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Abstract

In this paper we design efficient quadrature rules for finite element discretizations of
nonlocal diffusion problems with compactly supported kernel functions. Two of the
main challenges in nonlocal modeling and simulations are the prohibitive computa-
tional cost and the nontrivial implementation of discretization schemes, especially in
three-dimensional settings. In this work we circumvent both challenges by introduc-
ing a parametrized mollifying function that improves the regularity of the integrand,
utilizing an adaptive integration technique, and exploiting parallelization. We first
show that the “mollified” solution converges to the exact one as themollifying param-
eter vanishes, then we illustrate the consistency and accuracy of the proposed method
on several two- and three-dimensional test cases. Furthermore, we demonstrate the
good scaling properties of the parallel implementation of the adaptive algorithm and
we compare the proposed method with recently developed techniques for efficient
finite element assembly.
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1 INTRODUCTION

Nonlocal equations have become the model of choice in applications where the global behavior of the system is affected by
long-range forces at small scales. In particular, these equations are preferable to partial differential equations (PDEs) in presence
of anomalous behavior, such as superdiffusion and subdiffusion, multiscale behavior, and discontinuities or irregularities in
the solution that cannot be captured by classical models. For these reasons, nonlocal models are currently employed in several
scientific and engineering applications including surface or subsurface transport1,2,3,4,5, fracture mechanics6,7,8, turbulence9,10,
image processing11,12,13,14 and stochastic processes15,16,17,18,19.
The most general form20 of a nonlocal operator for a scalar function u ∶ ℝn → ℝ is given by

u(x) = 2∫
ℝn

(u(y) − u(x))
(x, y) dy,

where 
 , the kernel, is a compactly supported function over B�(x), the ball of radius � centered at x. We refer to � as horizon
or interaction radius; this quantity determines the extent of the nonlocal interactions and represents the length scale of the
operator. The integral form allows one to catch long-range forces within the length scale and reduces the regularity requirements
on the solutions. It also highlights the main difference between nonlocal models and PDEs, i.e., the fact that interactions can
occur at distance, without contact. The kernel 
 depends on the application and determines the regularity properties of the
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solutions; the choice of its parameters or functional form is among the most investigated open questions in the current nonlocal
literature10,21,22,23,24,25,26,27,28,29. In this work we limit ourselves to smooth integrable kernels since the treatment of more complex
functions is not germane to the issues investigated in this paper, as clarified later on.
The integral nature of the operator poses several modeling and numerical challenges including the treatment of nonlocal

interfaces30,31, the prescription of nonlocal boundary conditions32,33 and the design of efficient discretization schemes and
numerical solvers34,35,36,37,38,39,40. In fact, the numerical solution of nonlocal equations becomes prohibitively expensive when
the ratio between the interaction radius and the discretization size increases. Even though the nonlocal literature offers several
examples of meshfree, particle-type discretizations41,42,43,39, in this paper we focus on finite element (FE) methods. This allows
us to easily deal with nontrivial domains, achieve high-order accuracy, and use mesh adaptivity. Furthermore, the nonlocal vector
calculus44 provides a means for a rigorous stability and convergence analysis of variational methods as it allows us to analyze
nonlocal diffusion problems in a similar way as elliptic PDEs45.
When cast in a variational form, the nonlocal problem associated with the operator  results in a bilinear form characterized

by the following double integral

∫
Ω∪Γ

∫
(Ω∪Γ)∩B�(x)

(

u(y) − u(x)
)(

'(y) − '(x)
)


(x, y)dydx

where we explicitly reported the domain of integration in the inner integral. Here,Ω ∈ ℝn andΓ are the domain of interest and the
corresponding “nonlocal boundary” and ' is an appropriate test function. Thus, the variational setting introduces further com-
putational challenges. Not only do we have to numerically evaluate a double integral, but the integrand function is discontinuous,
due to the compact support of 
 and to the fact that, in FE settings, the tests functions are also compactly supported.
The paper by D’Elia et al.37 thoroughly describes the challenges associated with nonlocal FE discretizations and proposes

approximation techniques for efficient and accurate implementations. In particular, the authors introduce “approximate balls”
that facilitate the assembly procedure by substituting the Euclidean ball B�(x) with suitable polygonal approximations. They
also suggest a set of quadrature rules for the outer and inner integration and analyze the convergence properties of the resulting
scheme. With the same spirit, in this work, we propose an alternative way to efficiently evaluate the integral above by circum-
venting the issue of integrating a truncated function. The key idea of this paper is the introduction of a mollifier46 to approximate
the discontinuous kernel function; by doing so, the new, approximate, and parameterized kernel is a smooth function for which
standard Gaussian quadrature rules can be employed over every element without compromising their accuracy. Additionally, we
introduce adaptive quadrature rules for the numerical integration of the outer integral. In fact, contrary to intuition, sophisticated
integration techniques for the outer integral are required in order to prevent the quadrature error from exceeding the FE one37.
The main contributions of this paper are

• The introduction of a parametrized, smooth, approximate kernel, by means of a mollifier, that yields a smooth integrand
over every element. This allows us to avoid the tedious and impractical task of determining the intersections of the ball
with the elements, and hence represents a major advantage of our method in three-dimensional simulations.

• The design of adaptive quadrature rules for the outer integral and of a parallel algorithm for efficient simulations.

• The theoretical proof and numerical illustration of the convergence of the approximate, mollified solution to the analytic
one as the mollified kernel approaches 
 .

• The numerical illustration of the convergence of the mollified solution to the exact one as we refine the mesh and a
numerical study of the dependence of the convergence behavior with respect to the parameters.

• The demonstration via two-dimensional and three-dimensional numerical tests of the scalability of our algorithm.

Outline of the paper
In the following section we define the notation that is used throughout the paper and recall important results on nonlocal calcu-
lus. In Section 3 we introduce the mollifier function and the associated approximate, parametrized weak form of the nonlocal
diffusion problem. We also analyze the convergence of the solution of the latter to the original weak solution. In Section 4 we
describe the nonlocal FE discretization, with special focus on the assembly procedure, and briefly recall its challenges. In Section
5 we introduce adaptive quadrature rules for the numerical integration of the outer integral. In Section 6 we illustrate our the-
oretical results via two- and three-dimensional tests. We also discuss a parallel implementation of the FE assembly procedure
and show the corresponding scaling results. Finally, we summarize our contributions in Section 7.
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FIGURE 1 Example of domain Ω with associated interaction domain Γ.

2 PRELIMINARIES

LetΩ ∈ ℝn be open and bounded, n = 1, 2, 3. Given some � > 0, we define the interaction domain Γ ofΩ as the set of all points
not in Ω that are within a � distance from points in Ω, i.e.

Γ = {y ∈ ℝn ⧵Ω ∶ |x − y| ≤ � for some x ∈ Ω}, (1)

see Figure 1 for a graphical example in ℝ2. Note that Γ depends on � even if it is not explicitly indicated. Let 
 ∶ ℝn ×ℝn → ℝ
be an integrable nonnegative symmetric kernel that is also radiala, namely 
(x, y) = 
(y,x) and 
(x, y) = 
(|x − y|). We also
assume that 
 has bounded support over the ball of radius � centered at x, i.e. B�(x). For a scalar function u ∶ ℝn → ℝ we
define the nonlocal Laplacian as

u(x) = 2∫
ℝn

(u(y) − u(x))
(x, y) dy. (2)

The strong form of a nonlocal Poisson problem is then given by: for f ∶ Ω→ ℝ, and g ∶ ℝn ⧵Ω→ ℝ, find u such that
{

−u(x) = f (x), x ∈ Ω
u(x) = g(x), x ∈ Γ

(3)

where the second condition in (3) is the nonlocal counterpart of a Dirichlet boundary condition for PDEs and it is referred to as
Dirichlet volume constraintb. Such condition is required45 to guarantee the well-posedness of (3). The weak form of the Poisson
problem is obtained by multiplying the first equation in (3) by a test function ' = 0 in Γ and by applying the nonlocal first
Green’s identity44. This yields

0 = ∫
Ω

(−u − f )'dx

= ∫ ∫
(Ω∪Γ)2

(u(y) − u(x))('(y) − '(x)) 
(x, y) dy dx − ∫
Ω

f (x)'(x) dx,
(4)

Then, the weak form of the nonlocal diffusion problem reads as follows. For f ∈ V ′ and g ∈ VΓ, find u ∈ V such that

(u, v) =  (v), ∀ v ∈ V0, subject to u = g in Γ, (5)

where
(u, ') = ∫ ∫

(Ω∪Γ)2

(u(y) − u(x))('(y) − '(x))
(x, y) dy dx,

 (') = ∫
Ω

f (x)'(x) dx,
(6)

aFor a discussion on nonpositive kernels and nonsymmetric kernels, see Mengesha and Du 47 and D’Elia et al. 16, respectively.
bFor definition and analysis of Neumann volume constraints we refer to Du et al. 48 and for its numerical treatment we refer to, e.g., D’Elia et al. 33.
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and where the function spaces are defined as
V = {' ∈ L2(Ω ∪ Γ) ∶ |||'||| <∞ and v|ℝn⧵Ω = 0}
V0 = {' ∈ V ∶ '|Γ = 0},
VΓ = {p ∶ Γ→ ℝ ∶ ∃' ∈ V such that '|Γ = p}.

(7)

Here, the energy semi-norm ||| ⋅ ||| is defined as

|||'|||2 = (','), (8)

the space V ′ is the dual space of V and VΓ is a nonlocal trace space. Note that since the kernel is integrable and translation
invariant, the energy semi-norm is a norm in the constrained space V0 and satisfies a Poincaré inequality45. Furthermore, by
construction, the bilinear form(⋅, ⋅) defines an inner product on V0 and it is continuous and coercive with respect to the energy
norm ||| ⋅ |||. Finally, the latter is equivalent to the L2 norm; this allows us to establish an equivalence relationship between V
and L2(Ω ∪ Γ). Together with the continuity of  , these facts yield the well-posedness of the weak form (5)45.
As commonly done in the PDE context, we recast the problem in V0 by simply rewriting the solution as u = w + g̃, where

w ∈ V0 and g̃ ∈ V is an extension of g to zero into Ω ∪ Γ, known in the FE framework as a lifting function. Thus, equation (5)
can be rewritten in terms of w as follows

∫ ∫
(Ω∪Γ)2

(w(x) −w(y)) ('(x) − '(y)) 
(x, y)dy dx = ∫
Ω

f (x)'(x)dx

+ ∫ ∫
(Ω∪Γ)2

(

g̃(x) − g̃(y)
)

('(x) − '(y)) 
(x, y)dy dx, ∀' ∈ V0, (9)

or, equivalently,

(w,') = ̃ (') ∀' ∈ V0. (10)

The latter is useful for implementation purposes as it allows us to automatically take into account the presence of a
non-homogeneous Dirichlet volume constraint.

3 WEAK FORM APPROXIMATION

We introduce a parametrized approximation of the bilinear form defined in (6) with the purpose of obtaining a weak problem
that is computationally less challenging. Specifically, the approximated bilinear form is associated with a parametrized kernel
function that is still integrable, radial, and compactly supported, but not discontinuous in Ω ∪ Γ. This fact makes the numerical
integration of the inner integral in, e.g., (5), a much simpler task, compared to the case of discontinuous kernel functions.
For simplicity of exposition, we rewrite the “exact” kernel 
 as


(x, y) = C� �(x, y)(y ∈ B�(x)) (11)

where C� is a scaling constant that guarantees that the nonlocal operator  associated with 
 is such that  → Δ as � → 0.
Clearly, by definition, �(x, y) = �(|x − y|). Given " ∈ ℝ+, we approximate the bilinear form (⋅, ⋅) defined in (6) with the
parametrized bilinear form�(⋅, ⋅) obtained by replacing the kernel 
(x, y) with


�(x, y) = C�,��(x, y)��,�(x, y), (12)

where ��,� is an appropriately scaled mollifier function. Inspired by the mollifier function introduced in Mousavi et al.46, for
" < � we define ��,� ∶ ℝn ×ℝn → ℝ as the following radial function

��,�(|x − y|) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 for 0 ≤ |x − y| < � − "

�
(

(�−")−|x−y|
"

)

for � − " ≤ |x − y| ≤ � + "

0 for |x − y| > � + "

(13)

�(r) =
(128
256

+ 315
256

r − 420
256

r3 + 378
256

r5 − 180
256

r7 + 35
256

r9
)

,
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where, for given � > 0, C�,� is such that the nonlocal operator � , associated with 
� , converges to Δ as � → 0. The constant
C�,� is also such that it converges to C� as � → 0. Furthermore, it follows from the definition of ��,� that

lim
�→0

��,�(x, y) = (y ∈ B�(x)),

which, together with the property ofC�,� , implies that 
� converges pointwise to 
 as � → 0. Note that the support of the mollifier
is bigger than the one of the original kernel function 
 as it corresponds to B�+�(x). The parametrized bilinear form �(⋅, ⋅) is
therefore defined as follows

�(u, ') = ∫ ∫
(Ω∪Γ)2

(

u(y) − u(x)
)(

'(y) − '(x)
)


�(x, y)dydx, (14)

and consequently the approximate weak formulation of the nonlocal volume-constrained problem now reads: find u� ∈ V such
that

�(u� , ') =  (') ∀' ∈ V0 subject to u� = g on Γ. (15)
Note that the weak formulation above is defined over the same function spaces of (5). This is allowed because the parametrized
kernel 
� belongs to the same class of kernels as 
 . As a consequence, problem (15) is also well-posed.

3.1 Convergence of the approximate weak solution
We find a bound for the energy norm of the difference between solutions of the weak form (5) and (15). First, we note that by
subtracting (5) from (15) we obtain

(u, ') = �(u� , ') ∀' ∈ V0. (16)
Our ultimate goal is to find a bound for |||u − u�|||, or, equivalently, for |(u − u� , u − u�)|, being u and u� solutions of (5) and
(15) respectively. We first consider a generic test function; equality (16) implies

|(u − u� , ')| = |(u, ') −(u� , ')| = |�(u� , ') −(u� , ')|

=
|

|

|

|

|

|

|

∫ ∫
(Ω∪Γ)2

(u�(x) − u�(y))('(x) − '(y))(
�(x, y) − 
(x, y)) dy dx
|

|

|

|

|

|

|

.

By expanding the product, we have
|

|

|

|

|

|

|

∫ ∫
(Ω∪Γ)2

(u�(x) − u�(y))('(x) − '(y))(
�(x, y) − 
(x, y)) dy dx
|

|

|

|

|

|

|

≤∫ ∫
(Ω∪Γ)2

|u�(x)'(x)| |
�(x, y) − 
(x, y)| dy dx

+∫ ∫
(Ω∪Γ)2

|u�(y)'(y)| |
�(x, y) − 
(x, y)| dy dx

+∫ ∫
(Ω∪Γ)2

|u�(x)'(y)| |
�(x, y) − 
(x, y)| dy dx

+∫ ∫
(Ω∪Γ)2

|u�(y)'(x)| |
�(x, y) − 
(x, y)| dy dx.



6 E. AULISA ET AL

By switching the order of integration and renaming dummy variables in the second and fourth terms above, we obtain

2 ∫
Ω∪Γ

|u�(x)'(x)| ∫
Ω∪Γ

|
�(x, y) − 
(x, y)| dy dx

+ 2 ∫
Ω∪Γ

|'(x)| ∫
Ω∪Γ

|u�(y)| |
�(x, y) − 
(x, y)| dy dx

≤ 2c1(�) ∫
Ω∪Γ

|u�(x)'(x)| dx

+ 2 ∫
Ω∪Γ

|'(x)|‖u�‖L2(Ω∪Γ)‖
� − 
‖L2(Ω∪Γ) dx

≤ 2c1(�)‖u�‖L2(Ω∪Γ)‖'‖L2(Ω∪Γ) + 2c2(�)|Ω ∪ Γ|
1
2
‖u�‖L2(Ω∪Γ)‖'‖L2(Ω∪Γ),

(17)

where we used the Cauchy-Schwarz inequality for the outer and inner integral for the first and second term, respectively, and
where

c1(�) = max
x∈Ω∪Γ ∫

B�+�(x)∩(Ω∪Γ)

|
�(x, y) − 
(x, y)| dy ≤ ∫
B�+�(0)

|
�(0, y) − 
(0, y)| dy,

c22(�) = max
x∈Ω∪Γ ∫

B�+�(x)∩(Ω∪Γ)

(
�(x, y) − 
(x, y))2 dy ≤ ∫
B�+�(0)

(
�(0, y) − 
(0, y))2 dy.

We recall that, by definition, 
� → 
 pointwise as � → 0; thus, ci(�) → 0 as � → 0, for i = 1, 2. Furthermore, thanks to the
properties of � and ��,� , the integrals above are well-defined.
To obtain the final estimate, we consider ' = u − u� and recall that for the kernels considered in this work the energy norm

||| ⋅ ||| is equivalent to the L2 norm. In particular there exists a positive constant Ceq such that ‖'‖L2(Ω∪Γ) ≤ |||'|||. Thus, we
have the following estimate

‖u − u�‖2L2(Ω∪Γ) ≤ Ceq|||u − u�|||2

= Ceq(u − u� , u − u�)
≤ Ceqk(�)‖u�‖L2(Ω∪Γ)‖u − u�‖L2(Ω∪Γ),

where k(�) is obtained from the constants in (17). We finally conclude that

‖u − u�‖L2(Ω∪Γ) ≤ Ceqk(�)‖u�‖L2(Ω∪Γ), (18)

where the constant k(�) is such that k(�)→ 0 as � → 0.

4 FINITE ELEMENT FORMULATION

In this section we introduce a FE discretization of problem (10), highlight the associated computational challenges, and describe
how the formulation introduced in the previous section helps circumventing them. Let ℎ be a shape-regular triangulation of
Ω∪Γ intoNL finite elements {l}

NL
l=1; the latter l can either be triangles and/or quadrilaterals in two dimensions and tetrahedra

and/or hexaheadra in three dimensionsc. The parameter ℎ represents the size of the triangulation and corresponds to the larger
element diameter. Also, let V Nℎ

0 be a finite dimensional subspace of V0 of dimensionNℎ, proportional to ℎ−1, and let {'i}
Nℎ
i=1 be

a basis for V Nℎ
0 . In this work we consider Lagrange basis functions over the triangulation ℎ. Thus, we can write the FE solution

wℎ of equation (10) aswℎ(x) =
∑Nℎ
i=1Wi'i(x). By using this expression and ' ∈ {'i}

Nℎ
i=1, equation (10) reduces to the algebraic

system
AW = F, (19)

cSee D’Elia et al. 37 for a description of appropriate triangulation techniques for nonlocal problems.
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where W ∈ ℝNℎ is the vector whose components are the degrees of freedom of the numerical solution wℎ, F is such that
Fi = ̃ ('i), and A is the stiffness matrix with entries

Aij = ('i, 'j) = ∫ ∫
(Ω∪Γ)2

(

'i(x) − 'i(y)
) (

'j(x) − 'j(y)
)


(x, y)dy dx. (20)

4.1 Circumventing computational challenges
The computation of the entries of the stiffness matrixA raises several diverse challenges. In this work we specifically focus on the
challenges related to the presence of the indicator function in the definition of the kernel. Other challenges, such as the presence
of singularities in fractional-type kernels or peridynamics kernels are not considered here. We point out that our method can be
combined with any technique that takes into account the presence of the singularity. In fact, while the singularity is located at
the center of the ball, the issues considered in this paper arise at the boundary. To make our description clear, we rewrite (20)
by explicitly indicating the domain of integration, i.e.

Aij = C� ∫
Ω∪Γ

∫
(Ω∪Γ)∩B�(x)

(

'i(x) − 'i(y)
) (

'j(x) − 'j(y)
)

�(x, y)dy dx

= C�
NL
∑

l=1

NL
∑

k=1
∫
l

∫
k∩B�(x)

(

'i(x) − 'i(y)
) (

'j(x) − 'j(y)
)

�(x, y)dy dx,
(21)

where we split the integrals over the elements with the purpose of using composite quadrature rules. In fact, global quadrature
rules used, e.g., over the ball B�(x) for the inner integration are not convenient due to the basis functions’ bounded support37.
It is evident that the first challenge that one has to face is the integration over partial elements: when the element k is not fully

contained in the ball, standard quadrature rules such as Gauss quadrature rules defined over k are not suitable due to the presence
of the discontinuity induced by the indicator function. Thus, it is necessary to determine the intersection regions k ∩B�(x) and
define quadrature rules there. This task, while affordable in two dimensions, becomes extremely complex and impractical in
three dimensions. Furthermore, when B�(x) is a Euclidean ball, such regions are curved so that appropriate approximations or
quadrature rules for curved domains must be taken into account37. A key observation is that these issues do not arise in case of
smooth kernel functions, e.g. functions that do not abruptly jump to zero outside of B�(x), but that approach zero smoothly. This
would allow the use of quadrature rules defined over the whole element k, circumventing the issue of determining intersections
or integrating over curved regions.
The parametrized kernel introduced in Section 3 is such that the transition to zero happens smoothly (as an example, for

constant kernel functions �, the kernel function is a piece-wise polynomial in C4. Thus, the inner integration can be performed
over the whole element k, using accurate enough quadrature rules, without worrying about the presence of a discontinuity. We
then propose to solve the approximate, parametrized problem

�(wℎ,� , 'i) = F̃ ('i), ∀ i = 1,…Nℎ, (22)

for which the entries of the stiffness matrix, that, with an abuse of notation, we still denote by A, read

Aij = C�,�
NL
∑

l=1

NL
∑

k=1
∫
l

∫
k

(

'i(x) − 'i(y)
) (

'j(x) − 'j(y)
)

�(x, y)��,�(x, y)dy dx. (23)

By avoiding the problem of determining intersecting elements, this approach makes three-dimensional implementation a much
simpler task.

Remark 1. The convergence of the solution wℎ,� to the continuous solution w depends on both the discretization parameter ℎ
and the mollifying parameter �. An adaptive quadrature procedure, introduced in the following section, will further contribute
to the overall approximation error, as we discuss and illustrate in Section 6.
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5 ADAPTIVE QUADRATURE RULES

As already pointed out, the use of the mollifier, in place of the characteristic function, removes the difficulty of integrating
discontinuous functions. The transition region of the mollifier has thickness 2" and it is important to choose quadrature rules that
can appropriately capture this region, especially if " ≪ ℎ. Note that the presence of the transition region affects the regularity
of both the inner and the outer integrands. As we explain below, only one adaptive rule is necessary, applied to either the outer
or inner integral. A quadrature rule with few points can be fast but is also inaccurate, one with many points can be accurate but
is also expensive, especially in higher dimensions. To this end, adaptive quadrature rules have been proven to be accurate and
efficient46. The advantage of using an adaptive scheme is that only the portion of the element overlapping with the transition
region needs to be recursively refined, considerably reducing the computational time. Moreover, for fixed �, each partitioning
has the effect of halving the ratio ℎ∕". Thus, it is always possible to chose a number of adaptive refinements such that ℎ ≈ "
and for which a quadrature rule with few points is accurate enough. Note that the adaptive quadrature rule devised here is not
standard, because the refinement criterion is controlled by the distance between points in the outer and inner integrals. The
details of the algorithm are given below.
We recall that we denote by A the stiffness matrix corresponding to the parametrized bilinear form � . It is convenient to

rewrite its entries as Aij = A11ij + A
12
ij + A

21
ij + A

22
ij , where each term is given by

A11ij = ∫
Ω∪Γ

∫
Ω∪Γ


�(x, y)'i(x)'j(x)dy dx, (24)

A12ij = − ∫
Ω∪Γ

∫
Ω∪Γ


�(x, y)'i(x)'j(y)dy dx, (25)

A21ij = − ∫
Ω∪Γ

∫
Ω∪Γ


�(x, y)'i(y)'j(x)dy dx, (26)

A22ij = ∫
Ω∪Γ

∫
Ω∪Γ


�(x, y)'i(y)'j(y)dy dx. (27)

The following proposition allows us to express Aij only as a sum of two of the terms above, as we show in Corollary 1.

Proposition 1. Let f1 and f2 ∈ V , and let g(x, y) be a symmetric function, then

∫
Ω∪Γ

∫
Ω∪Γ

g(x, y) f1(x)f2(y)dy dx = ∫
Ω∪Γ

∫
Ω∪Γ

g(x, y) f1(y)f2(x)dy dx. (28)

Proof.

∫
Ω∪Γ

∫
Ω∪Γ

g(x, y) f1(x)f2(y)dy dx

= ∫
Ω∪Γ

∫
Ω∪Γ

g(x, y) f1(x)f2(y)dx dy reversing the order

= ∫
Ω∪Γ

∫
Ω∪Γ

g(x, y) f1(y)f2(x)dy dx
renaming variables

and using the symmetry of g

Corollary 1. The entries of the stiffness matrix A satisfy the following equality

Aij = 2A11ij + 2A
12
ij = 2A

21
ij + 2A

22
ij

.

Proof. The proof follows from the definition of Aij and Proposition 1. Namely, A11ij = A
22
ij and A12ij = A

21
ij .
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Let Q1 = {(xq1 , wq1)}q1 and Q2 = {(xq2 , wq2)}q2 denote sets of quadrature points and associated weights representing two
different composite quadrature rules for the numerical integration over the region Ω ∪ Γ. To preserve the equality between A11ij
and A22ij , and between A

12
ij and A21ij we use Q1 and Q2 to numerically evaluate the inner and outer integrals as follows:

A11ij =
∑

q1∈Q1

∑

q2∈Q2


�(xq1 ,xq2)'i(xq1)'j(xq1)wq2wq1 , (29)

A12ij =
∑

q1∈Q1

∑

q2∈Q2


�(xq1 ,xq2)'i(xq1)'j(xq2)wq2wq1 , (30)

A21ij =
∑

q2∈Q2

∑

q1∈Q1


�(xq2 ,xq1)'i(xq1)'j(xq2)wq1wq2 , (31)

A22ij =
∑

q2∈Q2

∑

q1∈Q1


�(xq2 ,xq1)'i(xq1)'j(xq1)wq1wq2 . (32)

According to Corollary 1, only two terms among the ones above need to be computed. We choose to compute A21ij and
A22ij in (31) and (32). We adopt an adaptive scheme for the outer quadrature and Gaussian composite quadrature rules for the
inner integration over the elements that intersect the ball. These choices are empirical, i.e. they have been guided by numerical
experiments that showed that for A21ij and A22ij using an adaptive quadrature for the outer integral is more efficient than using it
for the inner one.
For every l ∈ ℎ we define

l = {m ∈ {1,… , NL} ∶ ‖x − y‖l∞ ≥ � + ", ∀x ∈ l,∀y ∈ m }, (33)

and l = c
l , i.e. the complement of l in {1,… , NL}. For k = 1, 2 and l = 1,… , NL let Ql

k = {(xqkl , wqkl
)}qkl ⊂ Qk denote

the subset of Qk composed of those quadrature points and weights obtained by only considering the quadrature points (and
associated weights) that lie within element l. Then, integrals (31) and (32) can be rewritten as

A21ij =
NL
∑

l=1

∑

q2l∈Q
l
2

∑

m∈l

∑

q1m∈Q
m
1


�(xq2l ,xq1m )'
m
i (xq1m )'

l
j(xq2l )wq1m

wq2l
, (34)

A22ij =
NL
∑

l=1

∑

q2l∈Q
l
2

∑

m∈l

∑

q1m∈Q
m
1


�(xq2l ,xq1m )'
m
i (xq1m )'

l
j(xq1m )wq1m

wq2l
. (35)

Note that in the equations above the terms in the sum are nonzero only when the support of the basis functions intersects the
elements. An adaptive quadrature with midpoint refinement is adopted for Ql

2. The pseudo-code that describes the adaptivity
algorithm is reported in Algorithm 1: we employ recursive calls with input arguments Lmin, Lmax, Lcur, l, and l. In each call
Lmin and Lmax are fixed parameters, and represent the minimum and the maximum level of refinement, with Lmax ≥ Lmin ≥ 1.
Lcur is the current level of refinement. In the initial call l and l are the ones defined above and Lcur = 1, while in the recursive
calls these three arguments are subject to changes as described below.

• IfLcur < Lmin, then l is split in 2N sub-elements li using the midpoint rule and for each of them the adaptive integration
function is called again increasing Lcur by one and using the same index set l.

• If Lcur = Lmax integration is performed on l for the outer integral and on each element indexed by l for the inner
integral, without any further refinement for l. The numerical integration is performed using standard Gauss Legendre
quadrature rules both for the outer and inner integrals.

• If Lmin ≤ Lcur < Lmax, from the index set l two new index sets  int
l and  ref

l are extracted, for which l is either
integrated or further refined. For any m in l, the maximum distance from m to l is computed. If this distance is less
than � − ", then m is added to  int

l , otherwise the minimum distance from m to l is computed. If this distance is less
than � + " then m is added to the index set  ref

l . If  int
l is non-empty, integration is performed on l for the outer integral

and on each element indexed by  int
l for the inner integral. If  ref

l is non-empty, then l is split in 2N sub-elements li
and for each of them the adaptive integration function is called again increasing Lcur by one and using 

ref
l as index set.
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Algorithm 1 Pseudo-code for the adaptive refinement integration.
function ADAPTIVE INTEGRATION(Lmin, Lmax, Lcur, l, l)

if Lcur < Lmin then
split l into 2N new sub-elements li
for i = 1,… , 2N do

ADAPTIVE INTEGRATION(Lmin, Lmax, Lcur + 1, li , l)
end for

else if Lcur = Lmax then
INTEGRATION(l, l)

else
 int
l = ∅

 ref
l = ∅

for all m ∈ l do
if max dist(l, m) < � − " then

add m to the index set  int
l

else if min dist(l, m) < � + " then
add m to the index set  ref

l
end if

end for
if  int

l ≠ ∅ then
INTEGRATION(l,  int

l )
end if
if  ref

l ≠ ∅ then
split l into 2N new sub-elements li
for i = 1,… , 2N do

ADAPTIVE INTEGRATION(Lmin, Lmax, Lcur + 1, li , 
ref
l )

end for
end if

end if
end function

5.1 Approximate maximum and minimum distances between elements
Evaluating the exact distances between two elements can be computationally expensive, especially for unstructured three-
dimensional meshes. Hence, in practice, we use conservative distances that are simple to compute in place of the maximum
and the minimum. Namely, we first loop over the nodes of each element to find the minimum and maximum coordinates in
each dimension, denote them by xmin, xmax and by ymin, ymax. Here xmin and xmax are the vectors containing the minimum and
maximum coordinates of the bounding box containing l. Similarly, ymin and ymax are the vectors containing the minimum
and maximum coordinates of the bounding box containing m. For each dimension k = 1,… , N evaluate the two quantities
dk1 = x

k
min − y

k
max and d

k
2 = y

k
min − x

k
max. Finally, we approximate the maximum and minimum distances with the two quantities

aprx max dist(l, m) =
√

∑

k=1,…,N
max

(

dk1
2, dk2

2
)

, (36)

aprx min dist(l, m) = max
k=1,…,N

(

max
(

0, dk1 , d
k
2

))

. (37)

The approximate maximum distance in (36) is the maximum among the distances between opposite vertices of the two
bounding boxes. For example in two dimensions it would be one among the distances ‖SW −NE‖l2 , ‖SE−NW ‖l2

, ‖NE−
SW ‖l2

and ‖NW −SE‖l2 , with Smeaning South, Nmeaning North and so on. This is true regardless of the reciprocal position
of the two boxes. To better understand (37), consider the projections of the bounding boxes in the direction of k. Recall that, for
fixed k, at least one between dk1 and d

k
2 is always negative. The other is positive only if the 2 projections do not overlap. In this
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case, max
(

0, dk1 , d
k
2

)

is the minimum (positive) distance between the 2 non-overlapping projections. Finally, we approximate
the minimum distance with the largest projected distance.
It is easy to see that

aprx max dist(l, m) ≥ max dist(l, m), (38)
aprx min dist(l, m) ≤ min dist(l, m), (39)

where the sign of the inequalities assures the conservative approach in the adaptive integration algorithm. For a kernel whose
support is identified by a ball in the topology defined by the L2 norm, the minimum distance could be also approximated by

aprx min dist(l, m) =
√

∑

k=1,…,N
max

(

0, dk1 , d
k
2

)2.

This last would give a sharper inequality in (39), however it would not work for the case where the support of the kernel is an
L∞ ball. In this work, for generality, we have chosen to always use formula (37). Note that (37) is also used in (33) in place of
‖ ⋅ ‖l∞ to identify the elements indexed by l.

6 NUMERICAL RESULTS

In this section, we present the results of numerical tests for FE discretizations of two-dimensional (n = 2) and three-dimensional
(n = 3) problems. These results allow us to illustrate the theoretical results presented in the previous sections and highlight the
efficiency of our approach.
We first show the consistency of the proposed method; specifically, fixing the mesh and letting the maximum level of adaptive

refinementLmax increase, we study the behavior of the discretization error with respect to an analytic solution that belongs to the
FE space. Then, we investigate the convergence of discretized solutions to the continuous one as the mesh is refined. To better
understand the behavior of the algorithm and the specific sources of error, we devised a specific numerical test to isolate the
error induced by the presence of the mollifier and analyze the convergence behavior with respect to ". Accuracy comparisons
with the algorithm proposed in the paper by D’Elia et al.37 are also provided.
Due to the intrinsically high computational costs of nonlocal simulations, a parallel implementation of the algorithm is

proposed and its scalability properties are analyzed both in two and three dimensions.
The two-dimensional tests are carried out on quadrilateral, triangular, and mixed meshes, i.e. meshes consisting of both

quadrilateral and triangular elements. The three-dimensional simulations are carried out on a hexahedral mesh.
We consider constant kernels supported on Euclidean balls of radius �. To guarantee the consistency of the nonlocal diffusion

operator with the classical Laplacian for polynomials up to degree three and its convergence to the classical Laplacian as � → 0,
we select the constants C� and C�," in (11) and (12), respectively, as follows

n = 2 ∶ C� =
4�
��4

, C�," =
C�

1 + 6
11

("
�

)2
+ 3
143

("
�

)4
,

n = 3 ∶ C� =
15�
4��5

, C�," =
C�

1 + 10
11

("
�

)2
+ 15
143

("
�

)4
.

For sufficiently smooth u, these choices guarantee quadratic convergence of the nonlocal Laplacian to the local one for � → 0:

u(x) = Δu(x) + O(�2) and "u(x) = Δu(x) + O(�2).

Sources of numerical error
Let uℎ be the FE solution; the numerical error can heuristically be split into three separate contributions, i.e.

‖u − uℎ‖L2(Ω∪Γ) ≤ C1ℎ
p1 + C2"p2 + Ei(", ℎ, Lmax), (40)
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FIGURE 2Meshes used for the two-dimensional numerical simulations: quadrilateral (left, number of degrees of freedom with
linear FE discretization Nℎ = 35, and Nℎ = 93 for quadratic FE discretization), triangular (center, Nℎ = 35 for linear FE,
Nℎ = 117 for quadratic FE) and mixed (right,Nℎ = 58 for linear FE,Nℎ = 190 for quadratic FE).

where, ℎ is the characteristic size of the mesh, C1 and C2 are positive constants independent of ℎ, " and Lmax, and p1 and p2
are positive integers that represent the rates of convergence with respect to ℎ and ", respectively. The first term on the right-
hand side is the interpolation error and depends on the FE family used to discretize the problemd. The second term is the error
induced by the presence of the mollifier and, in the L2 metric, it is bounded by the expression in (18). The last term, Ei, is the
numerical integration error, that for fixed external and internal Gauss quadrature rules depends on ", ℎ and Lmax.
For ℎ → 0 or Lmax → ∞ the integration error Ei vanishes, whereas for " → 0 it increases, since the transition to zero of the

mollifier features higher gradients. In all simulations we empirically set the integration parameters so that the integration error
Ei could be negligible compared to C1ℎp1 + C2"p2 . In such a context, " cannot be selected independently of ℎ or Lmax; explicit
dependence is provided in each simulation.

6.1 Two-dimensional tests
Two-dimensional numerical simulations of nonlocal operators can be found in several works in literature, see, e.g., the papers
by Macek49, Wang50, and Vollman51. However, such studies are often designed for structured mesh only. On the other hand, our
method can be applied to any type of mesh. We consider the domain Ω = [−0.6, 0.6] × [−0.4, 0.4] and three different meshes,
see Figure 2 for a coarse example. Linear and quadratic Lagrange FE spaces are considered. Unless otherwise stated, we use
Gauss-Legendre 3 × 3 product rule for quadrilateral elements and Dunavant 7-point rule for triangles. In all tests we consider
the error with respect to an analytic, manufactured solution, u(x). For all x ∈ Γ, the nonlocal Dirichlet volume constraint is set
to g(x) = u(x) and the forcing term is known analytically as f (x) = −u(x).

Consistency
We choose u ∈ V Nℎ , so that the interpolation error contribution in (40) is identically zero, regardless of ℎ. We compute the
discretization error ‖u − uℎ‖L2 for a fixed mesh while increasing the values of the maximum level of adaptivity Lmax.
For the linear manufactured solution u = 1 + x + y the forcing term is f (x) = 0. In this case the numerical errors are always

zero for both the linear and the quadratic FE spaces, for anyLmax and ". Although welcome, this result is an over-achievement, as
it is obtained only because the forcing terms are zero. Thus, it should not be taken as a reference. For the quadratic manufactured
solution u = x2 + y2 the forcing term is f (x) = −2. In this case we consider only the quadratic FE space, because it is the only
one that can reproduce exactly the solution. We choose " as

" = "0
(3
4

)Lmax−3

so that "→ 0 for Lmax →∞, i.e. for Lmax →∞ both the mollifier and the integration errors in (40) vanish.
In Table 1 we report the errors of the numerical tests for the quadrilateral (QUAD) and triangular (TRI) meshes after one

refinement, together with all the values of the parameters ℎ, �, "0 andLmin. TheL2-norm of the error decreases down to machine
precision, when Lmax is increased, for both quadrilateral and triangular meshes, illustrating the consistency of the implemented
adaptivity method in two dimensions.

dFor convergence rates of FE discretizations in presence of integrable kernels, we refer the reader to Du et al. 45.
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TABLE 1 Consistency test: errors ‖u − uℎ‖L2 as Lmax increases for u = x2 + y2, ℎ = 0.1, � = 0.2, "0 = 0.0125, Lmin = 1,
" = "0(3∕4)Lmax−3 and quadratic FE.

Lmax QUAD TRI

3 8.123E-05 2.713E-05
4 1.278E-05 2.052E-06
5 3.453E-07 1.193E-07
6 1.793E-09 1.774E-09
7 7.073E-10 5.479E-11

h-Convergence
We consider the convergence with the respect to the grid size ℎ on quadrilateral, triangular and mixed meshes. We use the
manufactured solution u(x) = x3 + y3 for which the corresponding source term is given by f (x) = −u(x). = −Δu(x) =
−6(x+ y) for x ∈ Ω. We analyze the convergence of the finite FE adaptive nonlocal solution uℎ to the analytic solution u as we
progressively halve the mesh size ℎ by operating on a parameter referred to as ml, as shown in (41). We consider fixed Lmax,
Lmin, and �, whereas ℎ and " depend on ml (mesh level) as follows

ℎ = ℎ0
(1
2

)ml−2
and " = "0

(2
3

)ml−2
. (41)

In Table 2 we report the values of ‖u−uℎ‖L2 and the corresponding rate of convergence p asml grows, evaluated in full awareness
with respect to ℎ only, with the approximate formula

p ≊ ln
(

E(ℎ)∕E (ℎ∕2)
)

∕ ln(2) . (42)

For linear FE discretization we obtain quadratic convergence. This is optimal since it resembles the optimal convergence rate
p1 = 2 of the interpolation error45. Namely, it indicates that in (40) the mollifier and the integration errors are negligible with
respect to the interpolation error. Instead, in case of quadratic FE discretization, the observed rate is p ≈ 3 (similar to the optimal
one p1 = 3) only for ml ≤ 4, but it deteriorates for higher values of ml, i.e. as we refine the meshes (this behavior happens
consistently on all the tested meshes, quadrilateral, triangular and mixed). This is due to the combined effect of the mollifier
and integration errors that start dominating for ℎ → 0. Since " ∝ (2∕3)ml−2, the mollifying function defined in (13) exhibits a
sharper gradient as we increase ml inducing a less accurate numerical integration, and, hence, higher values of Ei. Moreover,
since the mesh refinement significantly reduces the interpolation error C1ℎpi , as we increase ml the error contibution C2"p2
becomes dominant affecting the overall convergence rate p.
We further test the convergence rate with respect to ℎ considering the fourth-degree polynomial

u(x) = x4 + y4 , (43)

for which the corresponding source term is given by f (x) = −12(x2+y2)−�2 for x ∈ Ω. Similarly to the previous test, in Table
3 we report the numerical results for linear and quadratic FE discretizations, on quadrilateral, triangular and mixed meshes.
Again, p ≈ 2 for all the linear discretizations, while p ≈ 3 for quadratic discretizations only for ml ≤ 3. Same considerations as
for the previous test can be inferred.

"-Convergence
We analyze the contribution of the mollifier to the discretization error, i.e.C2"p2 in (40).We consider the fourth-order polynomial
in (43) on a triangular mesh with a quadratic FE discretization. In Table 4, for fixed � andLmin, we report on the error ‖u−uℎ‖L2
and the computed convergence rate p2, starting from " = 0.1 and progressively halving it. To minimize the interpolation error
Ciℎp1 and the integration error Ei, so that the overall error is dominated by the "-contribution, for each ", during the tests the
number of adaptive refinements Lmax and of the mesh level ml have been increased with a brute force procedure until the values
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TABLE 2 ℎ-Convergence test: errors ‖u−uℎ‖L2 and computed order p as the mesh level ml increases for u = x3+y3, Lmin = 1,
Lmax = 3, � = 0.2, ℎ0 = 0.1, ℎ = ℎ0(1∕2)ml−2, "0 = 0.0125, " = "0(2∕3)ml−2.

QUAD TRI MIXED

ml bilinear quadratic linear quadratic linear quadratic

2 4.363E-03 6.077E-05 4.373E-03 6.389E-05 2.386E-03 3.352E-05
1.996 3.090 1.999 3.015 2.028 3.188

3 1.094E-03 7.135E-06 1.094E-03 7.906E-06 5.848E-04 3.677E-06
1.998 2.995 1.999 2.989 2.015 2.865

4 2.738E-04 8.950E-07 2.737E-04 9.956E-07 1.447E-04 5.046E-07
2.000 2.690 1.999 2.694 2.006 1.674

5 6.845E-05 1.387E-07 6.845E-05 1.538E-07 3.602E-05 1.581E-07
2.000 1.012 2.000 1.315 2.003 0.880

6 1.711E-05 6.878E-08 1.711E-05 6.179E-08 8.983E-06 8.589E-08

TABLE 3 ℎ-Convergence test: errors ‖u−uℎ‖L2 and computed order p as the mesh level ml increases for u = x4+y4, Lmin = 1,
Lmax = 3, � = 0.2, ℎ0 = 0.1, ℎ = ℎ0(1∕2)ml−2, "0 = 0.0125, " = "0(2∕3)ml−2.

QUAD TRI MIXED

ml bilinear quadratic linear quadratic linear quadratic

2 6.383E-03 9.544E-05 6.398E-03 1.027E-04 3.267E-03 5.561E-05
1.972 2.892 1.976 2.914 2.005 2.769

3 1.627E-03 1.285E-05 1.626E-03 1.362E-05 8.138E-04 8.155E-06
1.986 2.161 1.985 2.240 2.000 1.677

4 4.106E-04 2.872E-06 4.105E-04 2.883E-06 2.034E-04 2.550E-06
1.990 1.374 1.990 1.373 1.994 1.214

5 1.033E-04 1.108E-06 1.033E-04 1.113E-06 5.106E-05 1.099E-06
1.990 1.178 1.990 1.176 1.988 1.159

6 2.599E-05 4.895E-07 2.599E-05 4.923E-07 1.287E-05 4.920E-07

of the overall error did not change significantly anymore. The error values reported in the table are those obtained only after
this steady state was reached. The interpolation error (IE) in the table is reported as a reference and is obtained by numerically
solving the local counterpart of the nonlocal Poisson problem at the finer mesh level, i.e. the one to which is associated the
steady state. Also as a reference, we report the relative error (RE) between the interpolation error and the overall error

RE = IE
‖u − uℎ‖L2(Ω∪Γ)

.

The smaller the value of RE the more accurate the data, since the impact of the interpolation error on the overall error vanishes.
The "-convergence order is deliberately computed as

p2 ≊ ln
(

E(")∕E ("∕2)
)

∕ ln(2) , (44)

and is approximately p2 ≈ 2 for all the tested mollifier thicknesses.

Comparison with other algorithms
In Section 5.1 we introduced the maximum and minimum distance between elements in order to determine all elements inter-
secting the ball that identifies the support of the kernel function, for which integration is performed. However, in the literature,
there are other techniques to determine whether an element should be considered during the assembly of the FE matrix. As an
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TABLE 4 "-Convergence test: ‖u − uℎ‖L2 and computed order p2 as " decreases for u = x4 + y4, � = 0.2, Lmin = 1, and
quadratic FE.

" IE TRI RE

0.1 1.602E-06 7.107E-04 2.25E-03
2.09

0.05 1.602E-06 1.671E-04 9.58E-03
1.86

0.025 2.002E-07 4.603E-05 4.35E-03
1.95

0.0125 2.002E-07 1.189E-05 1.68E-02
1.95

0.00625 2.503E-08 3.086E-06 8.10E-03
1.98

0.003125 2.503E-08 7.835E-07 3.19E-02

FIGURE 3 Hexahedron mesh used for the three-dimensional numerical simulations, withNℎ = 175 (linear FE discretization)
andNℎ = 605 (quadratic FE discretization).

example, the paper by D’Elia et al.37 proposes a technique for which only the elements whose barycenter lies inside the ball
are considered for integration. This approach results in an approximation of the ball by a union of whole finite elements, and
shows second order ℎ-convergence for all FE spaces (linear, quadratic, etc.), as the rate is determined by the ball approximation.
With the purpose of testing the performance of our method against current approaches, we conduct a comparison study, where
we consider two different values of " and compare our results with those obtained with a barycenter approach. Specifically, we
use "0 = 0.0125, with " = "0(2∕3)ml−2 and "0 = 0.0250, with " = "0(1∕2)ml−2 (note that the " decrease differently). For the
the adaptive quadrature rule presented in this paper we use a Legendre quadrature rule both for the internal and external inte-
gral, whereas for the barycenter method we use a hybrid Lobatto × Legendre quadrature rule, Lobatto in the outer integral and
Legendre in the inner one. In Table 5 we report the discretization errors for linear FE on a quadrilateral mesh as the mesh level
ml increases. The ℎ-convergence rate p is computed as in (42). We see that this rate is always optimal (p ≈ 2) regardless of the
value of "; in other words, the mollifier and numerical quadrature contributions are negligible and the error is dominated by
the FE interpolation contribution. On the other hand, the barycenter method shows bigger errors and less regular convergence
order, due to geometric error introduced by the ball approximation. The computational times are all comparable since Lmax has
been taken equal to 1, and all quadrature rules have the same number of points. The interpolation error IE reported in the table
has the same meaning as already discussed.

6.2 Three-dimensional tests
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TABLE 5 Comparison test: errors ‖u − uℎ‖L2 and ℎ-convergence rate p with a quadrilateral mesh and linear FE as the mesh
refinement level ml increases for u = x4 + y4, � = 0.2, ℎ0 = 0.1, ℎ = ℎ0(1∕2)ml−2. For the adaptive algorithm: (Legendre 3 × 3)
× (Legendre 3 × 3), Lmin = 1, Lmax = 3. For the barycenter algorithm: (Lobatto 3 × 3) × (Legendre 3 × 3)

IE Adaptive Barycenter

ml - " = 0.0125 (2∕3)ml−2 " = 0.025 (1∕2)ml−2

2 3.280E-03 3.281E-03 3.290E-03 5.428E-03
1.99 2.02 2.01 1.95

3 8.250E-04 8.092E-04 8.147E-04 1.401E-03
2.00 1.99 2.00 1.82

4 2.066E-04 2.034E-04 2.038E-04 3.974E-04
2.00 1.99 2.00 2.00

5 5.168E-05 5.118E-05 5.104E-05 9.909E-05
2.01 1.99 2.00 1.69

6 1.287E-05 1.287E-05 1.273E-05 3.073E-05
1.99 1.98 2.00 1.67

7 3.231E-06 3.270E-06 3.195E-06 9.645E-06

TABLE 6 Consistency in 3D: ℎ = 0.1, � = 0.2, "0 = 0.0125, u = x2 + y2 + z2, Lmin = 1, " = "0
(

3
4

)Lmax−2
, quadratic FE.

‖u − uℎ‖L2

Lmax HEX

2 6.863E-04
3 2.499E-05
4 3.241E-06
5 7.035E-08

Three-dimensional simulations of nonlocal problems are incredibly challenging, especially in a variational setting, due to the
prohibitively high computational effort. At the time of this study, the nonlocal literature still does not offer efficient, scalable
algorithms for three-dimensional FE implementations of nonlocal solvers for kernels with bounded support. Efficient algorithms
for fractional operators are proposed in the work by Glusa52, whereas implementations for compactly-supported, integrable
kernels on structured grids can be found in the works by Wang50 and Vollmann51. Here, not only do we introduce an efficient
three-dimensional implementation, but we also propose a scalable, parallel implementation.
We proceed as in the two-dimensional case. In all our tests we consider the numerical domain Ω = [−0.6, 0.6]× [−0.4, 0.4]×

[−0.4, 0.4], discretized with the regular hexahedron mesh reported in Figure 3.
We first consider a consistency test; for fixed values of �, Lmin and ℎ we increase the refinement level Lmax. For the same

reasons explained in the previous section, we consider the analytic solution u = x2+y2+z2 for which the corresponding forcing
term is given by f (x) = −6 for x ∈ Ω. Results for quadratic FE on the structured hexahedral mesh are reported in Table 6. As
expected, the error decreases when the adaptive refinement level Lmax is increased, illustrating the consistency of the adaptive
algorithm in three dimensions.
Next, we test the ℎ-convergence on the structured hexahedral mesh for both linear and quadratic FE. For the analytic solution

u(x) = x3 + y3 + z3 and fixed Lmin, Lmax, and � we study the behavior of the error ‖u − uℎ‖L2 as we halve ℎ. Here, the
corresponding source term is f (x) = −Δu(x) = −u = −6(x + y + z) for x ∈ Ω. In Table 7 (left), we report on the errors
and the computed convergence rate p. We also consider the analytic solution u(x) = x4 + y4 + z4 with the corresponding source
term f (x) = −12(x2 + y2 + z2) − 6∕7�2 for x ∈ Ω. For the same parameters as for the cubic polynomial, results of numerical
experiments are reported in Table 7 (right). We observe an optimal convergence rate p ≈ 2 for linear FE discretizations for both
the cubic and the quartic cases. Similarly to the two dimensional case, the convergence rate for the quadratic FE discretizations
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TABLE 7 ℎ-convergence: errors ‖u − uℎ‖L2 and convergence rate p as the mesh level ml increases for u = x3 + y3 + z3 (left)
and u = x4 + y4 + z4 (right), Lmin = 1, Lmax = 2, � = 0.2, ℎ0 = 0.2, ℎ = ℎ0(1∕2)ml−1, "0 = 0.01875, " = "0(2∕3)ml−1.

HEX

ml linear quadratic

1 2.220E-02 6.739E-04
1.988 2.972

2 5.593E-03 8.587E-05
1.998 2.797

3 1.400E-03 1.235E-05
1.999 2.816

4 3.501E-04 1.753E-06

HEX

ml linear quadratic

1 3.299E-02 9.328E-04
1.964 2.864

2 8.452E-03 1.281E-04
1.985 2.674

3 2.134E-03 2.006E-05
1.992 2.303

4 5.361E-04 4.064E-06

starts from p ≈ 3 and it deteriorates when ml grows. In general, the three-dimensional numerical results are consistent with the
two-dimensional ones and the same considerations can be inferred.

6.3 Parallel implementation
The high computational effort necessary to perform three-dimensional nonlocal simulations requires a parallel implementation,
even for relative small-sized problems. This is mostly due to the fact that, unlike what happens in the local settings, the bandwidth
of a nonlocal matrix increases with mesh refinement, since the radius, �, of the nonlocal neighborhood remains fixed. In this
section, we first highlight the need of a parallel implementation, we then propose a parallel algorithm, and finally illustrate its
efficiency on two- and three-dimensional problems.

Complexity of nonlocal simulations
For each refinement, i.e. every time the mesh size is halved, the average number of elements contained in the kernel’s support
increases of a factor 2N . Consequently, the number of unknowns increases of the same factor and the number of nonzero entries
in the matrix increases of 22N , as opposed to local settings where the average increase at every mesh refinement is 2N . To better
understand the impact of such increase let us consider the quadrilateral mesh used in the previous simulations for the quadratic
solution, with a sparse matrix where the allocation for a non-zero entry is 12-bytes: 4 to specify the column location in the row
(int) and 8 to store the value (double). At mesh level ml = 6, the number of unknowns is Nℎ = 148353 and, for � = 0.2, the
maximum number of entries in one row is 34749. The memory allocation for this mesh level requires approximately 80 GB of
memory, while a corresponding local problem would require no more than 50 MB of memory.
Similarly, for each mesh refinement, the computational time to assemble the nonlocal matrix increases in average by the same

factor 22N , since the number of elements increases of 2N and the average number of elements contained inside the kernel’s
support increases by 2N . For a local problem the assembly time increases only of a factor 2N . These differences in memory
allocation and CPU time indicate that a parallel implementation of the nonlocal assembly is vital to make nonlocal models a
preferred and viable modeling option.

Details on the implementation
We begin our description by stressing the fact that, even in a local context, a parallel implementation of a FE algorithm is
nontrivial. In what follows, we assume that the reader is familiar with the FE method and relatively accustomed to its parallel
implementation53; thus, we proceed by highlighting the main challenges that arise in nonlocal implementations.
Our parallel algorithm has been implemented in FEMuS54 and is publicly available on GitHub. FEMuS is a in-house FE C++

library that interfaces with PETSC55, which provides the linear algebra library for the parallel solver. The parallalization of the
nonlocal assembly has been entirely developed within FEMuS.
As it is common in parallel FE settings, the mesh elements are partitioned among the processesNp; FEMuS uses the METIS/-

PARAMETIS56 library for partitioning unstructured meshes. For each process I , we let ΩI be the domain composed of the
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elements owned by I that overlap with Ω and ΠI be the domain composed of the elements owned by I that overlap with Γ.
Although highly desirable, each sub-domain ΩI ∪ Πi does not need to be simply connected. Similar to the definition of Γ, we
define the interaction domain ΓI of ΩI as

ΓI = {y ∈ (Ω ∪ Γ) ⧵ΩI ∶ |x − y| ≤ � + " for some x ∈ ΩI ∪ ΠI}. (45)

While in the local case two processes I and J have to exchange information only between elements on a shared boundary,
i.e. on )ΩI ∩ )ΩJ , in the nonlocal case the two processes need to exchange information whenever an element of I intersects the
interaction domain ΓJ or vice-versa. We denote by ΓJI the region made up by all the elements owned by process J that intersect
with the interaction domain ΓI , for I, J = 1,⋯ , Np. Set Γ̃I = ∪J∈NpΓJI . The following relations hold

ΓJI ∩ ΓKI = ∅ for J ≠ K,

ΓI ⊆ Γ̃I ,
ΓII = ΠI ,
Γ = ∪I∈NpΓII ,
ΓII ∩ ΓJJ = ∅ for I ≠ J .

The following expression clarifies what operations can be performed within one process and which ones require exchange of
information among processes. We consider a general integral, whose numerical computation is ubiquitous in Algorithm 1. For
any function w(x, y), any double integral such as those defined in the first part of the paper can be rewritten as

∫ ∫
(Ω∪Γ)2


�(x, y)w(x, y)dy dx

=
Np
∑

I=1
∫
Ω∪Γ

∫
ΩI∪ΓII


�(x, y)w(x, y)dy dx

=
Np
∑

I=1
∫

ΩI∪ΓI
∫

ΩI∪ΓII


�(x, y)w(x, y)dy dx

=
Np
∑

I=1
∫

ΩI∪Γ̃I

∫
ΩI∪ΓII


�(x, y)w(x, y)dy dx

=
Np
∑

I=1
∫
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∫

ΩI∪ΓII
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⎛
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⎜
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⎝
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. (46)

A few remarks are in order. In the last equality the first double integral relies on information fully available on process I . In
contrast, the outer integrals of the second term are defined on sub-domains ΓJI , which belong to processes different from I .
Thus, for process I , this information has to be made available through parallel implementation. Namely, before integration, each
process J sends to I the needed information stored in the elements that make up ΓJI through the MPI send/receive protocol57.
The inner integral is on the sub-region ΓIJ owned by process I . In the definition of A21ij and A22ij , the inner integral identifies
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TABLE 8 Assembly time ta and total time tt of simulations with 480641 dofs, linear FEM, and 1440513 dofs, quadratic FEM,
ℎ =1.5625E-03, " = ℎ∕2, � = 0.05, Lmax = 3, Lmin = 1.

Linear Quadratic

Np ta [s] tt [s] ta [s] tt [s]

36 4268.57 4470.87 1795.86 2168.10
1.89 1.90 1.77 1.68

72 2251.59 2346.46 1013.76 1290.14
1.92 1.94 1.88 1.94

144 1166.77 1207.84 538.12 663.53
1.72 1.73 1.64 1.70

288 675.67 694.44 327.75 388.88
1.85 1.85 1.65 1.72

576 364.65 373.77 197.83 225.32

the i-th row of the matrix through the test function 'i(y). Hence, the degree of freedom of that row is owned by process I . We
allocate the memory to store the entries of each row of the sparse parallel matrix on the process that owns the row itself; this
results in an optimal parallel assembly since it minimizes (almost removes) the communication time.

Remark 2. As already pointed out in Section 5.1, identifying if a given element intersect a given region can be challenging
and computationally expensive. As described before, we rely on a simple and fast conservative test to identify if an element j ,
owned by process J belongs to ΓJI . Namely, we use formula (37) to approximate the minimum distance between the bounding
box enveloping j and the bounding box enveloping all the elements owned by processor I . If the approximate distance is less
than � + ", then j is included into ΓJI .

Performance tests
We first consider two-dimensional problems with both linear and quadratic FE discretizations with 480641 and 1440513 degrees
of freedom, respectively. We consider a quadrilateral mesh with ml = 7 (for which ℎ =1.5625E-03), " = ℎ∕2, � = 0.05,
Lmax = 3,Lmin = 1. Since the high computational costs are mainly due to the assembly procedure, we report separately the CPU
times required by the assembly routine (ta) and the total CPU time (tt), which also includes the solver time. Computational times,
as the number of processors Np grows, are reported in Table 8. We also report the time ratios TRa(Np) = ta(Np∕2)∕ta(Np)
and TRt(Np) = tr(Np∕2)∕tr(Np). All cases feature large time rations, illustrating the good scaling properties of the parallel
implementation for both linear and quadratic FE discretizations.
We also test the scaling properties of the parallel algorithm with three-dimensional numerical simulations. Similarly to the

two-dimensional case, we consider a hexahedral mesh with 615489 degrees of freedom and a quadratic FE discretization. We
also set ℎ = 0.025, " = ℎ∕2, � = 0.1, Lmax = 2, Lmin = 1. In Table 9 we report the assembly time ta, the total time tt and
the time ratios of the numerical simulation for increasing number of processes. As in the two-dimensional case, the parallel
simulations show high time ratios, indicating good scaling properties of the algorithm.
In Figure 4 we show the assembly speedup S values referred toNp = 36, defined as S = ta(36)∕ta(Np) for two-dimensional

linear (left), quadratic (center) and three-dimensional quadratic (right) simulations. We also report the linear speedup (dashed
line). On the basis of the presented results, the code shows excellent scalability properties especially in 3D. Thus, it proves to
be suitable for large scale nonlocal simulations.
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TABLE 9 Assembly time ta, total time tt and time ratios of simulations with 615489 dofs, quadratic FEM, ℎ = 0.025, " = ℎ∕2,
� = 0.1, Lmax = 2, Lmin = 1.

Np ta [s] tt [s]
36 17598.5 17727.83

1.92 1.92
72 9155.14 9223.08

2.00 2.00
144 4556.1 4591.51

1.99 1.97
288 2286.17 2314.36

0 200 400 600
0

200

400

600

Np

S

0 200 400 600
0

200

400

600

Np

S

0 100 200 300
0

100

200

300

Np

S
FIGURE 4 Speedup as a function of the number of processors for two-dimensional linear (left) and quadratic FE (center), and
three-dimensional quadratic FE (right).

7 CONCLUSION

We introduced an efficient, flexible, and scalable algorithm for FE discretizations of nonlocal diffusion problems characterized by
compactly supported kernels. The novelty of our work is three fold. First, we circumvent the numerical difficulties arising from
the integration of discontinuous kernels by multiplying the integrand function by a mollifier. This allows us to avoid the tedious
and costly process of identifying ball-element intersections, hence avoiding integration over partial elements and/or curved
elements. These tasks, even though manageable in two-dimensional settings, become nontrivial in three dimensions. Second,
we introduce an adaptive quadrature rule that allows us accurately resolve the high gradients featured by the integrand function
without compromising the computational efficiency. Third, we propose a parallel implementation of the mollified, adaptive
algorithm that shows excellent scalability properties especially in three dimensions, where the cost of numerical integration
dominates. Our numerical results illustrate the theoretical findings and show that, in two dimensions, our algorithm is competitive
with other efficient approximations of FE implementations. In three dimensions, this is the first efficient and scalable parallel
implementation that has no constraints on the type of mesh or FE spaces.
As such, this work contributes to making variational discretizations of nonlocal models a viable option, even for large scale

problems. It also represents an effort towards increasing the usability of nonlocal equations, for which the high computational
costs often hinders their popularity in engineering contexts, despite their undeniable improved accuracy.
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