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for consistent perturbations T (x) that satisfy

Py(· | xext) = Py(· | x), ∀xext ∈ T (x). (3)

Such transformations may consist of small rotations, hor-

izontal flips, brightness or contrast changes (Krizhevsky

et al., 2012; Yaeger et al., 1996), or small `p perturbations

in vision (Szegedy et al., 2014; Goodfellow et al., 2015) or

word synonym replacements in NLP (Jia & Liang, 2017;

Alzantot et al., 2018).

Noiseless linear regression. In section 3, we analyze

noiseless linear regression on inputs x with targets y =
x>θ? with true parameter θ? ∈ R

k.1 For linear regres-

sion, ` is the squared loss which leads to the standard error

(Equation 1) taking the form

Lstd(θ) = EPx
[(x>θ−x>θ?)2] = (θ−θ?)>Σ(θ−θ?), (4)

where Σ = EPx
[xx>] is the population covariance.

Minimum norm estimators. In this work, we focus on

interpolating estimators in highly overparameterized mod-

els, motivated by modern machine learning models that

achieve near zero training loss (on both standard and extra

data). Interpolating estimators for linear regression have

been studied in many recent works such as (Ma et al., 2018;

Belkin et al., 2018; Hastie et al., 2019; Liang & Rakhlin,

2018; Bartlett et al., 2019). We present our results for in-

terpolating estimators with minimum Euclidean norm, but

our analysis directly applies to more general Mahalanobis

norms via suitable reparameterization (see Appendix A).

We consider robust training approaches that augment the

standard training data Xstd, ystd ∈ R
n×d × R with some

extra training data Xext, yext ∈ R
m×d × R where the rows

of Xext consist of vectors in the set {xext : xext ∈ T (x), x ∈
Xstd}.2 We call the standard data together with the extra

data as augmented data. We compare the following min-

norm estimators: (i) the standard estimator θ̂std interpolating

[Xstd, ystd] and (ii) the augmented estimator θ̂aug interpolat-

ing X = [Xstd;Xext], Y = [ystd; yext]:

θ̂std = argmin
θ

{

‖θ‖2 : Xstdθ = ystd

}

θ̂aug = argmin
θ

{

‖θ‖2 : Xstdθ = ystd, Xextθ = yext

}

. (5)

Notation. For any vector z ∈ R
n, we use zi to denote the

ith coordinate of z.

1Our analysis extends naturally to arbitrary feature maps φ(x).
2In practice, Xext is typically generated via iterative optimiza-

tion such as in adversarial training (Madry et al., 2018), or by
random sampling as in data augmentation (Krizhevsky et al., 2012;
Yaeger et al., 1996).

3. Analysis in the Linear Regression Setting

In this section, we compare the standard errors of the stan-

dard estimator and the augmented estimator in noiseless

linear regression. We begin with a simple toy example that

describes the intuition behind our results (Section 3.1) and

provide a more complete characterization in Section 3.2.

This section focuses only on the standard error of both esti-

mators; we revisit the robust error together with the standard

error in Section 4.

3.1. Simple Illustrative Problem

We consider a simple example in 3D where θ? ∈ R
3 is

the true parameter. Let e1 = [1, 0, 0]; e2 = [0, 1, 0]; e3 =
[0, 0, 1] denote the standard basis vectors in R

3. Suppose we

have one point in the standard training data Xstd = [0, 0, 1].

By definition (5), θ̂std satisfies Xstdθ̂std = ystd and hence

(θ̂std)3 = θ?
3
. However, θ̂std is unconstrained on the subspace

spanned by e1, e2 (the nullspace Null(Xstd)). The min-norm

objective chooses the solution with (θ̂std)1 = (θ̂std)2 = 0.

Figure 3 visualizes the projection of various quantities on

Null(Xstd). For simplicity of presentation, we omit the

projection operator in the figure. The projection of θ̂std onto

Null(Xstd) is the blue dot at the origin, and the parameter

error θ? − θ̂std is the projection of θ? onto Null(Xstd).

Effect of augmentation on parameter error. Suppose

we augment with an extra data point Xext = [1, 1, 0] =
e1 + e2 which lies in Null(Xstd) (black dashed line in Fig-

ure 3). The augmented estimator θ̂aug still fits the standard

data Xstd and thus (θ̂aug)3 = θ?
3
= (θ̂std)3. Due to fitting

the extra data Xext, θ̂aug (orange vector in Figure 3) must

also satisfy an additional constraint Xextθ̂aug = Xextθ
?. The

crucial observation is that additional constraints along one

direction (e1 + e2 in this case) could actually increase pa-

rameter error along other directions. For example, let’s

consider the direction e2 in Figure 3. Note that fitting Xext

makes θ̂aug have a large component along e2. Now if θ?
2

is

small (precisely, θ?
2
< θ?

1
/3), θ̂aug has a larger parameter

error along e2 than θ̂std, which was simply zero (Figure 3

(a)). Conversely, if the true component θ?
2

is large enough

(precisely, θ?
2
> θ?

1
/3), the parameter error of θ̂aug along e2

is smaller than that of θ̂std.

Effect of parameter error on standard error. The con-

tribution of different components of the parameter error to

the standard error is scaled by the population covariance Σ
(see Equation 4). For simplicity, let Σ = diag([λ1, λ2, λ3]).
In our example, the parameter error along e3 is zero

since both estimators interpolate the standard training point

Xstd = e1 = 3. Then, the ratio between λ1 and λ2 deter-

mines which component of the parameter error contributes
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Method Robust

Test Acc.

Standard

Test Acc.

Standard Training 0.8% 95.2%






Vanilla
SupervisedPG-AT (Madry et al., 2018) 45.8% 87.3%

TRADES (Zhang et al.,

2019)

55.4% 84.0%

Standard Self-Training 0.3% 96.4%






















Semisupervised
with same

unlabeled data

Robust Consistency Training

(Carmon et al., 2019)

56.5% 83.2%

RST + PG-AT (this paper) 58.5% 91.8%

RST + TRADES (this

paper)

(Carmon et al., 2019)

63.1% 89.7%

Interpolated AT

(Lamb et al., 2019)3

45.1% 93.6%














Modified
supervisedNeural Arch. Search

(Cubuk et al., 2017)

50.1% 93.2%

Method Robust

Test Acc.

Standard

Test Acc.

Standard Training 0.2% 94.6%






Vanilla
SupervisedWorst-of-10 73.9% 95.0%

Random 67.7% 95.1%

RST + Worst-of-10 (this

paper)

75.1% 95.8%
}

Semisupervised

RST + Random (this

paper)

70.9% 95.8%

Worst-of-10

(Engstrom et al., 2019)4

69.2% 91.3%






Existing baselines
(smaller model)

Random (Yang et al., 2019)5 58.3% 91.8%

Table 1. Performance of robust self-training (RST) applied to different perturbations and adversarial training algorithms. (Left) CIFAR-

10 standard and robust test accuracy against `∞ perturbations of size ε = 8/255. All methods use ε = 8/255 while training and use

the WRN-28-10 model. Robust accuracies are against a PG based attack with 20 steps. (Right) CIFAR-10 standard and robust test

accuracy against a grid attack of rotations up to 30 degrees and translations up to ∼ 10% of the image size, following (Engstrom et al.,

2019). All adversarial and random methods use the same parameters during training and use the WRN-40-2 model. For both tables,

shaded rows make use of 500K unlabeled images from 80M Tiny Images sourced in (Carmon et al., 2019). RST improves both the

standard and robust accuracy over the vanilla counterparts for different algorithms (AT and TRADES) and different perturbations (`∞ and

rotation/translations).

TRADES (Zhang et al., 2019) as the robust loss in the gen-

eral RST formulation (10); we additionally evaluate RST

with Projected Gradient Adversarial Training (AT) (Madry

et al., 2018) as the robust loss. Carmon et al. (2019) con-

sidered `∞ and `2 perturbations. We study rotations and

translations in addition to `∞ perturbations, and also study

the effect of labeled training set size on standard and robust

error. Table 1 presents the main results. More experiment

details appear in Appendix D.36.

Both RST+AT and RST+TRADES have lower robust and

standard error than their supervised counterparts AT and

TRADES across all perturbation types. This mirrors the

theoretical analysis of RST in linear regression (Theorem 2)

where the RST estimator has small robust error while prov-

ably not sacrificing standard error, and never obtaining

larger standard error than the standard estimator.

Effect of labeled sample size. Recall that our work mo-

tivates studying the tradeoff between robust and standard

error while taking generalization from finite data into ac-

count. We showed that the gap in the standard error of a

standard estimator and that of a robust estimator is large for

small training set sizes and decreases as the labeled dataset

is larger (Figure 1). We now study the effect of RST as we

vary the training set size in Figure 6. We find that RST+AT

has lower standard error than standard training across all

sample sizes for small ε, while simultaneously achieving

lower robust error than AT (see Appendix E.2.1). In the

6Code for our experiments are available here.

small data regime where vanilla adversarial training hurts

the standard error the most, we find that RST+AT gives

about 3x more absolute improvement than in the large data

regime. We note that this set of experiments are comple-

mentary to the experiments in (Schmidt et al., 2018) which

study the effect of the training set size only on robust error.

Effect on transformations that do not hurt standard er-

ror. We also test the effect of RST on perturbations where

robust training slightly improves standard error rather than

hurting it. Since RST regularizes towards the standard esti-

mator, one might suspect that the improvements from robust

training disappear with RST. In particular, we consider spa-

tial transformations T (x) that consist of simultaneous rota-

tions and translations. We use two common forms of robust

training for spatial perturbations, where we approximately

maximize over T (x) with either adversarial (worst-of-10) or

random augmentations (Yang et al., 2019; Engstrom et al.,

2019). Table 1 (right) presents the results. In the regime

where vanilla robust training does not hurt standard error,

RST in fact further improves the standard error by almost

1% and the robust error by 2-3% over the standard and

robust estimators for both forms of robust training. Thus

in settings where vanilla robust training improves standard

error, RST seems to further amplify the gains while in set-

tings where vanilla robust training hurts standard error, RST

mitigates the harmful effect.

Comparison to other semi-supervised approaches.

The RST estimator minimizes both a robust loss and a stan-
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dard loss on the unlabeled data with pseudo-labels (bottom

row, Figure 5). Both of these losses are necessary to simul-

taneously the standard and robust error over vanilla super-

vised robust training. Standard self-training, which only

uses standard loss on unlabeled data, has very high robust

error (≈ 100%). Similarly, Robust Consistency Training,

an extension of Virtual Adversarial Training (Miyato et al.,

2018) that only minimizes a robust self-consistency loss on

unlabeled data, marginally improves the robust error but

actually hurts standard error (Table 1).

5. Related Work

Existence of a tradeoff. Several works have attempted to

explain the tradeoff between standard and robust error by

studying simple models. These explanations are based on

an inherent tradeoff that persists even in the infinite data

limit. In Tsipras et al. (2019); Zhang et al. (2019); Fawzi

et al. (2018), standard and robust error are fundamentally

at odds, meaning no classifier is both accurate and robust.

In Nakkiran (2019), the tradeoff is due to the hypothesis

class not being expressive enough to contain an accurate

and robust classifier even if it exists. In contrast, we explain

the tradeoff in a more realistic setting with label-preserving

consistent perturbations (like imperceptible `∞ perturba-

tions or small rotations) in a well-specified setting (to mirror

expressive neural networks) where there is no tradeoff with

infinite data. In particular, our work takes into account

generalization from finite data to explain the tradeoff.

In concurrent and independent work, Chen et al. (2020) also

study the effect of dataset size on the tradeoff. They prove

that in a “strong adversary” regime, there is a tradeoff even

with infinite data, as the perturbations are large enough to

change the ground truth target. They also identify a “weak

adversary” regime (smaller perturbations) where the gap

in standard error between robust and standard estimators

first increases and then decreases, with no tradeoff in the

infinite data limit. Similar to our work, this provides an

example of a tradeoff due to generalization from finite data.

However, their experimental validation of the tradeoff trends

is restricted to simulated settings and they do not study how

to mitigate the tradeoff.

Mitigating the tradeoff. To the best of our knowledge,

ours is the first work that theoretically studies how to

mitigate the tradeoff between standard and robust error.

While robust self-training (RST) was proposed in recent

works (Carmon et al., 2019; Najafi et al., 2019; Uesato et al.,

2019) as a way to improve robust error, we prove that RST

eliminates the tradeoff between standard and robust error

in noiseless linear regression and systematically study the

effect on RST on the tradeoff with several different pertur-

bations and adversarial training algorithms on CIFAR-10.

Interpolated Adversarial Training (IAT) (Lamb et al., 2019)

and Neural Architecture Search (NAS) (Cubuk et al., 2017)

were proposed to mitigate the tradeoff bbetween standard

and robust error empirically. IAS considers a different train-

ing algorithm based on Mixup, NAS (Cubuk et al., 2017)

uses RL to search for more robust architectures. In Ta-

ble 1, we also report the standard and robust errors of these

methods. RST, IAT and NAS are incomparable as they find

different tradeoffs between standard and robust error. Re-

cently, Xie et al. (2020) showed that adversarial training

with appropriate batch normalization (AdvProp) with small

perturbations can actually improve standard error. However,

since they only aim to improve and evaluate the standard er-

ror, it is unclear if the robust error improves. We believe that

since RST provides a complementary statistical perspective

on the tradeoff, it can be combined with methods like IAT,

NAS or AdvProp to see further gains in standard and robust

errors. We leave this to future work.

6. Conclusion

We study the commonly observed increase in standard error

upon adversarial training due to generalization from finite

data in a well-specified setting with consistent perturbations.

Surprisingly, we show that methods that augment the train-

ing data with consistent perturbations, such as adversarial

training, can increase the standard error even in the simple

setting of noiseless linear regression where the true linear

function has zero standard and robust error. Our analysis

reveals that the mismatch between the inductive bias of

models and the underlying distribution of the inputs causes

the standard error to increase even when the augmented

data is perfectly labeled. This insight motivates a method

that provably eliminates the tradeoff in linear regression

by incorporating an appropriate regularizer that utilizes the

distribution of the inputs. While not immediately apparent,

we show that this is a special case of the recently proposed

robust self-training (RST) procedure that uses additional

unlabeled data to estimate the distribution of the inputs. Pre-

vious works view RST as a method to improve the robust

error by increasing the sample size. Our work provides

some theoretical justification for why RST improves both

the standard and robust error, thereby mitigating the trade-

off between accuracy and robustness in practice. How to

best utilize unlabeled data, and whether sufficient unlabeled

data would completely eliminate the tradeoff remain open

questions.
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