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Abstract

Adversarial training augments the training set
with perturbations to improve the robust error
(over worst-case perturbations), but it often leads
to an increase in the standard error (on unper-
turbed test inputs). Previous explanations for this
tradeoff rely on the assumption that no predic-
tor in the hypothesis class has low standard and
robust error. In this work, we precisely charac-
terize the effect of augmentation on the standard
error in linear regression when the optimal linear
predictor has zero standard and robust error. In
particular, we show that the standard error could
increase even when the augmented perturbations
have noiseless observations from the optimal lin-
ear predictor. We then prove that the recently
proposed robust self-training (RST) estimator im-
proves robust error without sacrificing standard
error for noiseless linear regression. Empirically,
for neural networks, we find that RST with dif-
ferent adversarial training methods improves both
standard and robust error for random and adver-
sarial rotations and adversarial /., perturbations
in CIFAR-10.

1. Introduction

Adversarial training methods (Goodfellow et al., 2015;
Madry et al., 2017) attempt to improve the robustness of neu-
ral networks against adversarial examples (Szegedy et al.,
2014) by augmenting the training set (on-the-fly) with per-
turbed examples that preserve the label but that fool the
current model. While such methods decrease the robust er-
ror, the error on worst-case perturbed inputs, they have been
observed to cause an undesirable increase in the standard
error, the error on unperturbed inputs (Madry et al., 2018;
Zhang et al., 2019; Tsipras et al., 2019).
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Previous works attempt to explain the tradeoff between stan-
dard error and robust error in two settings: when no accurate
classifier is consistent with the perturbed data (Tsipras et al.,
2019; Zhang et al., 2019; Fawzi et al., 2018), and when
the hypothesis class is not expressive enough to contain the
true classifier (Nakkiran, 2019). In both cases, the tradeoff
persists even with infinite data. However, adversarial pertur-
bations in practice are typically defined to be imperceptible
to humans (e.g. small ¢, perturbations in vision). Hence
by definition, there exists a classifier (the human) that is
both robust and accurate with no tradeoff in the infinite data
limit. Furthermore, since deep neural networks are expres-
sive enough to fit not only adversarial but also randomly
labeled data perfectly (Zhang et al., 2017), the explanation
of a restricted hypothesis class does not perfectly capture
empirical observations either. Empirically on CIFAR-10, we
find that the gap between the standard error of adversarial
training and standard training decreases as we increase the
labeled data size, thereby also suggesting the tradeoff could
disappear with infinite data (See Figure 1).

In this work, we provide a different explanation for the
tradeoff between standard and robust error that takes gen-
eralization from finite data into account. We first consider
a linear model where the true linear function has zero stan-
dard and robust error. Adversarial training augments the
original training set with extra data, consisting of sam-
ples (zex, y) where the perturbations x.y are conmsistent,
meaning that the conditional distribution stays constant
Py(- | Zext) = Py(- | ). We show that even in this simple
setting, the augmented estimator, i.e. the minimum norm
interpolant of the augmented data (standard + extra data),
could have a larger standard error than that of the standard
estimator, which is the minimum norm interpolant of the
standard data alone. We found this surprising given that
adding consistent perturbations enforces the predictor to
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Figure 2. We consider function interpolation via cubic splines. (Left) The underlying distribution P denoted by sizes of the circles. The
true function is a staircase. (Middle) With a small number of standard training samples (purple circles), an augmented estimator that fits
local perturbations (green crosses) has a large error. In constrast, the standard estimator that does not fit perturbations is a simple straight
line and has small error. (Right) Robust self-training (RST) regularizes the predictions of an augmented estimator towards the predictions

of the standard estimator thereby obtaining both small error on test points and their perturbations.

satisfy invariances that the true model exhibits. One might
think adding this information would only restrict the hypoth-
esis class and thus enable better generalization, not worse.

We show that this tradeoff stems from overparameterization.
If the restricted hypothesis class (by enforcing invariances)
is still overparameterized, the inductive bias of the estima-
tion procedure (e.g., the norm being minimized) plays a key
role in determining the generalization of a model.

Figure 2 shows an illustrative example of this phenomenon
with cubic smoothing splines. The predictor obtained via
standard training (dashed blue) is a line that captures the
global structure and obtains low error. Training on aug-
mented data with locally consistent perturbations of the
training data (crosses) restricts the hypothesis class by en-
couraging the predictor to fit the local structure of the high
density points. Within this set, the cubic splines predic-
tor (solid orange) minimizes the second derivative on the
augmented data, compromising the global structure and per-
forming badly on the tails (Figure 2(b)). More generally,
as we characterize in Section 3, the tradeoff stems from
the inductive bias of the minimum norm interpolant, which
minimizes a fixed norm independent of the data, while the
standard error depends on the geometry of the covariates.

Recent works (Carmon et al., 2019; Najafi et al., 2019; Ue-
sato et al., 2019) introduced robust self-training (RST), a
robust variant of self-training that overcomes the sample
complexity barrier of learning a model with low robust error
by leveraging extra unlabeled data. In this paper, our theo-
retical understanding of the tradeoff between standard and
robust error in linear regression motivates RST as a method
to improve robust error without sacrificing standard error.
In Section 4.2, we prove that RST eliminates the tradeoff
for linear regression—RST does not increase standard error
compared to the standard estimator while simultaneously
achieving the best possible robust error, matching the stan-
dard error (see Figure 2(c) for the effect of RST on the spline
problem). Intuitively, RST regularizes the predictions of the

robust estimator towards that of the standard estimator on
the unlabeled data thereby eliminating the tradeoff.

As previous works only focus on the empirical evaluation
of the gains in robustness via RST, we systematically evalu-
ate the effect of RST on both the standard and robust error
on CIFAR-10 when using unlabeled data from Tiny Images
as sourced in Carmon et al. (2019). We expand upon em-
pirical results in two ways. First, we study the effect of the
labeled training set sizes and and find that the RST improves
both robust and standard error over vanilla adversarial train-
ing across all sample sizes. RST offers maximum gains
at smaller sample sizes where vanilla adversarial training
increases the standard error the most. Second, we consider
an additional family of perturbations over random and ad-
versarial rotation/translations and find that RST offers gains
in both robust and standard error.

2. Setup

We consider the problem of learning a mapping from an
input z € X C R? to a target y € ). For our theoreti-
cal analysis, we focus on regression where ) = R while
our empirical studies consider general ). Let P, be the
underlying distribution, P the marginal on the inputs and
P,(- | x) the conditional distribution of the targets given
inputs. Given n training pairs (2;, y;) ~ Pxy, we use Xq to
denote the measurement matrix [z, xa,... 1, € R?*4
and yyq to denote the target vector [y1, a2, ...y,] € R™.
Our goal is to learn a predictor fy : X — Y that (i) has
low standard error on inputs x and (ii) low robust error
with respect to a set of perturbations 7'(x). Formally, the
error metrics for a predictor fy and a loss function ¢ are the
standard error

Lsa(0) = Ep, [£(fo(2), y)] (1)
and the robust error
Lion(0) = pry[ max £(fp(Tex), v)], (2)

chlGT(CE)
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for consistent perturbations T'(x) that satisfy
P/(- | zext) = Py(- | ), YZext € T(x). 3

Such transformations may consist of small rotations, hor-
izontal flips, brightness or contrast changes (Krizhevsky
et al., 2012; Yaeger et al., 1996), or small £, perturbations
in vision (Szegedy et al., 2014; Goodfellow et al., 2015) or
word synonym replacements in NLP (Jia & Liang, 2017;
Alzantot et al., 2018).

Noiseless linear regression. In section 3, we analyze
noiseless linear regression on inputs x with targets y =
2 T0* with true parameter §* € RF.! For linear regres-
sion, / is the squared loss which leads to the standard error
(Equation 1) taking the form

Lyg(0) = Ep[(x"0—2"0")*] = (0-0") '2(6-0%), (4)
where ¥ = Ep [rz "] is the population covariance.

Minimum norm estimators. In this work, we focus on
interpolating estimators in highly overparameterized mod-
els, motivated by modern machine learning models that
achieve near zero training loss (on both standard and extra
data). Interpolating estimators for linear regression have
been studied in many recent works such as (Ma et al., 2018;
Belkin et al., 2018; Hastie et al., 2019; Liang & Rakhlin,
2018; Bartlett et al., 2019). We present our results for in-
terpolating estimators with minimum Euclidean norm, but
our analysis directly applies to more general Mahalanobis
norms via suitable reparameterization (see Appendix A).

We consider robust training approaches that augment the
standard training data X4, ygea € R™*¢ x R with some
extra training data Xey, Yext € R™*? x R where the rows
of Xex consist of vectors in the set {Zex : Zexe € T(x), 2 €
Xqa}.2 We call the standard data together with the extra
data as augmented data. We compare the following min-
norm estimators: (i) the standard estimator ésld interpolating
[ X, Ysta] and (ii) the augmented estimator éaug interpolat-
il’lg X = [Xstd; Xext]a Y = [ysld; yext}:

Osa = argnbin {||9H2 : Xt = ysld}

oaug = argngn {HQHQ : Xstde = Ystd, Xexto = yext}~ (5)

Notation.
,L'th

For any vector z € R", we use z; to denote the
coordinate of z.

'Our analysis extends naturally to arbitrary feature maps ¢(zx).

*In practice, Xex is typically generated via iterative optimiza-
tion such as in adversarial training (Madry et al., 2018), or by
random sampling as in data augmentation (Krizhevsky et al., 2012;
Yaeger et al., 1996).

3. Analysis in the Linear Regression Setting

In this section, we compare the standard errors of the stan-
dard estimator and the augmented estimator in noiseless
linear regression. We begin with a simple toy example that
describes the intuition behind our results (Section 3.1) and
provide a more complete characterization in Section 3.2.
This section focuses only on the standard error of both esti-
mators; we revisit the robust error together with the standard
error in Section 4.

3.1. Simple Illustrative Problem

We consider a simple example in 3D where 0* € R? is
the true parameter. Let e; = [1,0,0];e2 = [0,1,0];e5 =
[0, 0, 1] denote the standard basis vectors in R®. Suppose we
have one point in the standard training data X4 = [0, 0, 1].
By definition (5), éstd satisfies Xstdéstd = ygq and hence
(és[d) 3 = 0%. However, 04 is unconstrained on the subspace
spanned by e, e5 (the nullspace Null( Xy )). The min-norm
objective chooses the solution with (9S[d)1 = (éstd)z = 0.
Figure 3 visualizes the projection of various quantities on
Null(Xq). For simplicity of presentation, we omit the
projection operator in the figure. The projection of Oq onto
Null(Xyq) is the blue dot at the origin, and the parameter

error 0* — Oy is the projection of 8* onto Null(Xyq).

Effect of augmentation on parameter error. Suppose
we augment with an extra data point X = [1,1,0] =
e1 + e2 which lies in Null(Xq4) (black dashed line in Fig-
ure 3). The augmented estimator éaug still fits the standard

data Xq and thus (faug)s = 05 = (6sa)3. Due to fitting
the extra data X, éaug (orange vector in Figure 3) must
also satisfy an additional constraint Xextéaug = Xext0*. The
crucial observation is that additional constraints along one
direction (e; + e in this case) could actually increase pa-
rameter error along other directions. For example, let’s
consider the direction es in Figure 3. Note that fitting Xy,
makes 9aug have a large component along e5. Now if 05 is
small (precisely, 85 < 67/3), éaug has a larger parameter
error along e than éstd, which was simply zero (Figure 3
(a)). Conversely, if the true component 65 is large enough
(precisely, 05 > 67/3), the parameter error of éaug along eo

is smaller than that of éstd-

Effect of parameter error on standard error. The con-
tribution of different components of the parameter error to
the standard error is scaled by the population covariance >
(see Equation 4). For simplicity, let ¥ = diag([A1, A2, As]).
In our example, the parameter error along es is zero
since both estimators interpolate the standard training point
Xaa = e1 = 3. Then, the ratio between A\ and A\, deter-
mines which component of the parameter error contributes
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Figure 3. lllustration of the 3-D example described in Sec. 3.1. (a)-
(b) Effect of augmentation on parameter error for different 6*.
We show the projections of the standard estimator émd (blue circle),
augmented estimator éaug (orange arrow), and true parameters 6*
(black arrow) on Null(Xq), spanned by e; and es. For simplicity
of presentation, we omit the projection operator in the figure labels.
Depending on 6*, the parameter error of 9aug along es could be
larger or smaller than the parameter error of Bga along es. (¢)—(d)
Dependence of space of safe augmentations on X. Visualization
of the space of extra data points z.x (orange), that do not cause an
increase in the standard error for the illustrated 6* (black vector),
as result of Theorem 1.

more to the standard error.

When is Lstd(éaug) > Lstd(éstd)? Putting the two effects
together, we see that when 63 is small as in Fig 3(a), éaug
has larger parameter error than ésld in the direction es. If
Ag > \q, error in es is weighted much more heavily in the
standard error and consequently éaug would have a larger
standard error. Precisely, we have

std(éaug) > Lstd(éstd) — )\2(91( - 395) > )\1(39{ — 95)

We present a formal characterization of this tradeoff in gen-
eral in the next section.

3.2. General Characterizations

In this section, we precisely characterize when the aug-
mented estimator éaug that fits extra training data points X
in addition to the standard points X4 has higher standard
error than the standard estimator éstd that only fits Xq4. In
particular, this enables us to understand when there is a
“tradeoff” where the augmented estimator éaug has lower
robust error than éstd by virtue of fitting perturbations, but
has higher standard error. In Section 3.1, we illustrated how
the parameter error of éaug could be larger than éstd in some
directions, and if these directions are weighted heavily in the

population covariance 3, the standard error of éaug would
be larger.

def A
Formally, let us define the parameter errors Agy = Ogq—0*

def 4

and Ay = 0Oaue — 0*. Recall that the standard errors are

std(éstd) - A;lt—dZAstdv std(éaug) -

where ¥ is the population covariance of the underlying
inputs drawn from P,.

ApeEAug,  (6)

To characterize the effect of the inductive bias of mini-
mum norm interpolation on the standard errors, we de-
fine the following projection operators: I, the projec-
tion matrix onto Null(Xy) and Haug, the projection ma-
trix onto Null([Xext, Xga]) (see formal definition in Ap-
pendix B). Since Haug and 9s1d are minimum norm inter-
polants, Hstdﬂsld = 0 and IT: Qaug = 0. Further, in noiseless

linear regression, Gsld and Gaug have no error in the span of
Xua and [Xga; Xexi] respectively. Hence,

aug

Astd - Hthde*; Aaug - HL 0. (7)

aug
Our main result relies on the key observation that for any
vector u, I u can be decomposed into a sum of two or-
thogonal components v and w such that IT},u = v +w
with w = Ij,u and v = IgIlyu. This is because
Null([Xq; Xext]) € Null(Xgq) and thus Hsltdﬂig = H,ig
Now setting u = 6* and using the error expressions in Equa-
tion 6 and Equation 7 gives a precise characterization of the

difference in the standard errors of éstd and éaug.

Theorem 1. The difference in the standard errors of the
standard estimator GS,d and augmented estimator Haug can
be written as follows.

std(éstd) std( Aaug) = 'UTZ'U + QU)TEU, (8)
where v = 111 11,,,0* and w = Hj;,ge*

The proof of Theorem 1 is in Appendix B.3. The increase in
standard error of the augmented estimator can be understood
in terms of the vectors w and v defined in Theorem 1. The
first term v ' Yv is always positive, and corresponds to the
decrease in the standard error of the augmented estimator
éaug by virtue of fitting extra training points in some direc-
tions. However, the second term 2w " Yo can be negative
and intuitively measures the cost of a possible increase in
the parameter error along other directions (similar to the in-
crease along es in the simple setting of Figure 3(a)). When
the cost outweighs the benefit, the standard error of éaug is
larger. Note that both the cost and benefit is determined
by ¥ which governs how the parameter error affects the
standard error.

We can use the above expression (Theorem 1) for the dif-
ference in standard errors of f,,, and 44 to characterize
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different “safe” conditions under which augmentation with
extra data does not increase the standard error. See Ap-
pendix B.7 for a proof.

Corollary 1. The following conditions are sufficient for

La(Baug) < Lga(Oga), i.e. the standard error does not
increase when fitting augmented data.

1. The population covariance Y. is identity.

2. The augmented data [ X 45 X .| spans the entire space,

or equivalently Halug =0.

3. The extra data ., € R is a single point such that
Tey IS an eigenvector of Y.

Matching inductive bias. We would like to draw special
attention to the first condition. When Y = I, notice that the
norm that governs the standard error (Equation 6) matches
the norm that is minimized by the interpolants (Equation 5).
Intuitively, the estimators have the “right” inductive bias;
under this condition, the augmented estimator éaug does not
have higher standard error. In other words, the observed
increase in the standard error of éaug can be attributed to
the “wrong” inductive bias. In Section 4, we will use this
understanding to propose a method of robust training which
does not increase standard error over standard training.

Safe extra points. We use Theorem 1 to plot the safe
extra points Tex; € R? that do not lead to an increase in
standard error for any 6* in the simple 3D setting described
in Section 3.1 for two different 3 (Figure 3 (c), (d)). The
safe points lie in cones which contain the eigenvectors of X
(as expected from Corollary 1). The width and alignment
of the cones depends on the alignment between 6* and
the eigenvectors of X. As the eigenvalues of ¥ become
less skewed, the space of safe points expands, eventually
covering the entire space when > = I (see Corollary 1).

Local versus global structure. We now tie our analysis
back to the cubic splines interpolation problem from Fig-
ure 2. The inputs can be appropriately rotated and scaled
such that the cubic spline interpolant is the minimum Eu-
clidean norm interpolant (as in Equation 5). Under this
transformation, the different eigenvectors of the nullspace
of the training data Null(Xq) represent the “local” high
frequency components with small eigenvalues or “global”
low frequency components with large eigenvalues (see Fig-
ure 4). An augmentation that encourages the fitting local
components in Null(Xq) could potentially increase the er-
ror along other global components (like the increase in error
along ey in Figure 3(a)). Such an increase, coupled with
the fact that global components have larger eigenvalue in
>, results in the standard error of éaug being larger than that

of fyq. See Figure 8 and Appendix C.3.1 for more details.
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Figure 4. Top 4 eigenvectors of X in the splines problem (from
Figure 2), representing wave functions in the input space. The
“global” eigenfunctions, varying less over the domain, correspond
to larger eigenvalues, making errors in global dimensions costly in
terms of test error.

This is similar to the recent observation that adversarial
training with ¢, perturbations encourages neural networks
to fit the high frequency components of the signal while
compromising on the low-frequency components (Yin et al.,
2019).

Model complexity. Finally, we relate the magnitude of
increase in standard error of the augmented estimator to the
complexity of the true model.

Proposition 1. For a given Xy, Xey, 2,
led(éaug) - Lsrd(éstd) >c = ”9*”3 - Héstdug > e
for some scalar v > 0 that depends on X, X ey, 2.

In other words, for a large increase in standard error upon
augmentation, the true parameter 8* needs to be sufficiently
more complex (in the /5 norm) than the standard estimator
éstd. For example, the construction of the cubic splines in-
terpolation problem relies on the underlying function (stair-
case) being more complex with additional local structure
than the standard estimator—a linear function that fits most
points and can be learned with few samples. Proposition 1
states that this requirement holds more generally. The proof
of Proposition 1 appears in Appendix B.5. A similar intu-
ition can be used to construct an example where augmen-
tation can increase standard error for minimum #;-norm
interpolants when 6* is dense (Appendix G).

4. Robust Self-Training

We now use insights from Section 3 to construct estimators
with low robust error without increasing the standard error.
While Section 3 characterized the effect of adding extra data
Xext in general, in this section we consider robust training
which augments the dataset with extra data X,y that are
consistent perturbations of the standard training data Xy.

Since the standard estimator has small standard error, a
natural strategy to mitigate the tradeoff is to regularize the
augmented estimator to be closer to the standard estimator.
The choice of distance between the estimators we regularize
is very important. Recall from Section 3.1 that the pop-
ulation covariance Y determines how the parameter error
affects the standard error. This suggests using a regularizer
that incorporates information about .



Understanding and Mitigating the Tradeoff Between Robustness and Accuracy

We first revisit the recently proposed robust self-training
(RST) (Carmon et al., 2019; Najafi et al., 2019; Uesato
et al., 2019) that incorporates additional unlabeled data via
pseudo-labels from a standard estimator. Previous work only
focused on the effectiveness of RST in improving the robust
error. In Section 4.2, we prove that in linear regression, RST
eliminates the tradeoff between standard and robust error
(Theorem 2). The proof hinges on the connection between
RST and the idea of regularizing towards the standard es-
timator discussed above. In particular, we show that the
RST objective can be rewritten as minimizing a suitable
Y-induced distance to the standard estimator.

In Section 4.3, we expand upon previous empirical RST
results for CIFAR-10 across various training set sizes and
perturbations (rotations/translations in addition to £..). We
observe that across all settings, RST substantially improves
the standard error while also improving the robust error over
the vanilla supervised robust training counterparts.

4.1. General Formulation of RST

We first describe the general two-step robust self-training
(RST) procedure (Carmon et al., 2019; Uesato et al., 2019)
for a parameteric model fy:

1. Perform standard training on labeled data {(z;, y; )},

to obtain fyq = argming » f( fo(xsi),yi)-
i=1

2. Perform robust training on both the labeled data and
unlabeled inputs {Z;}7, with pseudo-labels §; =
fégm (Z;) generated from the standard estimator fyg.

The second stage typically involves a combination of the
standard loss ¢ and a robust loss ¢,,,. The robust loss en-
courages invariance of the model over perturbations 7'(x),
and is generally defined as

bov(fo(xi),yi) = max  L(fo(Taav),¥i)-  (9)

Taay €T (27)

It is convenient to summarize the robust self-training esti-
mator ém as the minimizer of a weighted combination of
four separate losses as follows. We define the losses on the
labeled dataset {(z;,y;)}", as

Faara®) = 5 37 o). i),
i=1

Lrob-lab(e) = % ZﬁrOb(-f@(xi)? yz)

i=1

Standard Robust

_ 2 Tp)2 max (z'0—z], 0)>

Labeled (y—z0) e aav?)
Noiseless targets Consistent perturbations
=T =T p\2

- AT m2 max (2'60—2,,.0

Unlabeled G—20) imeT(a':)( aav?)
Imperfect pseudo-labels | Consistent perturbations

Figure 5. Illustration shows the four components of the RST loss
(Equation (10)) in the special case of linear regression (Eq. (11)).
Green cells contain hard constraints where the optimal §* obtains
zero loss. The orange cell contains the soft constraint that is
minimized while satisfying hard constraints to obtain the final
linear RST estimator.

The losses on the unlabeled samples {Z;}"; which are
psuedo-labeled by the standard estimator are

m

Lyauntan (05 0sa) = %Zﬁ(fe(fa:)7féqd(fi)),
i=1

. . 1 &

Lrob-unlab(a; Gsld) = E Z grob(f@ (-i‘i)a fé‘m (i'7)>
i=1

Putting it all together, we have

erst = argemin (a-z/std—lab(e) + 5f4r0b—lab(9) (10)

+ 'Y-i/std—unlab(0§ éstd) + Af/rob—unlab(& éstd)) 5
for fixed scalars «, 8, v, A > 0.

4.2. Robust Self-Training for Linear Regression

We now return to the noiseless linear regression as described
in Section 2 and specialize the general RST estimator de-
scribed in Equation (10) to this setting. We prove that RST
eliminates the decrease in standard error in this setting while
achieving low robust error by showing that RST appropri-
ately regularizes the augmented estimator towards the stan-
dard estimator.

Our theoretical results hold for RST procedures where the
pseudo-labels can be generated from any interpolating esti-
mator iy gq satisfying Xq6inisia = ysia- This includes but
is not restricted to the mininum-norm standard estimator éstd
defined in (5). We use the squared loss as the loss function /.
For consistent perturbations 7'(), we analyze the following
RST estimator for linear regression

Ot = arg;nin{[/std—unlab(& eim—sld) : Lrob—unlab(e) =0,
Estdflab(e) =0, i/robflab(e) = O} (11

Figure 5 shows the four losses of RST in this special case
of linear regression.
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Obtaining this specialized estimator from the general RST
estimator in Equation (10) involves the following steps.
First, for convenience of analysis, we assume access to
the population covariance X via infinite unlabeled data
and thus replace the finite sample losses on the unlabeled
data istd,unlab(Q),ﬁrob,un]ab(ﬂ) by their population losses
Lgd-untan (0); Liob-untab(6). Second, the general RST objec-
tive minimizes some weighted combination of four losses.
When specializing to the case of noiseless linear regression,
since ﬁstd, 1ab(6*) = 0, rather than minimizing aﬁsld_lab(ﬂ*),
we set the coefficients on the losses such that the estima-
tor satisfies a hard constraint f/std,lab(e*) = 0. This con-
straint which enforces interpolation on the labeled dataset
yi = ;0 Vi = 1,...n allows us to rewrite the robust
loss (Equation 9) on the labeled examples equivalently as a
self-consistency loss defined independent of labels.

N 1 n
Lyop1an (0) = - Hé?% )(xiTe — 2,0,0).
i—1 Ladv x

Since 6* is invariant on perturbations 7'(z) by definition,
we have Lygp1ap(6*) = 0 and thus we introduce a constraint

Liob1an(0) = 0 in the estimator.

For the losses on the unlabeled data, since the pseudo-labels
are not perfect, we minimize Lgg yniqp in the objective in-
stead of enforcing a hard constraint on Lgg yn1ap. However,
similarly to the robust loss on labeled data, we can re-
formulate the robust loss on unlabeled samples Lyop uniab
as a self-consistency loss that does not use pseudo-labels.
By definition, Lobynab(6*) = 0 and thus we enforce
Liob-uniab(#) = 0 in the specialized estimator.

We now study the standard and robust error of the linear
regression RST estimator defined above in Equation (11).

Theorem 2. Assume the noiseless linear model y = ' 6*.
Let Oy« be an arbitrary interpolant of the standard data,

i.e. Xgqbinisia = Ysia. Then
L.s‘td (érst) S L.s‘td(eint-sld)~
Simultaneously, L,.ob(ém) = Ls,d(ém).

See Appendix D for a full proof.

The crux of the proof is that the optimization objective of
RST is an inductive bias that regularizes the estimator to
be close to the standard estimator, weighing directions by
their contribution to the standard error via 2. To see this,
we rewrite

Lstd—unlab(e; eint»std) = EPX [(L%Teint»std - jT0)2]
= (einlfsld - Q)Tz(aint—std - 0)
By incorporating an appropriate >-induced regularizer

while satisfying constraints on the robust losses, RST en-
sures that the standard error of the estimator never exceeds
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(a) Spline Staircase (b) CIFAR-10 (AT)
Figure 6. Effect of data augmentation on test error as we vary the
number of training samples. (a)-(b) We plot the difference in er-
rors of the augmented estimator and standard estimator. In both
the spline staircase simulations and data augmentation with adver-
sarial £, perturbations via adversarial training (AT) on CIFAR-10,
the increase in test error decreases as the training sample size in-
creases. In (b), robust self-training (RST+AT) not only mitigates
the increase in test error from AT but even improves test error
beyond that of the standard estimator.

the standard error of ésm. The robust error of any estimator
is lower bounded by its standard error, and this gap can be
arbitrarily large for the standard estimator. However, the
robust error of the RST estimator matches the lower bound
of its standard error which in turn is bounded by the stan-
dard error of the standard estimator and hence is small. To
provide some graphical intuition for the result, see Figure 2
that visualizes the RST estimator on the cubic splines inter-
polation problem that exemplifies the increase in standard
error upon augmentation. RST captures the global structure
and obtains low standard error by matching Oa (straight
line) on unlabeled inputs. Simultaneously, RST enforces
invariance on local transformations on both labeled and un-
labeled inputs, and obtains low robust error by capturing the
local structure across the domain.

Implementation of linear RST. The constraint on the
standard loss on labeled data simply corresponds to interpo-
lation on the standard labeled data. The constraints on the
robust self-consistency losses involve a maximization over
a set of transformations. In the case of linear regression,
such constraints can be equivalently represented by a set of
at most d linear constraints, where d is the dimension of the
covariates. Further, with this finite set of constraints, we
only require access to the covariance Y in order to constrain
the population robust loss. Appendix D gives a practical
iterative algorithm that computes the RST estimator for
linear regression reminiscent of adversarial training in the
semi-supervised setting.

4.3. Empirical Evaluation of RST

Carmon et al. (2019) empirically evaluate RST with a fo-
cus on studying gains in the robust error. In this work, we
focus on both the standard and robust error and expand
upon results from previous work. Carmon et al. (2019) used
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Method Robust Standard

Test Acc. Test Acc.
Standard Training 0.8% 95.2% )
PG-AT (Madry et al., 2018) | 45.8% 87.3% }Su\[;ael;vilged
TRADES (Zhang et al., 55.4% 84.0%
2019)
Standard Self-Training 0.3% 96.4%
Robust Consistency Training | 56.5% 83.2% Semis ised

CMISUPETVISE!

(Carmon et al., 2019) with same
RST + PG-AT (this paper) | 58.5% 91.89, | unlabeled daa
RST + TRADES (this 63.1% 89.7%
paper)
(Carmon et al., 2019)
Interpolated AT 45.1% 93.6%
(Lamb et al., 2019)? Modified
Neural Arch. Search 50.1% 93.29 ( supervised
(Cubuk et al., 2017)

Method Robust Standard

Test Acc. Test Acc.
Standard Training 0.2% 94.6% )
Worst-of-10 73.9% 95.0% }SLX,‘;‘;‘J};‘w
Random 67.7% 95.1%
RST + Worst-of-10 (this 75.1% 95.8% . )

Semisupervised

paper)
RST + Random (this 70.9 % 95.8%
paper)
Worst-of-10 69.2% 91.3% o )
(Engstrom et al., 2019)* }‘iﬁ‘,;‘;}‘ﬁ,";ﬁ:é‘gﬁs
Random (Yang et al., 2019)° | 58.3% 91.8%

Table 1. Performance of robust self-training (RST) applied to different perturbations and adversarial training algorithms. (Left) CIFAR-
10 standard and robust test accuracy against £ perturbations of size e = 8/255. All methods use ¢ = 8/255 while training and use
the WRN-28-10 model. Robust accuracies are against a PG based attack with 20 steps. (Right) CIFAR-10 standard and robust test
accuracy against a grid attack of rotations up to 30 degrees and translations up to ~ 10% of the image size, following (Engstrom et al.,
2019). All adversarial and random methods use the same parameters during training and use the WRN-40-2 model. For both tables,
shaded rows make use of 500K unlabeled images from 80M Tiny Images sourced in (Carmon et al., 2019). RST improves both the
standard and robust accuracy over the vanilla counterparts for different algorithms (AT and TRADES) and different perturbations (¢, and

rotation/translations).

TRADES (Zhang et al., 2019) as the robust loss in the gen-
eral RST formulation (10); we additionally evaluate RST
with Projected Gradient Adversarial Training (AT) (Madry
et al., 2018) as the robust loss. Carmon et al. (2019) con-
sidered /., and {2 perturbations. We study rotations and
translations in addition to ¢, perturbations, and also study
the effect of labeled training set size on standard and robust
error. Table 1 presents the main results. More experiment
details appear in Appendix D.3°.

Both RST+AT and RST+TRADES have lower robust and
standard error than their supervised counterparts AT and
TRADES across all perturbation types. This mirrors the
theoretical analysis of RST in linear regression (Theorem 2)
where the RST estimator has small robust error while prov-
ably not sacrificing standard error, and never obtaining
larger standard error than the standard estimator.

Effect of labeled sample size. Recall that our work mo-
tivates studying the tradeoff between robust and standard
error while taking generalization from finite data into ac-
count. We showed that the gap in the standard error of a
standard estimator and that of a robust estimator is large for
small training set sizes and decreases as the labeled dataset
is larger (Figure 1). We now study the effect of RST as we
vary the training set size in Figure 6. We find that RST+AT
has lower standard error than standard training across all
sample sizes for small €, while simultaneously achieving
lower robust error than AT (see Appendix E.2.1). In the

8Code for our experiments are available here.

small data regime where vanilla adversarial training hurts
the standard error the most, we find that RST+AT gives
about 3x more absolute improvement than in the large data
regime. We note that this set of experiments are comple-
mentary to the experiments in (Schmidt et al., 2018) which
study the effect of the training set size only on robust error.

Effect on transformations that do not hurt standard er-
ror. We also test the effect of RST on perturbations where
robust training slightly improves standard error rather than
hurting it. Since RST regularizes towards the standard esti-
mator, one might suspect that the improvements from robust
training disappear with RST. In particular, we consider spa-
tial transformations 7'(x) that consist of simultaneous rota-
tions and translations. We use two common forms of robust
training for spatial perturbations, where we approximately
maximize over T'(z) with either adversarial (worst-of-10) or
random augmentations (Yang et al., 2019; Engstrom et al.,
2019). Table 1 (right) presents the results. In the regime
where vanilla robust training does not hurt standard error,
RST in fact further improves the standard error by almost
1% and the robust error by 2-3% over the standard and
robust estimators for both forms of robust training. Thus
in settings where vanilla robust training improves standard
error, RST seems to further amplify the gains while in set-
tings where vanilla robust training hurts standard error, RST
mitigates the harmful effect.

Comparison to other semi-supervised approaches.
The RST estimator minimizes both a robust loss and a stan-
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dard loss on the unlabeled data with pseudo-labels (bottom
row, Figure 5). Both of these losses are necessary to simul-
taneously the standard and robust error over vanilla super-
vised robust training. Standard self-training, which only
uses standard loss on unlabeled data, has very high robust
error (= 100%). Similarly, Robust Consistency Training,
an extension of Virtual Adversarial Training (Miyato et al.,
2018) that only minimizes a robust self-consistency loss on
unlabeled data, marginally improves the robust error but
actually hurts standard error (Table 1).

5. Related Work

Existence of a tradeoff. Several works have attempted to
explain the tradeoff between standard and robust error by
studying simple models. These explanations are based on
an inherent tradeoff that persists even in the infinite data
limit. In Tsipras et al. (2019); Zhang et al. (2019); Fawzi
et al. (2018), standard and robust error are fundamentally
at odds, meaning no classifier is both accurate and robust.
In Nakkiran (2019), the tradeoff is due to the hypothesis
class not being expressive enough to contain an accurate
and robust classifier even if it exists. In contrast, we explain
the tradeoff in a more realistic setting with label-preserving
consistent perturbations (like imperceptible ¢, perturba-
tions or small rotations) in a well-specified setting (to mirror
expressive neural networks) where there is no tradeoff with
infinite data. In particular, our work takes into account
generalization from finite data to explain the tradeoff.

In concurrent and independent work, Chen et al. (2020) also
study the effect of dataset size on the tradeoff. They prove
that in a “strong adversary” regime, there is a tradeoff even
with infinite data, as the perturbations are large enough to
change the ground truth target. They also identify a “weak
adversary” regime (smaller perturbations) where the gap
in standard error between robust and standard estimators
first increases and then decreases, with no tradeoff in the
infinite data limit. Similar to our work, this provides an
example of a tradeoff due to generalization from finite data.
However, their experimental validation of the tradeoff trends
is restricted to simulated settings and they do not study how
to mitigate the tradeoff.

Mitigating the tradeoff. To the best of our knowledge,
ours is the first work that theoretically studies how to
mitigate the tradeoff between standard and robust error.
While robust self-training (RST) was proposed in recent
works (Carmon et al., 2019; Najafi et al., 2019; Uesato et al.,
2019) as a way to improve robust error, we prove that RST
eliminates the tradeoff between standard and robust error
in noiseless linear regression and systematically study the
effect on RST on the tradeoff with several different pertur-
bations and adversarial training algorithms on CIFAR-10.

Interpolated Adversarial Training (IAT) (Lamb et al., 2019)
and Neural Architecture Search (NAS) (Cubuk et al., 2017)
were proposed to mitigate the tradeoff bbetween standard
and robust error empirically. IAS considers a different train-
ing algorithm based on Mixup, NAS (Cubuk et al., 2017)
uses RL to search for more robust architectures. In Ta-
ble 1, we also report the standard and robust errors of these
methods. RST, IAT and NAS are incomparable as they find
different tradeoffs between standard and robust error. Re-
cently, Xie et al. (2020) showed that adversarial training
with appropriate batch normalization (AdvProp) with small
perturbations can actually improve standard error. However,
since they only aim to improve and evaluate the standard er-
ror, it is unclear if the robust error improves. We believe that
since RST provides a complementary statistical perspective
on the tradeoff, it can be combined with methods like IAT,
NAS or AdvProp to see further gains in standard and robust
errors. We leave this to future work.

6. Conclusion

We study the commonly observed increase in standard error
upon adversarial training due to generalization from finite
data in a well-specified setting with consistent perturbations.
Surprisingly, we show that methods that augment the train-
ing data with consistent perturbations, such as adversarial
training, can increase the standard error even in the simple
setting of noiseless linear regression where the true linear
function has zero standard and robust error. Our analysis
reveals that the mismatch between the inductive bias of
models and the underlying distribution of the inputs causes
the standard error to increase even when the augmented
data is perfectly labeled. This insight motivates a method
that provably eliminates the tradeoff in linear regression
by incorporating an appropriate regularizer that utilizes the
distribution of the inputs. While not immediately apparent,
we show that this is a special case of the recently proposed
robust self-training (RST) procedure that uses additional
unlabeled data to estimate the distribution of the inputs. Pre-
vious works view RST as a method to improve the robust
error by increasing the sample size. Our work provides
some theoretical justification for why RST improves both
the standard and robust error, thereby mitigating the trade-
off between accuracy and robustness in practice. How to
best utilize unlabeled data, and whether sufficient unlabeled
data would completely eliminate the tradeoff remain open
questions.
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