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ABSTRACT: All aspects of geotechnical engineering require an understanding of the composition and distribution of subsurface 
properties. Yet, as a field of study, geotechnical engineering lags behind other disciplines with similar imaging needs. This lag is due 
in part to the challenging nature of 2D/3D subsurface imaging, as well as a historical over-reliance on 1D subsurface approximations. 
Recently, however, several stress-wave methods have achieved increased use for 2D/3D near-surface characterization, one of the 
most promising of which is full waveform inversion (FWI). However, FWI, as with all inverse problems, suffers from non-
uniqueness, which results in multiple solutions that may appear quite different to rank as equivalent in terms of the inverse problem’s 
objective function. Or in other words, multiple different potential solutions often fit the experimental data equally well, resulting in 
uncertainty as to which is most representative of the subsurface. This paper examines uncertainty in the 2D FWI inverse problem by 
considering how different starting models affect the accuracy of the solution. In particular, this paper considers the effect of different 
inversion starting models on the solution of a classic geotechnical problem; characterization of a site composed of soil over 
undulating bedrock. Three different categories of starting model are considered: those with constant stiffness, those with linearly 
increasing stiffness with depth, and those derived from other 1D/2D seismic methods (i.e., surface-wave analysis). 

RÉSUMÉ : Tous les aspects de l'ingénierie géotechnique nécessitent une compréhension de la composition et de la distribution des 
propriétés souterraines. Pourtant, en tant que domaine d'étude, l'ingénierie géotechnique est à la traîne par rapport aux autres disciplines 
ayant des besoins d'imagerie similaires. Ce retard est en partie dû à la nature difficile de l'imagerie souterraine 2D/3D, ainsi qu'à une sur-
dépendance historique sur les approximations souterraines 1D. Récemment, cependant, plusieurs méthodes d'onde de contrainte ont 
atteint une utilisation accrue pour la caractérisation 2D/3D près de la surface, l'une des plus prometteuses étant l'inversion complète de 
la forme d'onde (FWI). Cependant, FWI, comme pour tous les problèmes inverses, souffre de la non-unicité, ce qui entraîne des solutions 
multiples qui peuvent sembler assez variables pour se classer comme équivalentes en termes de fonction objectif du problème inverse. 
En d'autres termes, plusieurs solutions potentielles différentes correspondent souvent aussi bien aux données expérimentales, ce qui 
entraîne une incertitude quant à savoir laquelle est la plus représentative du sous-sol. Cet article examine l'incertitude dans le problème 
inverse FWI 2D en considérant comment différents modèles de départ affectent la précision de la solution. En particulier, cet article 
considère l'effet de différents modèles de départ d'inversion sur la solution d'un problème géotechnique classique; caractérisation d'un 
site composé de sol sur substrat rocheux ondulé. Trois catégories différentes de modèles de départ sont considérées: ceux avec une 
rigidité constante, ceux avec une rigidité croissante linéairement avec la profondeur, et ceux dérivés d'autres méthodes sismiques 1D/2D 
(c'est-à-dire l'analyse des ondes de surface). 
KEYWORDS: full waveform inversion, starting model, surface waves, MASW. 

 
1  INTRODUCTION 

Full waveform inversion (FWI) is a data-fitting procedure 
whereby a synthetic seismic wavefield, generated by numerically 
solving the associated wave equations, is matched to an 
experimental seismic wavefield, acquired through field 
experiments (Tarantola, 1984). The matching process involves 
iteratively modifying an assumed starting model through which 
the synthetic waveforms propagate until the synthetic and 
experimental wavefields are in acceptable agreement, as 
determined by a wavefield objective/misfit function. Once the 
iterative optimization process is complete, the final modified 
model is considered to be an accurate representation of the 
subsurface. 
   FWI can be understood to be composed of two components: 
(1) a forward problem, which can propagate the seismic 
wavefield input(s) [i.e., source(s)] through an assumed model to 
the desired wavefield output location(s) [i.e., receiver 
location(s)] so that the seismic wavefield misfit can be 
calculated, and (2) an optimization technique, which can 

minimize the seismic wavefield misfit by generating improved 
subsurface models. For the former, there are various numerical 
techniques available to solve the associated wave equations with 
sufficient accuracy (e.g., spectral element, finite element), 
making the selection of any particular method of secondary 
concern. In contrast, the optimization technique employed is of 
paramount importance, as its ability to converge to the true 
solution is not guaranteed (Nocedal and Wright, 2006). 
Optimization techniques can be broadly grouped into two main 
categories: global and local. Global optimization methods are 
generally more rigorous than local optimization methods, as they 
search a large number of potential models in a broad, predefined 
parameter space, but as a result are more computationally 
expensive. Despite their computational expense, a few 
researchers have used global optimization methods for FWI 
(Tran and Hiltunen, 2012; Sajeva et al., 2016; Datta and Sen, 
2016; Mojica and Kukreja, 2019), however, their use remains 
relatively unpopular. In their place, local optimization methods 
are used. Local optimization methods minimize the objective 
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function by refining an initial/starting model provided by the 
user. By searching in the vicinity of a user-specified starting 
model, local optimization methods are able to converge to a 
solution faster than global optimization methods, however, 
because of their limited scope, local optimization methods are 
more likely to become trapped in local minima and fail to 
converge to the global minima (i.e., the true solution). To limit 
the potential for local methods to become trapped in local 
minima, the starting model provided by the user should reside 
close to the true subsurface model. 
   Selecting an acceptable starting model for FWI is non-trivial, 
as at best its fitness may not be apparent until after attempting 
the time-consuming inversion process, and at worst its 
appropriateness (or, inappropriateness) may not ever be known. 
Various approaches have been proposed in the literature for 
developing initial starting models. These include simple heuristic 
approaches, such as assuming a constant velocity models or a 
model whose velocity increases linearly with depth (Tran and 
McVay, 2012; Kallivokas et al., 2013; Tran et al., 2019), and 
more complex approaches that use information derived from 
other techniques to find an approximate starting model, such as 
refraction, first-arrival travel-time tomography, surface wave 
methods, and migration velocity analysis (Weibull et al., 2012; 
Groos et al., 2017; Köhn et al., 2019; Pan et al., 2019; Wang et 
al., 2019). Importantly, the effectiveness of these approaches are 
rarely compared to one another in practice due to the 
computational cost of FWI. To emphasize how limited the 
literature is in this area, the only paper the authors could find on 
comparing different starting models was in regard to the specific 
use of teleseismic events (i.e., very distant earthquakes) for 
crustal scale (depths greater than 5 km) FWI (Beller et al., 2018). 
As the reader might suspect, the findings of the aforementioned 
work have very little (if any) applicability to the present study on 
near-surface characterization. In response, this paper seeks to 
understand the effects different starting models can have on the 
subsurface model recovered from FWI using a local optimization 
method. 
 
2  COMPARISON OF DIFFERENT STARTING MODELS 

To study the effect of using different starting models for FWI, 
this paper inverts waveforms from a single synthetic model using 
three types of starting models commonly used in the literature. 
The synthetic model used in this study is representative of a 
classic geotechnical problem; characterization of soil over 
undulating rock. The model is shown in terms of its shear wave 
velocity (Vs) in Figure 1. While the model presented in this paper 
is synthetic, the authors believe it is more realistic (and therefore 
more challenging for FWI) than models which are typically used 
in synthetic studies for several specific reasons. First, the soil’s 
Vs increases with depth following an approximate relationship 
between Vs and mean effective stress for dense sand (Menq, 
2003). Second, the interface between soil and rock is highly 
irregular, representing a challenging but reasonable subsurface 
condition. Third, and finally, the model includes moderately 
sized (~1-2 m in the vertical and ~4-6 m in the horizontal 
directions) stiff and soft regions in the soil and rock applied using 
a laterally correlated Gaussian random field to approximate the 
reality of a heterogeneous subsurface. To completely define the 
elastic properties of the synthetic model, compression wave 
velocity (Vp) and mass density were developed by assuming 
simple relationships between Vs and the parameter of interest. In 
particular, the Vp model assumed unsaturated conditions with a 
Poisson’s ratio of 0.33 for the soil (i.e., Vs < 300 m/s) and 0.2 for 
rock-like material (i.e., Vs > 360 m/s). For intermediate 
materials, the Poisson’s ratio was linearly interpolated. The mass  
 

Figure 1. The synthetic subsurface model, presented in terms of its shear 
wave velocity (Vs), to be recovered using full waveform inversion (FWI) 
using different starting models. The synthetic model’s Vs is consistent 
with a site composed of dense sand over undulating rock. 

density model assumed a value of 2100 kg/m3 for rock-like 
material and 2000 kg/m3 elsewhere. 
   Experimental waveforms for the synthetic model were 
generated by solving the P-SV elastic forward problem using 
finite difference with a staggered-grid discretization (Virieux, 
1986), as implemented in the open-source software DENISE 
(Köhn, 2011; Köhn et al., 2012). The top of the model followed 
the free-surface boundary condition (Levander, 1988), whereas 
the sides and bottom were truncated using perfectly matched 
layers (Komatitsch and Martin, 2007). Waveforms were 
generated for a typical 2D FWI experimental setup consisting of 
24 receivers (spaced at 2 m) and 25 source locations (1 m off 
both ends and between each receiver spacing). The positions of 
the sources and receivers are shown in Figure 1. All source 
locations utilized the same source wavelet consisting of a 15 Hz 
high-cut filtered spike, which was used to simulate a 
sledgehammer impact. The numerical simulation utilized a 5E-5 
second time step for a duration of 1 second. The simulation used 
a 6th order finite difference operator in space and a 2nd order 
finite difference operator in time. To ensure the simulation’s 
numerical stability, all models used a 0.2-m pixel. 
   The three different starting models considered in this study 
are: constant, linear, and one derived from 1D/2D seismic 
methods. The constant starting model’s Vs, shown in Figure 2a, 
was selected by finding the constant value with a minimum 
square difference between it and the true Vs model over the top 
10 m (i.e., the predominantly soil-like portion of the model). 
While this approach cannot be employed in practice, as the true 
Vs model is unknown, it was done here in this synthetic study to 
give the constant starting model the most likely chance of success 
and to avoid the time-consuming process of attempting different 
constant starting models, as is typically required in practice. The 
linear starting model’s Vs, presented in Figure 2c, was defined in 
a similar manner as the constant starting model, however, the 
least-square-difference computation was not restricted to the 
model’s upper 10 m. Rather, the Vs of the staring model was 
allowed to vary linearly with depth in order to achieve the 
minimum least-square-difference relative to the entire true 
model’s Vs. The starting model derived from other 1D/2D 
methods was developed using the multi-channel analysis of 
surface waves (MASW) method (Park et al., 1999). The MASW 
starting model’s Vs, presented in Figure 2e, was created by first 
simulating seismic wavefields using two additional source 
locations (located at 5 m off either end of the array). The 
dispersion data obtained from processing the seismic wavefields 
obtained from all source locations outside of the array were 
inverted using 3 different Layering by Number (LN) 
parameterizations, following the recommendations of Vantassel 
and Cox (2021a). The 100 lowest misfit Vs profiles from each of 
the three different LN parameterizations were then statistically 
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Figure 2. Comparison of three different starting models used to initiate 
full waveform inversion (FWI) as a means to attempt to recover the true 
synthetic subsurface model shown in Figure 1. Panels (a), (c), and (e) 
show the constant, linear, and multichannel analysis of surface waves 
(MASW) starting models, adjacent to their inverted models after FWI 
(i.e., panels (b), (d), and (f), respectively) in terms of their Vs. The mean 
absolute percent error (MAPE) of each FWI Vs model relative to the true 
Vs model is shown in the upper right of each panel. Note that no inverted 
model is available for the constant starting model, panel (b), as the 
inversion failed. 
 
combined into a single, discretized median 1D Vs profile, which 
was extended over the entire width of the domain. To develop 
the necessary Vp and mass density values to completely define 
the starting model, the same simple rules discussed with respect 
to the development of the synthetic model were applied. 
   The same FWI settings and multi-scale inversion workflow 
were used for each of the three starting models. FWI was 
performed using the same open-source software DENISE (Köhn, 
2011; Köhn et al., 2012) as was used for the forward problem 
described above. This allows FWI to have the best chance of 
success, as the experimental/synthetic target waveforms and the 
theoretical waveforms are computed using the same 
implementation of the forward problem. The gradient was 
preconditioned using the Limited-Memory Broyden-Fletcher-
Goldfarb-Shanno (LBFGS) technique (Byrd et al., 1995) where 
it was allowed to retain 10 prior updates. To reduce large 
gradients at the model’s source locations, circular 
preconditioning tapers with a radius of 1 m were applied around 
each source location. To still permit the model to update in these 
locations during the inversion, the 25 sources were simulated 
separately and the preconditioning only applied to the currently 
active source. To limit the introduction of spurious small-scale 
features, the model gradient was smoothed using a 2D Gaussian 
stencil extending over a 1 m by 1 m area (i.e., recall for solving 
the forward problem a 0.2-m pixel size was deemed necessary 
for stability). The optimal step length was selected using a line 
search. Inversions utilized a multi-scale workflow (Bunks et al., 
1995) to mitigate the potential for cycle skipping and to improve 
convergence. The multi-scale inversion workflow used three 
stages with overlapping frequency ranges of 0 - 7 Hz, 0 - 13 Hz, 
and full signal. Each stage was required to consist of at least 10 
optimization iterations and was allowed to conclude after either 
the change in the misfit function became less than 1% or 100 
iterations were performed. The only exception to these rules is if 
a simulation became unstable in the middle of the stage without 
yet reaching one of the aforementioned stopping criteria. If this 
occurred, the inversion was restarted in the subsequent stage. 
During the inversion process, all three model variables (Vs, Vp, 
and mass density) were allowed to be updated to ensure no 

penalty was applied to models which started further from the true 
solution and which, therefore, likely contained worse estimates 
of Vp and mass density. As the wavefield is not strongly sensitive 
to mass density (Köhn et al., 2012), the gradient when applying 
the mass density update was scaled by a factor of ½ to discourage 
the creation of artifacts in the density model related to large 
updates early in the inversion process. 
   The results of FWI for the three starting models are presented 
in panels (b), (d), and (f) of Figure 2. Beginning with the 
inversion of the constant starting model, unfortunately, no results 
are available, as the model failed during the first iteration of the 
multi-scale inversion workflow. Numerous attempts were made 
to tweak the inversion’s settings, however, ultimately no result 
was able to be obtained. Potential causes for the failure of the 
constant Vs starting model is discussed later after presenting the 
results from the other two starting models. The FWI results 
obtained from the linear starting model in terms of Vs, shown in 
Figure 2d, indicate increased Vs in the 0-5 m depth range (with 
the notable exception of the upper 1 m), decreased Vs in the 5-
10 m depth range, and minimal changes throughout the 
remainder of the model (10-24 m depth range). Furthermore, the 
inverted Vs model also contains a vague indication of the 
concave-down shape of the bedrock interface beginning near the 
center of the Vs model, however, the location and velocities of 
the 2D soil-to-bedrock interface are poorly resolved. The FWI 
results obtained from the MASW starting model in terms of Vs, 
shown in Figure 2f, indicate only minimal changes in Vs relative 
to the starting model. The only change of note is a slight increase 
of Vs at the model’s center. To quantify the goodness of fit of 
each FWI-derived model to the true model, the mean absolute 
percent error (MAPE) (i.e., the mean of the absolute value of the 
difference between the predicted and true Vs normalized by the 
true Vs) is presented in the upper right of each panel of Figure 2. 
A comparison of the MAPE for the three starting models (left 
column) reveals that for this example, the MASW starting model 
was the best (i.e., lowest MAPE), whereas the constant starting 
model was the worst (i.e., largest MAPE). This is, of course, 
despite the efforts described previously to ensure the constant 
and linear starting models were the closest possible 
approximation of the true model. It is believed that the relatively 
large MAPE of the constant starting model is responsible, at least 
in part, for the failure of the constant starting model to produce 
FWI results. The large MAPE indicates the constant model is an 
inadequate approximation of the true model, and therefore, 
beyond the reach of the local optimization algorithm. It is 
important to highlight that the MASW model outperformed the 
constant and linear starting models in terms of its MAPE both 
before and after FWI. This is somewhat surprising considering 
that the procedure for developing the constant and linear models 
used here cannot be performed in practice, as it requires 
knowledge of the true subsurface model, whereas the MASW 
approach can be performed in practice. Comparing the MAPE of 
the linear and MASW starting model’s, both before and after 
inversion, echoes the conclusions made previously that the linear 
model updated more significantly (i.e., MAPE decreases from 
22% to 16% following FWI) than the MASW model, which 
remained largely unchanged (i.e., MAPE only decreased from 
15% to 14%). The cause of these different update behaviors is 
discussed next in context of the seismic waveforms. 
   While a quantitative metric, such as MAPE, can be quite 
useful for comparing velocity models it is also important to make 
comparisons qualitatively. A qualitative comparison between the 
linear and MASW starting model FWI results (Figure 2d and 2f, 
respectively) hints that to some the linear starting model may 
have perform slightly better (i.e., the opposite conclusion as 
obtained following MAPE) as it gives a more meaningful 
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indication of the variability of the bedrock interface. We note 
this, because the FWI results from the linear and MASW starting 
models indicate two competing approximations of the true 
model. If FWI was performed using only the linear starting 
model, the rock interface would be perceived to be variable 
(which is true) with a gradual velocity contrast between the soil 
and rock (which is false). In contrast, if only the MASW model 
was used, the rock interface would be perceived to be essentially 
flat (which is false) with a strong velocity contrast between the 
soil and rock (which is true). Depending on the perspective of the 
viewer, one may be considered a better approximation of the true 
model. For example if a realistic estimate of the rock’s variability 
is the primary concern, the linear starting model could be 
considered superior, whereas if a realistic estimate of the soil and 
rock velocity contrast is the primary concern, the MASW starting 
model could be considered superior. Ultimately, neither exactly 
matches the true model, thereby highlighting the need for caution 
when interpreting FWI results when the issue of non-uniqueness 
has not been rigorously investigated. We note here that while the 
use of two starting models allowed for some approximate 
understanding of the non-uniqueness of the FWI problem it is 
almost certainly not rigorous enough and it is therefore still likely 
underestimating the phenomena. Therefore, we emphasize that 
additional work is required to develop approaches to improve 
convergence to the true solution regardless of starting model and 
quantify any residual effects of non-uniqueness in FWI to aid in 
model interpretation. 
   Figure 3 compares the waveforms associated with the three 
starting models before and after FWI with those from the true 
subsurface model. The waveforms are compared for the source 
located at a distance of 30 m (i.e., at the center of the model). A 
qualitative comparison of the waveforms from the three starting 
models (i.e., the first column in Figure 3) reveals that the MASW 
starting model matches the true waveforms better than the other 
two approaches (i.e., constant and linear), with the initial body 
wave and later surface wave arrivals being well captured at all 
offsets. As a quantitative measure, the mean square error (MSE) 
between the true waveforms and the starting model/inverted 
waveforms are presented in the upper right of each panel. Note 
we use MSE as the error metric here to be consistent with the 
objective function of the FWI algorithm used in this study. 
Interestingly, the MSE of the waveforms are inconsistent with 
the MAPE of the starting models presented previously (recall 
Figure 2). It was expected that the constant starting model, which 
had the highest MAPE (MAPE=39%), would also have the 
highest waveform MSE. Instead, the linear starting model, not 
the constant starting model, has the highest waveform MSE. The 
mismatch between Vs model error and waveform error indicates 
that while the linear starting model’s waveforms are the worst 
match to the true model’s waveforms, it is a better approximation 
of the true model (MAPE=22%) than the constant starting model. 
The fact that the MSE waveform misfit may not always be 
indicative of the goodness of the associated subsurface model is 
the result of the non-uniqueness of the FWI problem and a major 
cause for concern when performing FWI. Certainly, additional 
work is required to investigate the non-uniqueness present in 
FWI and the relationship between an inverted model’s similarity 
to the true model and that of the similarity of its waveforms to 
that of the true model’s waveforms. Returning to the issue of the 
failed inversion of the constant starting model, a qualitative 
assessment of its waveforms reveals that they poorly 
approximate the true waveforms, with nearly an entire cycle 
being missed at the furthest receiver offsets. It is believed that 
these missing/skipped cycles, which are known to be a side effect 
of the inadequacy of the starting model and especially 
problematic for FWI (Shah et al., 2012), are the primary cause of 
the constant model’s failure to produce inversion results. 

 
Figure 3. Qualitative comparison between synthetic waveforms before 
(panels (a), (c), and (e)) and after (panels (b), (d), and (f)) FWI with the 
waveforms obtained from the true model for the source located at a 
distance of 30 m (i.e., at the center of the model). The mean square error 
(MSE) of the various waveforms is shown in the upper right of each 
panel. Note that no waveforms are available after inversion for the 
constant starting model, panel (b), as the inversion failed. 
    
   When comparing the successful FWI results, the waveforms 
from the linear and MASW starting models following FWI are 
shown to well capture those from the true model (see Figure 3d 
and 3f, respectively). The fact that the linear model’s waveforms 
are in relatively poor agreement with those from the true model 
prior to FWI (Figure 3c) and the MASW model’s waveforms are 
in relatively good agreement with those from the true model prior 
to FWI (Figure 3e) explains the observations made previously in 
regard to Figure 2. Namely, that the linear model was updated 
rather significantly during FWI in order to achieve a better match 
to the waveforms, whereas the MASW model was updated only 
minimally during FWI because, as Figure 3 illustrates, the 
MASW model prior to FWI was already able to produce 
waveforms that matched the majority of true model’s waveforms. 
Therefore, for the MASW model, significant refinement by the 
optimization algorithm was unnecessary. Yet, despite the good 
agreement ultimately achieved between the waveforms of the 
linear and MASW inverted models and those of the true model 
(Figure 3d and 3f), comparisons between the actual inverted 
linear and MASW Vs models (Figure 2d and 2f) with the true Vs 
model (Figure 1) reveals that neither closely resembles the true 
subsurface model. This serves to highlight the effect of non-
uniqueness in FWI, and draw attention to the need for future 
studies to propose strategies to mitigate and/or quantify non-
uniqueness in FWI. Mitigation strategies may include the ability 
to incorporate a priori information, such as from common 
invasive geotechnical testing, into the inverse problem to limit 
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the solution’s multiplicity (Tarantola, 2005). Whereas, 
quantification strategies will allow the rigorous quantification of 
uncertainty and non-uniqueness in the inverse problem for the 
most general case where no a priori information is available. 
Note that such a technique for quantifying uncertainty and non-
uniqueness has recently been proposed by the authors for the 
one-dimensional surface wave inversion problem (Vantassel and 
Cox, 2021b). 

3  CONCLUSIONS 

This paper performs 2D FWI for a single, synthetic subsurface 
model using three different categories of commonly used starting 
models: constant, linear, and MASW. Results show that the 
selected starting model can have a significant effect on the 
resulting inverted model, with the inverted models generally not 
changing significantly relative to the starting model, despite the 
inverted model’s waveforms matching the true model’s 
waveforms quite well. Due to the significant influence of the 
starting model in FWI, it is recommend that the use of any 
starting model be considered carefully. General 
recommendations to consider when selecting a FWI starting 
model include selecting only those models that: (1) are believed 
to be a reasonable approximation to the subsurface, and (2) have 
pre-FWI waveforms which are a good approximation of the 
experimental waveforms. A relatively simple approach for 
producing model’s which follow these recommendations is by 
using existing surface-based methods for developing 1D/2D 
starting models, for example the MASW method was used in this 
study. However, we also note that while the waveforms of the 
inverted model may match the experimental waveforms quite 
well, as in the case of the linear and MASW models presented in 
this study, this agreement does not necessarily guarantee that the 
recovered model will closely match the true subsurface model 
due to the inverse problem’s non-uniqueness. This study 
highlights that future work is required to better understand, 
mitigate, and quantify non-uniqueness in FWI. 
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