
The Best of Both Worlds: Distributed PCA That is
Both Exact and Communication Efficient

Arpita Gang and Waheed U. Bajwa
Department of Electrical and Computer Engineering, Rutgers University–New Brunswick, NJ USA

Emails: arpita.gang@rutgers.edu, waheed.bajwa@rutgers.edu

Abstract—The effectiveness of machine learning algorithms
largely depends on the goodness of the representation of data.
While the massiveness in dimension and amount of modern day
data requires dimension reduction and feature extraction for
efficient use of available computational resources, the use of un-
correlated features is known to enhance the performance of such
machine learning algorithms. Thus, an efficient representation
learning approach should focus on dimension reduction as well
as uncorrelated feature extraction. Even though Principal Com-
ponent Analysis (PCA) and linear autoencoders are fundamental
data processing tools largely used for dimension reduction, they
can also be used to extract uncorrelated features when engineered
properly. At the same time, factors like ever-increasing volume
of data or inherently distributed data generation impede the
use of existing centralized solutions for representation learning
that require availability of data at a single location. This paper
proposes two variants of an algorithm called FAST-PCA (Fast and
exAct diSTributed PCA) based on a feedforward neural network-
based system that learn data representations in a distributed
setting such that they are reduced in dimension as well as have
uncorrelated features. The proposed variants are meant to curb
the communication overheads prevalent in the existing solutions
and are shown to converge to the exact solutions at a linear
rate. These claims are further supported by extensive numerical
experiments.

Index Terms—Exact convergence, Krasulina’s method, Oja’s
rule, principal component analysis, representation learning

I. INTRODUCTION

The modern world is data driven as massive, high-
dimensional datasets are becoming an increasingly essential
part of nearly every aspect of our lives ranging from healthcare
to finance and from social media to the Internet-of-Things
(IoT). In a related trend, machine learning algorithms are find-
ing their applications in every possible domain because of their
data-driven approaches and the ability to generalize to new
unseen data. These algorithms require considerable amount of
data preprocessing for their efficient and effective use. Some of
the most used techniques for dimension reduction and feature
learning are principal component analysis (PCA) [1], linear
discriminant analysis (LDA), autoencoders [2], etc. The per-
formance of machine learning methods is heavily dependent
on the choice of data representation (or features) on which they
are applied. Learning features from the data that embody the
most important, explanatory and distinguishing information is
an essential requirement of representation learning of the data.

This work was supported in part by the National Science Foundation under
Awards CCF-1907658, and OAC-1940074, and by the Army Research Office
under Awards W911NF-17-1-0546 and W911NF-21-1-0301.

It has been argued that one of the factors that makes a rep-
resentation (of a data sample) “good” is having uncorrelated
features in the learned representation [3]. This is because if
the learned representations have uncorrelated features, changes
or noise in one will not affect the others. Since PCA focuses
on both the goals of dimension reduction as well as feature
decorrelation, this paper focuses on PCA.

Another aspect of data now-a-days is it being inherently
distributed geographically across locations in cases such as
IoT, smart cities, autonomous vehicles, etc., where existing
ways of representation learning are not directly applicable.
Data tends to be distributed for a multitude of reasons; it
can be inherently distributed (e.g., in IoT) where privacy or
communication bottleneck prevents collation of data at a single
location, or it can be distributed due to storage and/or compu-
tational limitations. Distributed setups can be largely classified
into two types: i) those having a central entity/server that
coordinates with the other nodes in a master-slave architecture,
and ii) those lacking any central entity, in which the nodes are
connected in an arbitrary network. Both these scenarios are
prevalent in the world, but the latter case is more general as it
encompasses all arbitrary network structures. The absence of
a central server has further advantages like absence of single
point of failure, no communication bottleneck at the central
server, etc. Motivated by these reasons, this paper focuses
on the problem of dimension reduction and uncorrelated
representation learning in a distributed network with no central
server.

A. Relation to Prior Work

PCA [1], [4] dates back to early 1900’s and was proposed
for decorrelating and compressing a set of data points by
finding their principal components. Since then, many iterative
methods like power method, orthogonal iterations [5], and
Lanczos method [6] have been proposed to estimate eigen-
vectors or low-dimensional subspaces of symmetric matrices.
In a different vein, a stochastic approximation algorithm
was proposed by Krasulina in [7] for the estimation of the
dominant eigenvector in the streaming data case. Another
similar algorithm was later proposed by Oja [8] based on
the Hebbian learning rule [9], which was then extended for
multiple eigenvector estimation by Sanger [10]. Krasulina’s
method was also generalized for the estimation of a subspace
of dimension greater than one in [11], although it only
guarantees convergence to the principal subspace, instead of

principal components, under the low-rank matrix assumption.
Although Oja’s and Krasulina’s methods are similar and there
is no clear conclusion as to which is better, Oja’s rule is more
popular for the estimation of dominant eigenvector.

The problem of PCA in the distributed setting is relatively
recent. A detailed review of various distributed PCA algo-
rithms is done in [12]. Data can be distributed by either
features or by samples, and in this paper we focus on the case
of sample-wise data distribution, where each node estimates
the entire basis and consensus in the network is a necessary
condition. The sample-wise data distribution was considered
in [13]–[15], where a power method-based approach was
proposed for estimation of the dominant eigenvector (K = 1).
Estimation of K eigenvectors would require running these
algorithms K times. This dependence on K was done away
with in an orthogonal iteration-based solution that was pro-
posed in [16] for the general case of K ≥ 1. Although this
method estimates the K-dimensional subspace simultaneously,
its convergence guarantees are in terms of subspace angles and
thus it proves convergence to the principal subspace, making
it a principal subspace analysis (PSA) method. Moreover,
the aforementioned methods require an explicit consensus
loop [17] in every iteration and the final error is a function of
the number of consensus iterations, making them inefficient
in terms of communication overhead. A recent one time-
scale method for distributed optimization based on the Picard
iteration was proposed in [18] and [19] demonstrated the
application of this method to distributed PCA, but it could
only prove local convergence, i.e., if the estimate is already
“close enough” to the optimal solution, then it converges to
it at a linear rate. A distributed algorithm for PCA based
on generalized Hebbian algorithm using a combine-and-adapt
strategy called distributed Sanger’s algorithm (DSA) was
developed and analyzed in our previous work [20]. Though
it is a linearly convergent one-time scale algorithm, it only
reaches to a neighborhood of the optimal solution for a fixed
step size. To overcome the limitations of simple gradient
descent-based distributed algorithms, new methods have been
proposed recently that deploy a technique called “gradient-
tracking” [21]–[23]. A recent paper on distributed PCA [24]
used this gradient-tracking idea to develop a two-time scale
algorithm for subspace estimation. In this paper, we use this
gradient-tracking idea to develop a one-time scale algorithm
that linearly converges to the eigenvectors of the covariance
matrix, not just the subspace spanned by them.

B. Our Contributions

This paper introduces two variants of a novel algorithm
for distributed PCA called Fast and exAct diSTributed PCA
(FAST-PCA) based on Oja’s and Krasulina’s method. Theo-
rems describing the convergence guarantees of both versions
are presented along with experimental results that further
demonstrate the efficiency of our solution for both synthetic
and real-world datasets.

Notation: Scalars and vectors are denoted in the paper by
lower-case and lower-case bold letters, respectively, while ma-

trices are denoted by upper-case bold letters. The superscript
in a(t) denotes time (or iteration) index, ∥ · ∥F denotes the
Frobenius-norm of matrices, while ∥ · ∥ denote the ℓ2-norm of
vectors.

II. PROBLEM DESCRIPTION

For data samples y ∈ Rd sampled from a zero-mean distri-
bution with covariance matrix Σ, PCA finds a low-dimensional
subspace X ∈ Rd×K , d ≫ K that encapsulates maximum
information of the data while decorrelating the features ỹ =

XTy ∈ RK , i.e.,
(
E
[
ỹỹT

])
lq

=
(
E
[
XTyyTX

])
lq

=

0, ∀l ̸= q. It is evident that E
[
XTyyTX

]
will be a diagonal

matrix if and only if X contains the eigenvectors of Σ.
Thus, the true solution of PCA is the eigenvectors of Σ,
not just any subspace spanned by them. In practice, however,
the distribution of the samples and hence Σ is unknown,
and is instead approximated using the samples. For a set of
samples {yt}Nt=1, the sample covariance matrix is given by
C = 1

N−1

∑N
t=1(yt − ȳ)(yt − ȳ)T , where ȳ = 1

N

∑N
t=1 yt

is the sample mean. Henceforth, we shall assume ȳ = 0
without loss of generality. The empirical formulation of the
PCA problem in terms of samples is thus

X = argmin
X∈Rd×K ,XTX=I

N∑
t=1

∥yt −XXTyt∥2

such that ∀l ̸= q,
(
XT(

N∑
t=1

yty
T
t)X

)
lq
= 0. (1)

In a distributed setting, the samples are unavailable at a sin-
gle location. Consider a undirected and connected network of
M nodes whose topology is described by a graph G = {V, E},
where V = {1, . . . ,M} is the set of nodes and E is the set of
edges between the nodes. In the sample-wise partitioned case
considered in this paper, each node i ∈ {1, . . . ,M} has access
to ni samples Yi ∈ Rd×ni such that

∑
i ni = n, where n is

the total number of samples in the network. Here, even though
node i has access to a local covariance matrix Ci = YiY

T
i ,

the goal is to find the eigenvectors of the global covariance
matrix C =

∑
i Ci at every node, with each node maintaining

its own copy Xi of the variable X. The goal of distributed
PCA is for each node to eventually reach the same solution,
i.e., achieve network consensus, given by the eigenvectors of
C. Thus, the actual PCA objective for the distributed case is

argmin
Xi∈Rd×K ,XT

i Xi=I

M∑
i=1

∥Yi −XiX
T
i Yi∥2F such that

∀j ∈ Ni,Xi = Xj and ∀l ̸= q,
(
XT

i (
M∑
i=1

YiY
T
i)Xi

)
lq
= 0.

(2)

Here, the objective functions argmin ∥Yi − XXTYi∥2F are
local to the node i, but the constraint is global, that is,
shared among all the nodes. This major difference between the
formulations (1) and (2) makes it impossible for the centralized
PCA solutions to be directly applicable to the distributed case.

To satisfy the requirement for all nodes to reach a common
solution, which is the eigenvectors of the global covariance
matrix C, without sharing the raw local data Yi, we need
some collaboration between the nodes.

The constraint in (2) makes the problem nonconvex since
the solution lies on the Stiefel manifold and particularly, it
is a specific element of the manifold. Convexification of the
problem like in [25] will result in O(d2) computational and
memory cost since it approximates the projection matrix of the
d×K dimensional subspace, which is restrictive in the case of
high dimensional data. Also, such convexification relaxes the
problem to only find the subspace spanned by the eigenvectors.
Since neither of these limitations are desirable for us, we
choose algebraic methods that can lead to the true solution in
a computationally efficient manner. In [20], we showed that
a simple method based on the generalized Hebbian rule [10]
leads to the inexact convergence, i.e., the solution only reaches
to a neighborhood of the true eigenvectors of C. In this paper,
we ask the question: is it possible to have both fast and
exact convergence for distributed PCA? The short answer is:
Yes! We propose a solution based on the gradient-tracking
technique [21]–[23] that converges exactly and at a linear rate
to the true eigenvectors of the global covariance matrix C in
the distributed setting.

III. PROPOSED ALGORITHM: FAST-PCA

Iterative methods like power method [5] have proven to be
very effective solutions for PCA because of their effectiveness
and ease of implementations. For the case of estimating the top
eigenvector (K = 1) of data covariance matrix in centralized
setting for the streaming data case, two elegant, similar and
widely studied algorithms were proposed by Oja [8] and
Krasulina [7] whose update equations go as follows:

Oja: x(t+1) = x(t) + αt

(
Ctx

(t) − (x(t))TCtx
(t)x(t)

)
Krasulina: x(t+1) = x(t) + αt

(
Ctx

(t) − (x(t))TCtx
(t)

∥x(t)∥2
x(t)

)
,

where Ct = yty
T
t is the sample covariance matrix and αt

is the step size at time t. Both these methods were shown to
converge to the dominant eigenvector of Σ = E

[
Ct

]
under the

requirement that
∑

t α
2
t → 0. From an autoencoder training

point of view, the simple update based rules can be very easily
implemented in neural networks where the x′s denote the
weights of the network. The resultant “encoding” or repre-
sentation learned from such network will have uncorrelated
features. Oja’s rule was generalized for the case of multiple
eigenvector estimation (K > 1) by Sanger [10] using the
generalized Hebbian rule, whereas Krasulina’s method was
extended for the estimation of a higher dimensional (K > 1)
subspace spanned by the eigenvectors of Σ [11].

In the distributed setting considered in this paper, samples
are not streaming but split across nodes and C =

∑
i Ci where

Ci is the sample covariance matrix at node i. As mentioned
before, the data is fixed at each node and the goal is to find
the top K eigenvectors of C at each node i.e., have consensus
in the network, and thus naive implementation of generalized

Hebbian rule (GHA) or Krasulina’s method would not accom-
plish our goal. Instead, we propose a gradient-tracking [22],
[23] based solution called Fast and exAct diSTributed PCA
(FAST-PCA) that converges exactly and at a linear rate to
the top K eigenvectors of the global covariance matrix C.
We propose two variants of FAST-PCA based on the Hebbian
(Oja’s) and Krasulina’s rule and call them FAST-PCA-O and
FAST-PCA-K, respectively.

Let x(t)
i,k be the estimate of the kth, k = 1, . . . ,K , eigenvec-

tor at node i after t iterations of the algorithm. Then we define
two pseudo gradients hO

i (x
(t)
i,k) and hK

i (x
(t)
i,k) motivated, re-

spectively, from the Oja’s and Krasulina’s rule as follows:

hO
i (x

(t)
i,k) = Cix

(t)
i,k − (x

(t)
i,k)

TCix
(t)
i,kx

(t)
i,k −

k−1∑
p=1

(x
(t)
i,p)

TCix
(t)
i,kx

(t)
i,p

hK
i (x

(t)
i,k) = Cix

(t)
i,k −

(x
(t)
i,k)

TCix
(t)
i,k

∥x(t)
i,k∥2

x
(t)
i,k −

k−1∑
p=1

(x
(t)
i,p)

TCix
(t)
i,k

∥x(t)
i,p∥2

x
(t)
i,p,

Let X(t)
i =

[
x
(t)
i,1, . . . ,x

(t)
i,K

]
∈ Rd×K be the estimate of the

K eigenvectors of the global covariance matrix C after t itera-
tions. Along with X

(t)
i , FAST-PCA also updates a second vari-

able in every iteration that essentially tracks the average of the
pseudo-gradients at the nodes. Let us define a pseudo-gradient
tracker matrix S

(t)
i =

[
s
(t)
i,1, . . . , s

(t)
i,K

]
∈ Rd×K that tracks

the average of the pseudo-gradients at each node. These S
(t)
i

are updated along with the eigenvector estimates X
(t)
i in each

iteration of FAST-PCA. The entities hO
i (X

(t)
i) and hK

i (X
(t)
i)

in the algorithm are the matrices of the psuedo-gradients, i.e.,
h
O/K
i (X

(t)
i) =

[
h
O/K
i (x

(t)
i,1), . . . ,h

O/K
i (x

(t)
i,K)

]
∈ Rd×K .

Both versions of the algorithm, namely FAST-PCA-O and
FAST-PCA-K, involve same steps, except the difference in
the pseudo-gradients as explained earlier and are formally
described in Algorithm 1. The weight matrix W =

[
wij

]
is a doubly stochastic matrix that conforms to the underlying
graph topology [26], i.e., wij ̸= 0 if (i, j) ∈ E or i = j and
0 otherwise. A necessary assumption for convergence of the
algorithm here is the graph connectivity. In the next section, we
provide convergence results of both versions of the proposed
algorithm FAST-PCA.

Algorithm 1 Fast and exAct diSTributed PCA (FAST-PCA)
Input: Y1,Y2, . . .YM ,W, α,K
Initialize: ∀i,X(0)

i ← Xinit : Xinit ∈ Rd×K ,XT
initXinit = I;

S
(0)
i ← hi(X

(0)
i)

for t = 0, 1, . . . do
Communicate X

(t)
i from each node i to its neighbors

Subspace estimate at node i: X
(t+1)
i ← 1

2X
(t)
i +∑

j∈Ni

wij

2 X
(t)
j + αS

(t)
i

Psuedo-gradient estimate at node i: S
(t+1)
i ← 1

2S
(t)
i +∑

j∈Ni

wij

2 S
(t)
j + h

O/K
i (X

(t+1)
i)− h

O/K
i (X

(t)
i)

end for
Return: X(t+1)

i , i = 1, 2, . . . ,M

TABLE I: Comparison of Communication and Iteration Cost

Comm./Iteration No. of Iterations PCA/PSA

DistSeqPM O(K

log gap−1
r

log 1
ϵ
) O(K

log gap−1
r

log 1
ϵ
) PCA

S-DOT O(1

log gap−1
r

log 1
ϵ
) O(1

log gap−1
r

log 1
ϵ
) PSA

DeEPCA O(log 1
gap

) O(1
gap

log 1
ϵ
) PSA

DSA 1

O(1
log(1+gap)

log 1
ϵ
)

up to ϵ = O(α) PCA
FAST-PCA 2 O(1

log(1+gap)
log 1

ϵ
) PCA

IV. CONVERGENCE GUARANTEES

In this section we provide the convergence results of both
versions of the FAST-PCA algorithm. Proof of convergence
of FAST-PCA-K can be found in [27], while proof for FAST-
PCA-O follows in a similar way with some minor changes.

Theorem 1. Suppose the estimate x
(t)
i,k from FAST-

PCA-O remains bounded i.e., ∥x(t)
i,k∥ ≤ µ, α <

mink=1,...,K(λk−λk+1)
(3µ+K)(3µ+K−1) (1−β

9λ1
)2 where λk, λk+1 are the kth

and (k + 1)th largest eigenvalues of C and β =

max{|λ2(W)|, |λM (W)|}, qT
k x

(0)
i,k ̸= 0, and the graph under-

lying the network is connected. Then the estimate x
(t)
i,k from

FAST-PCA-O converges to the eigenvector ±qk corresponding
to the largest eigenvalue λk of C at each node i = 1, . . . ,M
at a linear rate.

Theorem 1 shows that for certain choices of the step size α
and under some assumptions, the estimates given by the FAST-
PCA-O algorithm converge linearly to the top K eigenvectors
of the global covariance matrix C.

Theorem 2. Suppose α <
mink=1,...,K(λk−λk+1)

(K+5)(K+6) (1−β
9λ1

)2,

qT
k x

(0)
i,k ̸= 0, and the graph underlying the network is con-

nected. Then the estimate x
(t)
i,k from FAST-PCA-K converges

to a multiple of the eigenvector ±qk i.e., to ±ckqk, cor-
responding to the largest eigenvalue λk of C at each node
i = 1, . . . ,M at a linear rate.

Theorem 2 shows that for certain choices of the step size α
and under some milder assumptions, the estimates given by the
FAST-PCA-K algorithm converge linearly to a multiple of the
top K eigenvectors of the global covariance matrix C. Note
that a simple normalization step at the end of the algorithm
would give us unit norm eigenvectors of C.

In summary, both variants of FAST-PCA converge exactly
to the true eigenvectors whilst completely doing away with the
need of explicit consensus loop thereby making our solutions
faster. Table I provides a comparison of the communication
and iteration complexities of various distributed PCA algo-
rithms in terms of error ϵ and eigengap gap. Here gap = λK−
λK+1 for PSA algorithms and gap = mink=1,...,K λk − λk+1

for PCA algorithms. Since we reduce the dependence of total
iteration complexity on gap, our solutions are significantly
faster than other algorithms as also shown through numerical
experiments in the next section.

V. EXPERIMENTAL RESULTS

In this section, we compare the performance of the two
algorithms with existing algorithms of (centralized) orthog-
onal iteration (OI), (centralized) generalized Hebbian algo-
rithm (GHA), (centralized) sequential power method (Se-
qPM), distributed sequential power method (SeqDistPM),
distributed orthogonal iteration algorithms (S-DOT, SA-
DOT) [16], an orthogonal iteration+gradient tracking-based
method DeEPCA [24] and our previously proposed distributed
Sanger’s algorithm (DSA) [20]. In the case of OI and Se-
qPM, we assume all the samples are available at a single
location and, for the estimation of K dominant eigenvectors
of C, SeqPM performs power method K times sequentially,
starting from the most dominant eigenvector. SeqDistPM is
the distributed version of SeqPM, which uses an explicit
consensus loop with a fixed number Tc of consensus iterations
per iteration of the power iteration [13], [14], whereas S-
DOT and SA-DOT are distributed versions of OI using fixed
and increasing number of consensus iterations per orthogonal
iteration. The DSA is a distributed generalized Hebbian al-
gorithm that converges linearly to a neighborhood of the true
eigenvectors of the global covariance matrix. The x-axes of all
the plots indicate the total iteration cost, i.e., total inner and
outer loop iterations. In the algorithms with one time scale,
this is the same as the number of total outer loop iterations
(since inner iterations = 0). The y-axes of the plots is the
average angle between the estimated eigenvectors x(t)

i,k and the
true eigenvectors ±qk across all the M nodes in the network
given by

E =
1

MK

M∑
i=1

K∑
k=1

(
1−

(
xT
i,kqk

∥xi,k∥

)2)
. (3)

Synthetic Data: We generate Erdos-Renyi graphs (p = 0.5)
and cyclic graphs to simulate the distributed setup with
M = 20 nodes. The synthetic data is generated with different
eigengaps of ∆K = λK+1

λK
∈ {0.8, 0.97} such that each node

has 5000 i.i.d samples, i.e. Ni = 5000 with d = 20 drawn
from a multivariate Gaussian distribution with zero mean and
fixed covariance matrix Σ. The number of eigenvectors to be
estimated is set to K = 5. For SeqPM, SeqDistPM and S-DOT,
the number of consensus iterations per outer loop iteration is
Tc = 50 and the number of maximum consensus iterations in
the case of SA-DOT is set to 50 as well.

Figure 1 compares the performance of our proposed FAST-
PCA algorithm with centralized OI, SeqPM, SeqDistPM, S-
DOT, SA-DOT, DeEPCA and DSA. In it, the plots for FAST-
PCA-O, FAST-PCA-K and centralized GHA are completely
overlapping. This means that when measured in terms of an-
gles, the convergence of our algorithms are same and also same
as that of the centralized case, which in turn implies that the
performance of Oja’s and Krasulina’s is same in the distributed
setup when using a gradient-tracking technique. Evidently, our
algorithms significantly outperform SeqPM, SeqDistPM, S-
DOT and SA-DOT since the estimation of one eigenvector
at a time and/or using explicit consensus loop slows down

(a) d = 20,∆K = 0.8 (b) d = 20,∆K = 0.97

Fig. 1: Performance comparison of FAST-PCA with various
algorithms for two different eigengaps.

(a) MNIST, K = 7 (b) CIFAR10, K = 7

Fig. 2: Performance comparison of FAST-PCA with various
algorithms for MNIST and CIFAR10

the convergence of these methods. As expected, since DSA
converges only to a neighborhood of the true solutions, our
new proposed algorithm outperforms it. DeEPCA uses the
gradient-tracking technique on orthogonal iterations (OI) with
the use of an explicit consensus loop. The dependence of
the number of consensus iterations on the eigengap makes
it impossible for its performance to match centralized OI.

Real-World Data: We also provide some results for the
real-world datasets of MNIST [28] and CIFAR10 [29]. We
simulate the distributed setup with an Erdos-Renyi graph with
p = 0.5 and M = 20 nodes. Both these datasets have
N = 60, 000 samples distributed equally among the nodes,
making Ni = 3000. The data dimensions are d = 784
for MNIST and d = 1024 for CIFAR10 and K = 7
was used for both. Figure 2 shows the comparison of the
various PCA algorithms for MNIST (α = 0.05) and CIFAR10
dataset (α = 0.8) respectively. Due to space constraints, we
have included limited experiments here. For more experiments
including on heterogenous data, please refer to the thesis [30].

VI. CONCLUSION

In this paper, we proposed two variants of a novel algorithm
for distributed Principal Component Analysis (PCA) called
FAST-PCA (Fast and exAct diSTributed PCA) that converge
to the true eigenvectors of the sample covariance matrix when
data is distributed across a network. We provided theoreti-
cal results that show both versions of FAST-PCA converge
linearly, exactly and globally. We also provided experimental
results that further validate our claims.

REFERENCES

[1] H. Hotelling, “Analysis of a complex of statistical variables into principal
components.” J. Educational Psychology, pp. 417–441, 1933.

[2] P. Baldi and K. Hornik, “Neural networks and principal component
analysis: Learning from examples without local minima,” Neural Netw.,
vol. 2, no. 1, p. 53–58, Jan. 1989.

[3] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: a
review and new perspectives,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 8, p. 1798—1828, August 2013.

[4] K. Pearson, “On lines and planes of closest fit to systems of points in
space,” Philosophical Mag., vol. 2, pp. 559–572, 1901.

[5] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd Ed.).
Baltimore, MD, USA: Johns Hopkins University Press, 1996.

[6] C. Lanczos, “An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators,” J. Research Nat.
Bureau Standards, 1950.

[7] T. P. Krasulina, “Method of stochastic approximation in the determina-
tion of the largest eigenvalue of the mathematical expectation of random
matrices,” Autom. Remote Control, vol. 1970, pp. 215–221, 1970.

[8] E. Oja and J. Karhunen, “On stochastic approximation of the eigenvec-
tors and eigenvalues of the expectation of a random matrix,” J. Math.
Anal. Applicat., vol. 106, no. 1, pp. 69 – 84, 1985.

[9] D. O. Hebb, The Organization of Behavior : A Neuropsychological
Theory. Wiley New York, 1949.

[10] T. D. Sanger, “Optimal unsupervised learning in a single-layer linear
feedforward neural network,” Neural Netw., pp. 459 – 473, 1989.

[11] C. Tang, “Exponentially convergent stochastic k-PCA without variance
reduction,” in Proc. NeurIPS, 2019.

[12] S. X. Wu, H.-T. Wai, L. Li, and A. Scaglione, “A review of distributed
algorithms for principal component analysis,” Proc. IEEE, vol. 106,
no. 8, pp. 1321–1340, 2018.

[13] H. Raja and W. U. Bajwa, “Cloud K-SVD: Computing data-adaptive
representations in the cloud,” in Proc. Allerton Conf., 2013.

[14] H. Raja and W. U. Bajwa, “Cloud-K-SVD: A collaborative dictionary
learning algorithm for big, distributed data,” IEEE Trans. Signal Pro-
cess., vol. 64, no. 1, pp. 173–188, Jan 2016.

[15] H. Wai, A. Scaglione, J. Lafond, and E. Moulines, “Fast and privacy
preserving distributed low-rank regression,” in Proc. IEEE Int. Conf.
Acoustics, Speech and Signal Process., (ICASSP), 2017, pp. 4451–4455.

[16] A. Gang, B. Xiang, and W. U. Bajwa, “Distributed principal subspace
analysis for partitioned big data: Algorithms, analysis, and implementa-
tion,” IEEE Trans. Signal Inform. Process. Netw., pp. 699–715, 2021.

[17] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. & Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[18] F. L. Andrade, M. A. Figueiredo, and J. Xavier, “Distributed Picard
iteration,” arXiv preprint arXiv:2104.00131, 2021.

[19] ——, “Distributed Picard iteration: Application to distributed EM and
distributed PCA,” arXiv preprint arXiv:2106.10665, 2021.

[20] A. Gang and W. U. Bajwa, “A linearly convergent algorithm for
distributed principal component analysis,” Signal Process., vol. 193, p.
108408, 2022.

[21] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: an exact first-order
algorithm for decentralized consensus optimization,” SIAM J. Optim.,
vol. 25, no. 2, pp. 944–966, 2015.

[22] P. D. Lorenzo and G. Scutari, “NEXT: In-network nonconvex optimiza-
tion,” IEEE Trans. Signal Inform. Process. Netw., pp. 120–136, 2016.

[23] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” IEEE Trans. Control Netw. Syst., pp. 1245–1260, 2018.

[24] H. Ye and T. Zhang, “DeEPCA: Decentralized exact PCA with linear
convergence rate,” J. Mach. Learning Research, pp. 1–27, 2021.

[25] R. Arora, A. Cotter, and N. Srebro, “Stochastic optimization of PCA
with capped MSG,” in Adv. Neural Inform. Process. Syst., vol. 26, 2013.

[26] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing markov chain on a
graph,” SIAM REVIEW, vol. 46, pp. 667–689, 2003.

[27] A. Gang and W. U. Bajwa, “FAST-PCA: A fast and exact algo-
rithm for distributed principal component analysis,” arXiv preprint
arXiv:2108.12373, 2021.

[28] Y. LeCun, C. Cortes, and C. Burges, “MNIST handwritten digit
database,” ATT Labs, vol. 2, 2010.

[29] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

[30] A. Gang, “Representation learning in distributed networks,” Ph.D. dis-
sertation, Rutgers University-New Brunswick, 2022.

	Introduction
	Relation to Prior Work
	Our Contributions

	Problem Description
	Proposed Algorithm: FAST-PCA
	Convergence Guarantees
	Experimental Results
	Conclusion
	References

