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Abstract

We design an algorithm which finds an e-approximate stationary point (with | VF(x)|| < €) using
O(e~?) stochastic gradient and Hessian-vector products, matching guarantees that were previously
available only under a stronger assumption of access to multiple queries with the same random
seed. We prove a lower bound which establishes that this rate is optimal and—surprisingly—that
it cannot be improved using stochastic pth order methods for any p > 2, even when the first p
derivatives of the objective are Lipschitz. Together, these results characterize the complexity of
non-convex stochastic optimization with second-order methods and beyond. Expanding our scope
to the oracle complexity of finding (e, y)-approximate second-order stationary points, we establish
nearly matching upper and lower bounds for stochastic second-order methods. Our lower bounds
here are novel even in the noiseless case.

Keywords: Stochastic optimization, non-convex optimization, second-order methods, variance
reduction, Hessian-vector products.

1. Introduction

Let F : RY — R have Lipschitz continuous gradient and Hessian, and consider the task of finding an
(€,7)-second-order stationary point (SOSP), that is, z € R? such that

IVF(z)|| <e and V2F(z) > —~vI. (1)

This task plays a central role in the study of non-convex optimization: for functions satisfying a
weak strict saddle condition [20], exact SOSPs (with ¢ = v = 0) are local minima, and therefore
the condition (1) serves as a proxy for approximate local optimality.! Moreover, for a growing
set of non-convex optimization problems arising in machine learning, SOSPs are in fact global
minima [20, 21, 35, 25]. Consequently, there has been intense recent interest in the design of efficient
algorithms for finding approximate SOSPs [23, 2, 11, 17, 36, 38, 18].

1. However, it is NP-Hard to decide whether a SOSP is a local minimum or a high-order saddle point [28].
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Complexity Method R/e&lires Complexity Additional
A V2F? bound assumptions

SGD [22] No O(e™®)

Stochastic Restarted SGD [18] No O(¢=3%)  VF Lipschitz
almost surely

N
Subsampled regularized ~ Yes O(e739)
. Newton [36]
Recursive variance No O(e™3) Mean-squared
\ Noiseless reduction [e.g., 17] smoothness,
L - Sim. queries
(see Appendix C)

y

p=1 p=2 p=3 Ordcr'p
Hessian-vector recursive  Yes O(e™?) None
VR (Algorithm 2)
Subsampled ~ Newton Yes O(e™®) None
with VR (Algorithm 3)
Figure 1: The “elbow effect:” for stochastic oracles, op-  Table 1: Comparison of guarantees for finding e-stationary points

timal complexity sharply improves from e~ forp = 1 (i.e,, E||[VF(z)| < e) for a function F' with Lipschitz gradient and
to €3 for p = 2, but has no further improvement for Hessian. See Table 2 for detailed comparison.

p > 2. Noiseless complexity begins at e =2 for p = 1 and

smoothly approaches e~ ! as the derivative order p — oco.

In stochastic approximation tasks—particularly those motivated by machine learning—access to
the objective function is often restricted to stochastic estimates of its gradient; for each query point
x € R? we observe VF(z, z), where z ~ P, is a random variable such that

E[VF(z,2)] = VF(z) and E||VF(z,z) — VF(z)|]? < o?. )

This restriction typically arises due to computational considerations (when ﬁ?(, z) is much cheaper
to compute than V F'(-), as in empirical risk minimization or Monte Carlo simulation), or due to
fundamental online nature of the problem at hand (e.g., when x represents a routing scheme and
z represents traffic on a given day). However, for many problems with additional structure, we
have access to extra information. For example}vie often have access to stochastic second-order

information in the form of a Hessian estimator V2 F(x, z) satisfying
E[V?F(z,2)] = V?F(z) and E|V2F(x,2) — VF(x)|%, < 03. 3)

In this paper, we characterize the extent to which the stochastic Hessian information (3), as well
as higher-order information, contributes to the efficiency of finding first- and second-order stationary
points. We approach this question from the perspective of oracle complexity [29], which measures
efficiency by the number of queries to estimators of the form (2)—and possibly (3)—required to
satisfy the condition (1).

1.1. Our Contributions

We provide new upper and lower bounds on the stochastic oracle complexity of finding e-stationary
points and (¢, )-SOSPs. In brief, our main results are as follows.

¢ Finding e-stationary points: The elbow effect. We propose a new algorithm that finds an
e-stationary point (7 = o0o) with O(e~3) stochastic gradients and stochastic Hessian-vector
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products. We furthermore show that this guarantee is not improvable via a complementary
Q(e~?) lower bound. All previous algorithms achieving O(¢~3) complexity require “multi-point”
queries, in which the algorithm can query stochastic gradients at multiple points for the same
random seed. Moreover, we show that £2(e~3) remains a lower bound for stochastic pth-order
methods for all p > 2 and hence—in contrast to the deterministic setting—the optimal rates for
higher-order methods exhibit an “elbow effect”; see Figure 1.

e (e€,)-stationary points: Improved algorithm and nearly matching lower bound. We extend
our algorithm to find (e, )-stationary points using O (e =3 + ¢ =2y ~2 4 4~5) stochastic gradient
and Hessian-vector products, and prove a nearly matching 2(e=2 + ~~5) lower bound.

In the remainder of this section we overview our results in greater detail. Unless otherwise
stated, we assume F' has both Lipschitz gradient and Hessian. To simplify the overview, we focus
on dependence on ¢! and y~! while keeping the other parameters—namely the initial optimality
gap F(2(9) — inf, pa F(x), the Lipschitz constants of VF and V2F, and the variances of their
estimators—held fixed. Our main theorems give explicit dependence on these parameters.

1.1.1. FIRST-ORDER STATIONARY POINTS (v = 00)

We first describe our developments for the task of finding e-approximate first-order stationary points
(satisfying (1) with v = o0), and subsequently extend our results to general . The reader may also
refer to Table 1 for a succinct comparison of upper bounds.

Variance reduction via Hessian-vector products: A new gradient estimator. Using stochastic
gradients and stochastic Hessian-vector products as primitives, we design a new variance-reduced
gradient estimator. Plugging it into standard stochastic gradient descent (SGD), we obtain an
algorithm that returns a point 7 satisfying IE ||V F(Z)|| < € and requires O(e~3) stochastic gradient
and HVP queries in expectation. In comparison, vanilla SGD requires O(e~*) queries [22], and the
previously best known rate under our assumptions was O (e~3-?), by both cubic-regularized Newton’s
method and a restarted variant of SGD [36, 18].

Our approach builds on a line of work by Fang et al. [17], Zhou et al. [39], Wang et al. [37],
Cutkosky and Orabona [16] that also develop algorithms with complexity O(e~3), but require a
“multi-point” oracle in which algorithm can query the stochastic gradient at multiple points for the
same random seed. Specifically, in the n-point variant of this model, the algorithm can query at the
set of points (1, ..., z,) and receive

ﬁ?(xl, Z)yeey ﬁ(mn, z), where =z i P, 4)

and where the estimator ﬁ?(az, z) is unbiased and has bounded variance in the sense of (2). The
aforementioned works achieve O(e~3) complexity using n = 2 simultaneous queries, while our
new algorithm achieves the same rate using n = 1 (i.e., z is drawn afresh at each query), but
using stochastic Hessian-vector products in addition to stochastic gradients. However, we show in
Appendix C that under the statistical assumptions made in these works, the two-point stochastic
gradient oracle model is strictly stronger than the single-point stochastic gradient/Hessian-vector
product oracle we consider here. On the other hand, unlike our algorithm, these works do not require
Lipschitz Hessian.

The algorithms that achieve complexity O(e~?) using two-point queries work by estimating
gradient differences of the form VF(z) — VF(z') using ﬁ’(m, z) — ﬁ(m’, z) and applying
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recursive variance reduction [31]. Our primary algorithmic contribution is a second-order stochastic
estimator for VF'(z) — VF(2') which avoids simultaneous queries while maintaining comparable
error guarantees. To derive our estimator, we note that VF(z) — VF(2') = fol V2F (zt 4+ 2'(1 —
t))(z — 2)dt, and use K queries to the stochastic Hessian estimator (3) to numerically approximate
this integral.> Specifically, our estimator takes the form

—

! V2F (z- (1 -

% )+’ g, 2 (@ — o), )

D

0

<5

K-1
k=

where 20 "X P, Unlike the usual estimator ﬁ?(m, z) — ﬁ?(:c’ , 2), the estimator (5) is biased.
Nevertheless, we show that choosing K dynamically according to K o ||z — 2'||? provides adequate

control over both bias and variance while maintaining the desired query complexity. Combining the
integral estimator (5) with recursive variance reduction, we attain O(e~3) complexity.

Demonstrating the power of second-order information. For functions with Lipschitz gradient
and Hessian, we prove an Q(¢~3-) lower bound on the minimax oracle complexity of algorithms
for finding stationary points using only stochastic gradients (2).> This lower bound is an extension
of the results of Arjevani et al. [8], who showed that for functions with Lipschitz gradient but not
Lipschitz Hessian, the optimal rate is © (¢ ~*) using only stochastic gradients (2). Together with our
new O(e~3) upper bound, this lower bound reveals that stochastic Hessian-vector products offer
an Q(e~%%) improvement in the oracle complexity for finding stationary points in the single-point
query model. This contrasts the noiseless optimization setting, where finite gradient differences can
approximate Hessian-vector products arbitrarily well, meaning these oracle models are equivalent.

Demonstrating the limitations of higher-order information (p > 2). For algorithms that can
query both stochastic gradients and stochastic Hessians, we prove a lower bound of (e ~3) on the
oracle complexity of finding an expected e-stationary point. This proves that our O(e~3) upper bound
is optimal in the leading order term in €, despite using only stochastic Hessian-vector products rather
than full stochastic Hessian queries.

Notably, our £2(e~3) lower bound extends to settings where stochastic higher-order oracles are
available, i.e, when the first p derivatives are Lipschitz and we have bounded-variance estimators
{ﬁ’(', -) }4<p- The lower bound holds for any finite p, and thus, as a function of the oracle order p,
the minimax complexity has an elbow (Figure 1): for p = 1 the complexity is ©(¢~*) [8] while for all
p > 2itis ©(e~3). This means that smoothness and stochastic derivatives beyond the second-order
cannot improve the leading term in rates of convergence to stationarity, establishing a fundamental
limitation of stochastic high-order information. This highlights another contrast with the noiseless
setting, where pth order methods enjoy improved complexity for every p [12].

As we discuss in Appendix C, for multi-point stochastic oracles (4), the rate O(e~3) is attainable
even without stochastic Hessian access. Moreover, our (e ~3) lower bound for stochastic pth order
oracles holds even when multi-point queries are allowed. Consequently, when viewed through the
lens of worst-case oracle complexity, our lower bounds show that even stochastic Hessian information
is not helpful in the multi-point setting.

2. More precisely, our estimator (5) only requires stochastic Hessian-vector products, whose computation is often roughly
as expensive as that of a stochastic gradient [33].

3. We formally prove our results for the structured class of zero-respecting algorithms [12]; the lower bounds extend to
general randomized algorithms via similar arguments to Arjevani et al. [8].



SECOND-ORDER INFORMATION IN NON-CONVEX STOCHASTIC OPTIMIZATION

1.1.2. SECOND-ORDER STATIONARY POINTS

Upper bounds for general yv. We incorporate our recursive variance-reduced Hessian-vector
product-based gradient estimator into an algorithm that combines SGD with negative curvature
search. Under the slightly stronger (relative to (3)) assumption that the stochastic Hessians have
almost surely bounded error, we prove that—with constant probability—the algorithm returns an
(€,7)-SOSP after performing O (e 3+ ¢~ 2y~2+~77) stochastic gradient and Hessian-vector product
queries.

A lower bound for finding second-order stationary points. We prove a minimax lower bound
which establishes that the stochastic second-order oracle complexity of finding (e, ~)-SOSPs is
Q(e=3 + 47?). Consequently, the algorithms we develop have optimal worst-case complexity in
the regimes v = O(¢2/3) and y = Q(e%5). Compared to our lower bounds for finding e-stationary
points, proving the Q(y~?) lower bound requires a more substantial modification of the constructions
of [12] and [8]. In fact, our lower bound is new even in the noiseless regime (i.e., 01 = o2 = 0),
where it becomes Q(¢~1® + 43); this matches the guarantee of the cubic-regularized Newton’s
method [30] and consequently characterizes the optimal rate for finding approximate SOSPs using
noiseless second-order methods.

1.2. Further related work

We briefly survey additional upper and lower complexity bounds related to our work and place our
results within their context. The works of Monteiro and Svaiter [27], Arjevani et al. [9], Agarwal
and Hazan [1] delineate the second-order oracle complexity of convex optimization in the noiseless
setting; [7] treat the finite-sum setting.

For functions with Lipschitz gradient and Hessian, oracle access to the Hessian significantly
accelerates convergence to e-approximate global minima, reducing the complexity from ©(¢~%?) to
@(5*2/ 7). However, since the hard instances for first-order convex optimization are quadratic [29, 6,
34], assuming Lipschitz continuity of the Hessian does not improve the complexity if one only has
access to a first-order oracle. This contrasts the case for finding e-approximate stationary points of
non-convex functions with noiseless oracles. There, Lipschitz continuity of the Hessian improves
the first-order oracle complexity from ©(e2) to O(e~17), with a lower bound of Q(e~%/7) for
deterministic algorithms [10, 13]. Additional access to full Hessian further improves this complexity
to ©(e~!-%), and for pth-order oracles with Lipschitz pth derivative, the complexity further improves

to @(e_(H%)) [12]; see Figure 1.

1.3. Paper organization

We formally introduce our notation and oracle model in Section 2. Section 3 contains our results
concerning the complexity of finding e-first-order stationary points: algorithmic upper bounds
(Section 3.1) and algorithm-independent lower bounds (Section 3.2). Following a similar outline,
Section 4 describes our upper and lower bounds for finding (e,v)-SOSPs. In Appendix A, we
discussion directions for future research. Additional technical comparison with related work is given
in Appendix B and C, and proofs are given in Appendix D through Appendix H.

Notation. We let CP denote the class of p-times differentiable real-valued functions, and let
V4F denote the gth derivative of a given function F' € CP? for ¢ € {1,...,p}. Given a function
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F eC'welet ViF(z) = [VF(z)]; = 7% F(x). When F € C? is twice differentiable, we define,
V2 f() == [V2f(2)],, = 5.2 f(x), and similarly define [V”f(z)] = f(a)

’Lj 81}1'8:59' 7:171:21"'7ip 61}1'1“'8921'?

for pth-order derivatives. For a vector z € R, ||z denotes the Euclidean norm and ||| denotes
the /o, norm. For matrices A € R4, | A|| op denotes the operator norm. More generally, for
symmetric pth order tensors 7', we define the operator norm via || T'||,, = supjj, =1 |[(T’, v*P)], and
we let T[v(l)7 - ,v(p)] = <T, W v(p)>. Note that for a vector z € RY the operator norm
||, coincides with the Euclidean norm ||z[|. We let S? denote the space of symmetric matrices in
R We let B, () denote the Euclidean ball of radius  centered at x € R? (with dimension clear
from context). We adopt non-asymptotic big-O notation, where f = O(g) for f,g : X — R, if
f(z) < Cg(x) for some constant C' > 0.

2. Setup

We study the problem of finding e-stationary and (¢, )-second order stationary points in the standard
oracle complexity framework [29], which we briefly review here.

Function classes. We consider p-times differentiable functions satisfying standard regularity con-
ditions, and define

P _ <
‘Fp(Alezp) = {F : Rd — R Frec ) F(O) lnfz F(JU) ~ A7 },

IVIF(z) = VIFy)llop < Lallw =yl forall 2,y € R?, g € [p]

so that L., = (L1, ..., L) specifies the Lipschitz constants of the gth order derivatives V¢F" with
respect to the operator norm. We make no restriction on the ambient dimension d.

Oracles. For a given function F' € F,,(A, Ly.,), we consider a class of stochastic pth order oracles
defined by a distribution P, over a measurable set Z and an estimator

~

Op(w,2) i= (F(z.2), VF(z,2), V2F(x,2),..., V7F(, 7)), ©)

where {VIF(-, Z)}I;:O are unbiased estimators of the respective derivatives. That is, for all z,

~

E..p [F(x,z)] = F(z) and E,p, [ﬁ?(x, 2)] = ViF(x) for all ¢ € [p].*
Given variance parameters 1., = (071, ..., 0p), we define the oracle class O, (F, 01.,) to be the
set of all stochastic pth-order oracles for which the variance of the derivative estimators satisfies

2
Opéaf‘;, q € [p]. ©)

E..p Hﬂ?(;ﬂ,z) VI (z)

The upper bounds in this paper hold even when 03 := max,cga Var(ﬁ (x, z)) is infinite, while our
lower bounds hold when oy = 0, so to reduce notation, we leave dependence on this parameter tacit.

Optimization protocol. We consider stochastic pth-order optimization algorithms that access an
unknown function F' € F,(A, L;.;,) through multiple rounds of queries to a stochastic pth-order
oracle (O, P,) € Op(F, a1.5). When queried at 2*) in round ¢, the oracle performs an independent
draw of z(*) ~ P, and answers with o~ (x(t), z(t)). Algorithm queries depend on F’ only through
the oracle answers; see e.g. Arjevani et al. [8, Section 2] for a more formal treatment.

4. For p > 2 we assume without loss of generality that VP F'(x, z) is a symmetric tensor.
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3. Complexity of finding first-order stationary points

In this section we focus on the task of finding e-approximate stationary points (satisfying ||V F'(z)|| <
€). As prior work observes [cf. 10, 2], stationary point search is a useful primitive for achieving the
end goal of finding second-order stationary points (1). We begin with describing algorithmic upper
bounds on the complexity of finding stationary points with stochastic second-order oracles, and then
proceed to match their leading terms with general pth order lower bounds.

3.1. Upper bounds

Our algorithms rely on recursive variance reduction [31]: we sequentially estimate the gradient
at the points {z()};>¢ by accumulating cheap estimators of VF(z(")) — VF(2("=V) for 7 =
to+ 1,...,t, where at iteration ty we reset the gradient estimator by computing a high-accuracy
approximation of VF (:c(to)) with many oracle queries. Our implementation of recursive variance
reduction, Algorithm 1, differs from previous approaches [17, 39, 37] in three aspects.

First, in Line 8 we estimate differences of the form VF(z(")) — VF(z("=1) by averaging
stochastic Hessian-vector products. This allows us to do away with multi-point queries and operate
under weaker assumptions than prior work (see Appendix C), but it also introduces bias to our
estimator, which makes its analysis more involved. This is the key novelty in our algorithm. Second,
rather than resetting the gradient estimator every fixed number of steps, we reset with a user-defined
probability b (Line 4); this makes the estimator stateless and greatly simplifies its analysis, especially
in our algorithms for finding SOSPs, where we use a varying value of b. Finally, we dynamically
select the batch size K for estimating gradient differences based on the distance between iterates
(Line 2), while prior work uses a constant batch size. Our dynamic batch size scheme is crucial for
controlling the bias in our estimator, while still allowing for large step sizes as in Wang et al. [37].

The core of our analysis is the following lemma, which bounds the gradient estimation error
and expected oracle complexity. To state the lemma, we let {m(t)}tzo be sequence of queries to
Algorithm 1, and let g¥) = HVP-RVR-Gradient-Estimator, ;(x®), (=1, g{t=1)) be the sequence of
estimates it returns.

Lemma 1 For any oracle in Os(F,01.9) and F € Fa(A, L1.2), Algorithm 1 guarantees that
E|g" — VF@®)|? < ¢

for all t > 1. Furthermore, conditional on z(*=Y), +®) and g, the t™ execution of Algorithm 1
with reset probability b uses at most

2.0%+6L2>

2
g —
O(1+b6—21+ |2® — 2D )2

stochastic gradient and Hessian-vector product queries in expectation.

We prove the lemma in Appendix D by bounding the per-step variance using the HVP oracle’s
variance bound (7), and by bounding the per-step bias relative to VF(z(*)) — VF(z(*~1) using the
Lipschitz continuity of the Hessian.

Our first algorithm for finding e-stationary points, Algorithm 2, is simply stochastic gradient
descent using the HVP-RVR gradient estimator (Algorithm 1); we bound its complexity by O(e~3).
Before stating the result formally, we briefly sketch the analysis here (see Appendix F.1 for details).
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Algorithm 1 Recursive variance reduction with stochastic Hessian-vector products (HVP-RVR)
// Gradient estimator for F € F»(A,Li.2) given stochastic oracle in O:(F,o01:2).
1: function HVP-RVR-GRADIENT-ESTIMATOR, 4(Z, Tprev, Jprev):
5(c2+L 2
2 SetK — “’) e — xprevﬂ andn = [ %],

be?

3: Sample C' ~ Bernoulli(b).
4: if C'is 1 or gprev is L then
5: Query the oracle n times at z and set g < 1 > VF(m 2(7)), where 20) W p,
6: else
7: Define z(F) := %:p + (1 — %)xprev for k € {0,...,K}.
8: Query the oracle at the set of points (x(k)) 5;01 to compute
g < Gprev + Zl{le ﬁ’(x(k*”, PA) (m(k) - a:(kfl)), where »(#) "R P..

9: return g.

Algorithm 2 Stochastic gradient descent with HVP-RVR
Input: Oracle (O%, .) € O(F,01.2) for F € Fo(A, Ly, Lg). Precision parameter .

NS
I: Setn=———L T = F%-‘ n= {4011 b = min{ 1, V22 oitels |
21/L%+O’§+6L2 ne €2 o1

2: Initialize (¥, 2(1) « 0, ¢(© « L.

3: fort =1to T do

4 g® < HVP-RVR-Gradient-Estimator, ,(z(*), z(=1) g(t=1)),
5 D) 20— pg®).

6

~ . T
: return z chosen uniformly at random from {x(t) } 1

Standard analysis of SGD with step size n < Til shows that its iterates satisfy E||VF (z®))|? <
%E[F(az(tﬂ)) — FzM)]+0(1)-E||g® — VF(z®)|. Telescoping over T steps, using Lemma 1
and substituting in the initial suboptimality bound A, this implies that

A
- Z E|VE(@z®))? < T + O(e?). (8)

Taking T" = Q( ;> ), we are guaranteed that a uniformly selected iterate has expected norm O(e).
To account for oracle complexity, we observe from Lemma 1 that 7" calls to Algorithm 1 require
ﬁ T (t) (t—1) 12 0'§+L26 L. . .
atmost T'(—% + 1)+ >, Ell2') — = |2 - (%,2>°) oracle queries in expectation. Using
2® — 21 = g1 Lemma 1 and (8) imply that 31| E [|z® — 2= ||2 < O(T€?). We then
2 2
choose b to out the terms T' (%b) and T(%LQ&). This gives the following guarantee.
Theorem 2 For any function F' € Fa(A, L1, L), stochastic second-order oracle in O3(F, 01, 03),

and € < min{al, VAL }, with probability at least 3, Algorithm 2 returns a point T such that
IVF(Z)|| < € and performs at most

AO‘10'2 AL8‘50‘1 ALl
O( €3 * €25 * 62>

stochastic gradient and Hessian-vector product queries.
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The oracle complexity of Algorithm 2 depends on the Lipschitz parameters of F' only through
lower-order terms in €, with the leading term scaling only with the variance of the gradient and
Hessian estimators. In the low noise regime where 01 < € and o9 < max{Ly, @} the complexity
becomes O(ALje=2 + ALYSe~1%) which is simply the maximum of the noiseless guarantees
for gradient descent and Newton’s method. We remark, however, that in the noiseless regime
o1 = o2 = 0, aslightly better guarantee O(ALY? L2175 + ALY5¢~1%) is achievable [10].

In the noiseless setting, any algorithm that uses only first-order and Hessian-vector product
queries must have complexity scaling with L1, but full Hessian access can remove this dependence
[13]. We show that the same holds true in the stochastic setting: Algorithm 3, a subsampled cubic
regularized trust-region method using Algorithm 1 for gradient estimation, enjoys a complexity
bound independent of L;. We defer the full description and analysis to Appendix F.2 and state the
guarantee here.

Theorem 3 For any function F' € F2(A, 00, Ly), stochastic second order oracle in Os(F, 01, 02),
and € < o1, with probability at least 3, Algorithm 3 returns a point T such that | VF(Z)|| < € and
performs at most

- log®5 d +

O<A0102

AL8‘50'1
€3 )

€25

stochastic gradient and Hessian queries.

The guarantee of Theorem 3 constitutes an improvement in query complexity over Theorem 2
in the regime L1 2 (1 + 2+)(o2 + /La¢€). However, depending on the problem, full stochastic

~

Hessians can be up to d times more expensive to compute than stochastic Hessian-vector products.

3.2. Lower bounds

Having presented stochastic second-order methods with O(e~3)-complexity bound for finding e-
stationary points, our we next show that this rates cannot be improved. In fact, we show that this
rate is optimal even when one is given access to stochastic higher derivatives of any order. We
prove our lower bounds for the class of zero-respecting algorithms, which subsumes the majority of
existing optimization methods; see Appendix H.1 for a formal definition. We believe that existing
techniques [12, 8] can strengthen our lower bounds to apply to general randomized algorithms; for
brevity, we do not pursue it here.

The lower bounds in this section closely follow a recent construction by Arjevani et al. [8, Section
3], who prove lower bounds for stochastic first-order methods. To establish complexity bounds for
pth-order methods, we extend the ‘probabilistic zero-chain’ gradient estimator introduced in Arjevani
et al. [8] to high-order derivative estimators. The most technically demanding part of our proof is a
careful scaling of the basic construction to simultaneously meet multiple Lipschitz continuity and
variance constraints. Deferring the proof details to Appendix H.1, our lower bound is as follows.

Theorem 4 Forallp € N, A, Ly, 01, > 0and € < O(01), there exists F' € F,(A, Ly.p) and
(OF, P.) € Op(F,01.p), such that for any pth-order zero-respecting algorithm, the number of queries
required to obtain an e-stationary point with constant probability is bounded from below by

AO’2 g ﬁ L, /¢
Q1) - 31 min{ min <q> , min <q> . )
€ q€{2,...p} \ 01 7e{l,..pp\ €
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1 !
: : . . : = L\ /4 :

A construction of dimension © (% mln{mlnqe{zw7p} (Z—‘i) -t ming e p} (%) }) realizes

this lower bound.

For second-order methods (p = 2), Theorem 4 specializes to the complexity lower bound

A010'2 AL%‘5O'1 ALlof}’ (10)

Q(l)-min{ 3 s 0 a

which is tight in that it matches (up to numerical constants) the convergence rate of Algorithm 2
in the regime where Ao09¢ 2 dominates both the upper bound in Theorem 2 and expression (10).
The lower bound (10) is also tight when the second-order information is not available or reliable
(o2 is infinite or very large, respectively): Standard SGD matches the ¢4 term [22], while more
sophisticated variants based on restarting [18] and normalized updates with momentum [15] match
the €3 term (the former up to logarithmic factors)—neither of these algorithms requires stochastic
second derivative estimation.

Theorem 4 implies that while higher-order methods (with p > 2) might achieve better dependence
on the variance parameters than the upper bounds for Algorithm 2 or Algorithm 3, they cannot
improve the ¢~3 scaling. This highlights a fundamental limitation for higher-order methods in
stochastic non-convex optimization which does not exist in the noiseless case. Indeed, without noise

the optimal rate for finding e-stationary point with a pth order method is G)(e_H%) [12]; we illustrate
this contrast in Figure 1.

Altogether, the results presented in this section fully characterize (with respect to dependence on
€) the complexity of finding e-stationary points with stochastic second-order methods and beyond
in the single-point query model. We briefly remark that lower bound in (9) immediately extends to
multi-point queries, which shows that even second-order methods offer little benefit once two or
more simultaneous queries are allowed.

4. Complexity of finding second-order stationary points

Having established rates of convergence for finding e-stationary points, we now turn our attention to
(€,7)-second order stationary points, which have the additional requirement that A, (V2 F(x)) >
—7, 1.e. that F' is y-weakly convex around x. This section follows the general organization of the
prequel: we first design and analyze an algorithm with improved upper bounds, and then develop
nearly-matching lower bounds that apply to a broad class of algorithms.

4.1. Upper bounds

Our first contribution for this section is an algorithm that enjoys improved complexity for finding
(e,7)-second-order stationary points, and that achieves this using only stochastic gradient and
Hessian-vector product queries. To guarantee second-order stationarity, we follow the established
technique of interleaving an algorithm for finding a first-order stationary point with negative curvature
descent [10, 5]. However, we employ a randomized variant of this approach. Specifically, at every
iteration we flip a biased coin to determine whether to perform a stochastic gradient step or a
stochastic negative curvature descent step.

Our algorithm estimates stochastic gradients using the HVP-RVR scheme (Algorithm 1), where
the value of the restart probability b depends on the type of the previous step (gradient or negative

10
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curvature). To implement negative curvature descent, we apply Oja’s method [32, 4] which detects
directions of negative curvature using only stochastic Hessian-vector product queries. For technical
reasons pertaining to wnalysis of Oja’s method, we require the stochastic Hessians to be bounded
almost surely, i.e., | V2F(z,2) — V2F(z)|lop < G2 a.s.; we let O3(F, 01,52) denote the class of
such bounded noise oracles. Under this assumption, Algorithm 4—whose description is deferred to
the Appendix G—enjoys the following convergence guarantee.’

Theorem 5 For any function F' € Fao(A, Ly, Ls), stochastic Hessian-vector product oracle in
Oy(F,01,02), € < min{al,\/ALl }, and v < min{a’2,L17\/€L2}, with probability at least %
Algorithm 4 returns a point X such that

IVF(@)|| <e and Amin (V2EF(Z)) > —7,

and performs at most

~ [ Ao109 ALyo109 AL%(62+L1)2 AL
0 +—

3 72¢2 ~5 c
stochastic gradient and Hessian-vector product queries.

Similar to the case for finding e-stationary points (see discussion preceding Theorem 3), using
full stochastic Hessian information allows us to design an algorithm (Algorithm 5) which removes the
dependence on L; from the theorem above. Moreover, estimating negative curvature directly from
empirical Hessian estimates saves us the need to use Oja’s method, which means that we do not need
the additional boundedness assumption on the stochastic Hessian used by Algorithm 4. We defer the
complete description, complexity guarantee, and for analysis for Algorithm 5 to Appendix G.1.

4.2. Lower bounds

We now develop lower complexity bounds for the task of finding (e, 7)-stationary points. To do so,
we prove new lower bounds for the simpler sub-problem of finding a y-weakly convex point, i.e., a
point 2 such that A, (V2F (7)) > —~ (with no restriction on ||V F(z)]|). Lower bounds for finding
(e,7)-SOSPs follow as the maximum (or, equivalently, the sum) of lower bounds we develop here
and the lower bounds for finding e-stationary points given in Theorem 6. To see why this is so, let
F, and F’, be hard instances for finding e-stationary and y-weakly-convex points respectively, and
consider the “direct sum” F (x) := %Fe(xl, cooymq) + %Fw(xdﬂ, ..., Taq); this is a hard instance
for finding (e, y)-SOSPs that inherits all the regularity properties of its constituent functions.

The basic construction we use here is a modification of the zero-chain introduced in Carmon
et al. [12] (see (74) in Appendix H) in which large A\yin (V2F(x)) is possible only when essentially
none of the entries of x is zero. Given T' > 0, we define the hard function

T
Gr(w) = U(D)A(x1) + Y [W(—wi1) A=) + U(zi1)Alw:))], (11)
1=2

5. The notation 5() hides lower-order terms and logarithmic dependence on the dimension d. See the proof in
Appendix G for the complete description of the algorithm and the full complexity bound, including lower order terms.

11
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2

where ¥ () := exp(1l — ﬁ)l{x > 11 (as in Carmon et al. [12]) and A(z) := 8ez —1).

Our design for the function A guarantees that any query whose last coordinate is zero has
significant negative curvature, while maintaining the original chain structure which guarantees
that zero-respecting algorithms require many queries before “discovering” the last coordinate. We
complete the construction by specifying a collection of stochastic derivative estimators similar to
those in Section 4.2, except for that we choose the stochastic gradient estimator @ to be exactly
equal to VG, so that the lower bound holds even for 01 = 0; Appropriately scaling G allows us to
tune the Lipschitz constants of its derivatives and the variance of the estimators, thereby establishing
the following complexity bounds (see Appendix H.2 for a full derivation).

Theorem 6 Letp > 2 and A, L1.p,01.p > 0 be fixed. If v < O(min{og, L1}), then there exists
F € Fy(A, L1,y) and (O, P.) € O,(F, 01.) such that for any stochastic pth-order zero-respecting
algorithm, the number of queries to O L.required to obtain a y-weakly convex point with constant
probability is at least

Ac2L2
Sah, p=2,
Q- a2 . [ . = Lo\ 7 (12)
S50 Ming Mingegs . py{ 57 sMiNgrera | =~ , p>2.
Theorem 6 is new even in the noiseless case (in which o1 = - - - = 0, = 0), where it specializes to

_2_ 2 41
% Minge(a, . p} (%) “~!. For the class F,(A, L,), this further simplifies to AL} " y_zfl, which

is attained by the pth-order regularization method given in Cartis et al. [14, Theorem 3.6].
Together, these results characterize the deterministic complexity of finding y-weakly convex
points with noiseless pth-order methods.
Returning to the stochastic setting, the bound in Theorem 6, when combined with Theorem 4,
implies the following oracle complexity lower bound bound for finding (e, ~y)-SOSPs with zero-
respecting stochastic second-order methods (p = 2):

Aoioy ALYSo ALio?\ | Ac}l3
Q(l)-(min{ O €i01}+ = 2). (13)

Our lower bound matches the e =3 + v~ terms in the upper bound given by Theorem 5, but does not
match the mixed term e ~2+~2 appearing in the upper bound.® Overall, the rates match whenever
v = Q%) or vy = O(e¥/3).

Theorem 6 is suggestive of another “elbow” phenomenon: In the stochastic regime, the rate does
_ pt1 .
not improve beyond v~3 for p > 3, while the optimal rate in the noiseless regime, ~ »~1, continues

improving for all p.” However, we are not yet aware of an algorithm using stochastic third-order
information or higher that can achieve the y~3 complexity bound.

Discussion

Due to space constraints, we defer conclusions and discussion to Appendix A.

6. Young’s inequality only gives e 3 + 75 > Q(e’9/5'y’2).

,,,,,

disregarded. This, in turn, implies that for sufficiently small -y, one cannot improve over ~y~>-scaling, as seen by (12).

12
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Appendix A. Further discussion

This paper provides a fairly complete picture of the worst-case oracle complexity of finding stationary
points with a stochastic second-order oracle: for e-stationary points we characterize the leading term
in ¢! exactly and for (¢, 7)-SOSPs we characterize the leading term in y~! for a wide range of
parameters. Nevertheless, our results point to a number of open questions.

Benefits of higher-order information for v-weakly convex points. Our upper and lower bounds
(in Theorem 20 and Theorem 6) resolve the optimal rate to find an (¢, )-stationary point for p = 2,
i.e., when F' is second-order smooth and the algorithm can query stochastic gradient and Hessian
information. Furthermore, Theorem 4 shows that higher order information (p > 3) cannot improve
the dependence of the rate on the first-order stationarity parameter e. However, our lower bound for
dependence on +y scales as 2 for p = 2, but scales as v~ for p > 3. The weaker lower bound for
p > 3 leaves open the possibility of a stronger upper bound using third-order information or higher.

Global methods. For statistical learning and sample average approximation problems, it is natural
to consider problem instances of the form F'(z) = E [ﬁ (z,z)]. For this setting, a more powerful
oracle model is the global oracle, in which samples z(l), ey 2(") are drawn i.i.d. and the learner
observes the entire function F° (-,2®) for each t € [n]. Global oracles are more powerful than
stochastic pth order oracles for every p, and lead to improved rates in the convex setting [19]. Is it
possible to beat the e =3 elbow for such oracles, or do our lower bounds extend to this setting?

Adaptivity and instance-dependent complexity. Our lower bounds show that stochastic higher-
order methods cannot improve the e 3 oracle complexity attained with stochastic gradients and
Hessian-vector products. Furthermore, in the multi-point query model, stochastic second-order
information does not even lead to improved rates over stochastic first-order information. However,
these conclusions could be artifacts of our worst-case point of view—are there natural families
of problem instances for which higher-order methods can adapt to additional problem structure
and obtain stronger instance-dependent convergence guarantees? Developing a theory of instance-
dependent complexity that can distinguish adaptive algorithms stands out as an exciting research
prospect.

Appendix B. Detailed comparison with existing rates

Table 2 provides a detailed comparison between our upper bounds on the complexity of finding
e-stationary points and those of prior work.

Appendix C. Comparison: multi-point queries and mean-squared smoothness

Stochastic first-order methods that utilize variance reduction [24, 17, 39] employ the following
mean-squared smoothness (MSS) assumption on the stochastic gradient estimator:

E|VE(z,2) — VE(y,2)|? < L?||z — y||? forall z,y € R
Since E[ﬁ?(m, z)] = VF(x), this is equivalent to assuming

E||VE(z,z) — VE(y,2z) — (VE(z) — VF@))|]? < 02|lz — y|? forall z,y € RY  (14)
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Uses iti
Method ———  Complexity bound Addltloqal
V2F? assumptions
SGD [22] No O(ALjo3e™?)
Restarted SGD [18] No  O(ALYPo2e35)t VF Lipschitz
almost surely
Normalized SGD [15] No O(ALY o3e39)t
Subsampled regularized Yes*  O(ALYS02e39)T
Newton [36]
Recursive variance No O(Ao10msse 3 + AL1e™2)  Mean-squared
reduction [e.g., 17] smoothness omgs < 09,
simultaneous queries
(Appendix C)
SGD with HVP-RVR Yes*  O(Acioge 3 + ALYS 016725 + ALje™?)
(Algorithm 2)

Subsampled Newton with Yes O(Aoioae™3 + AL8‘5016_2'5 + Aoge™2)
HVP-RVR (Algorithm 3)

Table 2: Detailed comparison of guarantees for finding e-stationary points (satisfying E||V F(z)|| <
€) for a function F' with L;-Lipschitz gradients and Ls-Lipschitz Hessian. Here A is the initial
optimality gap, and o, is the variance of VrE. Algorithms marked with * require only stochastic
Hessian-vector products. Complexity bounds marked with T only show leading order term in e.

for some o < L. In fact, while it always holds that L? < L% + o?nss, inspection of the results
of Fang et al. [17], Wang et al. [37] shows one can replace L with o, in the leading terms of their
complexity bounds without any change to the algorithms.

Algorithms that take advantage of the MSS structure rely on the following additional simultaneous

query assumption (which is a special case of (4) for n = 2):
We may query z,y € R? and observe O}(:v, z) and O},(y, z) for the same draw of z ~ P,. (15)

In empirical risk minimization problems, z represents the datapoint index and possibly data augmen-
tation parameters, and the value of z is typically part of the query, which means that assumption (15)
indeed holds. In certain online learning settings, however, the assumption can fail. For example, the
variable z could represent the instantaneous power demands in an electric grid, and testing two grid
configurations for the same grid state might be impractical.

We observe that assuming access to both an MSS gradient estimator and simultaneous two-point
queries is stronger than assuming a bounded variance stochastic Hessian-vector product estimator.
This holds because the former allows us to simulate the latter with finite differencing. Formally, we
have the following.
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Observation 1 Let F' have Lo-Lipschitz Hessian, let V F satisfy (14), and assume we have access
to a two-point query oracle as in (15). Then, for any § > 0 and every unit-norm vector u, the
Hessian-vector product estimator

@5(30, 2)u = % [ﬁ‘(m +0-u,z)— ﬁ‘(m, z)} (16)

satisfies

HE[@(;(x,z)u] - V2F(x)uH < %25 and E Hﬁg(a:,z)u - V2F(9U)uH2 < o2

Proof. We have E[ﬁ’g(x, z)u] = 2[VF(z + 6 - u) — VF(z)], and by Lipschitz continuity of
V2F,

L L
IVF(z+6u) = VP(x) = V2F(@)[5u]| < 26%ull® = 262,

which implies the bound on the bias. To bound the variance, we note that

—_— —_— 2
E HVQF(;(x, z)u — E[V2Fs(x, 2)u] H
1
52
by the MSS property (14). |

2

1 _ _ 2
< E HVF(:U 4 ou,z) — VE(z, 2) — [VF(z + du) — vp(m)]H < — . o2||ou? = o2,

We conclude from Observation 1 that Algorithm 2, which only requires stochastic Hessian-vector
products, attains O(e ) complexity under assumptions no stronger than previous algorithms. In
fact, we show now that our assumptions are in fact strictly weaker than prior work. That is, while an
MSS gradient estimator implies a bounded variance Hessian estimator, the/(Eposite is not true in

general. This is simply due to the fact that in our oracle model, VF and V2F can be completely
unrelated. Consider for example the case where P, is uniform on {—1, 1} and

VF(x)+”7$Hz x#0

while V2F(z, 2) = V2F ().
VF(x) xz =0,

ﬁ’(m, z) = {

Clearly VE is not MSS, even though ﬁ? has zero variance.

There is, however, an important setting where bounded variance for V2F does imply that VEis
MSS. Suppose that the derivative of VF'(z, z) exists, and has the form

V[VE(z,2)] = V2F(z, 2). 17)

That is, the Hessian estimator is the Jacobian of the gradient estimator. In this case, bounded variance
for the Hessian estimator implies mean-squared smoothness.

Obser/vgtion 2 Let F have gradient and Hessian estimators VF and 6277 satisfying (3) and (17).
Then V F' has the MSS property (14) with oy < 0o.
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Proof. Under the property (17), we have
VF(z,2) ~ VF(y,2) - [VF(z) - VF(y)]

- /1 (@(xt Yyl —t),2) — V2F(xt +y(1 — t))) (z —y)dt.
0

Taking the squared norm, applying Jensen’s inequality, and substituting the variance bound (3) gives
the MSS property (14). |

The property (17) holds for empirical risk minimization, where we have the more general relation
ﬁ(m, z) = VPE (z, z) for any p; That is, all the stochastic derivative estimators are themselves
the derivatives of a single stochastic function. Therefore, by Observation 1 and Observation 2, in
empirical risk minimization settings, mean-square smoothness is essentially equivalent to bounded
variance of the stochastic Hessian estimator.

Appendix D. Variance-reduced gradient estimator (HVP-RVR)

In this section we prove Lemma 1. First, we formally describe the protocol in which our optimization
algorithms query the gradient estimator HVP-RVR-Gradient-Estimator described in Algorithm 1, and
define some additional notation.

Given a function F' € Fa(A, L1, Lo) and a stochastic second-order oracle in O (F), 01.2), the
optimization algorithm interacts with HVP-RVR-Gradient-Estimator by sequentially querying points
{x(t) }zl with reset probabilities {b(t) }21’ to obtain estimates g for VF(z(*)) for each time ;
that is,

2 = AW (GO oM gt =0y p0) = B (1)) and

g'") = HVP-RVR-Gradient-Estimator, ) (v, (1), g(= 1)), (18)
where A®), B®) are measurable mappings modeling the optimization algorithm and {r(t)} is an

independent sequence of random seeds.® That is, Lemma 1 holds for any sequence of queries where
® b(®) are adapted to the filtration

Gt — U({gm, ) }M)‘

but b® is independent of G~ and ¢(t—1).
Lemma 1 is an immediate consequence of Lemma 7 and Lemma 8, proven below, which
respectively establish the estimator’s error and complexity bounds.

Lemma 7 Given a function F € Fy(A, 00, L2), a stochastic oracle in Oz(F, 01.2), and initial
points 0 and ¢© = L, let {g(t)}tzo denote the sequence of gradient estimates at {x(t)}tzo
respectively, returned by HVP-RVR-Gradient-Estimator under the protocol (18). Then, for all t > 1,
2
Ellg® - VF@E®)|" <

8. This level of formalism is not used within the proof, but we include it here for clarity.
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Proof. We prove that

E[b(t)]
2

(t)
) E Hg(t—l) . VF(x(t—l))HQ + E[b ]62,

200 - e < 1 )

whence the result follows by a simple induction whose basis is
2
E|¢) - VFEV)|P < <
n

Let C® denote the value of the coin toss in the ™ call to Algorithm 1 (Line 3), recalling that
C® ~ Bernoulli(b®). Writing ¢() = ¢ — V F(z(®) for brevity, we have

EU&“WZ‘H“}:b“ﬁEUhuwz‘C“)zl]+(1—bW)EUk@W2)C“):O] (19)

Clearly,
2 2
E[[@)f | =1] <2 =< (20

Moreover, conditional on C t) — 0, we have from the definition of the gradient estimator that

o®) — ot=1) 4 (1),

where

K@)

Pt = Z ﬁ’(x(t7k_l), 2(BR) (ac(t’k) — x(t’k_l)) ~ VF(aW) 4+ VF(@D),

k=1

and
5(02 + L26)
() — [ 2372 T2 (1) p(=1) 2
K { AoErl U P @1

where 2(t%) and 2(t:+) respectively denote the values of 2*) and z(%) (defined on Line 8) during the

" call to Algorithm 1.
We may therefore decompose the error conditional on C) = 0 as

B (I | ¢ =0 LB e+ B | GO+ E [0 - B[ | 901

(34) p®) 2
e (1 5 IO (1 g I | 6012+ i | 9O
(22)
where (i) is due to ¢*~=1) € G(*) and (i) is due to Young’s inequality.
The facts that z(:*) is independent from G(*), that VF(z®)) — VF(z*=Y) € G®, and that
V2F(-) is unbiased give

K@)
B[40 |G0] = 30 V2R @) (a0 - 5tD) - PE0) + V(D)
k=1
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for every ¢t. Consequently, the scaling (21) and Hessian estimator variance bound imply

2o -sfu 0] o)

- (K(lt))2 g:) E [H(@(%(t’k‘”, 260)) _ g2 (g th-1)) (20 — x(t_l))HQ | g(t)]
k=1
< 1 %E Hﬁ?( (1) (k) o2tk N2 | a1 2
= (K®)2 o [ x ,20) = V2F (z ) o ‘ G ]Hx " [
<02 [|z(® ;(ZZ()t—l)HQ < b 6527 o)
where the equality (x) above is due to the fact that 2, ..., 2K are iid., as well as (%) —

x(tyk_l) — ﬁ(x(t) — x(t—l))'
Next, we observe that Taylor’s theorem and fact that " has Lo-Lipschitz Hessian implies that
|IVF(z') — VF(z) — V2(2)F(2' — 2)|| < 2|2’ — z||? for all z, 2" € R. Therefore,

(®
HE[w(t) ‘ g(t)} H - Ii VE xRy - V(R0 — V2F(x(t7k—1))(m(t,k) _ x(t,k—l)) ‘
"y
< ZHVF(:U(t,k)) _ VF(x(t,k—l)) _ V2F($(t,k—1)) (x(t,k) - x(t,k—l)) H
k=1
Ly (o0 =2\ e
<K®. 5 (K(t) Sb(t).%7 (24)

where we used (21) again.
Substituting back through equations (24), (23), (22), (20) and (19), we have

EeO] <E[p® - £+ (1-60) (@ + DI + (1 + 2)(20)? + 60 - 2]

< (1- ) E[gt) - vFED)|P + B < &,

as required; the second inequality follows from algebraic manipulation and the fact that e(t=1) is
independent of b by assumption. |

The following lemma bounds the number of oracle queries made per call to the gradient estimator.

Lemma 8 The expected number of stochastic oracle queries made by HVP-RVR-Gradient-Estimator
when called a single time with arguments (Z, Tprev, gprev) and parameters (€, b) is at most

GQ w%<ﬁ+mawmwmmj

+ET+ be2
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Proof. Let m denote the number of oracle calls made by the gradient estimator when invoked with
arguments (, Tprev, gprev)- For any call to the estimator, there are two cases, either (a) C = 1, or
(b) C' = 0. In the first case, the gradient estimator queries the oracle n times at the point z and
returns the empirical average of the returned stochastic estimates (see Line 5 in Algorithm 1). Thus,
m = n for this case. In the second case, the estimator queries the oracle once for each point in the
set (x(k_l)) ]I::l, and updates the gradient using a stochastic path integral as in Line 8. Thus, m = K
for this case.

Combining the two cases, using C' ~ Bernoulli(b) and substituting in the values of n and K, we
get

E[m] =Pr(C=1)E[m|C =1]+Pr(C =0)E[m | C = 0]
—E[b-n+(1-b) K]

:[%ﬁl+{aﬁ+Lﬁ%WVﬂ%mFW

€2 be?

2 2 My — 2
SGCg+wfu¢>y %MH+Q’
€ be

where the final inequality follows from [z]| < z + 1. [ |

Appendix E. Supporting technical results
E.1. Error bound for empirical Hessian

In order to find the negative curvature direction at a given point or to build a cubic regularized
sub-model, Algorithm 3 estimates the Hessian by computing an empirical average of the stochastic
Hessian queries to the oracle. The following lemma is a standard result which bounds the expected
error for the empirical Hessian.

Lemma 9 Given a function F € Fa(A, 00, Ly), a stochastic oracle in O3(F, 01.2) and a point
z, let H := 235" V2F(x, 2()) denote the empirical Hessian at the point x estimated using m

. . A iid.
stochastic queries at x, where PORS P,. Then

2 } - 2203 log(d).

E[HH ~V2F@)|2

m

Proof. This is an immediate consequence of Lemma 10 below, using A; := %(az, 2() and
B :=V?F(x).
[

Lemma 10 Let (A;)"_, be a collection of i.i.d. matrices in S%, withE[A;] = B and E||A; — B||gp <
o2. Then it holds that

2202 log d

—

E

2
<
o

1 n
n;Ai—B

P
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Proof. We drop the normalization by n throughout this proof. We first symmetrize. Observe that by
Jensen’s inequality we have

E ZAZ»—B < EsEa ZAi—A;-
i=1 op i=1 op
n 2
=EABu|) (4 — B) — (4, — B)
i=1 op
n 2 n 2
=EsEu B> e((Ai—B) = (4= B))|| <4EAE|> (A - B)
i=1 op i=1 op

where (A")", is a sequence of independent copies of (A;)"_; and (¢;)_, are Rademacher random
variables. Henceforth we condition on A. Let p = log d, and let ||-| s, denote the Schatten p-norm.
In what follows, we will use that for any matrix X, || X|,, < [|X||g, < el/QHXHOp. To begin, we
have

2 2 \ /P

< E.

op

2 n

> ei(Ai - B)

i=1

n

> ei(Ai - B)

i=1

n

> ei(Ai - B)

i=1

Ee < | Ec

Sop

Sop

where the second inequality follows by Jensen. We now apply the matrix Khintchine inequality [26,
Corollary 7.4], which implies that

n 2p 1/p n n
E|Y e(A;i — B) <@-1)|>(A4-B? <@-1> (4 -B)3,
i=1 Sap i=1 Sap i=1
<e(2p—1) ) [I(A4i = B3,
i=1

Putting all the developments so far together and taking expectation with respect to A, we have

n 2 n
E|Y Ai—B|| <d4e(2p—1)> Eall(4 — B)|2, < 4e(2p — 1)no”.
i=1 op i=1
To obtain the final result we normalize by n?. |

E.2. Descent lemma for stochastic gradient descent

The following lemma characterizes the effect of gradient descent update step used by Algorithm 2
and Algorithm 4.

Lemma 11 Given a function F € F5(A, L1, 0), a point x, and gradient estimator g at x, define

Yy:=x—-ng.
Then, for any n < i, the point y satisfies
n 31
Fz) - Fy) = gIIVF(:r)H2 - IVF(@@) —g|”
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Proof. Since, the gradient of F'is L;-Lipschitz, we have

Fly) < F(@) + (VF(@),y —2) + 2y |

—~
.
~

2
9 pa) (T F@).g) + 2 g
2
= F(a) ~ n(VE() ~ 0.9) ~nllgl* + 2L g]?

(i)
¢ F(:v)+n||VF(:v)—gllllg||—77<1—> gl

(iid)

< F(z)+ gHVF(x) —g|* - n@ - L”’) lgl®

(iv) n n
<’ F) + YVEE) - ol - Lol

(v) 3
< Fa)+ JIVF@) - gl - LIVF@)I*, 25)

where (7) uses that y — = = ng, (i7) is due to the Cauchy- Schwarz inequality, (¢77) is given by an ap-
plication of the AM-GM inequality and (iv) holds because 7 < 57— Finally, (v) follows by invoking

VF(@ - g)I* + llgl*).

Jensen’s inequality for the function -] to upper bound ||V F (CL‘) |? <2 (|
Rearranging the terms in (25), we get,

F() - F(y) 2 TIVE@)I - SLIVFE) - gl

E.3. Descent lemma for cubic-regularized trust-region method

The following lemmas establish properties for the updates step involving constrained minimization
of the cubic regularized model in used in Algorithm 3.

Lemma 12 Given a function F' € Fy(A, 0o, Lg), gradient estimator g € R? and hessian estimator
H e Ss% define

H

M
ma(y) = F(x) +{g.y = 2) + S ly — 2,y — 2] +gHy—xH3,

and let y € arg Mincp, (7) my(2). Then, for any M > 4Ly and n > 0, the point y satisfies

F(o) = F(y) > VF@) g} + Z]| V2P -

> 35l =l - |
Proof. Since V2F is Lo-Lipschitz, we have

F(y) ~ F@) < F(@) + (VE(@),y — ) + 3V F@)ly — 0.y — 2]+ 2ly — 2~ F@)
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M 1
ly —z|® + (VF(z) — g,y — ) + §V2F(fc)[y —z,y — ]

—fH[y—:r,y—:U]—mx(x)

@ M 1
< -5 lly- o’ + [VF(@) = gllly — =] + SIIVAF@)y =2, = Hly = 2, |lly - =],

(26)

where (i) follows from the definition of m (+) and (i7) follows by the fact that y € argmin, g, ;) m2(y'),
along with an application of the Cauchy-Schwarz inequality for remainder of the terms, and because
M > 4L,. Additionally, using Young’s inequality, we have

8 M
IVF(x) = glllly — =l < W\IVF(QE) — gl + ey~ z|?,
and,
8 3 M
IV2F(@)ly — @, ] = Hly — 2, ]|[ly — 2] < \/TWHVQF(QS)@ —a ] = Hly =z * + 2 lly - z|*.
Plugging these bounds into (26), we have

= IVF(@) gl + iuv%(w)[y - Hly -z, |}

M
Fly) ~ Fa) < ~ 35 lly — ol +

G M 3 3 2

< —plly -2l + WHVF( z) —glz + FHV F(z HH2 ly — =2
(“) M 3 3 2 3

< ——||ly — + —||VF —qg|l2 + —||V F - H nz,

< Dly—al + = IVP@) - gl + | 13

where (i) follows by the definition of the operator norm and (47) follows by observing that ||y — z|| <
7n. Rearranging the terms, we have

5 8 s Ant o, g
F(w)—F(y)_ﬁHy— z| —ﬁWF(w)—gHH IV*F (@) - H|[>.

Lemma 13 Under the same setting as Lemma 12, the point y satisfies
Mn? 2
{ivrwi= 5} < 2y

Proof. There are two scenarios: (4) either y lies on the boundary of B, (x), or (i%) y is in the interior
of B, (x). In the first case, ||y — x| = 7. In the second case,

3172 (IVF@ =gl +1][V2F (@) - A, )

(%)
IVE@) < [[VF(y) = VF(z) = V2F(z)ly -z, || + [|[VF(2) + V2 F(2)ly — 2, ]

(1) T,
< Sy =’ +|VF@) + VF()ly — =, |
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(iid) T,
< ny —z|> + |VE(z) - g|| + | V*F(2)ly — 2, ] — Hly — 2, ]| + llg + H[y — ]|

(iv) L2
< S lly= ol + |VF(2) = gl +||V?F(z) = H|,, -1+ g+ Hly — ]|

(<”) Lo+ M

- 2
where (7) follows by triangle inequality, (i) follows by Taylor expansion of V F'(y) at 2 and observ-
ing that I is Lo-hessian Lipschitz, (¢ii) follows by another application of the triangle inequality, (iv)
follows from Cauchy-Schwarz inequality and observing that ||y — z|| < 7, and (v) follows by using
first order optimization conditions for y € arg ming, () my(y), i.e.,

ly — | + |VF (@) = gll +[|[V*F(2) = H], - n, @7

. M
IVina(y)ll =0, or, g+ Hly -z, |+ |y —zll(y —x) = 0.

Rearranging the terms in (27), we get,

2
2 2
ly — | > L2+M(HVF(9)H —[IVE(z) = gll - ||V F(w)—HHop‘n).
Since one of the two cases (||y — z|| < nor ||y — x| = 1) must hold, we have,
2 2
2 . 2 2
Hy—ﬂlZHM{W7M+JJOVF@N—HVW@—WI—WHVF@ﬂ—HMJ}
2 2 2
> min{ n? F — F(x) —g| — 2F(x) - H| .
> mind i, 2 IVFO | = 2 IVF@) — ol - 5 9 ) - 1],

Rearranging the terms, and using the fact that M > 215, we have
wd M7 <M 24 ||IVF V2F(z) — H
ming == (IVE@)| ¢ < Mlly = 2* +[VE(x) = g|| + n||V2F(@) - H],-
Finally, using the fact that for any a, b > 0, min{a, b} < a1{b > a}, we have
Mn2 M172
21{HVF(y)H z—5 < Mly- ol + |VE(2) = gl +n||V?F(z) - H| .,

or, equivalently,

2
Mn?

Mn? 2
fivrwiz 20 < 2y - a2 +

(IVF(@) = gll + 0| V2F(2) - H||,, )-

Lemma 14 Consider the same setting as Lemma 12, but let H € S% and g € R? be random
variables. Then the random variable y satisfies

3 2 3

BIF(a) ~ F(0)) > ~go-Pr (1P| = 5-) - —= - E[I9F(@) - gl
512 8
_\ZV[.E[HVQF@)—HHEP} ,

where Pr(-) and B[] are taken with respect to the randomness over H and g.

27



SECOND-ORDER INFORMATION IN NON-CONVEX STOCHASTIC OPTIMIZATION

Proof. For the ease of notation, let xy and ( denote the error in the gradient estimator g and the
hessian estimator H at x respectively, i.e.

x=VF@) —g| and ¢:=|V?F(z) - H],,
We prove the desired statement by combining the following two results.

e First, plugging x = z, and z = y in to Lemma 12, we have

3

K\J\CAJ

F(x) = F(y) > *Ily —z|® -

> 75 \/MXQ \ﬁ(nC)

Taking expectations on both the sides, we get,

B{P(e) ~ F(u)) > 3 E[Iy - 2l] - =E[00}] - = E[n0?]

M [ } 8 97y 3 4 9 97y 2
> —z|°| = —=(E t1———(E 4, (28)
12 ly | m( [Xt]) m(n [ t])
where the last inequality follows from an application of Jensen’s inequality.

e Similarly, plugging z = z, z = y in Lemma 13, we get

Mn? 2 9 2
> < —|ly — .
{1V Fe)1 = 55} < Sy alP + 50k

Raising both the sides with the exponent of %, we get

> M }s( 2y~ 1? +MQQ<><+n<>)

(x2 + (nC)%)

{ivrw

<2y
n? $ n3
Taking expectations on both the sides and rearranging the terms implies that

3
n Mry?
B[l o] > Lee(190) > 25 ) -

v

2

> 40) - A} ((=02)* + GPEle)?).

2

[XZ + (né)%}

Y

3
T ee(IVFW)
where the last inequality follows from an application of the Jensen’s inequality.
Plugging (29) into (28), we get
Mn? Mn? 9 3 57] 2 3
BiF(e) - F) 2 g Pr(IVFI 2 255 ) - 2 @) - T @[]

60 2 )~ Bt - U

The final statement follows from the above inequality by using the definition of x and (.
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E.4. Stochastic negative curvature search

The following lemma establishes properties of the negative curvature search step used in Algorithm 4
and Algorithm 5.

Lemma 15 Lety > 0, and F € Fo(A, 00, Lo) be given. Let x € R? be given, and let H € S® be
a random variable (representing a stochastic estimator for the Hessian at x). Define y via

_ et w0 Amin(H) < 4y,
y= x, otherwise.

)

where 1 is an independent Rademacher random variable and u is an arbitrary unit vector such that
Hu,u] < —27. Then, the point y satisfies

72

3
E[F(z) — F(y)] > -5 Pr(min(H) < —47) - 37

> 61 E||V2F() - |,

where Pr(-) and B[] are taken with respect to the randomness in H and r.

Proof. There are two cases: either (a) Apin(H) > —47, or, (b) Apin(H) < —4+. In the first case,
y = x, and thus,

2
-
F(y)—F(z)=0< 2—L%HH ~V2F(@)],,, (30)

In the second case, Taylor expansion for F'(y) at F'(z) implies that
F -~ 1 2 o o~ L2 ~13
(y) < F(2) + (VF(z),a) + 5V F(2)[a, a] + =],
where @ := 7L - u. Taking expectations on both the sides with respect to r, we get
2

2 3
E,[F(y)] £ F(z) + -5 V2 F(@)[u, u] + ~ |u]]®

212 6L3
72 73 3
< F(z) + j(H[u,u] + VQF(IL’)[U, u] — H[u,u]) + 5 ||ull
213 6L2
(i) v 2 ol
2R+ 5 (=27 + |V*F(@) - H]||,,) + o
5v | v 2

where (7) is given by the fact that E,[(VF(z),ru)] = 0, and (i7) follows from the fact that v is
chosen such that E[V2F (z)[u,u]] < —27 and |lul| = 1, and the fact that for any matrix A and
vector b, [[Ab] < [[All,, bl

Since, one of the two cases (Amin(H) > —47 or Apin(H) < —47) must hold, combining (30)
and (31), we have
53

2
B (F()] < F(2) = Gt {Amin(H) < —47} + ;LgHVQF@) = Hl|,,
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Taking expectation on both the sides gives the desired statement:

E[F(x) - F(y)] > 222 Pr(Amin(H) < —47) — ﬁ EMV2 F(z) - H|,,|

The following lemma establishes properties of Oja’s method (Oja), as used in Algorithm 4.

Lemma 16 (Allen-Zhu [3], Lemma 5.3) The procedure Oja takes as input a point x € R% a
stochastic Hessian-vector product oracle O% € Os(F, 01, 52) for some function F € Fa(A, Ly, 00),
a precision parameter vy > 0 and a failure probability § € (0,1), and runs outputs v € R? U {L}
such that with probability at least 1 — §, either’

a) u= 1, and V*F(z) = —2vI.
b) ifu # L, then ||ul| = 1 and {(u, V*F(z)u) < —7.

Moreover, when invoked as above, the procedure uses at most

O<(52;2Ll)2 10g2<;l>>

queries to the stochastic Hessian-vector product oracle.

Appendix F. Upper bounds for finding e-stationary points
F.1. Proof of Theorem 2

Proof of Theorem 2. In the following, we first show that Algorithm 2 returns a point T such that,
E[|VF(z)||] < 32e. We then bound the expected number of oracle queries used throughout the

execution.!?

Since, n = Wﬁ < 2%1 and F' has Li-Lipschitz gradient, Lemma 11 implies that the point

2(*1) computed using the update rule z(*+1) « 2(t) — ng(®) satisfies
2
NrEO)|| < Fa®) - Fe) + | vrE®) - 0|

Telescoping the above from ¢ from 1 to 7', this implies

nZT:HVF ON H < Pz — p(aT+Dy 4 31 - 0y _ 40|
3 20) — Fa )+4§“VF(:U ) -9

2

i

<at ;T;HVF(N)) —g")

9. Note that if this event fails, the algorithm still returns either _L or a unit vector w.
10. In the proof we show convergence to a 32e-stationary point. A simple change of variable, i.e. running Algorithm 2
with € +— 55, returns a point Z that enjoys the guarantee that ||V F'()[| < e.
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where the last inequality follows from the fact that F'(z(?)) — F(2(T*1)) < A. Next, taking
expectation on both the sides (with respect to the stochasticity of the oracle and the algorithm’s
internal randomization), we get

| Sforen | < 2 33w o - 0[]

n
8

Using Lemma 7, we have E |:HVF($(t)) — g Hz} < €2 forall t > 1. Dividing both the sides by %
and plugging in the value of the parameters 7" and n, we get,

1 T
e |
t=1

< W+;§;E[“VF 1)) M 62 < U (32)

. : T
Thus, for Z chosen uniformly at random from the set (z()),_, , we have

E||VF(Z ZEHVF H <

T
E ;ZHVF(x(t))HZI < 4e.
t=1

Finally, Markov’s inequality implies that with probability at least Z,

IVE(z)|| < 32€. (33)

Bound on the number of oracle queries. Algorithm 2 queries the stochastic oracle in only when
it invokes HVP-RVR in Line 4 to compute the gradient estimate ¢(*) at time ¢. Let M denote the total
number of oracle calls made up until time 7. Invoking Lemma 8 to bound the expected number of
stochastic oracle calls for each ¢ > 1, and ignoring all the mutiplicative constants, we get

<53 e[ wmﬂWW@+mu1

— be2
O [bod ng |- (03 +eLo)
< o<;E = T 73 +1
Do(2 (G eefrlo] T )
2
(10 ()(?7?2- <b?21 A% T (UZZGLQ) +1)), (34)

where (4) is given by plugging in the update rule from Line 5 and by dropping multiplicative constants,
(i) is given by rearranging the terms, plugging in the value of 7" and using that 7" > 1 (to simplify
the ceiling operator) under the assumption ¢ < /AL, and (i7i) follows by observing that

E 1ZT:Hg(t)H2] <2E 12T:Hg(t) —VF(x(t))H2+12T:HVF(x(t))H2] < 30¢2
= B = T~ - ’
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Algorithm 3 Subsampled cubic-regularized trust-region method with HVP-RVR
Input: Oracle (02, P,) € Oy(F, 01.2) for F € Fa(A, 00, Ly). Precision parameter e.
1 Set M = 5max{ Ly, CED Y 5 = 25,/5. 7 = [7W and nyy = | 27 s

3ne €
2: Setb:min{l nVUﬁGLQ}.

2501

3: Initialize (9, 2 « 0, ¢(©@ « L.
4: fort =1to T do

5: Query the oracle ny times at x® and compute
1 HE—— .
HO « —N"V2F(a® 209), where  2(19) "% p,.
N =

g® « HVP-RVR-Gradient-Estimator, , (z(), 2t~ g(t=1)).
7. Set the next point z(**1) as
1 M
2D o argmin (g, y —2®) 4 2 < — 2O HO(y — 2®)) + FHy - x(t)Hs.
y:lly—a®||<n

T+1

8: return Z chosen uniformly at random from {a:(t) e

as a consequence of Lemma 7 and the bound in (32). Next, note that since we assume ¢ < o1, and
2 +

72 Joirs the parameter b is equal to ~Y-"2"2 (as this is smaller than 1). Thus,

plugging the value of b and 7 in the bound (34), we get,

2 2 2
Efm(T)] = O(AU“/% + €eLls n A/ L7 4;202 +6L2>

€3

since we have n <

3 25 2 2 15

_O<A0102 N Ao1+y/L 2 | Aoy ALl A+L )

Using Markov’s inequality, we have that with probability at least I,

Acioo N Aciv/Lo N Aoy N AL N A\/L2>.

(35)

M <O
= 3 €25 2 €2 el

The final statement follows by taking a union bound with failure probabilities for (33) and (35). W

F.2. Full statement and proof for Algorithm 3

Proof of Theorem 3. In the following, we first show that Algorithm 3 returns a point &, such that
with probability at least £, || VF(2)|| < 350e. We then bound, with probability at least £, the total
number of oracle queries made up until time 7'.

Note that, using Lemma 7 and Lemma 9, we have for all £ > 0,

2

E[HVF(a:@)) - g(t)H} <, and E[HWF(@«“)) - H@)Hop} < % (36)
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Thus, for each ¢ > 1, invoking Lemma 14 and plugging in the bounds from (36), and using the value
of n, we get

E F(x(t)) — F(x(t—l-l))} > ]\gg:spr (HVF(“T(HI))H > ]\42772> _ 1;1]6\73
3
= 23(;\%2 (Pr (HVF(:E“H))H > 3506) - 116)

Telescoping this inequality from ¢ = 1 to 7", we have that

B[FG) - )] 2 2ot (1ipr (v Fen| = 350c) - 1>
v T\ I

3
240€2 BN 1
= .T. > _
iTi T (Pr(HVF(x)H > 350¢) 16)’

where the equality follows because Z is sampled uniformly at random from the set {:c(t) }tT:J;l. Next,

using the fact that, F'(z(®)) — F(z(T+Y) < A, rearranging the terms, and plugging in the value of
T, we get

AVM 1 1
Pr(IVF@) = 3509 < 2 L 1 1
240e2T 16 7 8
Thus, with probability at least %,
IVE@)| < 350€. a7

Bound on the number of oracle queries. Algorithm 3 queries the stochastic oracle in Line 5 and
Line 6 only to compute the respective Hessian and gradient estimates. Let M}, and M, denote the
total number of stochastic oracle queries made by Line 5 and Line 6 till time 7" respectively. Further,
Let M = Mj, + M, denote the total number of oracle queries made till time 7T'.

In what follows, we first bound E[M},]| and E[M,]. Then, we invoke Markov’s inequality to
deduce that the desired bound on M holds with probability at least %.

1. Bound on E[Mj}]. Since the algorithm queries the stochastic Hessian oracle ny times per
iteration, My = T - ny. Plugging the values of T', ng and M as specified in Algorithm 3, and
ignoring multiplicative constant, we get,

5AVM

361'5

<0 AVM N Ac?log(d)
= (15 EENGY;

S O(A\/LQ + AO'Q + AO’10’2 log(d)>,

E[M,;] = . [2205772 log(d)w

€2

(L5 2 3 (38)

A}/,E;M > 1 under the natural choice

€

for the precision parameter € < A3 M5 and using the identity [2] < x + 1 forz > 0.

where the first inequality above follows from the fact that

33



SECOND-ORDER INFORMATION IN NON-CONVEX STOCHASTIC OPTIMIZATION

2. Bound on E[/,]. Invoking Lemma 8 for each t > 1, we get

T 112
bo? (034 Lae) - ||z — 21|
E[My]=6)» E|— 1
M) =00 B+ b2 +

0) bo? (03 + Lae) - 1?

=0 <T . < 2 + T +1

.. A b 2 2 L L2

(i) o( : <(;1 4 o2+ L26) o7 36) i 1)) (39)

ne € be

where (i) follows by observing Hx(t (=1 H < 77 due to the update rule in Line 7 and

(m) is given by plugging in the value of 7" < O( ~) for the natural choice of parameter

= O(As M 3) Next, note that since M > Lo, and since we assume € < o1, the parameter

bis equal to Y722 2+ <l
bound (39), we get

(which is smaller than 1). Thus, plugging the value of b and 7 in the

AO‘lx/O'% —|—€L2 i A\/M)
el5

E[M,) = o( %

A A A
o

> : (40)

where the second equality follows by using that € < o7 to simplify the term Ag/?

Adding (40) and (38), the total number of oracle queries made by Algorithm 3 till time 7" is bounded,
in expectation, by

A AoivLy A AL
B{M) = B{0, + My] = O 257 Viog(@ + ST + S5 ioe@ + 252 ).

Using Markov’s inequality, we get that, with probability at least %,

M < O(AZ;@ Vlog(d) + A012\5/72 AUZ V1o + > 41)

The final statement follows by taking a union bound for the failure probability of (37) and (41).
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Appendix G. Upper bounds for finding (¢, v)-second-order-stationary points
G.1. Full statement and proof for Algorithm 4

Algorithm 4 Stochastic gradient descent with negative curvature search and HVP-RVR
Input: Oracle (O%, ) € Oo(F,01,52) for F € Fo(A, Ly, Ly). Precision parameters ¢, 7.

. 1 _ [20AL _ 43 _
1: Setn = mln{d2 vimeraL L E { = 2+n62—‘,p 3+10AL2n62’5_402L2'
2 Setby = min{1, "V 2Ly ang by = min{1, 202 ke
1 g1L2
3: Initialize (9, 2 + 0, ¢V + HVP-RVR-Gradient- Estimator, p, (x(l),w(o), 1).
4: fort =1toT do
5: Sample Q); ~ Bernoulli(p).
6 if Q; = 1 then
7. x(t+1) < :L'(t) — 77 . g(t)
8 g™+ « HVP-RVR-Gradient-Estimator, , (z(1), z(t), g®)).
9 else
10: ( ) — Oja( ) Ol%’ 2'y, (5). // Oja’s algorithm (Lemma 16).
11: if u¥ = 1 then
12: D 0,
13: gt — ¢,
14: else
15: Sample ) ~ Uniform({—1,1}).
16: gt g 4 2Oy,
2
17: g1 < HVP-RVR-Gradient-Estimator. ;,, (‘1) z(®) ¢(t)),

~ . T
18: return x chosen uniformly at random from (:z:(t)) i1

Proof of Theorem 5. We first show that Algorithm 4 returns a point = such that, E[||V F(Z)]|] < 8¢
and Apin (V2F (f)) > —4~. We then bound the expected number of oracle queries used throughout
the execution.

To begin, note that, for any ¢t > 1, there are two scenarios: (a) either (; = 1 and 2D i set
using the update rule in Line 7, or, (b) Q; = 0 and we set z(**1) using Line 10, respectively. We
analyze the two cases separately below.

Case 1: Q; = 1. Since, n < Z\/ﬁ < Tllll and F' has L;-Lipschitz gradient, using

Lemma 11, we have

F(a) - ) > Ao - 2]pta - o]

Taking expectation on both the sides, while conditioning on the event that (); = 1, we get
2 2
E[F(x(t)) ~ Fa®) | @, = 1] > g [HVF(x(t))H } - 377IE;[HVF(I@)) - g(t)H ]

E [HVF (t)) M 3"6, 42)

v
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where the last inequality follows using Lemma 7.

Case 2: Q; = 0. Let E9(¢) denote the event that Oja succeeds at time ¢, in the sense that the
event in Lemma 16 holds: (i) if u® = L then V2F(2()) = —2~I, and (ii) otherwise, u*) satisfies
(u®  V2F(z®)u®) < —~. Then using Lemma 17, we are guaranteed that

E[F(z) - F(z*) | Qi = 0] > ELQ(Pr(Amm<v2Fcﬂﬂ>>§<—4v)—-2§1Pr(ﬁEqau>|Qt=:o)>.

In particular, we are guaranteed by Lemma 16 that

53 2L
#)y _ (t+1) _ . 2 (t) _ et 1
E[F(@®) = Fa® D) |Q =0] = 2 o (Pr(AmmN F(a)) < ~47) 6) 43)
Combining the two cases (Q); = 0 and @)y = 1) from (42) and (43) above, we get
E [F(x(t)) - F(x<t+1>)} (44)
= > PrQ = E[F®) - FE) | Qi =]
qe{0,1}
5(1 — ) 2 (t) 2L1 77 3776
> - < —4y) - =2
> 2 <Pr<>\mm(v Fz®)) < 47) 5 'E HVF H
(45)
. (t) 2 2
Using thatE[HVF(a: )H ] > (8e) -Pr(HVF H > 8¢) and that § < Teoor;» We have

E [F(x(t) ) — F(x@“))}

5(1 — p) )/3 2 (t) ].
> — A (V < — +
% Pr ()\mm( F(l’ )) 4 y) 8p776 PI‘(

Telescoping this inequality for ¢ from 1 to 7" and using the bound E [F(x(l)) - F (x(TH))} <A,
we get

era| =) - 5).

A> E[F(x@)) - F(:U(T’Ll))}

5T(1—p)y* (1 2 () 1
= 5T Pr( A (V2F < ) - ——
=Ly \T & (Aun(VF ) < <) = 555
1 3
— Y| > _ =
+ 8T pne® (T 2 OPr(‘VF(x )H _86) 32>
0 57(1 = p)y?® 1 2 3
_ - >
> T (PrOmin( 2 @) < ) - g ) + 5T (PrVF@)] > 50) - 1)
(id) 1
> 16A (Pr(Amin(WF(f)) < —47) + Pr(||VF ()| > 8¢) — 4), (46)
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where (7) follows because Z is sampled uniformly at random from (:z:(t))thl and (i7) follows from
Lemma 19. Rearranging the terms, we get

~ ~ )
Pqum(v?F@g)g-—4w-+PdHVPxxﬂ|zsafgié,
which further implies that
25 ~ 11
Pr(Amin(V2F(Z)) > =4y A [[VE(Z)| < 8¢) > R (47)

Bound on the number of oracle queries. At every iteration, Algorithm 4 queries the stochastic
oracle in either Line 8 or Line 17 (to compute the stochastic gradient estimator and to execute Oja’s
algorithm, respectively), and possibly Line 10 (to update the gradient estimator after a negative
curvature step). Let m(t) denote the total number of stochastic oracle queries made by Line 8 or
Line 17 at time ¢, and let M, = Zthl my(t). Further, let M, denote the total number of oracle
calls made by Line 10, and further let M = M, + M, be the total number of oracle queries made
up until time 7T'.

In what follows, we first bound E[M,]| and E[M,.]. Then, we invoke Markov’s inequality to
bound M with probability at least %.

Bound on M,. Forany ¢ > 0, there are two scenarios, either (a) )y = 1 and we go through Line 7,
or (b) Q¢ = 0 and Line 17 is executed. Thus,

T T
E[My] =Y Pr(Q=0)E[my(t) | Q= 0]+ > Pr(Q: =1)E[my(t) | Q= 1] (48)
t=1 t=1
We denote the two terms on the right hand side above by (A) and (B), respectively. We bound them
separately as follows.
e Bound on (A). Using Lemma 8 with the fact that Pr(Q; = 0) =1 — p, we get

2 5’%+6L2

T 2
g
(A) _ O(l) Z(l _p) . E|:bH€2l + H,ﬁ[)(t-i-l) — :L‘(t)H T

t=1

(@) Y01\/05 + €Ly 7?52+ €lso
=0o|lT-1—p) 12—, T .= 24
( (1-p) ( Loe? + €2 L3 *

@, <AL201¢M L A@ tely) AL%), (49)

+w@:ﬂ

12e2 ye2 ~3
where (i) is given by plugging in ||z(¥) — z~D|| = ~/L,. The inequality (i) follows by
using the bound on 7" - (1 — p) from Lemma 19.

e Bound on (B). Using Lemma 8 with the fact that Pr(Q; = 1) = p, we get

2 5’% + elo

T 2
(B) = 01) 301, + o4 o) 2255
t=1

+ﬂ@:4

37



SECOND-ORDER INFORMATION IN NON-CONVEX STOCHASTIC OPTIMIZATION

; T 2 52 & e,
Q0w -G + Il g v @ =1]
9

2 of g (el 3loel| "o wn o)
@O<Aal@+$2)7 (50)

where (i) follows by plugging in the update rule from Line 7 (when @Q; = 1), (ii) follows by
rearranging the terms and using the bound on 7" - p from Lemma 19, and (444 is follows from

/=2
the choices of b, (in particular, our assumption that € < o implies that b, = %) and
7, as well as the following bound for E [% Zthl Hg(t) HQ] :

E <E

1 T
= llg )
t=1

2 5,0 CN RS ON i
7 2|0 =V + 7 3 |vrat)
t=1 t=1
<O(E+||VF@)|?) < O(e?),
where the last inequality is uses Lemma 7 and Lemma 18.

Combining the bounds from (49) and (50) in (48), we have

ALsoi\/52 + €L A(G2 + €L ALZ  Aoy\/G5+ €L A
]E[Mg]SO( - 172622 : 4+ (2762 2)+ 732+ 1 6§ 2+W . (5D

Bound on M .. Using the law of total probability with the observation that Algorithm 4 enters
Line 10 only if @y = 0, we get

E

T T
Zmnc(t>] - Z Z Pr(Qt = Q) E[mnC(t) ‘ Qt = Q]

t=1 qe{0,1}
T
= > " Pr(Q: = 0) E[mnc(t) | Q; = 0]
t=1
2
:T-(l—p)-nH§O<Afy€/2-nH>, (52)

where n g denotes the number of oracle queries made by Oja, the last inequality follows by bounding

T - (1 —p) asin (46). Note that Lemma 16 implies that for § = 15557

- 2
n < 0 (W log? <L71d)) . (53)

Combining the above bounds for M, and M, (in (51) and (52) respectively), we get

E[M] < 20 E[M, + M,]
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o <AL201\/5§ tely A0} +ely) | AL Aam/aQ tels A AL )
= —_— H .

,},2 €2 762 73 776 73

Plugging in the value of 1 from Algorithm 4 and ny from (53), and using Markov’s inequality, we
get that, with probability at least 2

16°
Ac1+/53 + €Ly AL2(0102+\/6L +703/La+ye) ALY (G2a+L1)°, ,(Li
M=0 + log”| —d
v

3 A2e2 3 2

2 2 =2
. O<A§2 L AVE Al eLg) 58
Y €

Ignoring the lower-order terms, we have

M— O(AO’;O’Q n AL220215'2 n AL%(625+ L1)2>.
€ YUe Y

The final statement follows by taking a union bound for the failure probability of the claims in (47)
and (54). |

Lemma 17 Under the setting of Theorem 5, we are guaranteed that
E|F(2) - F(z*Y) | Q= 0)
5 2L -
> 62<Pr()\min(V2F(x(t))) < —47) _ Pr( E%R(t) | Q; = o))
Y

2

Proof. Recall that Algorithm 4 calls Oja with the precision parameter 2. To begin, suppose that
EQi2(¢) holds. Then if Oja returns L, then Ay, (V2F(a:(t))) > —4~, otherwise Oja returns a unit
vector u( such that V2 F (2" [u® 4] < —2~. Thus, using Lemma 15 with H = V2F (")) and
u(t), we conclude that—conditioned on the history up to time ¢, and on ); = 0—we have

- 3 -
LEOR (O} (F() = F(a)) 2 21 {in (VF (")) <~y AEOR(0).
2
In particular, this implies that
F( (t)) . F(x(tJrl))
> 222 (1min(V2F @) < ~47} = HHEOR(0)}) — L-EPRO}(F () — F+D)).
Taking conditional expectations, this further implies that
() (t+1) — n(V2F(2®)) < —47) — Pr(-ER =
BlFGY) - Fa) Qi =0] > o 0 (Pr(Mn (V) < —47) = Pr(<E9(1) | @, = 0))
— E[L{-EP®}(F) - F) | Q= 0].
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Now, consider the term

E[1{~E% () }(F(z®) - P(z*1)) | Qi =0
= Pr(=E%(t) | Q¢ = 0) - E|F(a®) = F(a"V) | Q; = 0,~E%(1)|.

Given that Oja fails, there are two cases two consider: The first case is where it returns | (even
though we may not have Anin (VQF (:x(t))) > —4~), which we denote by P, = 0, and the second
case is that it returns some vector u(*) (which may not actually satisfy V2F(z®)[u®), 4] < —2),

which we denote P, = 1. If P, = 0, we have 2D — 20 g0

E[F(x(t)) ~ F™DY | Q= 0,-E%3(¢), By :0] ~0.

Otherwise, using a third-order Taylor expansion, and following the same reasoning as the proof of
Lemma 15, we have

E[F(a) = F@*) | Q¢ = 0,E%(t). P, = 1]

3
2 ol 5 o
< E{2L2V F(x)[u (t)’u(t)]"‘@HU(t)H | Q; = 0, -EOR(t), P, = 1]
3 2
< 2L2L1+ 6L2 <3 L2 .

Combining this bound with the earlier inequalities (and being rather loose with constants), we
conclude that

E[F@®) ~ ) | @ =0]
> Z(Pr(Amin(V2F(ﬂc(t>)) < —47> - <1 + L,;) Pr(ﬁEOja(t) Q= O))

573

> 6L%<Pr()\min(V2F($(t))> < —47) — 27[’1 pr< E%R(1) | Q, = 0))

Lemma 18 Under the same setting as Theorem 5, the point T returned by Algorithm 4 satisfies
E[HVF(M)H?} < 17,
Proof. Starting from (45) in the proof of Theorem 5, we have

E [F(x(t)) - F(x““))}

> 5<1(;L§)73 <Pr(xmm(v2F(:¢<t>)) < —ty) - 2L15> (g E[|VRE)P] - ?”f>
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Ignoring the positive term Pr(Amin(VZEF(2()) < —47) on the right hand side in the above, we get
5(1—p)y3 L
E[F(x@f)) - F(x(tﬂ))} > @(E[va(;ﬂ(“)w] - 662) - (7‘;’)7715.
8 3L v
Telescoping this inequality for ¢ from 1 to 7" and using that F(z()) — F(zT+1)) < A, we get

Mopthny s & (wvF@)I - 12¢) - m?‘s’

T'pn 1121 a2
Az S BIVF@IT - 66) - T=g =262 o5

where the last inequality follows from Lemma 19. Rearranging the terms, we get
~ L
E[|VF(@)]?] < 1662 + 280¢% - =15 < 17€2,

y

where the last inequality uses that § < 1600 16005, |

Lemma 19 For the values of the parameters T and p specified in Algorithm 4,

2A VAN 20A L2 40AL3
— <Tp<—;, and 2<T(1 p) < 732
ne ne ’Y Y
Proof. Since, < m < 2%1 and € < /AL, we have that
o5+€elo
T> 28 J4ALy
nez — e

Thus, using the fact that x < [z] < 2z forall z > 1, we get

20AL%  2A 40AL%  4A
ot S ST<— 2+ —. (55)
Y ne v ne
Consequently, by plugging in the values of 7" and p, we have
20AL3  2A 3
TSP LY 2 Y R
v ne v+ IOALQne
40AL2  4A 10A L2ne? 40AL2
< 2L 7). 2 _ 2
- 3 ne2 3 + 10A Line? o
where the first inequality is due to (55). Similarly, we have that
T - p) > 20AL3 N 2AY\ 10AL3ne? _ QOAL%
- 3 ne2 73 + 10A L3ne? ~3
Together, the above two bounds imply that
20AL3 40AL3
2<T(1-p) < 732
7? v
The bound on 7" - p follows similarly. |
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G.2. Full statement and proof for Algorithm 5

Algorithm 5 Subsampled cubic-regularized trust-region method with HVP-RVR

Input:
Stochastic second-order oracle (02, P,) € Oa(F, 01.2), where F € Fo(A, 00, Lo).
Precision parameter e.

log(d) 18AL3 AVM VM~3/2
I: SetM—4maX{L 02671},77230 i T = ’V 2 + 3053/2-"]) /*,ys/2+g40L263/2‘
{44003 log(d) W
PR IO

4
2: Setmq = {%ﬁlogw)w,m =

02 . (op €
3: Setby = min{l, m} and by = mln{l m}

3001 o1L2

4: Initialize (¥, 2 « 0, gV + HVP-RVR-Gradient-Estimator, ;, (z(1), z(0), 1).
5: fort=1to T do
6: Sample Q); ~ Bernoulli(p) with bias p.
7 if Q; = 1 then
8: Query the oracle m; times at () and compute
1 mi — .
H{t) — p— ZV2F(x(t),z(t’j)), where () i p
7j=1
9: Set the next point z(**+1) as
(+4+1) i (a® oy — 2OV £ Ly a0 g oy L My s
x + argmin (¢, y — 2 + Z(y — 2 H" (y — 2)) + —|ly — «'V|]°.
ly—a(®|1<n 2 6
10: g+ « HVP-RVR-Gradient-Estimator, , (z(+1), 21, g®)).
11: else
12: Query the oracle my times at z® and compute
H(t = VQF 5 (t:7) h (t,4) 1id- P..
- Z ), where =z )
13: if Ain (H(t)> < —4 then
14: Find a unit vector u(*) such that Hét) [u(t), u(t)] < —2.
15: D O 4 o r® . u® where r®) ~ Uniform({—1,1}).
16: g+ « HVP-RVR-Gradient-Estimator, y,, (21, 2, g(®)).
17: else
18: D 2@,
19: gt — ¢®),

~ . T-1
20: return Z chosen uniformly at random from {z(V}, " ".
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Theorem 20 For any function F' € fg(A 00, L), stochastic second order oracle in O2(F, 01, 02),

€ < 01, and v < min{og,v/eLa, ASL3 5 }, with probability at least 2, Algorithm 5 returns a point ©
such that
IVE@)|| <€ and Amin (V?F(Z)) > =7,

and performs at most

~( Aocio ALso0 AL
oA+ Sl 212
stochastic gradient and Hessian queries.
Proof. We first show that Algorithm 5 returns a point Z such that, || VF(Z)|| < 450 and Ayin (V2F(Z)) >

—4~. We then bound the expected number of oracle queries used throughout the execution.
Before we delve into the proof, first note that using Lemma 7, we have for all ¢ > 1,

z[Jore oo <2

Further, using Lemma 9 with our choice of m; and mg, we have, for all ¢t > 1,

2 2
Op] < '2%. (56)

2500y _ g®|° <ﬂ
E[HV F(z®) - ! ]_900,

and, E[HVQF(a:(t)) — g

To begin the proof, we observe that for any ¢ > 0, there are two scenarios: (a) either @)y = 1
and the algorithm goes through Line 9, or, (b) (); = 0 and the algorithm goes through Line 15. We
analyze the two cases separately below.

(a) Case 1: Q; = 1. In this case, we set z(**'1) using the update rule in Line 9. Invoking Lemma 14
with the bound in (56) and n = 30, /ﬁ, we get

450€3/2
} >

E[F(z®) - F(z®D) ] Q=12

1

(t+1) H > _ 4
<Pr (HVF(a: )| > 4506) 5 ) 57
(b) Case 2: Q; = 0. In this case, either A\, (Hz(t)) > —4, in which case we set 2+ = a:(t), or

we compute (1) using the update rule in Line 15 in Algorithm 5. Thus, using Lemma 15
with (56), we get

3

E[F(m(t)) _ F(z(tTD) ( O, = o} > EZQ <Pr(/\min<H2(t)) < ’y) - 312> (58)

Combining the two cases (Q); = 0 or @ = 1) from (57) and (58) above, we get

E[F(®) - Fa)] = 3 Pr(@ = g E[P) - ")) | Qi = 4]
q€{0,1}
3

> (1-p)- EZz (Pr(kmin(V2F(x(“))< ~47) - 312>
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VM

Telescoping the inequality above for ¢ from 0 to 7' — 1, and using the bound E [F($(0)) — F(z(™ )] <
A, we get

p 20 (pr(|v )] 2 150) - 55

A > E[F(a:(o)) - F(:AT))}
> 5T6L2< ZPr( mln V2 ( ())) < 47) 312>
M A 450Tp€ ( ZPr(HVF )H > 450¢ ) - 312>

g) 15A< T-1 Pr(}\min(ng(w(t))) < _4fy> + % gPrQ‘VF(:U(t))H > 4506) - ;)

t=0

Y 15A (6(T5—1) §<Pr(Amin(V2F(x(t))) < —47) + Pr( ‘VF(N))H > 45oe>) - é)

(i)

> 15A(Z(Pr()\min(V2F(£)) < —4v) + Pr(||[VF(z)|| > 450¢)) — ;) (59)

Nl =

where the inequality in (7) follows from Lemma 21. The inequality in (47) is given by ignoring
the (non-negative) terms Pr(V2F(2(¥)) < —4+) and Pr(HVF(x(T)) || > 450€) on the right-hand
side and using the fact that 7' > 6. Finally, (iiz) follows by recalling the definition of Z as samples
uniformly at random from the set (a:(t))?:_ll. Rearranging the terms, we get

Pr(Amin(V2F (@) < —47) + Pr([[VE(Z)|| = 450¢) <

»h\'—‘

which further implies that the returned point Z satisfies

Pr(Amin(V2F(2)) > =y A |[VE(Z)| < 450¢) > (60)

»P\OO

Bound on the number of oracle queries. Let us first introduce some notation to count the number
of oracle calls made in each iteration of the algorithm.

e On Line 10 and Line 16, Algorithm 5 queries the stochastic oracle through the subroutine
HVP-RVR-Gradient-Estimator. Let m,(t) denote the total number of oracle queries resulting
from either line at iteration ¢.

e Let my, 1(t) and my, o(t) denote the total number of oracle calls made by Line 8 and Line 12
at iteration ¢ to compute H ft) and H ét) respectively.

Define My, My, 1 and Mj, o by Y7 my(t), Sf—, mp1(t) and 1| myp o(t) respectively. In what
follows, we give separate bounds for E[M,], E[Mj}, ;] and E[Mj, o]. The final statement on the total
number of oracle calls follows by an application of Markov’s inequality.
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Bound on E[M,]. For any ¢ > 0, there are two scenarios, either (a) Q; = 1 and we update (D)
through Line 9, or (b) (J; = 0 and we update asany through Line 15 orLine 18. Thus, using the law
of total expectation

_ -1
= Z Pr(Q: = 0)E[my(t) | Qr = 0] + Z Pr(Q:=1)Elmy(t) | Q:=1].  (61)
- =0

We denote the two terms on the right hand side above by (A) and (B), respectively. We bound them
separately in as follows.

(a) Bound on (A). Using Lemma 8 with the fact that Pr(Q; = 0) = 1 — p, we get

2
bpo? (03 + Lae) - Hx(tH) — :z(t)H
_621— [ + by +1’Qt:0
() bHUl (U% + LQE) . ")/2
=6T(1—p)- 1
(1=p) < z bpe2 L2 *
@ ALZ . byo? n (03 + Lae) -2 +1
~3 €2 bre2L3
(g)O AL20'1\/02—|—6L2 A(U%"‘ELQ) + AL% (62)
V2e2 ~e2 3 )

where () holds because when Qt = 0 we either have Hx(t) —z(t=D) H < 7 (if we follow the

update rule in Line 15) or Hx H = 0 (if we follow Line 18). The 1nequahty (i) uses
the bound on 7" - (1 — p) from Lemma 21 and (#i7) follows from plugging in the value of by.

(b) Bound on (B). Using Lemma 8 with the definition Pr(Q; = 1) = p, we get
2
byo? (U% + Loe) - [[zHD) — 2O
—6 ol Q=1
Z bye> +1]Q

Loe) - n?
(_) 6T bgal + (02 + 26) n + 1
€2 bye?

i) AVM  (bgo? (03 + Lae) - n?
:O< L5 '<g€2 + b2 +1
9

(z’;’i) O<A01\/0§ + elo n A\/M)

3 el

5 (©3)

(@) (Am Vo3 + eLg AL Aag log(d))
where () is given by the update rule from Line 9 and the fact that HVP-RVR-Gradient-Estimator
uses parameter b, in this case, and (i¢) follows by using the bound on 7" - p from Lemma 21.
The inequality (m) follows because for the choice of parameters 77 and M and the assumed

\/o2+eL . . N
range of € in the theorem statement, b, = ny/ostels < 1. Finally, the inequality (iv) is given

o1

by plugging in the value of M and using that € < o7.
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Plugging the bound in (62) and (63) back in (61), we get

ALsoi+\/05 + €Ly A(cr% + (—:Lg) ALZ
E[My) = 0O 55 + 3 +—
V€ Ve v
Aoi\/03 + €L A+ L AU log(d
—|—O< 1 65 2 615 2 - g( ))_ (64)

Bound on E[Mp ;]. Foreacht > 0, Algorithm 5 samples an independent Bernoulli (); with bias
E[Q¢] = p and executes Line 8 if Q); = 1. For every such pass through Line 8, the algorithm queries
the stochastic Hessian oracle m times. Thus,

T-1
EMy) =EY 1{Qi =1} -my| =T -p-m
t=0
AVM  [90003 log(d) A\ﬁ Acio9+/log(d)
O( eld [ UGQ.MO —D ( €ld : 23 )7 ©5)

where (i) follows by plugging in the values of m; and M as specified in Algorithm 5 (using that
€ < o to simplify), and using the bound on 7" - p from Lemma 21 .

Bound on E[M};5]. The algorithm executes Line 12 only if ); = 0, which happens with probabil-
ity 1 — p. For every such pass through Line 12, the algorithm queries the stochastic Hessian oracle
mg times. Consequently,

T—1
E[My) =E|Y 1{Qi =0} -my| =T (1—p)-m
t=0
i ALZ [2002log(d AL%031og(d) AL3
(:)O( 732” UQVSg( )D_O( 20§50g()+ v32>’ ©

where (i) follows by plugging in the values of m; as specified in Algorithm 5, and using the bound
on T - p from Lemma 21.

Adding together all the bounds above (from (64), (65), and (66)), we have that the total number
of oracle queries by Algorithm 5 till time 7" is bounded in expectation by

E[M] = E[M, +MH1+MH2]

_0 (AL202 log(d AL201\/0'2 + elo Aolam/log Aalx/ )

~5 2e2 25
L0 Ao + €Ls) N ALZ N Aogy/log(d ) AL
e ~3 2 el 5 :

Using Markov’s inequality, this implies that with probability at least %,

M—0 (AL202 log(d AL201\/02 + €Lo Aalagx/log Aalx/ )

5 722 €25
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. O(A(ag tela) | ALY Aoy/log(d) | A\T2>.

762 ,-Y3 €2 el5

Ignoring the lower order terms, we have

AL302 AL A
E ] o
Y e €
The final statement follows by union bound, using the failure probabilities for (60) and (67). |

Lemma 21 For the values of the parameters T and p specified in Algorithm 5, we have

AVM 2AVM 18AL2 36AL2
— <Tp< — and 2 <T(1-p) < —=>2.
30¢e2 30e2 7 Y

2
Proof. Under the assumption that v < ASL3 , we have that

18AL§
7

T> > 18.

Thus, using the fact that x < [x]| < 2z for any = > 1, we get

18AL3 A\/ AL% A\/
=2 <1< ¥ (68)
g 30e2 v 15¢3
Thus, plugging in the value of 7" and p, we get
T(—p) 18AL3 AV () VM3
—p) = . —
7 30€3 VM~y? + 540L3€>
36AL3 N AVM 540L2€2 _ 36AL3
AR 1563 ) VS +5400%3 7
where the first inequality is due to (68). Similarly, we have that
18ALZ  AVM 40L 18ALZ
T(l—p)z 832 - ) 50262 = 832
v 30e2 VM~ + 540L3e> v
Together, the above two bounds imply that
18AL2 <T(1-p) < 36AL2
ok 7
The bound on T - p follows similarly. |
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Appendix H. Lower bounds
H.1. Proof of Theorem 4

In this section, we prove Theorem 4. We begin by generalizing the lower bound framework of [8]—
which centers around the notion of zero-respecting algorithms and stochastic gradient estimators
called probabilistic zero-chains—to higher-order derivatives. Given a gth-order tensor 7' € R®*9,
we define support {T'} := {i € [d] | T; # 0}, where T; is the (¢ — 1)-order subtensor defined by
(T3]0, de—1 = Tijr....ju_r- Given a tuple of tensors T = (T, 7)), we let support {7} =
U, support{T(i)} be the union of the supports of 7). Lastly, given an algorithm A and a an oracle

(®)
A[OF]

information from O (i.e., x

O’}, we let x denote the (possibly randomized) fth query point generated by A when fed by

(t)

afor 1s @ measurable function of {Oh. (2, z(l))}:: and possibly a

random seed r(*)).

Definition 22 A stochastic pth-order algorithm A is zero-respecting if for any function F and any
pth-order oracle OY,, the iterates {x(t)}teN produced by A by querying 07} satisfy

support (x(t)) C U support (O%(x(i), z(i))), forallt € N, (69)

i<t
with probability one with respect the randomness of the algorithm and the realizations of {z(t)}teN.

Given z € R%, we define
prog, (x) := max{i > 0 | |z;| > a} (where we set zy = 1), (70)

which represents the highest index of x whose entry is a-far from zero, for some threshold
a € [0,1). To lighten notation, we further let prog := prog,. For a tensor 7', we let prog(T") =
max{support {7} } denote the highest index in support {7'} (where prog(T") := 0 if support{T'} =
(), and let prog(7) = max; prog(T")) be the overall maximal index of prog(7'")) for a tuple of
tensors 7 = (TW, 7®), ...

Definition 23 A collection of derivative estimators ﬁ’(az, 2)y. e, ﬁ’(az, z) for a function F
forms a probability-p zero-chain if

Pr(EIJ: | prog(ﬁ’(m,z), . .,ﬁ?(az,z)) = progi(x) + 1) <p
and

Pr(EIx | prog(ﬁ’(w,z), .. ,ﬁ’(w,z)) = progi(x) + z) =0,7>1.
No constraint is imposed for i < prog1 ().

We note that the constant 1/4 is used here for compatibility with the analysis in Arjevani et al. [8,
Section 3]. Any non-negative constant less than 1/2 would suffice in its place. The next lemma
formalizes the idea that any zero-respecting algorithm interacting with a probabilistic zero-chain
must wait many rounds to activate all the coordinates.
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Lemma 24 Let ﬁ(az, 2),. ., ﬁ?(az, z) be a collection of probability-p zero-chain derivative

estimators for F : RT — R, and let O, be an oracle with O, (z,z) = (ﬁ?(m, 2))qelp)- Let

{ZCS;[)OF]} be a sequence of queries produced by A € A, (K) interacting with O%. Then, with
probability at least 1 — 6,

T —log(1/d
prog(x(;[)ogo <T, forallt< ;;(/)

The proof of Lemma 24 is a simple adaptation of the proof of Lemma 1 of [8] to high-order zero-
respecting methods—we provide it here for completeness. The proof idea is that any zero-respecting
algorithm must activate coordinates in sequence, and must wait on average at least {2(1/p) rounds
between activations, leading to a total wait time of Q(7'/p) rounds.

Proof. Let {@(:c(i), z(i))}qe[p} denote the oracle responses for the ith query made at the point
2@, and let G be the natural filtration for the algorithm’s iterates, the oracle randomness, and the
oracle answers up to time . We measure the progress of the algorithm through two quantities:

a0 = nilga;cprog(a:(i)> = max{j <d| xg-i) = 0 for some i < t},
® .— (0 00)
N r?gatxprog<v F(z\V, z )>
= max{j <d|Vif(x®,2); = 0 for some i < tand g € [p]}

Note that 7(*) is the largest non-zero coordinate in support{(z(?);<;}, and that 7(%) = 0 and
6(9) = 0. Thus, for any zero-respecting algorithm

) < 5('5*1)7 (71)
for all ¢. Moreover, observe that with probability one,
prog (VIF(2,20)) <1+ progy (+17) <1+ prog(a?) <1470 <146¢D,  (72)
4

where the first inequality follows by the zero-chain property. Further, using the p-zero chain property,
it follows that conditioned on G(*), with probability at least 1 — p,

prog (VIF(2), 20)) < prog, (+¥)) < prog(a®) < = < 5=, (73)
Combining (72) and (73), we have that conditioned on G(:~1),
st <50 <5tV 41 and  Pr [5“) = 5t 4 1} < p.

Thus, denoting the increments (Y := §) — §(¢=1) we have via the Chernoff method,

E[QXP(Z§:1 L(j))] ﬁE[exp(b(i)) | g(i—l)}]

=T
=e¢ ' E
exp(T) paley

Pr[a(” > T} =Pr|Y D >7| <
=1

j
<eT(l—ptp-ef < T

49



SECOND-ORDER INFORMATION IN NON-CONVEX STOCHASTIC OPTIMIZATION

Thus, Pr [6('5) > T] < dforallt < %p(l/é); combined with (71), this yields the desired result. B

In light of Lemma 24, our lower bound strategy is as follows. We construct a function F' €
Fp(A, Ly) that both admits probability-p zero-chain derivative estimators and has large gradients for
all z € RT with prog(z(?)) < T Together with Lemma 24, this ensures that any zero-respecting
algorithm interacting with a pth-order oracle must perform 2(7'/p) steps to make the gradient of F'
small. We make this approach concrete by adopting the construction used in [8], and adjusting it
so as to be consistent with the additional high-order Lipschitz and variance parameters. For each
T € N, we define

T
Pr(z) = —U(1)®(x1) + > [W(—ai1)®(—ai) — U(2;1) ()], (74)
i=2

where the component functions ¥ and & are

07 z S 1/2? * 142
(@) = exp(1 - (72xi1)2>a z>1/2 and (o) = \/é/_ooe s )

We start by collecting some relevant properties of Frr.
Lemma 25 (Carmon et al. [12]) The function Fr satisfies:
1. Fr(0) —inf, Fr(z) < Ag- T, where Ay = 12.

L . . . 5
2. Forp > 1, the pth order derivatives of Fr are {y,-Lipschitz continuous, where {,, < e2? log p-+cp
for a numerical constant ¢ < <.

3. Forallx € RT, p € Nandi € [T, we have HVfFT(x)HOp <lp_1.
4. Forallx € RT and p € N, prog(VPFr(x)) < prog%(aj) + 1.
5. Forall x € RT, if prog, (z) < T then ||V Fr(z)|| > |Vprog, (2)41F7(x)| > 1.

Proof. Parts 1 and 2 follow from Lemma 3 in [12] and its proof; Part 3 is proven in Section H.1.1;
Part 4 follows from Observation 3 in [12] and Part 5 is the same as Lemma 2 in [12]. |

The derivative estimators we use are defined as
[ﬁ\FT(z, z)] = (1 + 1{i > prog;(x)} (’Z - 1>> VI Pp(w), (76)
i 1 p

where z ~ Bernoulli(p).

Lemma 26 The estimators ﬁ\FT form a probability-p zero-chain, are unbiased for V4 Fr, and
satisfy
p)

— , 21— -
E ||ViFr(x,z) — VIFp(z)||” < %, forallx € R*. (77)
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Proof. First, we observe that E [ﬁF\T(x, z)} = ViFp(x) forall z € RT, as E[z/p] = 1. Second,
we argue that the probability-p zero-chain property holds. Recall that prog,, () is non-increasing in «
(in particular, prog%(x) > prog%(ac)). Therefore, by Lemma 25.4, [ﬁ\FT(x, 2)]i = ViFr(z) =0
for all 7 > progi(l‘) +1,all z € RT and all z € {0, 1}. In addition, since z ~ Bernoulli(p), we
have Pr(ﬂx \ prog(ﬁF\T(:c, 2)ye, @v(aﬁ, z)) = prog%(aﬁ) + 1) < p, establishing that the
oracle is a probability-p zero-chain.

To bound the variance of the derivative estimators, we observe that V¢Fp(x, z) — V4Fp(x) has at
most one nonzero (g — 1)-subtensor in the coordinate i,, = progi (x) + 1. Therefore,
4

— 9 2 [z 2 2l —p (1- p)ff,_l
E|[SFr (2, 2)~VIFr ()2 = [V Fr(a)| E(p—l) ~ V2, Fra) 1oL < S22

where the final inequality is due to Lemma 25.3, establishing the variance bound in (77). |

Proof of Theorem 4. We now prove the Theorem 4 by scaling the construction Fr appropriately. Let
Ag and ¢, be the numerical constants in Lemma 25. Let the accuracy parameter €, initial suboptimality
A, derivative order p € N, smoothness parameters L1, ..., L,, and variance parameters o1, ..., 0
be fixed. We set

Fr(z) = aFr (Bx),

for some scalars o and 3 to be determined. The relevant properties of F7: scale as follows

F7(0) — inf Ff(z) = a(Fr (0) — inf Fr (az)) < aAT, (78)
|V ER(2)|| = a8t || VI Pr (Bz) || < BT, (79)
IVER(2)]| = af||[VEr(z)|| = af, Ve s.t., prog,(z) <T. (80)

The corresponding scaled derivative estimators ﬁ\F]ﬁ(a:, z) = aﬂqﬁF\’T(ﬁx, z) clearly form a
probability-p zero-chain. Therefore, by Lemma 24, we have that for every zero respecting algorithm

A interacting with O%%, with probability at least 1/2, prog (:E(At[)op }> < Tforallt < (T —1)/2p.
F

Hence, since prog, (r) < prog(x) for any x € R”, we have by Lemma 25,

E||\VFf (2

Mowy) | = aBEIVEr (Briig, )l 2 =, ¥t < (T —1)/2p. (81)

ap
A[O%] 9

We bound the variance of the scaled derivative estimators as
2 a262‘1€2_1(1 —p)

B|[VeFf(z, 2) — VIFH(@)||* = o2B%E | Ve Fy (B2, 2) - V1Fr (8)|| < ; ,

where the last inequality follows by Lemma 26. Our goal now is to meet the following set of
constraints:

e A-constraint: aAgT <A
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e L,constraint: B9, < L,, forq € [p]

® e-constraint: 0‘2—5 > €

042/82(15371(1_10)

P
Generically, since there are more inequalities to satisfy than the number of degrees of freedom
(o, B, T and p) in our construction, not all inequalities can be activated (that is, met by equality)
simultaneously. Different compromises will yield different rates.

s 2
e 0,-constraint: < oy, forq € [p]

First, to have a tight dependence in terms of €, we activate the e-constraint by setting a = 2¢/3.
Next, we activate the o;-constraint, by setting p = min{(a3¢y/c1)?,1} = min{(2ely/c1)?,1}.
The bound on the variance of the qth-order derivative now reads

a?B202_(1—p) ofa®pe 2 ,p%7 Yo}

= =2,...,p.
p = (aph)? g T
Since [ is the only degree of freedom which can be tuned to meet though (not necessarily activate)
the o4-constraint for ¢ = 2, ..., p and the L -constraints for g = 1,. .., p, we are forced to set

N ‘7%1 Ly H
_ . . q q . 82
= i ()7 (55) ”
=1

/
q=1,...,

Lastly, we activate the A-constraint by setting

te LﬁOJ - bifeJ'

Assuming (2¢/g/01)? < 1and T' > 3, we have by (81) that the number of oracle queries required to
obtain an e-stationary point for G7. is bounded from below by

T-1_1(| A8,
2p _2/)<{2A0€J_ )

® 1 AB
> .
— 2p 4Ape

o? A ) . loog a1 [ Ly 1/d
> . - min min ,
2(20p€)? 4Ape  ¢=2,...p ly_101 2ely
q=1,..

Ac? booyg = Ly e 83
L Ao . )
- 25A0€ge3 q321,1~1},p i (&110’1) ’ (26511’) ’ ®9
q¢=1,..p

-----

where (%) uses |£| — 1 > £/2 whenever £ > 3, implying the desired bound. Lastly, we note that one
can obtain tight lower complexity bounds for deterministic oracles by setting p = 1. Following the
same chain of inequalities as in (83), in this case we get a lower oracle-complexity bound of

A L, 1/q
. Ly . A
8Ape qu(ll}-?yp<26£q> (84)
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H.1.1. BOUNDING THE OPERATOR NORM OF V¥ Fp

In this subsection we complete the proof of Lemma 25 by proving Part 3. Our proof follows along
the lines of the proof of Lemma 3 of [12]. Let z € RT and 41, ... ,ip € [T, and note that by the
chain-like structure of Frr, 0;, - - - 9;, F'r(x) is non-zero if and only if [i; — ;| < 1 for any j, k € [p].
A straightforward calculation yields

10y, -+ 8, Fr(z)] < ?61%2]( 56{0,1}1’?113}{(0,—1}?*1@Hl < Oiys, ,0iFr(z)] (85)

- 9pt+1’

< max 2sup’\11k(§)’ Sup“bp_k(fl)
kelpl | cer €'cR

by
}<exp(2.5plogp+4p—|—9) < b1

where the penultimate inequality is due to Lemma 1 of [12]. Therefore, for a fixed i € [T], we have

IV Pr(2)op 2 sup [(V?Fr(z), v)|

= Sup Z Bil s 82'?71(9@‘FT(.%')1}1'1 e 'Uip,1

115 ip—1€[T]
(b)
< Z |0i16, -+ Oiys, , 0iF'r(z)]
se{0,1}p—1u{0,—1}r-1
(c) 4 —1
< (2p - 1)2§+1 < Ep—h

where (a) follows from the definition of the operator norm, (b) follows by the chain-like structure of
Fr, and (c) follows from (85), concluding the proof.

H.2. Proof of Theorem 6

In this section we prove Theorem 6 following the schema outlined in Section 4.2. We start by
collecting all the relevant properties of ¥ and A from the construction in (11).

Lemma 27 The functions ¥ and A satisfy the following properties:
1. Forall x <1/2 and for all k € NU {0}, U (z) = 0.
2. The function V is non-negative and its first- and second-order derivatives are bounded by

0<U<e, 0< V' <y/bd/e, —40 < ¥ < 40.

3. The function A and its first- and second-order derivatives are bounded by

-8 < A0, —6< A <6, —8 < N < 4.

4. Both ¥V and A are infinitely differentiable, and for all k € N, we have

A® ()| < j@.exp<3(’“; D log<3(k2+ ”)).

k
sup \I/(k)(a:)‘ < exp(Zlog(Zlk)) and  sup
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Proof. Parts 1-4 are immediate. Part 5 follows from Lemma 1 of [12] and by noting that

@mn(@‘ < ;.exp<3<k2+1) 10g<3(k2+1)>>'

sup
x

A(k)(az)‘ = \8[su

€ z

Using these basic properties of ¥ and A, we establish the following properties of the construction
G (analogous to Lemma 25).

Lemma 28 The function G satisfies the following properties:
1. Gp(0) — inf,(Gr(z)) < AgT, with Ay = 40.

2. Forp > 1, the pth order derivatives of G are gp-Lipschitz continuous, where Zp < ecplogptcp
for a numerical constant c,c < oc.

3. Forallz € R, and i € [T], we have f | VP Gr(2)]|, < 0.

op

4. Forall x € RT and q € [p], prog(VWGr(z)) < prog%(m) + 1.

5. Forallz € RT, ifprogl%(x) < T—1then Amin (V2GT(m)) < —0.5, and \pin (VQGT(QZ)) <
700 otherwise.

Proof. We prove the individual parts of the lemma one by one:
1. Since ¥(0) = A(0) = 0, we have
T
Gr(0) = T(1)A(0) + > [T(0)A(0) + T(0)A(0))] = —F(1)A(0) = 0.
i=2

On the other hand,

T
Gr(z) = (A1) + Y [U(=zi1)A(=i) + U(wi1)A(w;))]
=2

—8eT (by Lemma 27.2. and Lemma 27.3)

>
> —40T.

2. The proof follows along the same lines of Lemma 3 of [12] together with the derivative bounds
stated in Lemma 27.4.

3. The claim follows using the same calculation as in Section H.1.1, with the derivative bounds
replaced by those in Lemma 27.4, mutatis mutandis.

4. The claim follows Observation 3 in [12], mutatis mutandis.
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5. We have

aGr
856]- -

—U(=zj )N (—xj) + (w1 N (25) = ' (=25)A(=xj01) + ' (25)A()41).
(86)

Therefore, for any z € R?, V2G7 () is a tridiagonal matrix specified as follows.

U(—zi1) AN (—x) + U (xi-1) A ()
+U(—z)A(—zip1) + 9" (xi) AM(zigpr) if =7,

VQGT(.f)Z‘J' = \Il’(—xj)A’(—zi) + \If’(:vj)A’(xi) ifj=1—1,
\I/'(—a:i)A’(—a:j) + \Ill(xl)A/<l'J> lfj =4+ 1,
0 otherwise.

The following facts can be verified by a straightforward calculation:

(i) ¥(x) > 0.5 forall z > 9/10.
(i) v”(z) > 0forall |z| < 9/10.
(iii) A”(z) < —1 forall |z| < 9/10.

Next, assuming k := progs (z) + 1 < T, we have, by definition, that |zg1], |zx| < 1% <
10
|2k—1/, implying,

T2
) 2 . yV Gr(z)y
Amin(VGr(z)) = Y

eFV2Gr(z)ey,

<
er e

= V2Gr(x)kk
= U(—zp_1)A"(—xg) + V(zp_1)A" (1)
+ U (—zp)A(—zp11) + 9" (2p)A(2hs1)
< U(—zp1)N' (—zg) + U(2p—1) A (2g) ((ii)and A < 0)
= U(|zgp_1]|)A" (sign{zp_1 }zk) (¥(z) =0, Vo <0)
<—1.05=—0.5. (i) and (i)

(Rayleigh quotient)

Otherwise, if nothing is assumed on z, then the same chain of inequalities, using k£ = 2, can
be used to bound the minimal value of V2Gr(x).

IN2Gr(x)y
Amin 2G = mi Y
(V*Gr(x)) b —
< eI V2Gr(z)ey,
B e;{ek
ZV2GT(I)k’k

= \IJ(—:Ek_l)AI/(—JIk) + \I’(.Tk_l)A”(:L’k)

(Rayleigh quotient)
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+ U (—ap) AM(—zpp1) + 9" (@) A(@py1)
< 2(4e + 320) < 700,

thus giving the desired bound.

We employ similar derivative estimators to the proof of Theorem 4, only this time we provide a
noiseless estimate for the gradient. Formally, we set

[ﬁG\T(.T,Z)L — {viGT(JU) qg=1

’ 87

(1+1{i>prog%(x)}(§—1)> ViGr(z) q¢>2, 7

where z ~ Bernoulli(p). The dynamics of zero-respecting methods can be now characterized in an

analogous way to the proof of Theorem 4. The only difference is that here, since A’(0) = ¥/(0) = 0,

it follows that prog,(VGr(z)) = progg(x). Therefore, the collection of estimators defined above

is a p-probability zero-chain—with respect to prog, (rather than prog: as in Definition 23)!!—in
4

which the variance of the gradient estimator is 0; a key property that shall be used soon. Following

the proof of Lemma 24, mutatis mutandis, gives us the same bound on the number of non-zero entries
acquired over time. That is, we have that with probability at least 1 — 6,

() T —log(1/9)
prog (xA[O%O <T, forallt < T, (88)
where we employ the same notation as in Lemma 24. The proof now proceeds along the same lines
of the proof of Theorem 4. The estimators have variance bounded as

P 0 q=1,
E||ViGr(z,2) — VIGr(@)|? << 2 (1 (89)
| | L2 foralle e RT g > 2,

which can established the same fashion as Lemma 26 by invoking Lemma 28.3 and Lemma 28.4.

Proof of Theorem 6. We now complete the proof of Theorem 6 for p > 2 by scaling Gr
appropriately. Let Ay and gp be the numerical constants in Lemma 28. Let the accuracy parameter
7, initial suboptimality A, derivative order p € N, smoothness parameter L1, ..., L,, and variance
parameter 01,02, ..., 0, be fixed. We let

G}(x) = aGT (BLU) )
for scalars o and 3 to be determined. The relevant properties of G7. are as follows:

G7(0) — inf G (x) = a(Gr (0) - inf Gr (az)) < aAoT, (90)

11. Using prog,, rather than prog 1 carries one major disadvantage: our bounds for finding ~-weakly convex points

cannot be directly extended to arbitrary randomized algorithm using the technique presented in Section 3.4 of [12] as
is (at least, not without the degrading the dependence on problem parameters). We defer such an extension to future
work.
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[vGr (@) = @Bt |V G (80)]| < ag™ ', oy
2
Muin(VG(2)) = 0B Amin(V2Gr(2)) < =0, Vi st progynole) <. 92)

The corresponding scaled derivative estimators ﬁG\}(:c, z) = aﬁqV/‘I\GT(ﬁx, z) clearly form a

probability-p zero-chain, thus by (88), we have that for every zero respecting algorithm A interacting
with OF,, , with probability at least 1 — 1/(4 - 700), prog <ng[)0% ]) < T —1forallt < (T —2)/2p.
Therefore, since progy () < prog(x) for any z € RT, we have by Lemma 28.5,

E [ Anin (V3G (#0p))] = 8 Amin(V2Gr (8230y.)

A[O7, AlO%.]
< af? 705-(1—L)+700-L
= ‘ 4700 41700
-]
< 0;5 , (93)

for any ¢t < (T' — 2)/2p. The variance of the scaled derivative estimators can be bounded as

— _ 2 232002 (1 —
E|[ViGE(z, 2) — VIGH(@)|* = o2 B¥E |Gy (62, 2) - VGr ()| < = b qp1< ).

where the last inequality is by (89). Our goal now is to meet the following set of constraints:
e A-constraint: aAgT < A
e L,-constraint: «af9t'0, <L, forq=1,...,p.

. 2
e ~y-constraint: —% < —.

QQﬁquﬁg_l(l*p)

® 0 -constraint: 5

§a§ forg=1,...,p.

As there are more inequalities to satisfy than the four degrees of freedom («, 3,7 and p) in our
construction, generically, not all inequalities can be activated (that is, met by equality) simultaneously.
Different compromises may yield different bounds. First, to have a tight dependence in terms of ~,
we activate the y-constraint by setting o = 5v/3%. Next, we activate the oo-constraint, by setting
p = min{(a8%01 /02)?,1} = min{(5¢,y/0)?,1}. The bound on the variance of the gth derivative
forq = 3,...,p, now reads

B p) e P
p = (af2)? 2 ’ T

Since [ is the only degree of freedom which can be tuned to meet (though not necessarily activate)
the o4-constraints for ¢ = 3, ..., p, and the Ly -constraint for ¢’ = 2, ..., p, we are forced to have

1 1
g -2 L. a1
8 = min min 1% ) . (94)
=3,....p fq_lo'g 5&]/’)/
P

ql:27"~7
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Note that, by definition, the o;-constraint always holds (as the variance of the gradient estimator is
zero, see (89)). To satisfy the L;-constraint, i.e., afB?l; < Ly, we must have

v < Ly1/50;. (95)

This constraint holds w.l.o.g. as L; also bounds the absolute value of the Hessian eigenvalues (in
other words, any point z is trivially O(L;)-weakly convex). Lastly, we activate the A-constraint, by

selling
OzAQ 5A0’y .

Assuming (5[717/02)2 <1(.e.,v=0(02)) and T' > 3, we have by (93) that the number of oracle
queries required to obtain a point z such that Apin (V2G% (:13)) < ), is bounded from below by

SN
20 2p\|5Apy

® 1 Ap
~ 2p52A0y

2 2

o2 A ae, N\ Ly T
= — C— min min = i
(5617)* 5*Agy = lg-102 bly

2 2
2 J q—2 L. -1
= % : A—? min min ~£10q N ) (96)
54€%A0 Y g=3,p ly_102 5€q/7

q'=2,....,p

where (%) uses that [£] — 2 > £/5 whenever { > 3, implying the desired result (note that this bound
does not depend on L; and o7.).

If oy = --- = 0, = 0, we obtain the following lower complexity bound for noiseless oracles
(where p is effectively set to one), assuming v = O(L1) (this holds without loss of generality, as
we discuss above). As before, we set o = 5/ Bz. The Lq-constraint is satisfied under the same
condition stated in (95). Thus, letting

-

Ly \*7°
[/ = min 4
a=2,p | \ 5lgy

it follows that our construction is L,-Lipschitz for any ¢ = 1, ..., p. Following the same chain of
inequalities as in (96) yields an oracle complexity lower bound of

2
AR A L, \ ™
— = — min =
5300y 53Agy a=2p | \ 50y

Note that this bound does not depend on L.
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