
Conic Descent and its Application to

Memory-efficient Optimization over Positive

Semidefinite Matrices

John Duchi
Stanford University

jduchi@stanford.edu

Oliver Hinder
Stanford University, Google, University of Pittsburgh

ohinder@pitt.edu

Andrew Naber
Stanford University

naber@stanford.edu

Yinyu Ye
Stanford University
yyye@stanford.edu

Abstract

We present an extension of the conditional gradient method to problems whose
feasible sets are convex cones. We provide a convergence analysis for the method
and for variants with nonconvex objectives, and we extend the analysis to practical
cases with effective line search strategies. For the specific case of the positive
semidefinite cone, we present a memory-efficient version based on randomized
matrix sketches and advocate a heuristic greedy step that greatly improves its
practical performance. Numerical results on phase retrieval and matrix completion
problems indicate that our method can offer substantial advantages over traditional
conditional gradient and Burer-Monteiro approaches.

1 Introduction

We want to solve problems of the form

minimize f(x)
subject to x 2 K

(1)

where K ã R
n is a proper, convex cone and f is a convex, differentiable function which has no

nonzero direction of recession in K, i.e., it eventually curves upward along any nonzero ray in K.
Let p? denote its optimal value. These assumptions imply that an optimal solution x? exists. Our
work shows that it is possible to directly solve such a problem using a modification of the conditional
gradient algorithm that we call conic descent (CD). At each iteration, CD picks a descent direction
which is a conic combination of a step toward the origin and a direction in K. If CD fails to find a
descent direction, then an optimality certificate can be found.

We can add a redundant constraint kxk ÿ R to problem (1) as long as kx?k ÿ R. This ensures that
the feasible set is compact, and the well-known conditional gradient algorithm could be applied. With
a slight abuse of terminology, we will hereafter refer to this approach as simply CG. Unfortunately,
R is usually unknown in applications, and overestimates can greatly reduce the performance of CG.
Appendix E provides a worked example of this.

Prior work on projection-free optimization over cones In [12], the authors propose a version of
CG which is similar to CD in that it finds feasible directions of descent from a conic combination of a
step toward the origin and a direction in K; however, in distinction with CD, the method requires an

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



upper bound on kx?k in order to solve the subproblems. We also obtain a small (factor of 4) constant
improvement over their rate of convergence.

Optimization of differentiable functions over conic hulls is addressed in [17] which builds off earlier
work in [22]. The basic method they propose obtains the same O(1/k) convergence bound as CD;
however, our method and analysis improves the constants by removing a quadratic dependency on
the geometry of the set used to define the cone (compare Theorem 2 in [17] with our Theorem 1).
Our CD method is more general in that it can work for an arbitrary cone—even if there is no known
simple description of K as a conic hull (e.g., the doubly nonnegative cone). Furthermore, our proof
of convergence is simple and based on convex duality.

Memory and the positive semidefinite cone Optimization over the positive semidefinite cone is
very important in statistics and machine learning. Both phase retrieval and matrix completion have
natural formulations as such problems (for example, see [6, 7]). Motivated by these applications, we
are interested in problems for which n is very large. There have been CG-like algorithms designed
specifically for this case; see [11, 16] for example. However, these methods do not directly address
the O(n2) memory consumption of the full matrix variable which is frequently a bottleneck.

To directly address the memory requirement, it is common to employ the Burer-Monteiro factorization
heuristic (named after the authors of its initial proposal and analysis in [4, 5]). This heuristic has
excellent empirical performance and has inspired a lot of analysis. Under various strong assumptions
on f , it can sometimes be shown that the Burer-Monteiro heuristic does indeed give solutions to
problem (1). For example, see the related work in [2, 9, 13, 19, 20]. However, it can be very difficult
to verify such assumptions in practical situations.

A novel method of dealing with the memory requirement was presented in [24]. In this paper, the
authors exploited the fact that applying CG to problems with feasible set {X | X 2 S

n
+, trX ÿ d}

for d � 0 generates the optimal solution as a sum of rank-1 matrices. They showed how an auxiliary
variable could be used to drive the iterations of CG and how a memory-efficient randomized sketch
of the iterate Xk could be maintained throughout the iterations. Upon convergence, the sketch could
be used to form an approximation to the optimal solution. Assuming that the solution to which CG
converged had low rank, this method can recover the exact solution without ever forming the full
matrix variable. This approach is very promising because it only makes weak assumptions on the
nature of the objective and directly solves problem (1). However, the trace constraint on the feasible
set is limiting.

Because CD also generates solutions to problems over the positive semidefinite cone as a sum of
rank-1 matrices, we propose a memory-efficient version of CD in the spirit of [24] that allows us
to track the iterate using randomized sketches. In addition, the nature of CD allows us to easily
incorporate greedy steps using a Burer-Monteiro factorization heuristic. In effect, we can get the best
of both approaches: global convergence guarantees using low memory without any prior bound on
tr(X?) and rapid convergence when the factorization heuristic is working well.

Contributions

• We introduce conic descent as a method for solving (1) that, unlike prior work, requires no
bound on kx?k or description of K as a conic hull. Our proof of convergence is simple and
based on convex duality. Our analysis of the rate of convergence does not depend on any
constants relating to the specific cone.

• We provide analyses of several natural extensions to CD, including the use of a backtracking
line search to determine the step size as well as the use of inexact methods for rescaling
and solving the subproblem at each iteration. Additionally, we show that CD applied to a
nonconvex objective converges to a stationary point and provide an analysis of its rate of
convergence.

• We provide a memory-efficient modification to CD for the positive semidefinite cone based
on randomized matrix sketches that is similar to [24] but does not require any prior bound on
kX?k. Additionally, we propose a greedy factorization heuristic that adds excellent practical
performance while retaining the convergence guarantees of CD.

• We provide a Python implementation of the memory-efficient modification to CD with the
greedy heuristic. It is available at https://github.com/AndrewTNaber/memeffpsd.

2



Notation The n-dimensional nonnegative orthant cone and positive semidefinite cone are denoted
R

n
+ and S

n
+, respectively. The notation k · k denotes an arbitrary norm with dual norm kxkå =

sup{yTx | kyk ÿ 1}. The vector of all ones is denoted 1; its dimension will be clear from context.
The dual cone of K is denoted Kå. The distance between a point x and a set Y with respect to the
dual norm of some arbitrary norm is denoted dist

å(x, Y ). The minimum eigenvalue of a symmetric

matrix X is denoted �min(X). For a matrix X , its pseudoinverse is denoted with X†, and its ith
singular value is denoted �i(X).

2 Algorithm

Because f is convex and K is proper, Slater’s condition guarantees that the Karush-Kuhn-Tucker
(KKT) conditions are necessary and sufficient for optimality in problem (1). Let / > 0 be a tolerance.
A point x?

/ is said to /-approximately satisfy the KKT conditions if

x?
/ 2 K, rf(x?

/ )
Tx?

/ = 0, and dist
å(rf(x?

/ ),K
å) ÿ /. (2)

We propose Algorithm 1 for finding such a point.

Algorithm 1 Conic descent

1: x0 = 0
2: for k = 1, 2, 3, . . . do
3: find ;k 2 argmin;�0 f(;xk)

4: find vk 2 argmin{rf(;kxk)
T v | kvk ÿ 1, v 2 K}

5: if rf(;kxk)
T vk > �/ then

6: break with x?
/ = ;kxk

7: else
8: find 7k 2 argmin7�0 f(;kxk + 7vk)
9: xk+1 = ;kxk + 7kvk

10: end if
11: (optional greedy step)
12: end for

We now discuss the correctness of this method. First, the iterates it generates are always feasible.
This can be seen inductively. Trivially, x0 2 K. Now suppose that xk 2 K, then xk+1 2 K
because ;k and 7k are nonnegative and vk 2 K. Second, the rescaling in step 3 ensures that the
complementary slackness holds for ;kxk. Because f has no nonzero direction of recession in K
(by assumption), ;k must be finite. Thus, rf(;kxk)

T (;kxk) = 0 because ;k = 0 or ;k satisfies
d
d;
f(;xk) = rf(;xk)

Txk = 0. Finally, a dual of the subproblem in line 4 is given by

maximize �krf(;kxk)� ukå
subject to u 2 Kå.

This dual problem is simply to find the projection of rf(;kxk) onto Kå and its optimal value
is �dist

å(rf(;kxk),K
å). Strong duality between the subproblem and its dual holds. If

dist
å(rf(;kxk),K

å) > /, then rf(;kxk)
T vk < �/. This implies that that vk must be a de-

scent direction in K. Otherwise, the algorithm terminates with a point x?
/ which /-approximately

satisfies the KKT conditions (i.e., satisfies (2)).

The optional greedy step in Algorithm 1 is simply a routine which updates xk+1 to any feasible point
with a lower objective value. It allows us to take advantage of speedy or memory-efficient heuristics
for reducing the objective over K while still maintaining the convergence guarantees of CD. The use
of a well-chosen greedy step can greatly improve performance. In Section 4, we will elaborate on the
use of the Burer-Monteiro factorization heuristic to improve CD when K = S

n
+.

3 Theory

3.1 Lipschitz continuous gradient (convex objective)

Our analysis of CD is summarized in Theorem 1 and is similar to that of CG; see Theorem 3.8 in [3],
for example. The proof can be found in Appendix A. Our method obtains the same O(1/k) rate of

3



convergence as CG, and it is interesting to compare the constants appearing in both cases. For CG,
the constant is proportional to R2 whereas here it only depends on kx?k2.

Theorem 1. If f has a Lipschitz continuous gradient with respect to k · k with parameter L, then

conic descent generates feasible points xk such that f(xk)� f(x?) ÿ 2Lkx?k2

k+2 .

Backtracking line search variant The proof of Theorem 1 shows that three methods of choosing
the step size at each iteration obtain the same O(1/k) rate of convergence. If we somehow know kx?k,

then we can use 7k = 2kx?k
k+2 . The proof also showed that using an exact line search on f(;kxk + 7vk)

for 7 � 0 to find 7k or choosing 7k = � 1
L
rf(;kxk) achieve the same rate of convergence. The exact

line search can be a bit burdensome, and the other two choices rely on constants that are generally
unknown. Instead, we can use a backtracking line search to determine 7k and obtain the same rate of
convergence as these other choices. See Theorem 2; our proof is similar to that of Theorem 1 and can
be found in Appendix B.

Theorem 2. If f has a Lipschitz continuous gradient with respect to k · k with parameter L, then
conic descent with 7k determined from a backtracking line search (Algorithm 3) generates feasible

points xk such that f(xk)� f(x?) ÿ 2Lkx?k2

min{2Lµ,4µ(1�µ)�}(k+2) .

Inexact minimization variant Suppose that the rescaling in step 3 of Algorithm 1 is only solved
approximately. That is, we obtain an ;k such that f(;kxk) ÿ f(xk) and

rf(;kxk)
T (;kxk) ÿ �

k+2 , (3)

where � > 0. Additionally, suppose that the linear subproblem in step 4 of Algorithm 1 can be solved
approximately. Specifically, at each iteration, we obtain a ṽk such that

rf(;kxk)
T ṽk ÿ rf(;kxk)

T vk + �
k+2 , (4)

where vk is the optimal subproblem solution and � > 0. Under these assumptions, the proof of
convergence proceeds similarly to that of Theorem 1. Note that the rescaling and subproblem must
be solved with increasing accuracy. Theorem 3 guarantees the same O(1/k) convergence, and its
proof can be found in Appendix C.

Theorem 3. If f has a Lipschitz continuous gradient with respect to k · k with parameter L, then
conic descent with an inexact rescaling method that satisfies (3) and with an an inexact subproblem
solution method that satisfies (4) generates feasible points xk such that f(xk)� f(x?) ÿ 2

k+2 (� +

�kx?k+ Lkx?k2).

3.2 Lipschitz continuous gradient (nonconvex objective)

We also consider the case where the objective function may be nonconvex but still has a Lipschitz
continuous gradient. The only necessary modification to conic descent is that ;k is no longer required
to be an exact minimizer of f(;xk) over ; � 0 in step 3. We instead require first that ;k = 0
or ;k satisfies d

d;
f(;x) = rf(;xk)

Txk = 0 and second that f(;kxk) ÿ f(xk). This can be

readily achieved using standard univariate optimization tools. With this modification, conic descent
still converges to a point which /-approximately satisfies the KKT conditions (i.e., a point which
satisfies (2)). However, recall that because f is nonconvex, the KKT conditions are no longer
sufficient to guarantee optimality. Our proof can be found in Appendix D and is similar in spirit to
that presented in [15] for the conditional gradient method with an objective which is nonconvex but

has a Lipschitz continuous gradient, and we obtain the same O(1/
p
k) rate of convergence.

Theorem 4. If f is nonconvex and has a Lipschitz continuous gradient with respect to k · k with
parameter L, then conic descent with 7k = � 1

L
rf(;kxk)

T vk will generate a point which satisfies (2)

in at most d2L(f(x0)� f(x?))//2e iterations.

4 Memory-efficient optimization over the positive semidefinite cone

We now focus exclusively on the case of the positive semidefinite cone. Specifically, we are interested
in solving problems of the form

minimize f(G(X)� g)
subject to X 2 S

n
+,

(5)

4



where g 2 R
m and G(X) = (tr(G1X), . . . , tr(GmX)) with Gi 2 S

n for i = 1, . . . ,m. The
adjoint of the linear operator G acting on some z 2 R

m is given by Gå(z) = z1G1 + · · ·+ zmGm.
We make the additional assumptions that m is much smaller than n2 and that there are efficient
methods for evaluating matrix-vector products for each Gi. Such an assumption implies that it is
possible to efficiently compute matrix-vector products for the matrix Gå(z) as well as efficiently
evaluate G(UUT ) for U 2 R

når for r much smaller than n. This type of problem appears frequently
in statistics and machine learning, where the Gi are often low rank, sparse, or discrete Fourier
transform matrices. Under these assumptions, this problem can be solved with limited memory;
see Algorithm 2. The bracketed expressions represent optional aspects of the algorithm and will be
explained shortly.

Algorithm 2 Memory-efficient conic descent for problem (5)

1: hform Ω 2 R
når with entries independently drawn from a standard normal distributioni

2: y0 = �g, [X0 = 0], hS0 = 0i
3: for k = 1, 2, 3, . . . do
4: find ;k 2 argmin;�0 f(;yk + (; � 1)g)
5: find �k = �min(G

å(rf(;kyk + (;k � 1)g))) and associated normalized eigenvector qk
6: if �k > �/ then
7: break with y?/ = ;kyk + (;k � 1)g, [X?

/ = ;kXk], hS?
/ = ;kSki

8: else
9: choose step size 7k > 0

10: yk+1 = ;kyk + (;k � 1)g + 7kG(qkq
T
k )

11: [Xk+1 = ;kXk + 7kqkq
T
k ], hSk+1 = ;kSk + 7kqk(q

T
k Ω)i

12: end if
13: (optional greedy step)
14: end for

The auxiliary variable y = G(X)�g drives the iterations. Because X0 = 0, we know that y0 = �g. It
is simple to verify that finding ;k in line 3 of Algorithm 1 is equivalent to minimizing f(;yk+(;�1)g)
over ; � 0. So, as long as we have yk, it is possible to compute ;k without explicitly using Xk.
It is also easy to verify that finding the direction of descent under the Schatten 1-norm (line 4 in
Algorithm 1) is equivalent to finding the minimum eigenvalue and associated normalized eigenvector
of Gå(rf(;kyk + (;k � 1)g)). This can be carried out efficiently using the shifted power method or
the Lanczos method because matrix-vector products can be efficiently evaluated (see [23]). Again, we
do not need ;kXk explicitly to accomplish this step. If we use an exact or backtracking line search to
choose 7k, it can be found by minimizing a simple function of yk. Finally, the update step for finding
Xk+1 is equivalent to yk+1 = G(;kXk + 7kqkq

T
k ) = ;kyk + (;k � 1)g + 7kG(qkq

T
k ), which can be

found efficiently because evaluating G on rank-1 matrices is easy.

Taken altogether, the previous discussion shows that the auxiliary variable yk can be used to run the
iterations of conic descent without ever actually needing Xk explicitly; it generates exactly the same
sequence of points. This means that we are free to use memory-efficient data structures which only
approximate Xk, and the error in these approximations will not affect the running of conic descent.
For clarity, the expressions in Algorithm 2 with square brackets indicate the implicit iterates Xk.
Following the lead of [21, 23, 24], we suggest using randomized matrix sketches; expressions with
angled brackets indicate this option. Upon completion, we will have obtained a sketch S?

/ which can
be used to obtain an approximation of X?

/ . The details of this process and an error guarantee are in
Appendix F. Roughly speaking, nearly perfect recovery of X?

/ is possible with high probability if its
approximate rank is less than that of r.

Finally, we suggest using a greedy step based on the Burer-Monteiro factorization heuristic which
greatly speeds up the convergence of CD in practice. Specifically, in line 13, we find a low-rank
update using a point (tk, Uk) found from running a descent method (e.g., conjugate gradient) on the
problem

minimize
t2R,U2Rn×r

f(G(t2Xk+1 + UUT )� g) = f(t2k(yk+1 + g) + G(UUT )� g) (6)

We expand on this in Appendix G.

5



The memory requirement of Algorithm 2 with the use of sketches and the greedy step is O(m+ nr)
because it is dominated by the storage for yk, Sk, and Uk. This can be substantially lower than
O(n2).

In the following two subsections, we examine the numerical performance of this method on two
different problems: phase retrieval and positive semidefinite matrix completion. The use of the greedy
step allows us to quickly reduce the objective value while the steps of conic descent ensure that we
do not become trapped at suboptimal feasible points.

4.1 Examples and numerical results

Phase retrieval In Appendix E, a simple example is contrived to demonstrate that CG can perform
poorly relative to conic descent when a gross overestimate of R is used. However, empirically,
this can also occur when a relatively small overestimate of R is used. We use phase retrieval as a
demonstration because it is straightforward to obtain a reasonable estimate of R using only the raw
data.

Let k be some small integer. Suppose that x 2 R
n is a signal that we desire to reconstruct from the

measurements bi = (aTi x)
2+ /i, i = 1, . . . , kn, where /1, . . . , /kn are independent and identically

distributed Gaussian random variables with zero mean. The measurement vectors ai 2 R
n are

the rows of the matrix A = [DS1 · · · DSk]
T

where D is the discrete cosine transform and
S1, . . . , Sk are diagonal matrices of independent random signs. Without any other assumptions, this
problem is extremely difficult to solve in general, so we instead work with a convex relaxation. In
this formulation, the quadratic measurements of the original signal are lifted to linear measurements
on positive semidefinite matrices. The natural convex relaxation is given by

minimize kA(X)� bk22 + �tr(X)
subject to X 2 S

n
+

(7)

where A(X) = (aT1 Xa1, . . . , a
T
knXakn) and � is a tuning parameter used to promote low-rank

solutions. After solving problem (7), the rank-1 approximation to the optimal solution is used as our
estimate of the original signal.

We can form an estimate of R by noting that

1

kn

knX

i=1

bi =
1

kn

knX

i=1

xT (aia
T
i )x+

1

kn

knX

i=1

/i á
1

kn

knX

i=1

xT (aia
T
i )x =

1

n
kxk22.

The approximation follows from the law of large numbers and because ATA = kI . Thus, assuming
that X? is approximately rank-1, we expect that 1

k
1
T b á tr(X?).

For our experiments, we used images in the CIFAR-10 dataset from [14] (after conversion to grayscale)
as the raw signal and Gaussian noise with SNR of 20 dB. We used k = 10 and � = 5.0 å 10�5.
For CG, we used R = 1

T b as an overestimate of the trace of X?. We used r = 3 for the sketch
parameter. A line search was used to determine the step size for both CD and CG. The objective
value and matrix multiplication count (for matrices of the form Aå(z) with z 2 R

kn) after 500
iterations of CG was recorded. The number of matrix multiplications required by CD to achieve the
CG final objective value was also recorded. The histogram on the left in Figure 1 shows the CD to
CG ratio of these matrix multiplication counts for 50 images. Clearly, CD requires at most roughly
half as many to achieve a desired accuracy—and frequently a lot fewer. The use of the number of
matrix-vector multiplications is a good metric because this is frequently the main computational cost
in these problems. Finding the minimum eigenvalue using the Lanczos algorithm requires many calls
to this method. In our experience, one reason for the good performance of CD is that the rescaling
step creates a better conditioned minimum eigenvalue computation in the subproblem minimization
step.

On the right in Figure 1, we show the reconstructions of a particular image achieved after halting
the methods at approximately 1500 matrix-vector multiplications. There is a visible improvement in
the quality of the reconstruction obtained from CD over that obtained from CG. Additionally, the
bottom right image shows the reconstruction obtained from conic descent with a greedy step every
100 iterations. In all three instances, the same sketch parameter Ω was used so that the differences in
the images are the result of the differences in the iterate itself and not in the sketch.

6







Broader Impact

Because CD is guaranteed to converge to the globally optimal solution of problem (1), it can be used
in safety critical applications of machine learning that require guarantees of reliability.

Acknowledgments and Disclosure of Funding

Andrew Naber gratefully acknowledges support from the Stanford Graduate Fellowship and the
G.I. Bill (U.S. Department of Veterans Affairs). Oliver Hinder acknowledges support from the
Dantzig-Lieberman Operations Research Fellowship.

References

[1] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A rewriting system
for convex optimization problems. Journal of Control and Decision, 5(1):42–60, 2018.

[2] Srinadh Bhojanapalli, Anastasios Kyrillidis, and Sujay Sanghavi. Dropping convexity for faster
semi-definite optimization. In Conference on Learning Theory, pages 530–582, 2016.

[3] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends R� in Machine Learning, 8(3-4):231–357, 2015.

[4] Samuel Burer and Renato DC Monteiro. A nonlinear programming algorithm for solving
semidefinite programs via low-rank factorization. Mathematical Programming, 95(2):329–357,
2003.

[5] Samuel Burer and Renato DC Monteiro. Local minima and convergence in low-rank semidefinite
programming. Mathematical Programming, 103(3):427–444, 2005.

[6] Emmanuel J Candes, Yonina C Eldar, Thomas Strohmer, and Vladislav Voroninski. Phase
retrieval via matrix completion. SIAM review, 57(2):225–251, 2015.

[7] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex optimization.
Foundations of Computational mathematics, 9(6):717, 2009.

[8] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for
convex optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

[9] Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has no spurious local minimum. In
Advances in Neural Information Processing Systems, pages 2973–2981, 2016.

[10] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review,
53(2):217–288, 2011.

[11] Zhifeng Hao, Ganzhao Yuan, and Bernard Ghanem. Bilgo: Bilateral greedy optimization for
large scale semidefinite programming. Neurocomputing, 127:247–257, 2014.

[12] Zaid Harchaoui, Anatoli Juditsky, and Arkadi Nemirovski. Conditional gradient algorithms for
norm-regularized smooth convex optimization. Mathematical Programming, 152(1-2):75–112,
2015.

[13] Michel Journée, Francis Bach, P-A Absil, and Rodolphe Sepulchre. Low-rank optimization on
the cone of positive semidefinite matrices. SIAM Journal on Optimization, 20(5):2327–2351,
2010.

[14] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[15] Simon Lacoste-Julien. Convergence rate of Frank-Wolfe for non-convex objectives. arXiv
preprint arXiv:1607.00345, 2016.

[16] Sören Laue. A hybrid algorithm for convex semidefinite optimization. In Proceedings of
the 29th International Coference on International Conference on Machine Learning, pages
1083–1090, 2012.

[17] Francesco Locatello, Michael Tschannen, Gunnar Rätsch, and Martin Jaggi. Greedy algo-
rithms for cone constrained optimization with convergence guarantees. In Advances in Neural
Information Processing Systems, pages 773–784, 2017.

9



[18] Brendan O’donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. Conic optimization via
operator splitting and homogeneous self-dual embedding. Journal of Optimization Theory and
Applications, 169(3):1042–1068, 2016.

[19] Dohyung Park, Anastasios Kyrillidis, Constantine Caramanis, and Sujay Sanghavi. Finding
low-rank solutions via nonconvex matrix factorization, efficiently and provably. SIAM Journal
on Imaging Sciences, 11(4):2165–2204, 2018.

[20] Dohyung Park, Anastasios Kyrillidis, Constantine Carmanis, and Sujay Sanghavi. Non-square
matrix sensing without spurious local minima via the Burer-Monteiro approach. In Artificial
Intelligence and Statistics, pages 65–74, 2017.

[21] Joel A Tropp, Alp Yurtsever, Madeleine Udell, and Volkan Cevher. Randomized single-view
algorithms for low-rank matrix approximation. 2017.

[22] Mehrdad Yaghoobi, Di Wu, and Mike E Davies. Fast non-negative orthogonal matching pursuit.
IEEE Signal Processing Letters, 22(9):1229–1233, 2015.

[23] Alp Yurtsever, Joel A Tropp, Olivier Fercoq, Madeleine Udell, and Volkan Cevher. Scalable
semidefinite programming. arXiv preprint arXiv:1912.02949, 2019.

[24] Alp Yurtsever, Madeleine Udell, Joel Tropp, and Volkan Cevher. Sketchy decisions: Convex
low-rank matrix optimization with optimal storage. In Artificial Intelligence and Statistics,
pages 1188–1196, 2017.

10


	Introduction
	Algorithm
	Theory
	Lipschitz continuous gradient (convex objective)
	Lipschitz continuous gradient (nonconvex objective)

	Memory-efficient optimization over the positive semidefinite cone
	Examples and numerical results

	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Simple example for which CG stalls
	Sketch reconstruction
	Greedy step details

