for the empirical Hessian.

Lemma 9 Given a function F ∈ F2(∆,∞, L2), a stochastic oracle in O2(F, σ1:2) and a point

x, let H := 1
m

∑m
i=1 ∇̂2F (x, z(i)) denote the empirical Hessian at the point x estimated using m

stochastic queries at x, where z(i)
i.i.d.∼ Pz . Then

E

[∥∥H −∇2F (x)
∥∥2
op

]
≤ 22σ22 log(d)

m
.

Proof. This is an immediate consequence of Lemma 10 below, using Ai := ∇̂2F (x, z(i)) and

B := ∇2F (x).

Lemma 10 Let (Ai)
n
i=1 be a collection of i.i.d. matrices in Sd, with E[Ai] = B and E‖Ai −B‖2op ≤

σ2. Then it holds that

E

∥∥∥∥∥
1

n

n∑

i=1

Ai −B
∥∥∥∥∥

2

op

≤ 22σ2 log d

n
.
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Proof. We drop the normalization by n throughout this proof. We first symmetrize. Observe that by

Jensen’s inequality we have

E

∥∥∥∥∥
n∑

i=1

Ai −B
∥∥∥∥∥

2

op

≤ EA EA′

∥∥∥∥∥
n∑

i=1

Ai −A′
i

∥∥∥∥∥

2

op

= EA EA′

∥∥∥∥∥
n∑

i=1

(Ai −B)− (A′
i −B)

∥∥∥∥∥

2

op

= EA EA′ Eε

∥∥∥∥∥
n∑

i=1

εi((Ai −B)− (A′
i −B))

∥∥∥∥∥

2

op

≤ 4EA Eε

∥∥∥∥∥
n∑

i=1

εi(Ai −B)

∥∥∥∥∥

2

op

,

where (A′)ni=1 is a sequence of independent copies of (Ai)
n
i=1 and (εi)

n
i=1 are Rademacher random

variables. Henceforth we condition on A. Let p = log d, and let ‖·‖Sp
denote the Schatten p-norm.

In what follows, we will use that for any matrix X , ‖X‖op ≤ ‖X‖S2p
≤ e1/2‖X‖op. To begin, we

have

Eε

∥∥∥∥∥
n∑

i=1

εi(Ai −B)

∥∥∥∥∥

2

op

≤ Eε

∥∥∥∥∥
n∑

i=1

εi(Ai −B)

∥∥∥∥∥

2

S2p

≤


Eε

∥∥∥∥∥
n∑

i=1

εi(Ai −B)

∥∥∥∥∥

2p

S2p




1/p

,

where the second inequality follows by Jensen. We now apply the matrix Khintchine inequality [26,

Corollary 7.4], which implies that


Eε

∥∥∥∥∥
n∑

i=1

εi(Ai −B)

∥∥∥∥∥

2p

S2p




1/p

≤ (2p− 1)

∥∥∥∥∥
n∑

i=1

(Ai −B)2

∥∥∥∥∥
S2p

≤ (2p− 1)

n∑

i=1

‖(Ai −B)‖2S2p

≤ e(2p− 1)
n∑

i=1

‖(Ai −B)‖2op.

Putting all the developments so far together and taking expectation with respect to A, we have

E

∥∥∥∥∥
n∑

i=1

Ai −B
∥∥∥∥∥

2

op

≤ 4e(2p− 1)
n∑

i=1

EAi‖(Ai −B)‖2op ≤ 4e(2p− 1)nσ2.

To obtain the final result we normalize by n2.

E.2. Descent lemma for stochastic gradient descent

The following lemma characterizes the effect of gradient descent update step used by Algorithm 2

and Algorithm 4.

Lemma 11 Given a function F ∈ F2(∆, L1,∞), a point x, and gradient estimator g at x, define

y := x− ηg.
Then, for any η ≤ 1

2L1
, the point y satisfies

F (x)− F (y) ≥ η

8
‖∇F (x)‖2 − 3η

4
‖∇F (x)− g‖2.
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Proof. Since, the gradient of F is L1-Lipschitz, we have

F (y) ≤ F (x) + 〈∇F (x), y − x〉+ L1

2
‖y − x‖2

(i)
= F (x)− η〈∇F (x), g〉+ L1η

2

2
‖g‖2

= F (x)− η〈∇F (x)− g, g〉 − η‖g‖2 + L1η
2

2
‖g‖2

(ii)

≤ F (x) + η‖∇F (x)− g‖‖g‖ − η
(
1− L1η

2

)
‖g‖2

(iii)

≤ F (x) +
η

2
‖∇F (x)− g‖2 − η

(
1

2
− L1η

2

)
‖g‖2

(iv)

≤ F (x) +
η

2
‖∇F (x)− g‖2 − η

4
‖g‖2

(v)

≤ F (x) +
3η

4
‖∇F (x)− g‖2 − η

8
‖∇F (x)‖2, (25)

where (i) uses that y − x = ηg, (ii) is due to the Cauchy-Schwarz inequality, (iii) is given by an ap-

plication of the AM-GM inequality and (iv) holds because η ≤ 1
2L1

. Finally, (v) follows by invoking

Jensen’s inequality for the function ‖·‖2 to upper bound ‖∇F (x)‖2 ≤ 2
(
‖∇F (x− g)‖2 + ‖g‖2

)
.

Rearranging the terms in (25), we get,

F (x)− F (y) ≥ η

8
‖∇F (x)‖2 − 3η

4
‖∇F (x)− g‖2.

E.3. Descent lemma for cubic-regularized trust-region method

The following lemmas establish properties for the updates step involving constrained minimization

of the cubic regularized model in used in Algorithm 3.

Lemma 12 Given a function F ∈ F2(∆,∞, L2), gradient estimator g ∈ Rd and hessian estimator

H ∈ Sd, define

mx(y) = F (x) + 〈g, y − x〉+ H

2
[y − x, y − x] + M

6
‖y − x‖3,

and let y ∈ argminz∈Bη(x)mx(z). Then, for any M ≥ 4L2 and η ≥ 0, the point y satisfies

F (x)− F (y) ≥ M

12
‖y − x‖3 − 8√

M
‖∇F (x)− g‖ 3

2 +
4η

3
2√
M

∥∥∇2F (x)−H
∥∥ 3

2 .

Proof. Since ∇2F is L2-Lipschitz, we have

F (y)− F (x) ≤ F (x) + 〈∇F (x), y − x〉+ 1

2
∇2F (x)[y − x, y − x] + L2

6
‖y − x‖3 − F (x)
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(i)
= mx(y) +

L2 −M
6

‖y − x‖3 + 〈∇F (x)− g, y − x〉+ 1

2
∇2F (x)[y − x, y − x]

− 1

2
H[y − x, y − x]−mx(x)

(ii)

≤ −M
8
‖y − x‖3 + ‖∇F (x)− g‖‖y − x‖+ 1

2

∥∥∇2F (x)[y − x, ·]−H[y − x, ·]
∥∥‖y − x‖,

(26)

where (i) follows from the definition ofmx(·) and (ii) follows by the fact that y ∈ argminy′Bη(x)mx(y
′),

along with an application of the Cauchy-Schwarz inequality for remainder of the terms, and because

M ≥ 4L2. Additionally, using Young’s inequality, we have

‖∇F (x)− g‖‖y − x‖ ≤ 8√
M
‖∇F (x)− g‖ 3

2 +
M

64
‖y − x‖3,

and,

∥∥∇2F (x)[y − x, ·]−H[y − x, ·]
∥∥‖y − x‖ ≤ 8√

M

∥∥∇2F (x)[y − x, ·]−H[y − x, ·]
∥∥ 3

2 +
M

64
‖y − x‖3.

Plugging these bounds into (26), we have

F (y)− F (x) ≤ −M
12
‖y − x‖3 + 8√

M
‖∇F (x)− g‖ 3

2 +
4√
M

∥∥∇2F (x)[y − x, ·]−H[y − x, ·]
∥∥ 3

2

(i)

≤ −M
12
‖y − x‖3 + 8√

M
‖∇F (x)− g‖ 3

2 +
4√
M

∥∥∇2F (x)−H
∥∥ 3

2

op
‖y − x‖ 3

2

(ii)

≤ −M
12
‖y − x‖3 + 8√

M
‖∇F (x)− g‖ 3

2 +
4√
M

∥∥∇2F (x)−H
∥∥ 3

2

op
· η 3

2 ,

where (i) follows by the definition of the operator norm and (ii) follows by observing that ‖y − x‖ ≤
η. Rearranging the terms, we have

F (x)− F (y) ≥ M

12
‖y − x‖3 − 8√

M
‖∇F (x)− g‖ 3

2 +
4η

3
2√
M

∥∥∇2F (x)−H
∥∥ 3

2 .

Lemma 13 Under the same setting as Lemma 12, the point y satisfies

1

{
‖∇F (y)‖ ≥ Mη2

2

}
≤ 2

η2
‖y − x‖2 + 2

Mη2

(
‖∇F (x)− g‖+ η

∥∥∇2F (x)−H
∥∥
op

)
.

Proof. There are two scenarios: (i) either y lies on the boundary of Bη(x), or (ii) y is in the interior

of Bη(x). In the first case, ‖y − x‖ = η. In the second case,

‖∇F (y)‖
(i)

≤
∥∥∇F (y)−∇F (x)−∇2F (x)[y − x, ·]

∥∥+
∥∥∇F (x) +∇2F (x)[y − x, ·]

∥∥
(ii)

≤ L2

2
‖y − x‖2 +

∥∥∇F (x) +∇2F (x)[y − x, ·]
∥∥
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(iii)

≤ L2

2
‖y − x‖2 + ‖∇F (x)− g‖+

∥∥∇2F (x)[y − x, ·]−H[y − x, ·]
∥∥+ ‖g +H[y − x, ·]‖

(iv)

≤ L2

2
‖y − x‖2 + ‖∇F (x)− g‖+

∥∥∇2F (x)−H
∥∥
op
· η + ‖g +H[y − x, ·]‖

(v)

≤ L2 +M

2
‖y − x‖2 + ‖∇F (x)− g‖+

∥∥∇2F (x)−H
∥∥
op
· η, (27)

where (i) follows by triangle inequality, (ii) follows by Taylor expansion of ∇F (y) at x and observ-

ing that F is L2-hessian Lipschitz, (iii) follows by another application of the triangle inequality, (iv)
follows from Cauchy-Schwarz inequality and observing that ‖y − x‖ ≤ η, and (v) follows by using

first order optimization conditions for y ∈ argminBη(x)mx(y), i.e.,

‖∇m̂x(y)‖ = 0, or, g +H[y − x, ·] + M

2
‖y − x‖(y − x) = 0.

Rearranging the terms in (27), we get,

‖y − x‖2 ≥ 2

L2 +M

(
‖∇F (y)‖ − ‖∇F (x)− g‖ −

∥∥∇2F (x)−H
∥∥
op
· η
)
.

Since one of the two cases (‖y − x‖ < η or ‖y − x‖ = η) must hold, we have,

‖y − x‖2 ≥ min

{
η2,

2

L2 +M

(
‖∇F (y)‖ − ‖∇F (x)− g‖ − η ·

∥∥∇2F (x)−H
∥∥2
op

)}

≥ min

{
η2,

2

L2 +M
‖∇F (y)‖

}
− 2

L2 +M
‖∇F (x)− g‖ − 2η

L2 +M

∥∥∇2F (x)−H
∥∥
op
.

Rearranging the terms, and using the fact that M ≥ 2L2, we have

min

{
Mη2

2
, ‖∇F (y)‖

}
≤M‖y − x‖2 + ‖∇F (x)− g‖+ η

∥∥∇2F (x)−H
∥∥
op
.

Finally, using the fact that for any a, b ≥ 0, min{a, b} ≤ a1{b ≥ a}, we have

Mη2

2
1

{
‖∇F (y)‖ ≥ Mη2

2

}
≤M‖y − x‖2 + ‖∇F (x)− g‖+ η

∥∥∇2F (x)−H
∥∥
op
,

or, equivalently,

1

{
‖∇F (y)‖ ≥ Mη2

2

}
≤ 2

η2
‖y − x‖2 + 2

Mη2

(
‖∇F (x)− g‖+ η

∥∥∇2F (x)−H
∥∥
op

)
.

Lemma 14 Consider the same setting as Lemma 12, but let H ∈ Sd and g ∈ Rd be random

variables. Then the random variable y satisfies

E[F (x)− F (y)] ≥ Mη3

60
Pr
(
‖∇F (y)‖ ≥ Mη2

2

)
− 9√

M
· E
[
‖∇F (x)− g‖2

] 3
4

− 5η
3
2√
M
· E
[∥∥∇2F (x)−H

∥∥2
op

] 3
4
,

where Pr(·) and E[·] are taken with respect to the randomness over H and g.
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Proof. For the ease of notation, let χ and ζ denote the error in the gradient estimator g and the

hessian estimator H at x respectively, i.e.

χ := ‖∇F (x)− g‖ and ζ :=
∥∥∇2F (x)−H

∥∥
op
.

We prove the desired statement by combining the following two results.

• First, plugging x = x, and z = y in to Lemma 12, we have

F (x)− F (y) ≥ M

12
‖y − x‖3 − 8√

M
χ

3
2
t −

4√
M

(ηζ)
3
2 .

Taking expectations on both the sides, we get,

E[F (x)− F (y)] ≥ M

12
E

[
‖y − x‖3

]
− 8√

M
E

[
(χ)

3
2

]
− 4√

M
E

[
(ηζ)

3
2

]

≥ M

12
E

[
‖y − x‖3

]
− 8√

M

(
E
[
χ2
t

]) 3
4 − 4√

M

(
η2 E

[
ζ2t
]) 3

4 , (28)

where the last inequality follows from an application of Jensen’s inequality.

• Similarly, plugging x = x, z = y in Lemma 13, we get

1

{
‖∇F (y)‖ ≥ Mη2

2

}
≤ 2

η2
‖y − x‖2 + 2

Mη2
(χ+ ηζ).

Raising both the sides with the exponent of 3
2 , we get

1

{
‖∇F (y)‖ ≥ Mη2

2

}
≤
(

2

η2
‖y − x‖2 + 2

Mη2
(χ+ ηζ)

) 3
2

≤ 5

η3
‖y − x‖3 + 5

M
3
2 η3

(
χ

3
2 + (ηζ)

3
2

)
.

Taking expectations on both the sides and rearranging the terms implies that

E

[
‖x(t+1) − x‖3

]
≥ η3

5
Pr

(
‖∇F (y)‖ ≥ Mη2

2

)
− 1

M
3
2

E

[
χ

3
2 + (ηζ)

3
2

]

≥ η3

5
Pr

(
‖∇F (y)‖ ≥ Mη2

2

)
− 1

M
3
2

((
E
[
χ2
t

]) 3
4 +

(
η2 E

[
ζ2t
]) 3

4

)
,

(29)

where the last inequality follows from an application of the Jensen’s inequality.

Plugging (29) into (28), we get

E[F (x)− F (y)] ≥ Mη3

60
Pr

(
‖∇F (y)‖ ≥ Mη2

2

)
− 9√

M

(
E
[
χ2
t

]) 3
4 − 5η

3
2√
M

(
E
[
ζ2t
]) 3

4 .

The final statement follows from the above inequality by using the definition of χ and ζ.
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E.4. Stochastic negative curvature search

The following lemma establishes properties of the negative curvature search step used in Algorithm 4

and Algorithm 5.

Lemma 15 Let γ > 0, and F ∈ F2(∆,∞, L2) be given. Let x ∈ Rd be given, and let H ∈ Sd be

a random variable (representing a stochastic estimator for the Hessian at x). Define y via

y :=

{
x+ rγ

L2
· u, if λmin(H) ≤ −4γ,

x, otherwise.
,

where r is an independent Rademacher random variable and u is an arbitrary unit vector such that

H[u, u] ≤ −2γ. Then, the point y satisfies

E[F (x)− F (y)] ≥ 5γ3

6L2
2

Pr(λmin(H) ≤ −4γ)− γ2

2L2
2

E

[∥∥∇2F (x)−H
∥∥
op

]
,

where Pr(·) and E[·] are taken with respect to the randomness in H and r.

Proof. There are two cases: either (a) λmin(H) > −4γ, or, (b) λmin(H) ≤ −4γ. In the first case,

y = x, and thus,

F (y)− F (x) = 0 ≤ γ2

2L2
2

∥∥H −∇2F (x)
∥∥
op

(30)

In the second case, Taylor expansion for F (y) at F (x) implies that

F (y) ≤ F (x) + 〈∇F (x), ũ〉+ 1

2
∇2F (x)[ũ, ũ] +

L2

6
‖ũ‖3,

where ũ := rγ
L2
· u. Taking expectations on both the sides with respect to r, we get

Er[F (y)]
(i)
= F (x) +

γ2

2L2
2

∇2F (x)[u, u] +
γ3

6L2
2

‖u‖3

≤ F (x) + γ2

2L2
2

(
H[u, u] +∇2F (x)[u, u]−H[u, u]

)
+

γ3

6L2
2

‖u‖3

(ii)
= F (x) +

γ2

2L2
2

(
−2γ +

∥∥∇2F (x)−H
∥∥
op

)
+

γ3

6L2
2

≤ F (x)− 5γ3

6L2
2

+
γ2

2L2
2

∥∥∇2F (x)−H
∥∥
op
, (31)

where (i) is given by the fact that Er[〈∇F (x), ru〉] = 0, and (ii) follows from the fact that u is

chosen such that E
[
∇2F (x)[u, u]

]
≤ −2γ and ‖u‖ = 1, and the fact that for any matrix A and

vector b, ‖Ab‖ ≤ ‖A‖op‖b‖.
Since, one of the two cases (λmin(H) > −4γ or λmin(H) ≤ −4γ) must hold, combining (30)

and (31), we have

Er[F (y)] ≤ F (x)−
5γ3

6L2
2

1{λmin(H) ≤ −4γ}+ γ2

2L2
2

∥∥∇2F (x)−H
∥∥
op
.
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Taking expectation on both the sides gives the desired statement:

E[F (x)− F (y)] ≥ 5γ3

6L2
2

Pr(λmin(H) ≤ −4γ)− γ2

2L2
2

E

[∥∥∇2F (x)−H
∥∥
op

]
.

The following lemma establishes properties of Oja’s method (Oja), as used in Algorithm 4.

Lemma 16 (Allen-Zhu [3], Lemma 5.3) The procedure Oja takes as input a point x ∈ Rd, a

stochastic Hessian-vector product oracle O 2
F ∈ O2(F, σ1, σ̄2) for some function F ∈ F2(∆, L1,∞),

a precision parameter γ > 0 and a failure probability δ ∈ (0, 1), and runs outputs u ∈ Rd ∪ {⊥}
such that with probability at least 1− δ, either9

a) u = ⊥, and ∇2F (x) � −2γI .

b) if u 6= ⊥, then ‖u‖ = 1 and 〈u,∇2F (x)u〉 ≤ −γ.

Moreover, when invoked as above, the procedure uses at most

O

(
(σ̄2 + L1)

2

4γ2
log2

(
d

δ

))

queries to the stochastic Hessian-vector product oracle.

Appendix F. Upper bounds for finding ε-stationary points

F.1. Proof of Theorem 2

Proof of Theorem 2. In the following, we first show that Algorithm 2 returns a point x̂ such that,

E[‖∇F (x̂)‖] ≤ 32ε. We then bound the expected number of oracle queries used throughout the

execution.10

Since, η = 1

2
√

L2
1+σ̄2

2+ε̃L2
≤ 1

2L1
and F has L1-Lipschitz gradient, Lemma 11 implies that the point

x(t+1) computed using the update rule x(t+1) ← x(t) − ηg(t) satisfies

η

8

∥∥∥∇F (x(t))
∥∥∥
2
≤ F (x(t))− F (x(t+1)) +

3η

4

∥∥∥∇F (x(t))− g(t)
∥∥∥
2
.

Telescoping the above from t from 1 to T , this implies

η

8

T∑

t=1

∥∥∥∇F (x(t))
∥∥∥
2
≤ F (x(0))− F (x(T+1)) +

3η

4

T∑

t=1

∥∥∥∇F (x(t))− g(t)
∥∥∥
2

≤ ∆+
3η

4

T∑

t=1

∥∥∥∇F (x(t))− g(t)
∥∥∥
2
,

9. Note that if this event fails, the algorithm still returns either ⊥ or a unit vector u.

10. In the proof, we show convergence to a 32ε-stationary point. A simple change of variable, i.e. running Algorithm 2

with ε← ε
32

, returns a point x̂ that enjoys the guarantee that ‖∇F (x̂)‖ ≤ ε.
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where the last inequality follows from the fact that F (x(0)) − F (x(T+1)) ≤ ∆. Next, taking

expectation on both the sides (with respect to the stochasticity of the oracle and the algorithm’s

internal randomization), we get

η

8
E

[
T∑

t=1

∥∥∥∇F (x(t))
∥∥∥
2
]
≤ ∆+

3η

4

T∑

t=1

E

[∥∥∥∇F (x(t))− g(t)
∥∥∥
2
]
.

Using Lemma 7, we have E
[∥∥∇F (x(t))− g(t)

∥∥2
]
≤ ε2 for all t ≥ 1. Dividing both the sides by ηT

8 ,

and plugging in the value of the parameters T and η, we get,

E

[
1

T

T∑

t=1

∥∥∥∇F (x(t))
∥∥∥
2
]
≤ 8∆

ηT
+

6

T

T∑

t=1

E

[∥∥∥∇F (x(t))− g(t)
∥∥∥
2
]
≤ 8∆

ηT
+ 6ε2 ≤ 14ε2. (32)

Thus, for x̂ chosen uniformly at random from the set
(
x(t)
)T
t=1

, we have

E‖∇F (x̂)‖ = 1

T

T∑

t=1

E

∥∥∥∇F (x(t))
∥∥∥ ≤

√√√√E

[
1

T

T∑

t=1

∥∥∇F (x(t))
∥∥2
]
≤ 4ε.

Finally, Markov’s inequality implies that with probability at least 7
8 ,

‖∇F (x̂)‖ ≤ 32ε. (33)

Bound on the number of oracle queries. Algorithm 2 queries the stochastic oracle in only when

it invokes HVP-RVR in Line 4 to compute the gradient estimate g(t) at time t. Let M denote the total

number of oracle calls made up until time T . Invoking Lemma 8 to bound the expected number of

stochastic oracle calls for each t ≥ 1, and ignoring all the mutiplicative constants, we get

E[M ] ≤ 5
T∑

t=1

E

[
bσ21
ε2

+

∥∥x(t+1) − x(t)
∥∥2 ·

(
σ22 + εL2

)

bε2
+ 1

]

(i)

≤ O

(
T∑

t=1

E

[
bσ21
ε2

+

∥∥ηg(t)
∥∥2 ·

(
σ22 + εL2

)

bε2
+ 1

])

(ii)

≤ O

(
∆

ηε2
·
(
bσ21
ε2

+ E

[
1

T

T∑

t=1

∥∥∥g(t)
∥∥∥
2
]
· η

2
(
σ22 + εL2

)

bε2
+ 1

))

(iii)
= O

(
∆

ηε2
·
(
bσ21
ε2

+
η2
(
σ22 + εL2

)

b
+ 1

))
, (34)

where (i) is given by plugging in the update rule from Line 5 and by dropping multiplicative constants,

(ii) is given by rearranging the terms, plugging in the value of T and using that T ≥ 1 (to simplify

the ceiling operator) under the assumption ε ≤ √∆L1, and (iii) follows by observing that

E

[
1

T

T∑

t=1

∥∥∥g(t)
∥∥∥
2
]
≤ 2E

[
1

T

T∑

t=1

∥∥∥g(t) −∇F (x(t))
∥∥∥
2
+

1

T

T∑

t=1

∥∥∥∇F (x(t))
∥∥∥
2
]
≤ 30ε2,
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Algorithm 3 Subsampled cubic-regularized trust-region method with HVP-RVR

Input: Oracle (O 2
F , Pz) ∈ O2(F, σ1:2) for F ∈ F2(∆,∞, L2). Precision parameter ε.

1: Set M = 5max
{
L2,

εσ2
2 log(d)

σ2
1

}
, η = 25

√
ε
M , T =

⌈
5∆
3ηε

⌉
and nH =

⌈
22σ2

2η
2 log(d)
ε2

⌉
.

2: Set b = min

{
1,

η
√

σ2
2+εL2

25σ1

}
.

3: Initialize x(0), x(1) ← 0, g(0) ← ⊥.

4: for t = 1 to T do

5: Query the oracle nH times at x(t) and compute

H(t) ← 1

nH

nH∑

j=1

∇̂2F (x(t), z(t,j)), where z(t,j)
i.i.d.∼ Pz.

6: g(t) ← HVP-RVR-Gradient-Estimatorε,b

(
x(t), x(t−1), g(t−1)

)
.

7: Set the next point x(t+1) as

x(t+1) ← argmin
y:‖y−x(t)‖≤η

〈
g(t), y − x(t)

〉
+

1

2

〈
y − x(t), H(t)(y − x(t))

〉
+
M

6

∥∥y − x(t)
∥∥3.

8: return x̂ chosen uniformly at random from
{
x(t)
}T+1

t=2
.

as a consequence of Lemma 7 and the bound in (32). Next, note that since we assume ε < σ1, and

since we have η ≤ 1

2
√

σ2
2+εL2

, the parameter b is equal to
ηε
√

σ2
2+εL2

σ1
(as this is smaller than 1). Thus,

plugging the value of b and η in the bound (34), we get,

E[m(T )] = O

(
∆σ1

√
σ22 + εL2

ε3
+

∆
√
L2
1 + σ22 + εL2

ε2

)

= O

(
∆σ1σ2
ε3

+
∆σ1
√
L2

ε2.5
+

∆σ2
ε2

+
∆L1

ε2
+

∆
√
L2

ε1.5

)
.

Using Markov’s inequality, we have that with probability at least 7
8 ,

M ≤ O
(
∆σ1σ2
ε3

+
∆σ1
√
L2

ε2.5
+

∆σ2
ε2

+
∆L1

ε2
+

∆
√
L2

ε1.5

)
. (35)

The final statement follows by taking a union bound with failure probabilities for (33) and (35).

F.2. Full statement and proof for Algorithm 3

Proof of Theorem 3. In the following, we first show that Algorithm 3 returns a point x̂, such that

with probability at least 7
8 , ‖∇F (x̂)‖ ≤ 350ε. We then bound, with probability at least 7

8 , the total

number of oracle queries made up until time T .

Note that, using Lemma 7 and Lemma 9, we have for all t ≥ 0,

E

[
‖∇F

(
x(t)
)
− g(t)‖

]
≤ ε2, and E

[
‖∇2F

(
x(t)
)
−H(t)‖op

]
≤ ε2

η2
. (36)
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Thus, for each t ≥ 1, invoking Lemma 14 and plugging in the bounds from (36), and using the value

of η, we get

E

[
F (x(t))− F (x(t+1))

]
≥ Mη3

60
Pr
(∥∥∥∇F (x(t+1))

∥∥∥ ≥ Mη2

2

)
− 14ε

3
2√
M

≥ 240ε
3
2√

M

(
Pr
(∥∥∥∇F (x(t+1))

∥∥∥ ≥ 350ε
)
− 1

16

)
.

Telescoping this inequality from t = 1 to T , we have that

E

[
F (x(1))− F (x(T+1))

]
≥ 240ε

3
2√

M
· T ·

(
1

T

T∑

t=1

Pr
(∥∥∥∇F (x(t+1))

∥∥∥ ≥ 350ε
)
− 1

16

)

=
240ε

3
2√

M
· T ·

(
Pr(‖∇F (x̂)‖ ≥ 350ε)− 1

16

)
,

where the equality follows because x̂ is sampled uniformly at random from the set
{
x(t)
}T+1

t=2
. Next,

using the fact that, F (x(t))− F
(
x(T+1)

)
≤ ∆, rearranging the terms, and plugging in the value of

T , we get

Pr(‖∇F (x̂)‖ ≥ 350ε) ≤ ∆
√
M

240ε
3
2T

+
1

16
≤ 1

8
.

Thus, with probability at least 7
8 ,

‖∇F (x̂)‖ ≤ 350ε. (37)

Bound on the number of oracle queries. Algorithm 3 queries the stochastic oracle in Line 5 and

Line 6 only to compute the respective Hessian and gradient estimates. Let Mh and Mg denote the

total number of stochastic oracle queries made by Line 5 and Line 6 till time T respectively. Further,

Let M =Mh +Mg denote the total number of oracle queries made till time T .

In what follows, we first bound E[Mh] and E[Mg]. Then, we invoke Markov’s inequality to

deduce that the desired bound on M holds with probability at least 7
8 .

1. Bound on E[Mh]. Since the algorithm queries the stochastic Hessian oracle nH times per

iteration, Mh = T · nH . Plugging the values of T , nH and M as specified in Algorithm 3, and

ignoring multiplicative constant, we get,

E[Mh] =

⌈
5∆
√
M

3ε1.5

⌉
·
⌈
22σ22η

2 log(d)

ε2

⌉

≤ O
(
∆
√
M

ε1.5
+

∆σ22 log(d)

ε2.5
√
M

)

≤ O
(
∆
√
L2

ε1.5
+

∆σ2
ε2

+
∆σ1σ2

√
log(d)

ε3

)
, (38)

where the first inequality above follows from the fact that ∆
√
M

ε1.5
≥ 1 under the natural choice

for the precision parameter ε ≤ ∆
2
3M

1
3 and using the identity dxe ≤ x+ 1 for x ≥ 0.
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2. Bound on E[Mg]. Invoking Lemma 8 for each t ≥ 1, we get

E[Mg] = 6
T∑

t=1

E

[
bσ21
ε2

+
(σ22 + L2ε) ·

∥∥x(t) − x(t−1)
∥∥2

bε2
+ 1

]

(i)
= O

(
T ·
(
bσ21
ε2

+
(σ22 + L2ε) · η2

bε2
+ 1

))

(ii)
= O

(
∆

ηε
·
(
bσ21
ε2

+
(σ22 + L2ε) · η2

bε2
+ 1

))
(39)

where (i) follows by observing
∥∥x(t) − x(t−1)

∥∥ ≤ η due to the update rule in Line 7 and

(ii) is given by plugging in the value of T ≤ O(∆ηε) for the natural choice of parameter

ε = O(∆
2
3M

1
3 ). Next, note that since M > L2, and since we assume ε < σ1, the parameter

b is equal to
η
√

σ2
2+εL2

25σ1
(which is smaller than 1). Thus, plugging the value of b and η in the

bound (39), we get,

E[Mg] = O

(
∆σ1

√
σ22 + εL2

ε3
+

∆
√
M

ε1.5

)

= O

(
∆σ1σ2
ε3

+
∆σ1
√
L2

ε2.5
+

∆σ2
ε2

√
log(d) +

∆
√
L2

ε1.5

)
, (40)

where the second equality follows by using that ε ≤ σ1 to simplify the term ∆
√
M

ε1.5
.

Adding (40) and (38), the total number of oracle queries made by Algorithm 3 till time T is bounded,

in expectation, by

E[M ] = E[Mg +Mh] = O

(
∆σ1σ2
ε3

√
log(d) +

∆σ1
√
L2

ε2.5
+

∆σ2
ε2

√
log(d) +

∆
√
L2

ε1.5

)
.

Using Markov’s inequality, we get that, with probability at least 7
8 ,

M ≤ O
(
∆σ1σ2
ε3

√
log(d) +

∆σ1
√
L2

ε2.5
+

∆σ2
ε2

√
log(d) +

∆
√
L2

ε1.5

)
. (41)

The final statement follows by taking a union bound for the failure probability of (37) and (41).
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Appendix G. Upper bounds for finding (ε, γ)-second-order-stationary points

G.1. Full statement and proof for Algorithm 4

Algorithm 4 Stochastic gradient descent with negative curvature search and HVP-RVR

Input: Oracle (O 2
F , Pz) ∈ O2(F, σ1, σ̄2) for F ∈ F2(∆, L1, L2). Precision parameters ε, γ.

1: Set η = min

{
γ

εL2
, 1

2
√

L2
1+σ̄2

2+εL2

}
, T =

⌈
20∆L2

2
γ3 + 2∆

ηε2

⌉
, p = γ3

γ3+10∆L2
2ηε

2 , δ = γ
402L2

.

2: Set bg = min{1, ηε
√

σ̄2
2+εL2

σ1
} and bH = min{1, γ

√
σ̄2
2+εL2

σ1L2
}.

3: Initialize x(0), x(1) ← 0, g(1) ← HVP-RVR-Gradient-Estimatorε,bg(x
(1), x(0),⊥).

4: for t = 1 to T do

5: Sample Qt ∼ Bernoulli(p).

6: if Qt = 1 then

7: x(t+1) ← x(t) − η · g(t).
8: g(t+1) ← HVP-RVR-Gradient-Estimatorε,bg(x

(t+1), x(t), g(t)).
9: else

10: u(t) ← Oja
(
x(t),O 2

F , 2γ, δ
)
. // Oja’s algorithm (Lemma 16).

11: if u(t) ≡ ⊥ then

12: x(t+1) ← x(t).
13: g(t+1) ← g(t).
14: else

15: Sample r(t) ∼ Uniform({−1, 1}).
16: x(t+1) ← x(t) + γ

L2
· r(t) · u(t).

17: g(t+1) ← HVP-RVR-Gradient-Estimatorε,bH (x
(t+1), x(t), g(t)).

18: return x̂ chosen uniformly at random from
(
x(t)
)T
t=1

.

Proof of Theorem 5. We first show that Algorithm 4 returns a point x̂ such that, E[‖∇F (x̂)‖] ≤ 8ε
and λmin

(
∇2F (x̂)

)
≥ −4γ. We then bound the expected number of oracle queries used throughout

the execution.

To begin, note that, for any t ≥ 1, there are two scenarios: (a) either Qt = 1 and x(t+1) is set

using the update rule in Line 7, or, (b) Qt = 0 and we set x(t+1) using Line 10, respectively. We

analyze the two cases separately below.

Case 1: Qt = 1. Since, η ≤ 1

2
√

L2
1+σ̄2

2+ε̃L2
≤ 1

2L1
and F has L1-Lipschitz gradient, using

Lemma 11, we have

F (x(t))− F (x(t+1)) ≥ η

8

∥∥∥∇F (x(t))
∥∥∥
2
− 3η

4

∥∥∥∇F (x(t))− g(t)
∥∥∥
2
.

Taking expectation on both the sides, while conditioning on the event that Qt = 1, we get

E

[
F (x(t))− F (x(t+1)) | Qt = 1

]
≥ η

8
E

[∥∥∥∇F (x(t))
∥∥∥
2
]
− 3η

4
E

[∥∥∥∇F (x(t))− g(t)
∥∥∥
2
]

≥ η

8
E

[∥∥∥∇F (x(t))
∥∥∥
2
]
− 3ηε2

4
, (42)
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where the last inequality follows using Lemma 7.

Case 2: Qt = 0. Let EOja(t) denote the event that Oja succeeds at time t, in the sense that the

event in Lemma 16 holds: (i) if u(t) = ⊥ then∇2F (x(t)) � −2γI , and (ii) otherwise, u(t) satisfies

〈u(t),∇2F (x(t))u(t)〉 ≤ −γ. Then using Lemma 17, we are guaranteed that

E

[
F (x(t))− F (x(t+1)) | Qt = 0

]
≥ 5γ3

6L2
2

(
Pr
(
λmin(∇2F (x(t))) ≤ −4γ

)
− 2L1

γ
Pr
(
¬EOja(t) | Qt = 0

))
.

In particular, we are guaranteed by Lemma 16 that

E

[
F (x(t))− F (x(t+1)) | Qt = 0

]
≥ 5γ3

6L2
2

(
Pr
(
λmin(∇2F (x(t))) ≤ −4γ

)
− 2L1

γ
δ

)
. (43)

Combining the two cases (Qt = 0 and Qt = 1) from (42) and (43) above, we get

E

[
F (x(t))− F (x(t+1))

]
(44)

=
∑

q∈{0,1}
Pr(Qt = q)E

[
F (x(t))− F (x(t+1)) | Qt = q

]

≥ 5(1− p)γ3
6L2

2

(
Pr
(
λmin(∇2F (x(t))) ≤ −4γ

)
− 2L1

γ
δ

)
+ p

(
η

8
E

[∥∥∥∇F (x(t))
∥∥∥
2
]
− 3ηε2

4

)
.

(45)

Using that E
[∥∥∇F (x(t))

∥∥2
]
≥ (8ε)2 · Pr

(∥∥∇F (x(t))
∥∥ ≥ 8ε

)
and that δ ≤ γ

1600L1
, we have

E

[
F (x(t))− F (x(t+1))

]

≥ 5(1− p)γ3
6L2

2

(
Pr
(
λmin(∇2F (x(t))) ≤ −4γ

)
− 1

800

)
+ 8pηε2

(
Pr
(∥∥∥∇F (x(t))

∥∥∥ ≥ 8ε
)
− 3

32

)
.

Telescoping this inequality for t from 1 to T and using the bound E
[
F (x(1))− F (x(T+1))

]
≤ ∆,

we get

∆ ≥ E

[
F (x(1))− F (x(T+1))

]

≥ 5T (1− p)γ3
6L2

2

( 1
T

T−1∑

t=0

Pr
(
λmin(∇2F (x(t))) ≤ −4γ

)
− 1

800

)

+ 8Tpηε2
( 1
T

T−1∑

t=0

Pr
(∥∥∥∇F (x(t))

∥∥∥ ≥ 8ε
)
− 3

32

)

(i)

≥ 5T (1− p)γ3
6L2

2

(
Pr
(
λmin(∇2F (x̂)) ≤ −4γ

)
− 1

800

)
+ 8Tpηε2

(
Pr(‖∇F (x̂)‖ ≥ 8ε)− 3

32

)

(ii)

≥ 16∆

(
Pr
(
λmin(∇2F (x̂)) ≤ −4γ

)
+ Pr(‖∇F (x̂)‖ ≥ 8ε)− 1

4

)
, (46)
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where (i) follows because x̂ is sampled uniformly at random from
(
x(t)
)T
t=1

and (ii) follows from

Lemma 19. Rearranging the terms, we get

Pr
(
λmin(∇2F (x̂)) ≤ −4γ

)
+ Pr(‖∇F (x̂)‖ ≥ 8ε) ≤ 5

16
,

which further implies that

Pr
(
λmin(∇2F (x̂)) ≥ −4γ ∧ ‖∇F (x̂)‖ ≤ 8ε

)
≥ 11

16
. (47)

Bound on the number of oracle queries. At every iteration, Algorithm 4 queries the stochastic

oracle in either Line 8 or Line 17 (to compute the stochastic gradient estimator and to execute Oja’s

algorithm, respectively), and possibly Line 10 (to update the gradient estimator after a negative

curvature step). Let mg(t) denote the total number of stochastic oracle queries made by Line 8 or

Line 17 at time t, and let Mg =
∑T

t=1mg(t). Further, let Mnc denote the total number of oracle

calls made by Line 10, and further let M =Mg +Mnc be the total number of oracle queries made

up until time T .

In what follows, we first bound E[Mg] and E[Mnc]. Then, we invoke Markov’s inequality to

bound M with probability at least 19
20 .

Bound on Mg. For any t > 0, there are two scenarios, either (a) Qt = 1 and we go through Line 7,

or (b) Qt = 0 and Line 17 is executed. Thus,

E[Mg] =
T∑

t=1

Pr(Qt = 0)E[mg(t) | Qt = 0] +
T∑

t=1

Pr(Qt = 1)E[mg(t) | Qt = 1] (48)

We denote the two terms on the right hand side above by (A) and (B), respectively. We bound them

separately as follows.

• Bound on (A). Using Lemma 8 with the fact that Pr(Qt = 0) = 1− p, we get

(A) = O(1)
T∑

t=1

(1− p) · E
[
bH
σ21
ε2

+
∥∥x(t+1) − x(t)

∥∥2 · σ̄
2
2 + εL2

bHε2
+ 1

∣∣∣ Qt = 0

]

(i)
= O

(
T · (1− p) ·

(
γσ1
√
σ̄22 + εL2

L2ε2
+
γ2

ε2
· σ̄

2 + εL2

L2
2

+ 1

))

(ii)

≤ O

(
∆L2σ1

√
σ̄22 + εL2

γ2ε2
+

∆(σ̄22 + εL2)

γε2
+

∆L2
2

γ3

)
, (49)

where (i) is given by plugging in ‖x(t) − x(t−1)‖ = γ/L2. The inequality (ii) follows by

using the bound on T · (1− p) from Lemma 19.

• Bound on (B). Using Lemma 8 with the fact that Pr(Qt = 1) = p, we get

(B) = O(1)
T∑

t=1

p · E
[
bg
σ21
ε2

+
∥∥x(t+1) − x(t)

∥∥2 · σ̄
2
2 + εL2

bgε2
+ 1

∣∣∣ Qt = 1

]
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(i)
= O(1)

T∑

t=1

p · E
[
bg
σ21
ε2

+
∥∥ηg(t)

∥∥2 · σ̄
2
2 + εL2

bgε2
+ 1

∣∣∣ Qt = 1

]

(ii)

≤ O

(
∆

ηε2
·
(
E

[
1

T

T∑

t=1

∥∥∥g(t)
∥∥∥
2
]
· η

2(σ̄22 + εL2)

bgε2
+ bg

σ21
ε2

+ 1
))

(iii)
= O

(∆σ1
√
σ̄22 + εL2

ε3
+

∆

ηε2

)
, (50)

where (i) follows by plugging in the update rule from Line 7 (when Qt = 1), (ii) follows by

rearranging the terms and using the bound on T · p from Lemma 19, and (iii) is follows from

the choices of bg (in particular, our assumption that ε ≤ σ1 implies that bg =
ηε
√

σ̄2
2+εL2

σ1
) and

η, as well as the following bound for E
[
1
T

∑T
t=1

∥∥g(t)
∥∥2
]
:

E

[
1

T

T∑

t=1

‖g(t)‖2
]
≤ E

[
2

T

T∑

t=1

∥∥∥g(t) −∇F (x(t))
∥∥∥
2
+

2

T

T∑

t=1

∥∥∥∇F (x(t))
∥∥∥
2
]

≤ O
(
ε2 + ‖∇F (x̂)‖2

)
≤ O(ε2),

where the last inequality is uses Lemma 7 and Lemma 18.

Combining the bounds from (49) and (50) in (48), we have

E[Mg] ≤ O
(
∆L2σ1

√
σ̄22 + εL2

γ2ε2
+

∆(σ̄22 + εL2)

γε2
+

∆L2
2

γ3
+

∆σ1
√
σ̄22 + εL2

ε3
+

∆

ηε2

)
. (51)

Bound on Mnc. Using the law of total probability with the observation that Algorithm 4 enters

Line 10 only if Qt = 0, we get

E

[
T∑

t=1

mnc(t)

]
=

T∑

t=1

∑

q∈{0,1}
Pr(Qt = q)E[mnc(t) | Qt = q]

=

T∑

t=1

Pr(Qt = 0)E[mnc(t) | Qt = 0]

= T · (1− p) · nH ≤ O
(
∆L2

2

γ3
· nH

)
, (52)

where nH denotes the number of oracle queries made by Oja, the last inequality follows by bounding

T · (1− p) as in (46). Note that Lemma 16 implies that for δ = γ
1600L1

,

nH ≤ O
(
(σ̄2 + L1)

2

γ2
log2

(
L1

γ
d

))
. (53)

Combining the above bounds for Mg and Mnc (in (51) and (52) respectively), we get

E[M ] ≤ 20E[Mg +Mnc]
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= O

(
∆L2σ1

√
σ̄22 + εL2

γ2ε2
+

∆(σ̄22 + εL2)

γε2
+

∆L2
2

γ3
+

∆σ1
√
σ̄22 + εL2

ε3
+

∆

ηε2
+

∆L2
2

γ3
· nH

)
.

Plugging in the value of η from Algorithm 4 and nH from (53), and using Markov’s inequality, we

get that, with probability at least 15
16 ,

M = O

(
∆σ1

√
σ̄22 + εL2

ε3
+

∆L2

(
σ1σ̄2 +

√
εL2 + γσ̄22/L2 + γε

)

γ2ε2
+

∆L2
2

γ3

(
(σ̄2 + L1)

2

γ2
log2

(
L1

γ
d

))

+O

(
∆L2

2

γ3
+

∆
√
L2
1 + σ̄22 + εL2

ε2

)
. (54)

Ignoring the lower-order terms, we have

M = Õ

(
∆σ1σ̄2
ε3

+
∆L2σ1σ̄2
γ2ε2

+
∆L2

2(σ̄2 + L1)
2

γ5

)
.

The final statement follows by taking a union bound for the failure probability of the claims in (47)

and (54).

Lemma 17 Under the setting of Theorem 5, we are guaranteed that

E

[
F (x(t))− F (x(t+1)) | Qt = 0

]

≥ 5γ3

6L2
2

(
Pr
(
λmin(∇2F (x(t))) ≤ −4γ

)
− 2L1

γ
Pr
(
¬EOja(t) | Qt = 0

))
.

Proof. Recall that Algorithm 4 calls Oja with the precision parameter 2γ. To begin, suppose that

EOja(t) holds. Then if Oja returns ⊥, then λmin

(
∇2F (x(t))

)
≥ −4γ, otherwise Oja returns a unit

vector u(t) such that∇2F (x(t))[u(t), u(t)] ≤ −2γ. Thus, using Lemma 15 with H = ∇2F (x(t)) and

u(t), we conclude that—conditioned on the history up to time t, and on Qt = 0—we have

1{EOja(t)}(F (x(t))− F (x(t+1))) ≥ 5γ3

6L2
2

1{λmin(∇2F (x(t))) ≤ −4γ ∧ EOja(t)}.

In particular, this implies that

F (x(t))− F (x(t+1))

≥ 5γ3

6L2
2

(
1{λmin(∇2F (x(t))) ≤ −4γ} − 1{¬EOja(t)}

)
− 1{¬EOja(t)}(F (x(t))− F (x(t+1))).

Taking conditional expectations, this further implies that

E

[
F (x(t))− F (x(t+1)) | Qt = 0

]
≥ 5γ3

6L2
2

(
Pr
(
λmin(∇2F (x(t))) ≤ −4γ

)
− Pr

(
¬EOja(t) | Qt = 0

))

− E

[
1{¬EOja(t)}(F (x(t))− F (x(t+1))) | Qt = 0

]
.
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Now, consider the term

E

[
1{¬EOja(t)}(F (x(t))− F (x(t+1))) | Qt = 0

]

= Pr(¬EOja(t) | Qt = 0) · E
[
F (x(t))− F (x(t+1)) | Qt = 0,¬EOja(t)

]
.

Given that Oja fails, there are two cases two consider: The first case is where it returns ⊥ (even

though we may not have λmin

(
∇2F (x(t))

)
≥ −4γ), which we denote by Pt = 0, and the second

case is that it returns some vector u(t) (which may not actually satisfy∇2F (x(t))[u(t), u(t)] ≤ −2γ),

which we denote Pt = 1. If Pt = 0, we have x(t+1) − x(t), so

E

[
F (x(t))− F (x(t+1)) | Qt = 0,¬EOja(t), Pt = 0

]
= 0.

Otherwise, using a third-order Taylor expansion, and following the same reasoning as the proof of

Lemma 15, we have

E

[
F (x(t))− F (x(t+1)) | Qt = 0,¬EOja(t), Pt = 1

]

≤ E

[
γ2

2L2
2

∇2F (x)[u(t), u(t)] +
γ3

6L2
2

‖u(t)‖3 | Qt = 0,¬EOja(t), Pt = 1

]

≤ γ2

2L2
2

L1 +
γ3

6L2
2

≤ 2

3

γ2L1

L2
2

.

Combining this bound with the earlier inequalities (and being rather loose with constants), we

conclude that

E

[
F (x(t))− F (x(t+1)) | Qt = 0

]

≥ 5γ3

6L2
2

(
Pr
(
λmin(∇2F (x(t))) ≤ −4γ

)
−
(
1 +

L1

γ

)
Pr
(
¬EOja(t) | Qt = 0

))

≥ 5γ3

6L2
2

(
Pr
(
λmin(∇2F (x(t))) ≤ −4γ

)
− 2L1

γ
Pr
(
¬EOja(t) | Qt = 0

))
.

Lemma 18 Under the same setting as Theorem 5, the point x̂ returned by Algorithm 4 satisfies

E

[
‖∇F (x(t))‖2

]
≤ 17ε2.

Proof. Starting from (45) in the proof of Theorem 5, we have

E

[
F (x(t))− F (x(t+1))

]

≥ 5(1− p)γ3
6L2

2

(
Pr
(
λmin(∇2F (x(t))) ≤ −4γ

)
− 2L1

γ
δ

)
+ p

(
η

8
E

[
‖∇F (x(t))‖2

]
− 3ηε2

4

)
.
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Ignoring the positive term Pr
(
λmin(∇2F (x(t))) ≤ −4γ

)
on the right hand side in the above, we get

E

[
F (x(t))− F (x(t+1))

]
≥ pη

8

(
E

[
‖∇F (x(t))‖2

]
− 6ε2

)
− 5(1− p)γ3

3L2
2

L1

γ
δ.

Telescoping this inequality for t from 1 to T and using that F (x(1))− F (x(T+1)) ≤ ∆, we get

∆ ≥ Tpη

8

(
E
[
‖∇F (x̂)‖2

]
− 6ε2

)
− T 5(1− p)γ3

3L2
2

L1

γ
δ ≥ ∆

4ε2
(
E
[
‖∇F (x̂)‖2

]
− 12ε2

)
− 70∆

L1

γ
δ,

where the last inequality follows from Lemma 19. Rearranging the terms, we get

E
[
‖∇F (x̂)‖2

]
≤ 16ε2 + 280ε2 · L1

γ
δ ≤ 17ε2,

where the last inequality uses that δ ≤ γ
1600L1

.

Lemma 19 For the values of the parameters T and p specified in Algorithm 4,

2∆

ηε2
≤ Tp ≤ 4∆

ηε2
, and,

20∆L2
2

γ3
≤ T (1− p) ≤ 40∆L2

2

γ3
.

Proof. Since, η ≤ 1

2
√

L2
1+σ̄2

2+εL2
≤ 1

2L1
and ε ≤ √∆L1, we have that

T ≥ 2∆

ηε2
≥ 4∆L1

ε2
≥ 4.

Thus, using the fact that x ≤ dxe ≤ 2x for all x ≥ 1, we get

20∆L2
2

γ3
+

2∆

ηε2
≤ T ≤ 40∆L2

2

γ3
+

4∆

ηε2
. (55)

Consequently, by plugging in the values of T and p, we have

T (1− p) =
⌈
20∆L2

2

γ3
+

2∆

ηε2

⌉
·
(
1− γ3

γ3 + 10∆L2
2ηε

2

)

≤
(
40∆L2

2

γ3
+

4∆

ηε2

)
·
(

10∆L2
2ηε

2

γ3 + 10∆L2
2ηε

2

)
=

40∆L2
2

γ3
,

where the first inequality is due to (55). Similarly, we have that

T (1− p) ≥
(
20∆L2

2

γ3
+

2∆

ηε2

)
·
(

10∆L2
2ηε

2

γ3 + 10∆L2
2ηε

2

)
=

20∆L2
2

γ3
.

Together, the above two bounds imply that

20∆L2
2

γ3
≤ T (1− p) ≤ 40∆L2

2

γ3
.

The bound on T · p follows similarly.
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G.2. Full statement and proof for Algorithm 5

Algorithm 5 Subsampled cubic-regularized trust-region method with HVP-RVR

Input:

Stochastic second-order oracle (O 2
F , Pz) ∈ O2(F, σ1:2), where F ∈ F2(∆,∞, L2).

Precision parameter ε.

1: Set M = 4max
{
L2,

σ2
2ε log(d)

σ2
1

}
, η = 30

√
ε
M , T =

⌈
18∆L2

2
γ3 + ∆

√
M

30ε3/2

⌉
, p =

√
Mγ3/2

√
Mγ3/2+540L2

2ε
3/2

.

2: Set m1 =
⌈
2·104·σ2

2 log(d)
εM

⌉
, m2 =

⌈
440σ2

2 log(d)
γ2

⌉
.

3: Set bg = min

{
1,

η
√

σ2
2+εL2

30σ1

}
and bH = min

{
1,

γ
√

σ2
2+εL2

σ1L2

}
.

4: Initialize x(0), x(1) ← 0, g(1) ← HVP-RVR-Gradient-Estimatorε,bg

(
x(1), x(0),⊥

)
.

5: for t = 1 to T do

6: Sample Qt ∼ Bernoulli(p) with bias p.

7: if Qt = 1 then

8: Query the oracle m1 times at x(t) and compute

H
(t)
1 ←

1

m1

m1∑

j=1

∇̂2F (x(t), z(t,j)), where z(t,j)
i.i.d.∼ Pz.

9: Set the next point x(t+1) as

x(t+1) ← argmin
‖y−x(t)‖≤η

〈
g(t), y − x(t)

〉
+

1

2

〈
y − x(t), H(t)

1 (y − x(t))
〉
+
M

6
‖y − x(t)‖3.

10: g(t+1) ← HVP-RVR-Gradient-Estimatorε,bg

(
x(t+1), x(t), g(t)

)
.

11: else

12: Query the oracle m2 times at x(t) and compute

H
(t)
2 ←

1

m2

m2∑

j=1

∇̂2F (x(t), z(t,j)), where z(t,j)
i.i.d.∼ Pz.

13: if λmin

(
H

(t)
2

)
≤ −4γ then

14: Find a unit vector u(t) such that H
(t)
2

[
u(t), u(t)

]
≤ −2γ.

15: x(t+1) ← x(t) + γ
L2
· r(t) · u(t), where r(t) ∼ Uniform({−1, 1}).

16: g(t+1) ← HVP-RVR-Gradient-Estimatorε,bH

(
x(t+1), x(t), g(t)

)
.

17: else

18: x(t+1) ← x(t).
19: g(t+1) ← g(t).

20: return x̂ chosen uniformly at random from
{
x(t)
}T−1

t=1
.
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Theorem 20 For any function F ∈ F2(∆,∞, L2), stochastic second order oracle inO2(F, σ1, σ2),

ε ≤ σ1, and γ ≤ min{σ2,
√
εL2,∆

1
3L

2
3
2 }, with probability at least 3

5 , Algorithm 5 returns a point x̂
such that

‖∇F (x̂)‖ ≤ ε and λmin

(
∇2F (x̂)

)
≥ −γ,

and performs at most

Õ

(
∆σ1σ2
ε3

+
∆L2σ1σ2
γ2ε2

+
∆L2

2σ
2
2

γ5

)

stochastic gradient and Hessian queries.

Proof. We first show that Algorithm 5 returns a point x̂ such that, ‖∇F (x̂)‖ ≤ 450ε and λmin

(
∇2F (x̂)

)
≥

−4γ. We then bound the expected number of oracle queries used throughout the execution.

Before we delve into the proof, first note that using Lemma 7, we have for all t ≥ 1,

E

[∥∥∥∇F (x(t))− g(t)
∥∥∥
2
]
≤ ε2.

Further, using Lemma 9 with our choice of m1 and m2, we have, for all t ≥ 1,

E

[∥∥∥∇2F (x(t))−H(t)
1

∥∥∥
2

op

]
≤ εM

900
, and, E

[∥∥∥∇2F (x(t))−H(t)
2

∥∥∥
2

op

]
≤ γ2

20
. (56)

To begin the proof, we observe that for any t ≥ 0, there are two scenarios: (a) either Qt = 1
and the algorithm goes through Line 9, or, (b) Qt = 0 and the algorithm goes through Line 15. We

analyze the two cases separately below.

(a) Case 1: Qt = 1. In this case, we set x(t+1) using the update rule in Line 9. Invoking Lemma 14

with the bound in (56) and η = 30
√

ε
M , we get

E

[
F (x(t))− F (x(t+1))

∣∣∣ Qt = 1
]
≥ 450ε3/2√

M

(
Pr
(∥∥∥∇F (x(t+1))

∥∥∥ ≥ 450ε
)
− 1

32

)
. (57)

(b) Case 2: Qt = 0. In this case, either λmin

(
H

(t)
2

)
> −4γ, in which case we set x(t+1) = x(t), or

we compute x(t+1) using the update rule in Line 15 in Algorithm 5. Thus, using Lemma 15

with (56), we get

E

[
F (x(t))− F (x(t+1))

∣∣∣ Qt = 0
]
≥ 5γ3

6L2
2

(
Pr
(
λmin

(
H

(t)
2

)
≤ γ

)
− 1

32

)
. (58)

Combining the two cases (Qt = 0 or Qt = 1) from (57) and (58) above, we get

E

[
F (x(t))− F (x(t+1))

]
=

∑

q∈{0,1}
Pr(Qt = q)E

[
F (x(t))− F (x(t+1)) | Qt = q

]

≥ (1− p) · 5γ
3

6L2
2

(
Pr
(
λmin(∇2F (x(t))) ≤ −4γ

)
− 1

32

)
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+ p · 450ε
3/2

√
M

(
Pr
(∥∥∥∇F (x(t+1))

∥∥∥ ≥ 450ε
)
− 1

32

)
.

Telescoping the inequality above for t from 0 to T−1, and using the bound E
[
F (x(0))− F (x(T ))

]
≤

∆, we get

∆ ≥ E

[
F (x(0))− F (x(T ))

]

≥ 5T (1− p)γ3
6L2

2

(
1

T

T−1∑

t=0

Pr
(
λmin(∇2F (x(t))) ≤ −4γ

)
− 1

32

)

+
450Tpε3/2√

M

(
1

T

T∑

t=1

Pr
(∥∥∥∇F (x(t))

∥∥∥ ≥ 450ε
)
− 1

32

)

(i)

≥ 15∆

(
1

T

T−1∑

t=0

Pr
(
λmin(∇2F (x(t))) ≤ −4γ

)
+

1

T

T∑

t=1

Pr
(∥∥∥∇F (x(t))

∥∥∥ ≥ 450ε
)
− 1

8

)

(ii)

≥ 15∆

(
5

6(T − 1)

T−1∑

t=1

(
Pr
(
λmin(∇2F (x(t))) ≤ −4γ

)
+ Pr

(∥∥∥∇F (x(t))
∥∥∥ ≥ 450ε

))
− 1

8

)

(iii)

≥ 15∆

(
5

6

(
Pr
(
λmin(∇2F (x̂)) ≤ −4γ

)
+ Pr(‖∇F (x̂)‖ ≥ 450ε)

)
− 1

8

)
, (59)

where the inequality in (i) follows from Lemma 21. The inequality in (ii) is given by ignoring

the (non-negative) terms Pr
(
∇2F (x(0)) ≤ −4γ

)
and Pr

(∥∥∇F (x(T ))
∥∥ ≥ 450ε

)
on the right-hand

side and using the fact that T ≥ 6. Finally, (iii) follows by recalling the definition of x̂ as samples

uniformly at random from the set (x(t))T−1
t=1 . Rearranging the terms, we get

Pr
(
λmin(∇2F (x̂)) ≤ −4γ

)
+ Pr(‖∇F (x̂)‖ ≥ 450ε) ≤ 1

4
,

which further implies that the returned point x̂ satisfies

Pr
(
λmin(∇2F (x̂)) ≥ −γ ∧ ‖∇F (x̂)‖ ≤ 450ε

)
≥ 3

4
. (60)

Bound on the number of oracle queries. Let us first introduce some notation to count the number

of oracle calls made in each iteration of the algorithm.

• On Line 10 and Line 16, Algorithm 5 queries the stochastic oracle through the subroutine

HVP-RVR-Gradient-Estimator. Let mg(t) denote the total number of oracle queries resulting

from either line at iteration t.

• Let mh,1(t) and mh,2(t) denote the total number of oracle calls made by Line 8 and Line 12

at iteration t to compute H
(t)
1 and H

(t)
2 respectively.

Define Mg, Mh,1 and Mh,2 by
∑T

t=1mg(t),
∑T

t=1mh,1(t) and
∑T

t=1mh,2(t) respectively. In what

follows, we give separate bounds for E[Mg], E[Mh,1] and E[Mh,2]. The final statement on the total

number of oracle calls follows by an application of Markov’s inequality.
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Bound on E[Mg]. For any t > 0, there are two scenarios, either (a) Qt = 1 and we update x(t+1)

through Line 9, or (b) Qt = 0 and we update x(t+1) through Line 15 orLine 18. Thus, using the law

of total expectation

E[Mg] =

T−1∑

t=0

Pr(Qt = 0)E[mg(t) | Qt = 0] +
T−1∑

t=0

Pr(Qt = 1)E[mg(t) | Qt = 1]. (61)

We denote the two terms on the right hand side above by (A) and (B), respectively. We bound them

separately in as follows.

(a) Bound on (A). Using Lemma 8 with the fact that Pr(Qt = 0) = 1− p, we get

(A) = 6

T∑

t=1

(1− p) · E
[
bHσ

2
1

ε2
+

(σ22 + L2ε) ·
∥∥x(t+1) − x(t)

∥∥2

bHε2
+ 1

∣∣∣ Qt = 0

]

(i)
= 6T (1− p) ·

(
bHσ

2
1

ε2
+

(σ22 + L2ε) · γ2
bHε2L2

2

+ 1

)

(ii)
= O

(
∆L2

2

γ3
·
(
bHσ

2
1

ε2
+

(σ22 + L2ε) · γ2
bHε2L2

2

+ 1

))

(iii)
= O

(
∆L2σ1

√
σ22 + εL2

γ2ε2
+

∆
(
σ22 + εL2

)

γε2
+

∆L2
2

γ3

)
, (62)

where (i) holds because when Qt = 0, we either have
∥∥x(t) − x(t−1)

∥∥ ≤ γ
L2

(if we follow the

update rule in Line 15) or
∥∥x(t) − x(t−1)

∥∥ = 0 (if we follow Line 18). The inequality (ii) uses

the bound on T · (1− p) from Lemma 21 and (iii) follows from plugging in the value of bH .

(b) Bound on (B). Using Lemma 8 with the definition Pr(Qt = 1) = p, we get

(B) = 6
T∑

t=1

p · E
[
bgσ

2
1

ε2
+

(σ22 + L2ε) ·
∥∥x(t+1) − x(t)

∥∥2

bgε2
+ 1

∣∣∣ Qt = 1

]

(i)
= 6Tp ·

(
bgσ

2
1

ε2
+

(σ22 + L2ε) · η2
bgε2

+ 1

)

(ii)
= O

(
∆
√
M

ε1.5
·
(
bgσ

2
1

ε2
+

(σ22 + L2ε) · η2
bgε2

+ 1

))

(iii)
= O

(
∆σ1

√
σ22 + εL2

ε3
+

∆
√
M

ε1.5

)

(iv)
= O

(
∆σ1

√
σ22 + εL2

ε3
+

∆
√
L2

ε1.5
+

∆σ2
√
log(d)

ε2

)
, (63)

where (i) is given by the update rule from Line 9 and the fact that HVP-RVR-Gradient-Estimator

uses parameter bg in this case, and (ii) follows by using the bound on T · p from Lemma 21.

The inequality (iii) follows because for the choice of parameters η and M and the assumed

range of ε in the theorem statement, bg =
η
√

σ2
2+εL2

σ1
< 1. Finally, the inequality (iv) is given

by plugging in the value of M and using that ε ≤ σ1.
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Plugging the bound in (62) and (63) back in (61), we get

E[Mg] = O

(
∆L2σ1

√
σ22 + εL2

γ2ε2
+

∆
(
σ22 + εL2

)

γε2
+

∆L2
2

γ3

)

+O

(
∆σ1

√
σ22 + εL2

ε3
+

∆
√
L2

ε1.5
+

∆σ2
√
log(d)

ε2

)
. (64)

Bound on E[MH,1]. For each t ≥ 0, Algorithm 5 samples an independent Bernoulli Qt with bias

E[Qt] = p and executes Line 8 if Qt = 1. For every such pass through Line 8, the algorithm queries

the stochastic Hessian oracle m1 times. Thus,

E[MH ] = E

[
T−1∑

t=0

1{Qt = 1} ·m1

]
= T · p ·m1

(i)
= O

(
∆
√
M

ε1.5
·
⌈
900σ22 log(d)

εM

⌉)
= O

(
∆
√
L2

ε1.5
+

∆σ1σ2
√
log(d)

ε3

)
, (65)

where (i) follows by plugging in the values of m1 and M as specified in Algorithm 5 (using that

ε ≤ σ1 to simplify), and using the bound on T · p from Lemma 21 .

Bound on E[MH,2]. The algorithm executes Line 12 only if Qt = 0, which happens with probabil-

ity 1− p. For every such pass through Line 12, the algorithm queries the stochastic Hessian oracle

m2 times. Consequently,

E[MH ] = E

[
T−1∑

t=0

1{Qt = 0} ·m1

]
= T · (1− p) ·m1

(i)
= O

(
∆L2

2

γ3
·
⌈
20σ22 log(d)

γ2

⌉)
= O

(
∆L2

2σ
2
2 log(d)

γ5
+

∆L2
2

γ3

)
, (66)

where (i) follows by plugging in the values of m1 as specified in Algorithm 5, and using the bound

on T · p from Lemma 21.

Adding together all the bounds above (from (64), (65), and (66)), we have that the total number

of oracle queries by Algorithm 5 till time T is bounded in expectation by

E[M ] = E[Mg +MH,1 +MH,2]

= O

(
∆L2

2σ
2
2 log(d)

γ5
+

∆L2σ1
√
σ22 + εL2

γ2ε2
+

∆σ1σ2
√

log(d)

ε3
+

∆σ1
√
L2

ε2.5

)

+O

(
∆
(
σ22 + εL2

)

γε2
+

∆L2
2

γ3
+

∆σ2
√
log(d)

ε2
+

∆
√
L2

ε1.5

)
.

Using Markov’s inequality, this implies that with probability at least 7
8 ,

M = O

(
∆L2

2σ
2
2 log(d)

γ5
+

∆L2σ1
√
σ22 + εL2

γ2ε2
+

∆σ1σ2
√
log(d)

ε3
+

∆σ1
√
L2

ε2.5

)
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+O

(
∆
(
σ22 + εL2

)

γε2
+

∆L2
2

γ3
+

∆σ2
√
log(d)

ε2
+

∆
√
L2

ε1.5

)
.

Ignoring the lower order terms, we have

M = Õ

(
∆L2

2σ
2
2

γ5
+

∆L2σ1σ2
γ2ε2

+
∆σ1σ2
ε3

)
. (67)

The final statement follows by union bound, using the failure probabilities for (60) and (67).

Lemma 21 For the values of the parameters T and p specified in Algorithm 5, we have

∆
√
M

30ε
3
2

≤ Tp ≤ 2∆
√
M

30ε
3
2

and
18∆L2

2

γ3
≤ T (1− p) ≤ 36∆L2

2

γ3
.

Proof. Under the assumption that γ ≤ ∆
1
3L

2
3
2 , we have that

T ≥ 18∆L2
2

γ3
≥ 18.

Thus, using the fact that x ≤ dxe ≤ 2x for any x ≥ 1, we get

18∆L2
2

γ3
+

∆
√
M

30ε
3
2

≤ T ≤ 36∆L2
2

γ3
+

∆
√
M

15ε
3
2

. (68)

Thus, plugging in the value of T and p, we get

T (1− p) =
⌈
18∆L2

2

γ3
+

∆
√
M

30ε
3
2

⌉
·
(
1−

√
Mγ

3
2

√
Mγ

3
2 + 540L2

2ε
3
2

)

≤
(
36∆L2

2

γ3
+

∆
√
M

15ε
3
2

)
· 540L2

2ε
3
2

√
Mγ

3
2 + 540L2

2ε
3
2

=
36∆L2

2

γ3
,

where the first inequality is due to (68). Similarly, we have that

T (1− p) ≥
⌈
18∆L2

2

γ3
+

∆
√
M

30ε
3
2

⌉
· 540L2

2ε
3
2

√
Mγ

3
2 + 540L2

2ε
3
2

=
18∆L2

2

γ3
.

Together, the above two bounds imply that

18∆L2
2

γ3
≤ T (1− p) ≤ 36∆L2

2

γ3

The bound on T · p follows similarly.
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Appendix H. Lower bounds

H.1. Proof of Theorem 4

In this section, we prove Theorem 4. We begin by generalizing the lower bound framework of [8]—

which centers around the notion of zero-respecting algorithms and stochastic gradient estimators

called probabilistic zero-chains—to higher-order derivatives. Given a qth-order tensor T ∈ R⊗qd,

we define support {T} := {i ∈ [d] | Ti 6= 0}, where Ti is the (q − 1)-order subtensor defined by

[Ti]j1,...,jq−1 = Ti,j1,...,jq−1 . Given a tuple of tensors T =
(
T (1), T (2), . . .

)
, we let support {T } :=⋃

i support{T (i)} be the union of the supports of T (i). Lastly, given an algorithm A and a an oracle

O
p
F , we let x

(t)

A[Op
F ]

denote the (possibly randomized) tth query point generated by A when fed by

information from O (i.e., x
(t)

A[Op
F ]

is a measurable function of
{
O

p
F (x

(i), z(i))
}t−1

i=1
, and possibly a

random seed r(t)).

Definition 22 A stochastic pth-order algorithm A is zero-respecting if for any function F and any

pth-order oracle O
p
F , the iterates {x(t)}t∈N produced by A by querying O

p
F satisfy

support
(
x(t)
)
⊆
⋃

i<t

support
(
O

p
F (x

(i), z(i))
)
, for all t ∈ N, (69)

with probability one with respect the randomness of the algorithm and the realizations of {z(t)}t∈N.

Given x ∈ Rd, we define

progα(x) := max{i ≥ 0 | |xi| > α} (where we set x0 := 1), (70)

which represents the highest index of x whose entry is α-far from zero, for some threshold

α ∈ [0, 1). To lighten notation, we further let prog := prog0. For a tensor T , we let prog(T ) :=
max{support {T}} denote the highest index in support {T} (where prog(T ) := 0 if support{T} =
∅), and let prog(T ) := maxi prog(T

(i)) be the overall maximal index of prog(T (i)) for a tuple of

tensors T =
(
T (1), T (2), . . .

)
.

Definition 23 A collection of derivative estimators ∇̂1F (x, z), . . . , ∇̂pF (x, z) for a function F
forms a probability-ρ zero-chain if

Pr
(
∃x | prog(∇̂1F (x, z), . . . , ∇̂pF (x, z)) = prog 1

4
(x) + 1

)
≤ ρ

and

Pr
(
∃x | prog(∇̂1F (x, z), . . . , ∇̂pF (x, z)) = prog 1

4
(x) + i

)
= 0, i > 1.

No constraint is imposed for i ≤ prog 1
4
(x).

We note that the constant 1/4 is used here for compatibility with the analysis in Arjevani et al. [8,

Section 3]. Any non-negative constant less than 1/2 would suffice in its place. The next lemma

formalizes the idea that any zero-respecting algorithm interacting with a probabilistic zero-chain

must wait many rounds to activate all the coordinates.
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Lemma 24 Let ∇̂1F (x, z), . . . , ∇̂pF (x, z) be a collection of probability-ρ zero-chain derivative

estimators for F : RT → R, and let O
p
F be an oracle with O

p
F (x, z) = (∇̂qF (x, z))q∈[p]. Let{

x
(t)
A[OF ]

}
be a sequence of queries produced by A ∈ Azr(K) interacting with O

p
F . Then, with

probability at least 1− δ,

prog
(
x
(t)

A[Op
F ]

)
< T, for all t ≤ T − log(1/δ)

2ρ
.

The proof of Lemma 24 is a simple adaptation of the proof of Lemma 1 of [8] to high-order zero-

respecting methods—we provide it here for completeness. The proof idea is that any zero-respecting

algorithm must activate coordinates in sequence, and must wait on average at least Ω(1/ρ) rounds

between activations, leading to a total wait time of Ω(T/ρ) rounds.

Proof. Let {∇̂qF (x(i), z(i))}q∈[p] denote the oracle responses for the ith query made at the point

x(i), and let G(i) be the natural filtration for the algorithm’s iterates, the oracle randomness, and the

oracle answers up to time i. We measure the progress of the algorithm through two quantities:

π(t) := max
i≤t

prog
(
x(i)
)
= max

{
j ≤ d | x(i)j 6= 0 for some i ≤ t

}
,

δ(t) := max
i≤t

prog
(
∇qF (x(i), z(i))

)

= max
{
j ≤ d | ∇qf(x(i), z(i))j 6= 0 for some i ≤ t and q ∈ [p]

}
.

Note that π(t) is the largest non-zero coordinate in support{(x(i))i≤t}, and that π(0) = 0 and

δ(0) = 0. Thus, for any zero-respecting algorithm

π(t) ≤ δ(t−1), (71)

for all t. Moreover, observe that with probability one,

prog
(
∇qF (x(t), z(t))

)
≤ 1 + prog 1

4
(x(t)) ≤ 1 + prog(x(t)) ≤ 1 + π(t) ≤ 1 + δ(t−1), (72)

where the first inequality follows by the zero-chain property. Further, using the ρ-zero chain property,

it follows that conditioned on G(i), with probability at least 1− ρ,

prog
(
∇qF (x(t), z(t))

)
≤ prog 1

4
(x(t)) ≤ prog(x(t)) ≤ π(t) ≤ δ(t−1). (73)

Combining (72) and (73), we have that conditioned on G(i−1),

δ(t−1) ≤ δ(t) ≤ δ(t−1) + 1 and Pr
[
δ(t) = δ(t−1) + 1

]
≤ ρ.

Thus, denoting the increments ι(t) := δ(t) − δ(t−1), we have via the Chernoff method,

Pr
[
δ(t) ≥ T

]
= Pr




t∑

j=1

ι(j) ≥ T


 ≤

E

[
exp
(∑t

j=1 ι
(j)
)]

exp(T )
= e−T E

[
t∏

i=1

E

[
exp
(
ι(i)
)
| G(i−1)

]]

≤ e−T (1− ρ+ ρ · e)t ≤ e2ρt−T .
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Thus, Pr
[
δ(t) ≥ T

]
≤ δ for all t ≤ T−log(1/δ)

2ρ ; combined with (71), this yields the desired result.

In light of Lemma 24, our lower bound strategy is as follows. We construct a function F ∈
Fp(∆, Lp) that both admits probability-ρ zero-chain derivative estimators and has large gradients for

all x ∈ RT with prog
(
x(i)
)
< T . Together with Lemma 24, this ensures that any zero-respecting

algorithm interacting with a pth-order oracle must perform Ω(T/ρ) steps to make the gradient of F
small. We make this approach concrete by adopting the construction used in [8], and adjusting it

so as to be consistent with the additional high-order Lipschitz and variance parameters. For each

T ∈ N, we define

FT (x) := −Ψ(1)Φ(x1) +
T∑

i=2

[Ψ(−xi−1)Φ(−xi)−Ψ(xi−1)Φ(xi)], (74)

where the component functions Ψ and Φ are

Ψ(x) =

{
0, x ≤ 1/2,

exp
(
1− 1

(2x−1)2

)
, x > 1/2

and Φ(x) =
√
e

∫ x

−∞
e−

1
2
t2dt. (75)

We start by collecting some relevant properties of FT .

Lemma 25 (Carmon et al. [12]) The function FT satisfies:

1. FT (0)− infx FT (x) ≤ ∆0 · T , where ∆0 = 12.

2. For p ≥ 1, the pth order derivatives of FT are `p-Lipschitz continuous, where `p ≤ e
5
2
p log p+cp

for a numerical constant c <∞.

3. For all x ∈ RT , p ∈ N and i ∈ [T ], we have ‖∇p
iFT (x)‖op ≤ `p−1.

4. For all x ∈ RT and p ∈ N, prog(∇pFT (x)) ≤ prog 1
2
(x) + 1.

5. For all x ∈ RT , if prog1(x) < T then ‖∇FT (x)‖ ≥ |∇prog1(x)+1FT (x)| > 1.

Proof. Parts 1 and 2 follow from Lemma 3 in [12] and its proof; Part 3 is proven in Section H.1.1;

Part 4 follows from Observation 3 in [12] and Part 5 is the same as Lemma 2 in [12].

The derivative estimators we use are defined as

[
∇̂qFT (x, z)

]
i
:=

(
1 + 1

{
i > prog 1

4
(x)
}(z

ρ
− 1

))
· ∇q

iFT (x), (76)

where z ∼ Bernoulli(ρ).

Lemma 26 The estimators ∇̂qFT form a probability-ρ zero-chain, are unbiased for ∇qFT , and

satisfy

E ‖∇̂qFT (x, z)−∇qFT (x)‖2 ≤
`2q−1(1− ρ)

ρ
, for all x ∈ RT . (77)
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Proof. First, we observe that E
[
∇̂qFT (x, z)

]
= ∇qFT (x) for all x ∈ RT , as E[z/ρ] = 1. Second,

we argue that the probability-ρ zero-chain property holds. Recall that progα(x) is non-increasing in α

(in particular, prog 1
4
(x) ≥ prog 1

2
(x)). Therefore, by Lemma 25.4, [∇̂qFT (x, z)]i = ∇iFT (x) = 0

for all i > prog 1
4
(x) + 1, all x ∈ RT and all z ∈ {0, 1}. In addition, since z ∼ Bernoulli(ρ), we

have Pr
(
∃x | prog(∇̂1FT (x, z), . . . , ∇̂pFT (x, z)) = prog 1

4
(x) + 1

)
≤ ρ, establishing that the

oracle is a probability-ρ zero-chain.

To bound the variance of the derivative estimators, we observe that ∇̂qFT (x, z)−∇qFT (x) has at

most one nonzero (q − 1)-subtensor in the coordinate ix = prog 1
4
(x) + 1. Therefore,

E‖∇̂qFT (x, z)−∇qFT (x)‖2 =
∥∥∇q

ix
FT (x)

∥∥2E
(
z

ρ
− 1

)2

=
∥∥∇q

ix
FT (x)

∥∥2 1− ρ
ρ
≤

(1− ρ)`2q−1

ρ
,

where the final inequality is due to Lemma 25.3, establishing the variance bound in (77).

Proof of Theorem 4. We now prove the Theorem 4 by scaling the construction FT appropriately. Let

∆0 and `2 be the numerical constants in Lemma 25. Let the accuracy parameter ε, initial suboptimality

∆, derivative order p ∈ N, smoothness parameters L1, . . . , Lp, and variance parameters σ1, . . . , σp
be fixed. We set

F ?
T (x) = αFT (βx) ,

for some scalars α and β to be determined. The relevant properties of F ?
T scale as follows

F ?
T (0)− inf

x
F ?
T (x) = α

(
FT (0)− inf

x
FT (αx)

)
≤ α∆0T, (78)

∥∥∇q+1F ?
T (x)

∥∥ = αβq+1
∥∥∇q+1FT (βx)

∥∥ ≤ αβq+1`q, (79)

‖∇F ?
T (x)‖ ≥ αβ‖∇FT (x)‖ ≥ αβ, ∀x s.t., prog1(x) < T. (80)

The corresponding scaled derivative estimators ∇̂qF ?
T (x, z) = αβq∇̂qFT (βx, z) clearly form a

probability-ρ zero-chain. Therefore, by Lemma 24, we have that for every zero respecting algorithm

A interacting with O
p
F ?
T

, with probability at least 1/2, prog
(
x
(t)

A[Op
F ]

)
< T for all t ≤ (T − 1)/2ρ.

Hence, since prog1(x) ≤ prog(x) for any x ∈ RT , we have by Lemma 25,

E‖∇F ?
T

(
x
(t)

A[Op
F ]

)
‖ = αβE‖∇FT

(
βx

(t)

A[Op
F ]

)
‖ ≥ αβ

2
, ∀t ≤ (T − 1)/2ρ. (81)

We bound the variance of the scaled derivative estimators as

E‖∇̂qF ?
T (x, z)−∇qF ?

T (x)‖2 = α2β2qE
∥∥∥∇̂qFT (βx, z)−∇qFT (βx)

∥∥∥
2
≤
α2β2q`2q−1(1− ρ)

ρ
,

where the last inequality follows by Lemma 26. Our goal now is to meet the following set of

constraints:

• ∆-constraint : α∆0T ≤ ∆
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• Lq-constraint : αβq+1`q ≤ Lq, for q ∈ [p]

• ε-constraint : αβ
2 ≥ ε

• σq-constraint :
α2β2q`2q−1(1−ρ)

ρ ≤ σ2q , for q ∈ [p]

Generically, since there are more inequalities to satisfy than the number of degrees of freedom

(α, β, T and ρ) in our construction, not all inequalities can be activated (that is, met by equality)

simultaneously. Different compromises will yield different rates.

First, to have a tight dependence in terms of ε, we activate the ε-constraint by setting α = 2ε/β.

Next, we activate the σ1-constraint, by setting ρ = min{(αβ`0/σ1)2, 1} = min{(2ε`0/σ1)2, 1}.
The bound on the variance of the qth-order derivative now reads

α2β2q`2q−1(1− ρ)
ρ

≤
σ21α

2β2q`2q−1

(αβ`0)2
=
`2q−1β

2(q−1)σ21
`20

, q = 2, . . . , p.

Since β is the only degree of freedom which can be tuned to meet though (not necessarily activate)

the σq-constraint for q = 2, . . . , p and the Lq-constraints for q = 1, . . . , p, we are forced to set

β = min
q=2,...,p
q′=1,...,p

min

{(
`0σq
`q−1σ1

) 1
q−1

,

(
Lq′

2ε`q′

)1/q′
}
. (82)

Lastly, we activate the ∆-constraint by setting

T =

⌊
∆

α∆0

⌋
=

⌊
∆β

2∆0ε

⌋
.

Assuming (2ε`0/σ1)
2 ≤ 1 and T ≥ 3, we have by (81) that the number of oracle queries required to

obtain an ε-stationary point for G?
T is bounded from below by

T − 1

2ρ
=

1

2ρ

(⌊
∆β

2∆0ε

⌋
− 1

)

(?)

≥ 1

2ρ
· ∆β

4∆0ε

≥ σ21
2(2`0ε)2

· ∆

4∆0ε
· min
q=2,...,p
q′=1,...,p

min

{(
`0σq
`q−1σ1

) 1
q−1

,

(
Lq′

2ε`q′

)1/q′
}

≥ ∆σ21
25∆0`20ε

3
· min
q=2,...,p
q′=1,...,p

min

{(
`0σq
`q−1σ1

) 1
q−1

,

(
Lq′

2ε`q′

)1/q′
}
, (83)

where (?) uses bξc − 1 ≥ ξ/2 whenever ξ ≥ 3, implying the desired bound. Lastly, we note that one

can obtain tight lower complexity bounds for deterministic oracles by setting ρ = 1. Following the

same chain of inequalities as in (83), in this case we get a lower oracle-complexity bound of

∆

8∆0ε
min

q=1,...,p

(
Lq

2ε`q

)1/q

. (84)
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H.1.1. BOUNDING THE OPERATOR NORM OF ∇p
iFT

In this subsection we complete the proof of Lemma 25 by proving Part 3. Our proof follows along

the lines of the proof of Lemma 3 of [12]. Let x ∈ RT and i1, . . . , ip ∈ [T ], and note that by the

chain-like structure of FT , ∂i1 · · · ∂ipFT (x) is non-zero if and only if |ij − ik| ≤ 1 for any j, k ∈ [p].
A straightforward calculation yields

|∂i1 · · · ∂ipFT (x)| ≤ max
i∈[T ]

max
δ∈{0,1}p−1∪{0,−1}p−1

|∂i+δ1 · · · ∂i+δp−1∂iFT (x)| (85)

≤ max
k∈[p]

{
2 sup
ξ∈R

∣∣∣Ψk(ξ)
∣∣∣ sup

ξ′∈R

∣∣∣Φp−k(ξ′)
∣∣∣
}
≤ exp(2.5p log p+ 4p+ 9) ≤ `p−1

2p+1
,

where the penultimate inequality is due to Lemma 1 of [12]. Therefore, for a fixed i ∈ [T ], we have

‖∇p
iFT (x)‖op

(a)
= sup

‖v‖=1
|〈∇p

iFT (x), v〉|

= sup
‖v‖=1

∣∣∣∣∣∣
∑

i1,...,ip−1∈[T ]

∂i1 · · · ∂ip−1∂iFT (x)vi1 · · · vip−1

∣∣∣∣∣∣
(b)

≤
∑

δ∈{0,1}p−1∪{0,−1}p−1

|∂i+δ1 · · · ∂i+δp−1∂iFT (x)|

(c)

≤ (2p − 1)
`p−1

2p+1
≤ `p−1,

where (a) follows from the definition of the operator norm, (b) follows by the chain-like structure of

FT , and (c) follows from (85), concluding the proof.

H.2. Proof of Theorem 6

In this section we prove Theorem 6 following the schema outlined in Section 4.2. We start by

collecting all the relevant properties of Ψ and Λ from the construction in (11).

Lemma 27 The functions Ψ and Λ satisfy the following properties:

1. For all x ≤ 1/2 and for all k ∈ N ∪ {0}, Ψ(k)(x) = 0.

2. The function Ψ is non-negative and its first- and second-order derivatives are bounded by

0 ≤ Ψ ≤ e, 0 ≤ Ψ′ ≤
√
54/e, −40 ≤ Ψ′′ ≤ 40.

3. The function Λ and its first- and second-order derivatives are bounded by

−8 ≤ Λ ≤ 0, −6 ≤ Λ′ ≤ 6, −8 ≤ Λ′′ ≤ 4.

4. Both Ψ and Λ are infinitely differentiable, and for all k ∈ N, we have

sup
x

∣∣∣Ψ(k)(x)
∣∣∣ ≤ exp

(
5k

2
log(4k)

)
and sup

x

∣∣∣Λ(k)(x)
∣∣∣ ≤ 8√

e
·exp

(
3(k + 1)

2
log

(
3(k + 1)

2

))
.
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Proof. Parts 1-4 are immediate. Part 5 follows from Lemma 1 of [12] and by noting that

sup
x

∣∣∣Λ(k)(x)
∣∣∣ = 8√

e
sup
x

∣∣∣Φ(k+1)(x)
∣∣∣ ≤ 8√

e
· exp

(
3(k + 1)

2
log

(
3(k + 1)

2

))
.

Using these basic properties of Ψ and Λ, we establish the following properties of the construction

GT (analogous to Lemma 25).

Lemma 28 The function GT satisfies the following properties:

1. GT (0)− infx(GT (x)) ≤ ∆0T , with ∆0 = 40.

2. For p ≥ 1, the pth order derivatives ofGT are ˜̀
p-Lipschitz continuous, where ˜̀

p ≤ ecp log p+c′p

for a numerical constant c, c′ <∞.

3. For all x ∈ RT , and i ∈ [T ], we have f ‖∇p
iGT (x)‖op ≤ ˜̀

p.

4. For all x ∈ RT and q ∈ [p], prog
(
∇(q)GT (x)

)
≤ prog 1

2
(x) + 1.

5. For all x ∈ RT , if prog 9
10
(x) < T−1 then λmin

(
∇2GT (x)

)
≤ −0.5, and λmin

(
∇2GT (x)

)
≤

700 otherwise.

Proof. We prove the individual parts of the lemma one by one:

1. Since Ψ(0) = Λ(0) = 0, we have

GT (0) = Ψ(1)Λ(0) +

T∑

i=2

[Ψ(0)Λ(0) + Ψ(0)Λ(0))] = −Ψ(1)Λ(0) = 0.

On the other hand,

GT (x) = Ψ(1)Λ(x1) +

T∑

i=2

[Ψ(−xi−1)Λ(−xi) + Ψ(xi−1)Λ(xi))]

≥ −8eT (by Lemma 27.2. and Lemma 27.3)

≥ −40T.

2. The proof follows along the same lines of Lemma 3 of [12] together with the derivative bounds

stated in Lemma 27.4.

3. The claim follows using the same calculation as in Section H.1.1, with the derivative bounds

replaced by those in Lemma 27.4, mutatis mutandis.

4. The claim follows Observation 3 in [12], mutatis mutandis.
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5. We have

∂GT

∂xj
= −Ψ(−xj−1)Λ

′(−xj) + Ψ(xj−1)Λ
′(xj)−Ψ′(−xj)Λ(−xj+1) + Ψ′(xj)Λ(xj+1).

(86)

Therefore, for any x ∈ Rd, ∇2GT (x) is a tridiagonal matrix specified as follows.

∇2GT (x)i,j =





Ψ(−xi−1)Λ
′′(−xi) + Ψ(xi−1)Λ

′′(xi)

+Ψ′′(−xi)Λ(−xi+1) + Ψ′′(xi)Λ(xi+1) if i = j,

Ψ′(−xj)Λ′(−xi) + Ψ′(xj)Λ′(xi) if j = i− 1,

Ψ′(−xi)Λ′(−xj) + Ψ′(xi)Λ′(xj) if j = i+ 1,

0 otherwise.

The following facts can be verified by a straightforward calculation:

(i) Ψ(x) ≥ 0.5 for all x ≥ 9/10.

(ii) Ψ′′(x) ≥ 0 for all |x| < 9/10.

(iii) Λ′′(x) ≤ −1 for all |x| < 9/10.

Next, assuming k := prog 9
10
(x) + 1 < T , we have, by definition, that |xk+1|, |xk| < 9

10 ≤
|xk−1|, implying,

λmin(∇2GT (x)) = min
y∈Rn

yT∇2GT (x)y

yT y
(Rayleigh quotient)

≤ eTk∇2GT (x)ek

eTk ek

= ∇2GT (x)k,k

= Ψ(−xk−1)Λ
′′(−xk) + Ψ(xk−1)Λ

′′(xk)

+ Ψ′′(−xk)Λ(−xk+1) + Ψ′′(xk)Λ(xk+1)

≤ Ψ(−xk−1)Λ
′′(−xk) + Ψ(xk−1)Λ

′′(xk) ((ii) and Λ ≤ 0)

= Ψ(|xk−1|)Λ′′(sign{xk−1}xk) (Ψ(x) = 0, ∀x < 0)

≤ −1 · 0.5 = −0.5. ((i) and (iii))

Otherwise, if nothing is assumed on x, then the same chain of inequalities, using k = 2, can

be used to bound the minimal value of∇2GT (x).

λmin(∇2GT (x)) = min
y∈Rn

yT∇2GT (x)y

yT y
(Rayleigh quotient)

≤ eTk∇2GT (x)ek

eTk ek

= ∇2GT (x)k,k

= Ψ(−xk−1)Λ
′′(−xk) + Ψ(xk−1)Λ

′′(xk)
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+Ψ′′(−xk)Λ(−xk+1) + Ψ′′(xk)Λ(xk+1)

≤ 2(4e+ 320) ≤ 700,

thus giving the desired bound.

We employ similar derivative estimators to the proof of Theorem 4, only this time we provide a

noiseless estimate for the gradient. Formally, we set

[
∇̂qGT (x, z)

]
i
:=

{
∇iGT (x) q = 1,(
1 + 1

{
i > prog 1

4
(x)
}(

z
p − 1

))
· ∇q

iGT (x) q ≥ 2,
(87)

where z ∼ Bernoulli(ρ). The dynamics of zero-respecting methods can be now characterized in an

analogous way to the proof of Theorem 4. The only difference is that here, since Λ′(0) = Ψ′(0) = 0,

it follows that prog0(∇GT (x)) = prog0(x). Therefore, the collection of estimators defined above

is a ρ-probability zero-chain—with respect to prog0 (rather than prog 1
4

as in Definition 23)11—in

which the variance of the gradient estimator is 0; a key property that shall be used soon. Following

the proof of Lemma 24, mutatis mutandis, gives us the same bound on the number of non-zero entries

acquired over time. That is, we have that with probability at least 1− δ,

prog
(
x
(t)

A[Op
F ]

)
< T, for all t ≤ T − log(1/δ)

2ρ
, (88)

where we employ the same notation as in Lemma 24. The proof now proceeds along the same lines

of the proof of Theorem 4. The estimators have variance bounded as

E ‖∇̂qGT (x, z)−∇qGT (x)‖2 ≤
{
0 q = 1,
˜̀2
q−1(1−ρ)

ρ , for all x ∈ RT q ≥ 2,
(89)

which can established the same fashion as Lemma 26 by invoking Lemma 28.3 and Lemma 28.4.

Proof of Theorem 6. We now complete the proof of Theorem 6 for p ≥ 2 by scaling GT

appropriately. Let ∆0 and ˜̀
p be the numerical constants in Lemma 28. Let the accuracy parameter

γ, initial suboptimality ∆, derivative order p ∈ N, smoothness parameter L1, . . . , Lp, and variance

parameter σ1, σ2, . . . , σp be fixed. We let

G?
T (x) := αGT (βx) ,

for scalars α and β to be determined. The relevant properties of G?
T are as follows:

G?
T (0)− inf

x
G?

T (x) = α
(
GT (0)− inf

x
GT (αx)

)
≤ α∆̃0T, (90)

11. Using prog0, rather than prog 1

4

, carries one major disadvantage: our bounds for finding γ-weakly convex points

cannot be directly extended to arbitrary randomized algorithm using the technique presented in Section 3.4 of [12] as

is (at least, not without the degrading the dependence on problem parameters). We defer such an extension to future

work.
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∥∥∇q+1G?
T (x)

∥∥ = αβq+1
∥∥∇q+1GT (βx)

∥∥ ≤ αβq+1 ˜̀
q, (91)

λmin(∇2G?
T

(
x
)
) = αβ2λmin(∇2GT

(
x
)
) ≤ −αβ

2

2
, ∀x s.t., prog9/10(x) < T. (92)

The corresponding scaled derivative estimators ∇̂qG?
T (x, z) = αβq∇̂qGT (βx, z) clearly form a

probability-ρ zero-chain, thus by (88), we have that for every zero respecting algorithm A interacting

with O
p
G?

T
, with probability at least 1− 1/(4 · 700), prog

(
x
(t)

A[Op
F ]

)
< T − 1 for all t ≤ (T − 2)/2ρ.

Therefore, since prog9/10(x) ≤ prog(x) for any x ∈ RT , we have by Lemma 28.5,

E

[
λmin(∇2G?

T

(
x
(t)

A[Op
F ]

)
)
]
= αβ2λmin(∇2GT

(
βx

(t)

A[Op
F ]

)
)

≤ αβ2
(
−0.5 · (1− 1

4 · 700) + 700 · 1

4 · 700

)

≤ −αβ
2

5
, (93)

for any t ≤ (T − 2)/2ρ. The variance of the scaled derivative estimators can be bounded as

E‖∇̂qG?
T (x, z)−∇qG?

T (x)‖2 = α2β2qE
∥∥∥∇̂qGT (βx, z)−∇qGT (βx)

∥∥∥
2
≤
α2β2q ˜̀2q−1(1− ρ)

ρ
,

where the last inequality is by (89). Our goal now is to meet the following set of constraints:

• ∆-constraint : α∆̃0T ≤ ∆ .

• Lq-constraint : αβq+1 ˜̀
q ≤ Lq for q = 1, . . . , p.

• γ-constraint : −αβ2

5 ≤ −γ.

• σq-constraint :
α2β2q ˜̀2

q−1(1−ρ)

ρ ≤ σ2q for q = 1, . . . , p.

As there are more inequalities to satisfy than the four degrees of freedom (α, β, T and ρ) in our

construction, generically, not all inequalities can be activated (that is, met by equality) simultaneously.

Different compromises may yield different bounds. First, to have a tight dependence in terms of γ,

we activate the γ-constraint by setting α = 5γ/β2. Next, we activate the σ2-constraint, by setting

ρ = min{(αβ2 ˜̀1/σ2)2, 1} = min{(5˜̀1γ/σ2)2, 1}. The bound on the variance of the qth derivative

for q = 3, . . . , p, now reads

α2β2q ˜̀2q−1(1− ρ)
ρ

≤
σ22α

2β2q ˜̀2q−1

(αβ2 ˜̀1)2
=

˜̀2
q−1β

2(q−2)σ22
˜̀2
1

, q = 3, . . . , p.

Since β is the only degree of freedom which can be tuned to meet (though not necessarily activate)

the σq-constraints for q = 3, . . . , p, and the Lq′-constraint for q′ = 2, . . . , p, we are forced to have

β = min
q=3,...,p
q′=2,...,p

min





(
˜̀
1σq

˜̀
q−1σ2

) 1
q−2

,

(
Lq′

5˜̀q′γ

) 1
q′−1



. (94)
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Note that, by definition, the σ1-constraint always holds (as the variance of the gradient estimator is

zero, see (89)). To satisfy the L1-constraint, i.e., αβ2 ˜̀1 ≤ L1, we must have

γ ≤ L1/5˜̀1. (95)

This constraint holds w.l.o.g. as L1 also bounds the absolute value of the Hessian eigenvalues (in

other words, any point x is trivially O(L1)-weakly convex). Lastly, we activate the ∆-constraint, by

setting

T =

⌊
∆

α∆̃0

⌋
=

⌊
∆β2

5∆̃0γ

⌋
.

Assuming (5˜̀1γ/σ2)
2 ≤ 1 (i.e., γ = O(σ2)) and T ≥ 3, we have by (93) that the number of oracle

queries required to obtain a point x such that λmin(∇2G?
T

(
x
)
) ≤ λ, is bounded from below by

T − 2

2ρ
=

1

2ρ

(⌊
∆β2

5∆̃0γ

⌋
− 2

)

(?)

≥ 1

2ρ

∆β2

52∆̃0γ

≥ σ22
(5˜̀1γ)2

· ∆β2

52∆̃0γ

=
σ22

(5˜̀1γ)2
· ∆

52∆̃0γ
min

q=3,...,p
q′=2,...,p

min





(
˜̀
1σq

˜̀
q−1σ2

) 2
q−2

,

(
Lq′

5˜̀q′γ

) 2
q′−1





=
1

54 ˜̀21∆̃0

· ∆σ
2
2

γ3
min

q=3,...,p
q′=2,...,p

min





(
˜̀
1σq

˜̀
q−1σ2

) 2
q−2

,

(
Lq′

5˜̀q′γ

) 2
q′−1



, (96)

where (?) uses that bξc − 2 ≥ ξ/5 whenever ξ ≥ 3, implying the desired result (note that this bound

does not depend on L1 and σ1.).

If σ1 = · · · = σp = 0, we obtain the following lower complexity bound for noiseless oracles

(where ρ is effectively set to one), assuming γ = O(L1) (this holds without loss of generality, as

we discuss above). As before, we set α = 5γ/β2. The L1-constraint is satisfied under the same

condition stated in (95). Thus, letting

β = min
q=2,...,p





(
Lq

5˜̀qγ

) 1
q−1



,

it follows that our construction is Lq-Lipschitz for any q = 1, . . . , p. Following the same chain of

inequalities as in (96) yields an oracle complexity lower bound of

∆β2

53∆̃0γ
=

∆

53∆̃0γ
min

q=2,...,p





(
Lq

5˜̀qγ

) 2
q−1



.

Note that this bound does not depend on L1.
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